JP2023043985A - Defect inspection method - Google Patents

Defect inspection method Download PDF

Info

Publication number
JP2023043985A
JP2023043985A JP2021151774A JP2021151774A JP2023043985A JP 2023043985 A JP2023043985 A JP 2023043985A JP 2021151774 A JP2021151774 A JP 2021151774A JP 2021151774 A JP2021151774 A JP 2021151774A JP 2023043985 A JP2023043985 A JP 2023043985A
Authority
JP
Japan
Prior art keywords
inspection
path
defect
leak
leakage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021151774A
Other languages
Japanese (ja)
Inventor
真央 平田
Mao Hirata
努 原
Tsutomu Hara
泰彦 樋口
Yasuhiko Higuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Co Ltd
Original Assignee
Fukuda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Co Ltd filed Critical Fukuda Co Ltd
Priority to JP2021151774A priority Critical patent/JP2023043985A/en
Publication of JP2023043985A publication Critical patent/JP2023043985A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Examining Or Testing Airtightness (AREA)

Abstract

To determine quality of an inspection object on the basis of a bore diameter of a defect of the inspection object.SOLUTION: A reference leakage bore 25a of a reference leakage instrument 25 provided in a leakage inspection device has a passage length that is determined by modeling defects to be assumed in an inspection object to a linear tubular defect of a circular cross-sectional shape. A defect inspection method includes: obtaining a reference amount of leakage Qs under a specified condition, which is a leakage amount of the reference leakage instrument 25, at a specified test pressure, atmospheric pressure (external air pressure) and ambient temperature; obtaining a reference amount of leakage Qr under an inspection condition from a pseudo leakage in the reference leakage instrument 25 under an actual inspection condition; performing leakage inspection by connecting the leakage inspection device to an inspection object W to obtain an amount of leakage Qm of the inspection object under the inspection condition; then, converting the amount of leakage Qm of the inspection object under the inspection condition to an amount of leakage Qx of the inspection object under the specified condition on the basis of the reference amount of leakage Qs under the specified condition and the reference amount of leakage Qr under the inspection condition; and computing a bore diameter Dx of a defect of the inspection object on the basis of the converted amount of leakage Qx, and determining quality of the inspection object.SELECTED DRAWING: Figure 1

Description

本発明は、検査対象の欠陥のサイズを基準にして検査対象の合否を判定する欠陥検査方法に関する。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a defect inspection method for judging acceptance/rejection of an inspection target based on the size of the defect to be inspected.

加圧空気式の漏れ検査装置を例にとって説明すると、この漏れ検査装置は、テスト圧源と、テスト圧源に接続された検査路と、検査路に設けられた弁と、この弁より下流側に接続された圧力測定手段とを基本構造として備えている。検査路の末端に検査対象を接続し、テスト圧源からのテスト圧を検査対象に供給した後、弁を閉じて検査路および検査対象を閉鎖し、この閉鎖系の圧力変化を圧力測定手段で測定する。検査対象に欠陥があると検査対象での漏れにより閉鎖系の圧力が降下する。 Taking a pressurized air type leak test device as an example, this leak test device includes a test pressure source, a test path connected to the test pressure source, a valve provided in the test path, and a downstream side of the valve. and a pressure measuring means connected to the basic structure. After connecting the inspection object to the end of the inspection path and supplying the test pressure from the test pressure source to the inspection object, the valve is closed to close the inspection path and the inspection object, and the pressure change in this closed system is measured by the pressure measuring means. Measure. A defect in the test object causes a pressure drop in the closed system due to a leak in the test object.

検査対象に同じ量の漏れがあっても検査対象の容積が異なると上記降下圧力も異なる。そのため、降下圧力と検査対象の容積に基づき単位時間当たりの漏れ量を演算し、この漏れ量を基準にして合否判定をする方法が一般に採用されている。
しかし、検査対象の漏れ量は、欠陥そのものを一義的に表すものではない。なぜなら、漏れ量が等しくても欠陥の形態やサイズが異なることがあり、また、欠陥が同じでもテスト圧、大気圧、周囲温度等の漏れ検査の条件が変わると、漏れ量が変化するからである。
Different volumes of test objects with the same amount of leakage will have different pressure drops. For this reason, a method is generally adopted in which a leakage amount per unit time is calculated based on the pressure drop and the volume of the inspection object, and a pass/fail judgment is made based on this leakage amount.
However, the leakage amount to be inspected does not uniquely represent the defect itself. This is because even if the leak rate is the same, the shape and size of the defect may differ, and even if the defect is the same, the leak rate will change if the leak test conditions such as test pressure, atmospheric pressure, and ambient temperature change. be.

また、漏れ量そのものが検査対象の良否判定の基準とならない場合がある。検査対象が内容物を収容した包装であり、この包装の内圧が大気圧と略同じかその差が小さい場合を例にとって説明する。この内容物は特定の物質例えば水蒸気や酸素と反応して劣化する。そのため、内容物の品質保証期限までに包装の欠陥を介して侵入する特定物質の侵入量を、許容値未満に抑制することが求められる。この侵入量の許容値は、欠陥の形状とサイズが特定されれば、拡散の原理に基づき、求めることができる。
一方、上記漏れ検査装置では、テスト圧を付与し、検査対象の内外の圧力差により流体が欠陥を通過するようにして漏れ量を測定するため、拡散とは異なる原理により漏れが発生する。そのため、上記特定侵入量と漏れ量とが1対1に対応せず、侵入量の許容値に基づく正確な良否判定が行えない。例えば漏れ量が同じであっても欠陥の形状の相違により侵入量が数倍から数十倍異なるからである。
In addition, the amount of leakage itself may not serve as a criterion for judging the quality of the object to be inspected. An example will be described in which the inspection object is a package containing contents, and the internal pressure of this package is approximately the same as the atmospheric pressure or the difference between them is small. This content degrades by reacting with certain substances such as water vapor and oxygen. Therefore, it is required to suppress the intrusion amount of specific substances through packaging defects to less than the allowable value before the expiration date of the quality assurance of the contents. If the shape and size of the defect are specified, the permissible value of this intrusion amount can be obtained based on the principle of diffusion.
On the other hand, in the above-described leak tester, a test pressure is applied and the leak amount is measured by causing the fluid to pass through the defect due to the pressure difference between the inside and outside of the object to be inspected. Therefore, the specific amount of intrusion and the amount of leakage do not correspond one-to-one, and it is impossible to make an accurate determination of quality based on the permissible value of the amount of intrusion. This is because, for example, even if the leak amount is the same, the penetration amount differs several times to several tens of times due to the difference in the shape of the defect.

特許文献1の漏れ検査装置では、検査路に接続された疑似漏れ路とこの疑似漏れ路に設けられた基準漏れ器を装備している。この基準漏れ器は、検査対象の欠陥と似た挙動を示す基準漏れ孔を有している。予めこの基準漏れ器での規定の大気圧および周囲温度での漏れ量すなわち「規定条件下での基準漏れ量」を求めておく。
検査条件下において、前記検査路にテスト圧を供給し、基準漏れ器を介して疑似漏れを生じさせ、この時に前記圧力測定手段で計測される前記検査路の圧力変化に基づき、漏れ量すなわち「検査条件下での基準漏れ量」を求める。
次に前記検査条件下において、前記検査路に検査対象を接続した状態でテスト圧を供給し、前記圧力測定手段で計測される前記検査路の圧力変化に基づき、漏れ量すなわち「検査条件下での検査対象の漏れ量」を求める。
前記「検査条件下での検査対象の漏れ量」を、前記「規定条件下での基準漏れ量」と前記「検査条件下での基準漏れ量」に基づき、「規定条件下での検査対象の漏れ量」に換算し、この換算漏れ量を漏れ量の閾値と比較して合否判定を行う。
The leak test device of Patent Document 1 is equipped with a pseudo leak path connected to a test path and a reference leaker provided in this pseudo leak path. This reference leaker has a reference leak that behaves like the defect under test. The amount of leakage from this reference leaker at specified atmospheric pressure and ambient temperature, that is, the "reference amount of leakage under specified conditions" is obtained in advance.
Under inspection conditions, a test pressure is supplied to the inspection path to cause a pseudo leak through the reference leaker, and the amount of leakage, that is, " Calculate the standard leakage amount under the inspection conditions.
Next, under the inspection conditions, a test pressure is supplied with the object to be inspected connected to the inspection path, and based on the pressure change in the inspection path measured by the pressure measuring means, the amount of leakage to find the amount of leakage to be inspected.
Based on the above "reference leakage amount under specified conditions" and the above "reference leakage amount under inspection conditions", the above "leakage amount to be inspected under inspection conditions" This converted leakage amount is compared with the threshold value of the leakage amount to make pass/fail judgment.

特許文献1の方法によれば、大気圧の変化や周囲温度の変化に拘わらず、検査対象の欠陥のサイズに対応した漏れ量を演算で求めることができるので、精度の高い合否判定を行うことができる。 According to the method of Patent Document 1, the leakage amount corresponding to the size of the defect to be inspected can be obtained by calculation regardless of changes in atmospheric pressure and ambient temperature, so that highly accurate pass/fail judgment can be performed. can be done.

特許文献2は、上流側圧力、下流側圧力、気体の流量、温度、検査対象の孔の長さを含む情報から、検査対象の孔径を求める方法を開示している。 Patent Literature 2 discloses a method for determining the diameter of a hole to be inspected from information including upstream pressure, downstream pressure, gas flow rate, temperature, and length of the hole to be inspected.

特許第6636044Patent No. 6636044 WO2021/079833A1WO2021/079833A1

特許文献1の方法では、規定条件での換算漏れ量は検査対象の欠陥の孔径に対応しているが、孔径自体は不明であるため、より高精度な合否判定の要求に応えられていない。すなわち、前述したように検査対象である密閉製品の内容物はそれぞれ特定物質に対する劣化が問題となるが、この特定物質に対する侵入量は、欠陥のサイズ特に孔径と、密閉製品がおかれた環境の条件により決まる。しかし、上記の換算漏れ量では、想定される環境条件下での侵入量の許容値に対応する閾値を容易に設定することができず、ひいては合否判断を高精度に行えない。
特許文献2の方法は、検査対象の合否判定を行う具体的手順を開示していない。
In the method of Patent Document 1, the converted leakage amount under specified conditions corresponds to the hole diameter of the defect to be inspected, but since the hole diameter itself is unknown, it cannot meet the demand for more accurate pass/fail judgment. That is, as described above, the contents of the sealed product to be inspected are subject to deterioration due to specific substances. Depends on conditions. However, with the above-described converted leakage amount, it is not possible to easily set a threshold value corresponding to the allowable value of the intrusion amount under the envisaged environmental conditions, and consequently it is not possible to make a pass/fail judgment with high accuracy.
The method of Patent Literature 2 does not disclose a specific procedure for making pass/fail judgments for inspection objects.

本発明は前記課題を解決するためになされたもので、欠陥検査方法において、検査対象の検査工程に先立ち、検査対象の想定される欠陥を断面円形の直管状の通路にモデル化し、このモデル化された欠陥の通路長さを決定するとともに、孔径の閾値Doを決定し、前記欠陥の検査工程では、検査路を介して前記検査路に接続された検査対象にテスト圧を供給し、前記検査路を閉鎖した後、前記検査路の圧力変化を測定し、前記圧力変化または前記圧力変化から演算された気体の漏れ量に基づき、検査対象の欠陥の孔径Dxを演算し、前記演算された孔径Dxと前記孔径の閾値Doとを比較することにより、検査対象の合否判定を行うことを特徴とする。 The present invention has been made to solve the above problems. In the defect inspection step, a test pressure is supplied to an inspection object connected to the inspection path through an inspection path, and the inspection is performed. After the passage is closed, the pressure change in the inspection passage is measured, the pore diameter Dx of the defect to be inspected is calculated based on the pressure change or the amount of gas leakage calculated from the pressure change, and the calculated pore diameter By comparing Dx with the threshold value Do of the hole diameter, the acceptance/rejection determination of the inspection object is performed.

上記方法によれば、欠陥をモデル化してその通路長さを決定するとともに、孔径の閾値Doを決定し、検査工程で演算された孔径Dxをこの閾値Doと比較するので、種々の条件に左右されずに、高精度の合否判定を行うことができる。 According to the above method, the defect is modeled to determine its path length, the threshold Do of the hole diameter is determined, and the hole diameter Dx calculated in the inspection process is compared with this threshold Do. It is possible to make a highly accurate pass/fail judgment without being overwhelmed.

好ましくは、検査対象にとって侵入または漏洩を阻止または抑制すべき物質を特定し、この特定物質が検査対象に対して侵入または漏洩する量の許容値を決定し、前記通路長さを有するモデル化された欠陥を通して前記特定物質が検査対象に侵入または漏洩する量を、理論または実験により求め、侵入量または漏洩量の許容値に達する孔径に基づき前記孔径の閾値Doを決定する。
上記方法によれば、検査対象の内容物の品質保証の観点から、正確に合否判定の閾値を定めることができる。
検査対象の内圧と大気圧の差が小さい場合には、拡散の理論式により、前記孔径の閾値Doを求める。
Preferably, a substance that should be prevented or suppressed from entering or leaking into the object to be inspected is specified, a permissible value for the amount of this specific substance entering or leaking into the object to be inspected is determined, and a model having the path length is determined. The amount of the specific substance that penetrates or leaks into the inspection object through the defect is determined theoretically or experimentally, and the threshold Do of the hole diameter is determined based on the hole diameter that reaches the permissible value for the amount of penetration or leakage.
According to the above method, the pass/fail judgment threshold can be determined accurately from the viewpoint of quality assurance of the contents to be inspected.
When the difference between the internal pressure of the object to be inspected and the atmospheric pressure is small, the threshold value Do of the pore size is obtained from the diffusion theory.

検査対象の想定される欠陥が複数存在する場合には、異なる通路長さを有するモデル化された欠陥の各々が同一の侵入量または漏洩量に達する場合の孔径を求め、これら欠陥のうちから、前記検査工程において前記圧力変化または前記漏れ量が最も小さい欠陥を特定欠陥として選択し、この特定欠陥に係る孔径の閾値を、前記検査工程で用いる孔径の閾値Doとする。
上記方法によれば、検査対象の想定される欠陥が複数存在する場合に、最も漏れ量を検出しづらい欠陥を基準に合否判定を行うので、侵入量が許容値を超える検査対象を確実に検出することができる、
If there are multiple possible defects to be inspected, determine the pore size at which each of the modeled defects with different path lengths reaches the same amount of penetration or leakage, and among these defects, In the inspection process, the defect with the smallest pressure change or the smallest amount of leakage is selected as a specific defect, and the hole diameter threshold value for this specific defect is set as the hole diameter threshold value Do used in the inspection process.
According to the above method, when there are multiple defects assumed to be inspected, pass/fail judgment is performed based on the defect for which the amount of leakage is most difficult to detect. can do,

本発明の具体的態様は、テスト圧源と、検査対象が接続される末端を有し前記テスト圧源からのテスト圧を検査対象に供給する検査路と、前記検査路に設けられた第1弁と、前記第1弁と前記末端との間において前記検査路に接続された圧力測定手段と、前記第1弁と前記末端との間において前記検査路に接続され外部に連なる疑似漏れ路と、前記疑似漏れ路に設けられるとともに基準漏れ孔を有する基準漏れ器と、前記疑似漏れ路において前記検査路と前記基準漏れ器との間に設けられた第2弁と、を備えた漏れ検査装置を用いた欠陥検査方法において、
前記基準漏れ孔は、検査対象で想定される欠陥を断面円形の直管状の欠陥にモデル化して決定された通路長さに対応する長さを有するとともに、既知の径を有しており、規定されたテスト圧、外部気圧の条件下において前記基準漏れ孔を通る気体の漏れ量を、規定条件下での基準漏れ量Qsとして求めておき、
検査条件下において、検査対象と同一容積で漏れの無い良品対象を前記検査路に接続した状態でテスト圧を供給した後、前記第1弁を閉じ前記第2弁を開くことにより、前記基準漏れ器を介して疑似漏れを生じさせ、この時に前記圧力測定手段で測定される前記検査路の圧力変化に基づき、検査条件下での基準漏れ量Qrを求め、
前記検査条件下において、前記検査路に検査対象を接続した状態でテスト圧を供給した後、前記第1弁および前記第2弁を閉じた状態で、前記圧力測定手段で測定される前記検査路の圧力変化に基づき、検査条件下での検査対象の漏れ量Qmを求め、
前記規定条件下での基準漏れ量Qsと前記検査条件下での基準漏れ量Qrに基づき、前記検査条件下での検査対象の漏れ量Qmを、規定条件下での検査対象の換算漏れ量Qxに換算し、
さらに、前記換算漏れ量Qxと、少なくとも前記規定条件下でのテスト圧および外部気圧の情報に基づいて、検査対象の欠陥の孔径Dxを演算し、演算された前記孔径Dxを、モデル化された欠陥の孔径の閾値Doと比較することにより、検査対象の合否判定を行うことを特徴とする。
A specific aspect of the present invention is a test pressure source, an inspection path having an end connected to an object to be inspected and supplying the test pressure from the test pressure source to the object to be inspected; a valve, a pressure measuring means connected to the inspection path between the first valve and the terminal, and a pseudo leak path connected to the inspection path between the first valve and the terminal and connected to the outside; a reference leaker provided in the pseudo leak path and having a reference leak hole; and a second valve provided in the pseudo leak path between the test path and the reference leaker. In the defect inspection method using
The reference leak hole has a length corresponding to a passage length determined by modeling a defect assumed to be inspected as a straight tube defect having a circular cross section, and has a known diameter. The amount of gas leaking through the reference leak hole under the conditions of the test pressure and the external air pressure is obtained as a reference leakage amount Qs under specified conditions,
Under inspection conditions, after supplying a test pressure in a state in which a non-defective product having the same volume as the inspection object and having no leakage is connected to the inspection path, the first valve is closed and the second valve is opened, whereby the reference leakage is detected. A pseudo leak is generated through a device, and a reference leak amount Qr under inspection conditions is obtained based on the pressure change in the inspection path measured by the pressure measuring means at this time,
Under the inspection conditions, the test path is measured by the pressure measuring means while the first valve and the second valve are closed after a test pressure is supplied to the inspection path while the object to be inspected is connected to the inspection path. Based on the pressure change in
Based on the reference leakage amount Qs under the specified conditions and the reference leakage amount Qr under the inspection conditions, the leakage amount Qm to be inspected under the inspection conditions is converted to the converted leakage amount Qx to be inspected under the specified conditions. converted to
Furthermore, the hole diameter Dx of the defect to be inspected is calculated based on the converted leak amount Qx and at least information on the test pressure and the external air pressure under the specified conditions, and the calculated hole diameter Dx is modeled The pass/fail judgment of the inspection object is performed by comparing with the threshold value Do of the hole diameter of the defect.

上述した方法によれば、検査対象のモデル化された欠陥の孔径を基準にして合否判定を行うことができるので、高精度の合否判定を行うことができる。また、検査条件が変わっても欠陥の孔径を正確に求めることでき、この点からも合否判定を高精度に行うことができる。 According to the above-described method, the pass/fail judgment can be made based on the hole diameter of the modeled defect to be inspected, so that the pass/fail judgment can be made with high accuracy. In addition, even if the inspection conditions change, the hole diameter of the defect can be obtained accurately, and from this point as well, the pass/fail judgment can be performed with high accuracy.

さらに、前記孔径Dxを、前記基準漏れ孔の長さと、前記規定条件下での周囲温度の情報も加えて演算する。
この方法によれば、欠陥が長孔モデルであっても、正確に欠陥の孔径を求めることができる。
Further, the hole diameter Dx is calculated by adding the length of the reference leak hole and information on the ambient temperature under the specified conditions.
According to this method, even if the defect is a long hole model, the hole diameter of the defect can be obtained accurately.

本発明の別の具体的態様は、テスト圧源と、検査対象が接続される末端を有し前記テスト圧源からのテスト圧を検査対象に供給する検査路と、前記検査路に設けられた第1弁と、前記第1弁と前記末端との間において前記検査路に接続された圧力測定手段と、外部気圧を測定する気圧センサと、を備えた漏れ検査装置を用いた欠陥検査方法において、
検査工程に先立ち、検査対象の想定される欠陥を断面円形の直管状の通路にモデル化し、このモデル化された欠陥の通路長さを決定するとともに、孔径の閾値Doを決定し、
前記検査工程では、前記検査路に検査対象を接続した状態でテスト圧を供給した後、前記第1弁を閉じた状態で、前記圧力測定手段で測定される前記検査路の圧力変化に基づき、検査対象の漏れ量Qmを求め、前記漏れ量Qmと、少なくとも前記テスト圧と前記気圧センサからの外部気圧との情報に基づいて、欠陥の孔径Dxを演算し、演算された前記孔径Dxを孔径の閾値Doと比較することにより、検査対象の合否判定を行うことを特徴とする。
この方法でも検査対象の欠陥の孔径を基準にして合否判定を行うことができる。
Another specific aspect of the present invention is a test pressure source, an inspection path having an end connected to an object to be inspected and supplying the test pressure from the test pressure source to the object to be inspected; A defect inspection method using a leak inspection device comprising a first valve, pressure measuring means connected to the inspection path between the first valve and the end, and an air pressure sensor for measuring external air pressure ,
Prior to the inspection process, model the assumed defect to be inspected as a straight tubular passage with a circular cross section, determine the passage length of this modeled defect, and determine the threshold Do of the hole diameter,
In the inspection step, after a test pressure is supplied to the inspection path while the object to be inspected is connected, the first valve is closed, and based on the pressure change in the inspection path measured by the pressure measuring means, A leak amount Qm to be inspected is obtained, a defect hole diameter Dx is calculated based on the leak amount Qm, at least the information of the test pressure and the external air pressure from the air pressure sensor, and the calculated hole diameter Dx is used as the hole diameter. It is characterized in that the pass/fail judgment of the inspection object is performed by comparing with the threshold value Do of .
This method can also make pass/fail judgments based on the hole diameter of the defect to be inspected.

好ましくは、前記漏れ検査装置はさらに周囲温度を検出する温度センサを備えており、前記孔径Dxを、前記モデル化された欠陥の通路長さと、前記温度センサからの周囲温度の情報も加えて演算する。
この方法によれば、欠陥が長孔モデルであっても、正確に欠陥の孔径を求めることができる。
Preferably, the leak tester further comprises a temperature sensor for detecting ambient temperature, and the hole diameter Dx is calculated by adding the path length of the modeled defect and ambient temperature information from the temperature sensor. do.
According to this method, even if the defect is a long hole model, the hole diameter of the defect can be obtained accurately.

さらに好ましくは、前記漏れ検査装置はさらに、前記第1弁と前記末端との間において前記検査路に接続され外部に連なる疑似漏れ路と、前記疑似漏れ路に設けられるとともに基準漏れ孔を有する基準漏れ器と、前記疑似漏れ路において前記検査路と前記基準漏れ器との間に設けられた第2弁と、を備え、前記基準漏れ孔は、前記モデル化された欠陥の通路長さと等しい長さを有するとともに、既知の径を有しており、
前記検査対象の検査に先立ち、検査対象と同一容積で漏れの無い良品対象を前記検査路に接続した状態でテスト圧を供給した後、前記第1弁を閉じ前記第2弁を開くことにより、前記基準漏れ器を介して疑似漏れを生じさせ、この時に前記圧力測定手段で測定される前記検査路の圧力変化に基づき、検査条件下での実測基準漏れ量を求め、前記基準漏れ孔の長さおよび径と、テスト圧と、前記気圧センサからの外部気圧と、前記温度センサからの周囲温度の情報に基づいて、理論上の基準漏れ量を演算し、前記実測基準漏れ量が前記理論上の基準漏れ量と一致するように、前記漏れ検査装置による漏れ量の出力値を校正する。
この方法によれば、正確に校正を行うことができる。
More preferably, the leak test device further comprises a pseudo leak path connected to the test path between the first valve and the terminal end and continuing to the outside, and a reference provided in the pseudo leak path and having a reference leak hole. a leaker; and a second valve provided in the pseudo leak path between the test channel and the reference leaker, the reference leak having a length equal to the path length of the modeled defect. and has a known diameter,
Prior to the inspection of the inspection target, after supplying a test pressure in a state in which a non-defective product having the same volume as the inspection target and having no leakage is connected to the inspection path, the first valve is closed and the second valve is opened, Pseudo-leakage is generated through the reference leaker, and based on the pressure change in the test path measured by the pressure measuring means at this time, the actually measured reference leak amount under the test conditions is obtained, and the length of the reference leak hole is determined. A theoretical reference leak rate is calculated based on the information of the height and diameter, the test pressure, the external air pressure from the air pressure sensor, and the ambient temperature from the temperature sensor, and the actually measured reference leak rate is the theoretical calibrate the output value of the leakage amount from the leakage inspection device so as to match the reference leakage amount of .
According to this method, calibration can be performed accurately.

本発明によれば、検査対象の欠陥の絶対的基準である孔径を基準にするので、検査対象の合否を正確に判定することができる。 According to the present invention, since the hole diameter, which is an absolute reference for the defect to be inspected, is used as a reference, it is possible to accurately determine whether the inspection object is acceptable.

本発明の第1実施形態に係る漏れ検査装置の回路図である。1 is a circuit diagram of a leak test device according to a first embodiment of the present invention; FIG. 本発明の第2実施形態に係る漏れ検査装置の回路図である。FIG. 4 is a circuit diagram of a leak test device according to a second embodiment of the present invention;

以下、本発明の実施形態を説明する。
<欠陥のモデル化と閾値設定>
検査対象の検査工程に先立ち、検査対象の想定される欠陥を断面円形の直管状の通路にモデル化し、このモデル化された欠陥の通路長さを決定するとともに、孔径の閾値Doを決定する。
検査対象として内容物を収容した包装を例にとって説明する。包装の内圧は大気圧と略等しいかその差が小さく、後述の拡散の原理を適用可能である。包装の内容物はその種類により劣化を招く物質が異なり、例えば水蒸気、酸素等の気体分子や、カビ、細菌等がある。最初にこの包装の製造工程等から、生じる欠陥を想定し、この欠陥をモデル化する。例えば2枚のシート部分の溶着部に欠陥が生じる可能性ある場合には、比較的長い直管にモデル化し、モデル化した直管の通路長さLを決定する。シート部のピンホールが欠陥として生じる可能性がある場合には、このシート部の肉厚を通路長さとして決定する。
Embodiments of the present invention will be described below.
<Defect modeling and threshold setting>
Prior to the inspection process of the inspection object, the assumed defect of the inspection object is modeled as a straight tubular passage with a circular cross section, the passage length of this modeled defect is determined, and the threshold value Do of the hole diameter is determined.
A description will be given by taking as an example a package containing contents as an object to be inspected. The internal pressure of the package is approximately equal to or has a small difference from the atmospheric pressure, and the principle of diffusion, which will be described later, can be applied. Depending on the type of the contents of the package, substances that cause deterioration are different, and include, for example, gas molecules such as water vapor and oxygen, molds, bacteria, and the like. First, a defect caused by the packaging manufacturing process is assumed and modeled. For example, when there is a possibility that a defect may occur in the welded portion of the two sheet portions, a relatively long straight pipe is modeled, and the passage length L of the modeled straight pipe is determined. If there is a possibility that pinholes in the seat may occur as defects, the wall thickness of the seat is determined as the path length.

次に劣化を招く特定物質の許容侵入量とモデル化した欠陥の通路長さLに基づき、既知の拡散の理論式を用いて、欠陥の孔径の許容値を演算し、この許容値かこれに安全係数を乗じた値を孔径の閾値Doとして決定する。なお、理論式の代わりに実験により孔径の閾値Doを求めてもよい。 Next, based on the permissible intrusion amount of the specific substance that causes deterioration and the path length L of the modeled defect, the permissible value of the hole diameter of the defect is calculated using a known diffusion theoretical formula, and this permissible value or this The value multiplied by the safety factor is determined as the pore diameter threshold value Do. Note that the pore diameter threshold value Do may be obtained by experiment instead of the theoretical formula.

検査対象が異なる形態の複数の欠陥を含むことが想定される場合もある。例えば上記のように通路長さが長い欠陥とピンホール等のように短い欠陥が並存する場合がある。この場合、異なる通路長さを有するモデル化された欠陥の各々が同一の侵入量(例えば許容侵入量)に達する場合の孔径を求め、これら欠陥のうちから、後述する検査工程において測定される漏れ量が最も小さい欠陥を特定欠陥として選択する。この特定欠陥に係る孔径の閾値を、検査工程で用いる孔径の閾値Doとする。 It may be assumed that the inspection object contains multiple defects of different forms. For example, a defect with a long path as described above and a defect with a short path such as a pinhole may coexist. In this case, the pore size is determined when each of the modeled defects with different path lengths reaches the same penetration (e.g., the allowable penetration), and from these defects the leakage measured in the inspection step described below. The defect with the lowest amount is selected as the specific defect. The threshold value of the hole diameter related to this specific defect is set as the threshold value Do of the hole diameter used in the inspection process.

上述したように、孔径の閾値Doは、検査工程に先立ち、検査条件に拘わらず一義的に決定することができる。 As described above, the hole diameter threshold value Do can be uniquely determined prior to the inspection process regardless of the inspection conditions.

<検査工程>
検査工程の概略を説明すると、検査路を介して検査対象にテスト圧を供給し、検査路を閉鎖した後、前記検査路の圧力変化を測定する。この圧力変化から気体の漏れ量を演算すし、演算された漏れ量から検査対象の欠陥の孔径Dxを演算する。この演算された孔径Dxと前記孔径の閾値Doとを比較することにより、検査対象の合否判定を行う。
<Inspection process>
To explain the outline of the inspection process, a test pressure is supplied to the object to be inspected through the inspection path, and after the inspection path is closed, the pressure change in the inspection path is measured. The gas leakage amount is calculated from this pressure change, and the pore diameter Dx of the defect to be inspected is calculated from the calculated leakage amount. By comparing the calculated hole diameter Dx with the threshold value Do of the hole diameter, the pass/fail judgment of the inspection target is performed.

<第1実施形態>
以下、第1実施形態を図面にしたがって説明する。
漏れ検査装置の構成
図1に示すように、漏れ検査装置は、テスト圧源1と圧力回路2とを備えている。テスト圧源1は、加圧エアを供給する圧力源1aと、この圧力源1aのエア圧をテスト圧に減圧する圧力調整弁1bとを有している。圧力回路2は、テスト圧源1に接続された共通路3と、共通路3から分岐した参照路4および検査路5と、検査路5に接続された疑似漏れ路6と、を有している。
<First Embodiment>
A first embodiment will be described below with reference to the drawings.
Configuration of leak test equipment
As shown in FIG. 1, the leak test device comprises a test pressure source 1 and a pressure circuit 2. As shown in FIG. The test pressure source 1 has a pressure source 1a that supplies pressurized air and a pressure regulating valve 1b that reduces the air pressure of the pressure source 1a to the test pressure. The pressure circuit 2 has a common path 3 connected to the test pressure source 1, a reference path 4 and a test path 5 branched from the common path 3, and a pseudo leak path 6 connected to the test path 5. there is

共通路3には、圧力計12と三方弁13が設けられている。参照路4と検査路5と疑似漏れ路6には、それぞれ開閉弁14,15、16が設けられている。疑似漏れ路6は検査路5において開閉弁15の下流側に接続されている。 A pressure gauge 12 and a three-way valve 13 are provided in the common channel 3 . On-off valves 14, 15, and 16 are provided in the reference path 4, the inspection path 5, and the pseudo leak path 6, respectively. The pseudo leak path 6 is connected downstream of the on-off valve 15 in the inspection path 5 .

参照路4と検査路5の間には、開閉弁14,15よりも下流側において差圧センサ20(圧力測定手段)が接続されている。参照路4の下流端(末端)には、マスタ容器21が接続されている。検査路5の下流端(末端)には、検査対象Wが直接接続されるか、または検査対象Wを収容したワークカプセル(密閉容器)が接続されるようになっている。検査対象Wとなる製品は、それぞれ特有の製造工程および構造を有しており、欠陥が生じる可能性がある箇所を想定するでき、上述したように欠陥をモデル化することができる。 A differential pressure sensor 20 (pressure measuring means) is connected between the reference path 4 and the inspection path 5 downstream of the on-off valves 14 and 15 . A master container 21 is connected to the downstream end (end) of the reference path 4 . The downstream end (end) of the inspection path 5 is directly connected to the inspection target W, or is connected to a work capsule (closed container) containing the inspection target W. Each product to be inspected W has its own unique manufacturing process and structure, and it is possible to assume locations where defects may occur, and model defects as described above.

上記疑似漏れ路6の下流端には基準漏れ器25が接続されている。基準漏れ器25は、後述するように検査対象Wのモデル化された欠陥に対応した形状、サイズの基準漏れ孔25aを有している。 A reference leaker 25 is connected to the downstream end of the pseudo leak path 6 . The reference leaker 25 has a reference leak hole 25a having a shape and size corresponding to the modeled defect of the inspection object W, as described later.

漏れ検査装置はさらに、コンピュータシステム30と駆動回路35とを備えている。コンピュータシステム30は、制御演算部31(制御演算手段)と、この制御演算部31に接続されたキーボード等の入力部32と、ディスプレイ等の表示部33とを備えている。駆動回路35は、後述する漏れ検査工程において、制御演算部31からのシーケンス制御信号に基づき上記弁13~16を制御する。制御演算部31は、メモリ31mを内蔵している。 The leak test device further comprises a computer system 30 and a drive circuit 35. FIG. The computer system 30 includes a control calculation section 31 (control calculation means), an input section 32 such as a keyboard connected to the control calculation section 31, and a display section 33 such as a display. The drive circuit 35 controls the valves 13 to 16 based on the sequence control signal from the control calculation section 31 in the leak inspection process, which will be described later. The control calculation unit 31 incorporates a memory 31m.

漏れ量の理論式
検査対象Wの欠陥に起因する漏れ量Q(Pa・m/s)についての理論式の一例について説明する。欠陥は上述したように断面円形の直管状の孔に単純化(モデル化)されている。欠陥が長孔モデルの場合、すなわち欠陥の通路長さが欠陥の孔径に比べて10倍以上と長い場合(例えば欠陥の長さが10mmで孔径が50μmの場合)、粘性流の代表的な計算式であるハーゲンポアズイユの式、すなわち下記式(1)から漏れ量Qを求めることができる。

Figure 2023043985000002
ここで、P1はテスト圧、P2は外部気圧(本実施形態では大気圧)である。Lは欠陥の通路長さ、Dは欠陥の孔径である。ηは気体の粘性係数であり、気体の種類(本実施形態では空気)と周囲温度に依存して変化する。 Theoretical formula for leak amount An example of a theoretical formula for the leak amount Q (Pa·m 3 /s) caused by defects in the inspection object W will be described. The defect is simplified (modeled) as a straight tubular hole with a circular cross section as described above. If the defect is a long pore model, i.e. if the path length of the defect is more than 10 times longer than the pore diameter of the defect (e.g. if the defect length is 10 mm and the pore diameter is 50 μm), a representative calculation of viscous flow The leakage amount Q can be obtained from the Hagen-Poiseuille formula, that is, the following formula (1).
Figure 2023043985000002
Here, P1 is the test pressure and P2 is the external pressure (atmospheric pressure in this embodiment). L is the defect path length and D is the defect pore size. η is the viscosity coefficient of the gas, and varies depending on the type of gas (air in this embodiment) and the ambient temperature.

欠陥が短孔モデルの場合、すなわち検査対象Wの壁厚が薄く欠陥(ピンホール)の通路長さが欠陥の孔径の10倍未満の場合(例えば欠陥の長さが15μmで孔径が20μmの場合)、下記式(2)から漏れ量Q(Qs)を求めることができる。
Q=0.016×D(P1-P2)・・・(2)
When the defect is a short hole model, that is, when the wall thickness of the inspection target W is thin and the path length of the defect (pinhole) is less than 10 times the hole diameter of the defect (for example, when the defect length is 15 μm and the hole diameter is 20 μm) ), and the leakage amount Q (Qs) can be obtained from the following equation (2).
Q=0.016×D 2 (P1−P2) (2)

以下の説明において、上記一般式で用いた符号P1,P2を、規定条件のテスト圧、外部気圧と、検査条件でのテスト圧、外部気圧を示す共通の符号として用いる。 In the following description, the symbols P1 and P2 used in the above general formula are used as common symbols indicating the test pressure and external air pressure under specified conditions and the test pressure and external air pressure under inspection conditions.

基準漏れ孔のサイズ
検査対象Wの想定される欠陥が長孔モデルの場合には、基準漏れ器25の基準漏れ孔25aは、この欠陥の長さと略等しい長さを有している。検査対象Wの壁厚が薄くて想定される欠陥が短孔モデルの場合にも、基準漏れ孔25aは、欠陥の長さと略等しい長さを有するのが好ましいが、上記式(2)が成立するのに十分短い長さを有していれば欠陥の長さと必ずしも等しくなくてもよい。
基準漏れ孔5aの径Dは、例えば検査対象Wの合否判定の閾値とほぼ同程度に設定するのが好ましいが、この閾値と異なっていてもよい。
Size of reference leak hole If the assumed defect of the inspection object W is a long hole model, the reference leak hole 25a of the reference leaker 25 has a length approximately equal to the length of this defect. there is Even when the wall thickness of the inspection object W is thin and the assumed defect is a short hole model, the reference leak hole 25a preferably has a length substantially equal to the length of the defect, but the above equation (2) holds. not necessarily equal to the length of the defect as long as it has a length short enough to
The diameter D of the reference leak hole 5a is preferably set to be approximately the same as the pass/fail judgment threshold of the inspection object W, but may be different from this threshold.

規定条件下での基準漏れ量
基準漏れ器25については、予め規定された周囲温度、テスト圧、大気圧(すなわち規定条件下)での単位時間当たりの漏れ量(Pa・m/s)(以下、単に漏れ量と言う)を予め求めておく。この漏れ量Qsは、上述した式(1)または式(2)から理論的に求めることができるが、後述するように実測で漏れ量Qsを求めてもよい。この漏れ量Qsを「規定条件下での基準漏れ量」と定義する。
Reference leak rate under specified conditions For the reference leaker 25, the leak rate per unit time (Pa· m3 /s) (hereinafter simply referred to as the amount of leakage) is obtained in advance. The leak amount Qs can be theoretically obtained from the above-described formula (1) or formula (2), but the leak amount Qs may be obtained by actual measurement as described later. This leakage amount Qs is defined as "a reference leakage amount under specified conditions".

欠陥検査方法
上記構成をなす漏れ検査装置による欠陥検査方法を説明する。
メモリ31mは、上記弁13~16のためのシーケンス制御プログラムに加えて、入力部32から入力された下記情報を格納している。
・規定の周囲温度
・規定の大気圧(外部気圧)
・規定のテスト圧
・規定条件下での基準漏れ量Q
・検査対象Wの容積
・基準漏れ器25の基準漏れ孔25aの長さL
・漏れ判定のための孔径の閾値 Do
Defect inspection method A defect inspection method using the leak inspection apparatus configured as described above will be described.
The memory 31m stores the following information input from the input unit 32 in addition to the sequence control programs for the valves 13-16.
・Specified ambient temperature ・Specified atmospheric pressure (external pressure)
・Specified test pressure ・Standard leak rate QS under specified conditions,
・Volume of inspection target W ・Length L of reference leak hole 25a of reference leaker 25
・Threshold Do of hole diameter for leak determination

<疑似漏れ測定>
最初に、検査対象Wの漏れ検査が実際に行われる時及び場所において、検査条件下での基準漏れ器25を通る漏れ量Qrを求める。この漏れ量Qrを「検査条件下での基準漏れ量」と定義する。検査条件下での周囲温度および大気圧は、規定条件と一般的には異なっている。検査条件下でのテスト圧は規定条件でのテスト圧と等しくするのが好ましいが、異なっていてもよい。
<Pseudo leak measurement>
First, the leak amount Qr passing through the reference leaker 25 under test conditions is obtained at the time and place where the leak test for the test object W is actually performed. This leak amount Qr is defined as "a reference leak amount under inspection conditions". Ambient temperature and atmospheric pressure under test conditions are generally different from regulation conditions. The test pressure under inspection conditions is preferably equal to the test pressure under normal conditions, but may be different.

詳述すると、検査路5には検査対象Wと同一構成(同一容積)をなす漏れの無い良品対象を接続しておく。三方弁13によって共通路3と、参照路4及び検査路5を連通させるとともに、開閉弁14,15を開く(ただし開閉弁16は閉じたままである)。これによって、テスト圧源1からのエア圧が、参照路4からマスタ容器21に導入されるともに、検査路5から良品対象に導入される。 To be more specific, the inspection path 5 is connected to a leak-free non-defective object having the same configuration (same volume) as the inspection object W. The three-way valve 13 communicates the common path 3 with the reference path 4 and the inspection path 5, and opens the on-off valves 14 and 15 (however, the on-off valve 16 remains closed). As a result, air pressure from the test pressure source 1 is introduced from the reference path 4 to the master container 21 and from the inspection path 5 to the non-defective product.

次に、開閉弁14,15を閉じる。これによって、開閉弁14より下流側の参照路4およびマスタ容器21を含む空間と、開閉弁15より下流側の検査路5および良品対象を含む空間が、互いに独立した閉鎖空間となる。 Next, the on-off valves 14 and 15 are closed. As a result, the space containing the reference path 4 and the master container 21 on the downstream side of the on-off valve 14 and the space containing the inspection path 5 and non-defective product objects on the downstream side of the on-off valve 15 form mutually independent closed spaces.

次に、開閉弁16を開けることで疑似漏れ路6を検査路5と接続する。これによって、基準漏れ器25の基準漏れ孔25aから検査路5の加圧エアが大気へと漏れる。その結果、参照路4と検査路5との間に圧力差が発生する。この圧力差すなわち検査路5の圧力変化ΔPを差圧センサ20によって検出する。圧力変化ΔPの情報は制御演算部31に入力される。 Next, the on-off valve 16 is opened to connect the pseudo leak path 6 to the inspection path 5 . As a result, the pressurized air in the inspection path 5 leaks from the reference leak hole 25a of the reference leaker 25 to the atmosphere. As a result, a pressure difference is generated between the reference channel 4 and the test channel 5 . This pressure difference, that is, the pressure change ΔP of the inspection path 5 is detected by the differential pressure sensor 20 . Information on the pressure change ΔP is input to the control calculation unit 31 .

制御演算部31は、下記式(3)の演算を行なうことで、基準漏れ器25からの漏れ量Qを算出する。この漏れ量Qを「検査条件下での基準漏れ量Qr」と定義する。
Q=Vw・ΔP/Δt ・・・(3)
ここで、Δtは圧力変化ΔPの検出時間であり、Vwは良品対象の容積(すなわち検査対象の容積)である。
The control calculation unit 31 calculates the leakage amount Q from the reference leaker 25 by calculating the following equation (3). This leakage amount Q is defined as "a reference leakage amount Qr under inspection conditions".
Q=Vw·ΔP/Δt (3)
Here, Δt is the detection time of the pressure change ΔP, and Vw is the volume of the non-defective product (that is, the volume of the inspection object).

<換算係数算出>
さらに、制御演算部31は、次式(4)にしたがって換算係数kを求め、これをメモリ31mに格納しておく。
k=Qs/Qr ・・・(4)
上述したように、Qsは規定条件下での基準漏れ量であり、Qrは検査条件下での基準漏れ量である。
<Conversion factor calculation>
Furthermore, the control calculation unit 31 obtains a conversion factor k according to the following equation (4) and stores it in the memory 31m.
k=Qs/Qr (4)
As described above, Qs is the standard leak rate under specified conditions, and Qr is the standard leak rate under inspection conditions.

説明が前後するが、上記規定条件下での基準漏れ量Qsも、理論値ではなく漏れ検査装置を用いて上記疑似漏れ工程を実行することにより求めることができる。この漏れ検査装置は図示の漏れ検査装置と同一構成とするのが好ましいが、異なっていてもよい。 Although the explanation is back and forth, the reference leak amount Qs under the specified conditions can also be obtained by executing the above pseudo leak process using a leak test device instead of the theoretical value. This leak checker preferably has the same configuration as the leak checker shown in the figure, but may be different.

<漏れ検査>
次に、製造された検査対象Wの欠陥の有無を検査する方法について詳述する。
検査対象Wを検査路5に接続した状態で、三方弁13によって共通路3と参照路4及び検査路5を連通させ、開閉弁14,15を開く(ただし開閉弁16は閉じたままである)。これによって、テスト圧源1からのテスト圧が、参照路4からマスタ容器21に導入されるともに、検査路5から検査対象Wに導入される。
<Leak inspection>
Next, a method for inspecting the presence or absence of defects in the manufactured inspection target W will be described in detail.
With the inspection object W connected to the inspection path 5, the three-way valve 13 communicates the common path 3 with the reference path 4 and the inspection path 5, and the on-off valves 14 and 15 are opened (however, the on-off valve 16 remains closed). . As a result, the test pressure from the test pressure source 1 is introduced into the master container 21 through the reference path 4 and into the inspection object W through the inspection path 5 .

次に、開閉弁14,15を閉じる。これにより、開閉弁14より下流側の参照路4及びマスタ容器21を含む空間と、開閉弁15より下流側の検査路5及び検査対象Wを含む空間が、互いに独立した閉鎖空間となる。 Next, the on-off valves 14 and 15 are closed. As a result, the space containing the reference path 4 and the master container 21 on the downstream side of the on-off valve 14 and the space containing the inspection path 5 and the inspection object W on the downstream side of the on-off valve 15 form mutually independent closed spaces.

次に、差圧センサ20によって、参照路4と検査路5との間の圧力差の時間変化すなわち検査対象Wの圧力変化ΔPを検出する。制御演算部31は、この圧力変化ΔPを前述した式(3)に代入して検査対象Wの漏れ量Qを演算する。この漏れ量を「検査条件下での検査対象の漏れ量Qm」と定義する。 Next, the differential pressure sensor 20 detects the time change of the pressure difference between the reference path 4 and the inspection path 5, that is, the pressure change ΔP of the inspection object W. FIG. The control calculation unit 31 calculates the leak amount Q of the inspection object W by substituting this pressure change ΔP into the above-described formula (3). This leak amount is defined as "the leak amount Qm to be inspected under inspection conditions".

さらに、下記式(5)に示すように、検査条件下での検査対象の漏れ量Qmを、上記換算係数kを用いて規定条件下での検査対象の漏れ量Qxに換算する。
Qx=kQm ・・・(5)
Furthermore, as shown in the following equation (5), the leakage amount Qm to be inspected under inspection conditions is converted into the leakage amount Qx to be inspected under specified conditions using the conversion coefficient k.
Qx=kQm (5)

上記規定条件下での検査対象の換算漏れ量Qxは、検査条件下での周囲温度や大気圧の変化による影響をキャンセルしているので、検査対象の欠陥のサイズが同じであれば、検査条件が変化しても等しい値になる。 The converted leak amount Qx of the inspection target under the above specified conditions cancels the effects of changes in the ambient temperature and atmospheric pressure under the inspection conditions. is the same value even if is changed.

次に、上記規定条件下で検査対象の換算漏れ量Qxから、欠陥の孔径Dxを演算する。
欠陥が長孔モデルの場合、ハーゲンポアズイユの式(1)を変形した下記式(6)から求める。

Figure 2023043985000003
ここで、P1は規定のテスト圧、P2は規定の大気圧(外部気圧)である。ηは規定温度での気体(本実施形態では空気)の粘性係数である。Lは基準漏れ孔25aの長さ(すなわちモデル化した欠陥の通路長さ)である。 Next, the pore diameter Dx of the defect is calculated from the converted leakage amount Qx of the inspection object under the above specified conditions.
When the defect is a long hole model, it is obtained from the following formula (6) obtained by modifying the Hagen-Poiseuille formula (1).
Figure 2023043985000003
Here, P1 is the prescribed test pressure and P2 is the prescribed atmospheric pressure (external pressure). η is the viscosity coefficient of gas (air in this embodiment) at a specified temperature. L is the length of the reference leak 25a (ie the path length of the modeled defect).

欠陥が短孔モデルの場合、式(2)を変形した下記式(7)から孔径Dxを求める。

Figure 2023043985000004
ここで、P1は規定のテスト圧であり、P2は規定の大気圧(外部気圧)である。 If the defect is a short hole model, the hole diameter Dx is obtained from the following formula (7) obtained by modifying the formula (2).
Figure 2023043985000004
where P1 is the prescribed test pressure and P2 is the prescribed atmospheric pressure (external pressure).

<漏れ判定>
次に、演算された孔径Dxと閾値Doとを比較して合否判定を行う。すなわち、孔径Dxが閾値Do以下であれば、その検査対象Wを良品(漏れ無し)と判定する。孔径Dxが閾値Doを超えていれば、その検査対象Wを不良品(漏れ有り)と判定する。
表示部33では合否判定の結果を表示するとともに、演算された孔径Dx、閾値Doも表示する。
<Leak judgment>
Next, the calculated hole diameter Dx and the threshold value Do are compared to make a pass/fail decision. That is, if the hole diameter Dx is equal to or less than the threshold value Do, the inspection object W is determined to be non-defective (no leakage). If the hole diameter Dx exceeds the threshold value Do, the inspection object W is determined to be defective (with leakage).
The display unit 33 displays the result of pass/fail judgment, as well as the calculated hole diameter Dx and the threshold value Do.

測定終了後は、開閉弁14,15を開け、かつ三方弁13を大気解放位置にすることで、マスタ容器21及び検査対象W内のテスト圧を排出する。 After the measurement is finished, the open/close valves 14 and 15 are opened and the three-way valve 13 is set to the atmospheric release position to discharge the test pressure in the master container 21 and the object W to be inspected.

上述したように、圧力条件や温度条件に左右されない欠陥の孔径Dxにより合否を判断するので、高精度の合否判定を行うことができる。
例えば特定物質の検査対象への侵入量の許容値に基づいて合否判定を行う場合には、この許容値と検査対象がさらされる環境の条件とから、容易かつ適切に閾値(孔径の閾値)を設定することができ、この点からも高精度の合否判定を行うことができる。
As described above, the pass/fail judgment is made based on the hole diameter Dx of the defect which is not influenced by the pressure conditions and the temperature conditions, so the pass/fail judgment can be performed with high accuracy.
For example, when making pass/fail judgments based on the permissible amount of penetration of a specific substance into an object to be inspected, the threshold value (threshold for pore diameter) can be easily and appropriately set based on this allowable value and the environmental conditions to which the object to be inspected is exposed. It is also possible to perform a highly accurate pass/fail judgment from this point.

上述の説明からも理解されるように、欠陥が短孔モデルであって、式(7)を用いて孔径Dxを演算する場合には、基準漏れ孔25aの長さ(モデル化欠陥の通路長さ)と規定条件下での周囲温度の情報は用いずに済む。 As can be understood from the above description, when the defect is a short hole model and the hole diameter Dx is calculated using the equation (7), the length of the reference leak hole 25a (path length of the modeled defect ) and ambient temperature information under specified conditions can be dispensed with.

第2実施形態
次に、本発明の第2実施形態を説明する。第2実施形態で用いる漏れ検査装置は図2に示すように、大気圧(外部気圧)を検出する気圧センサ41と周囲温度を検出する温度センサ42を装備している。これら大気圧センサ41と温度センサ42の検出情報は制御演算部31に送られるようになっている。他の構成は図1と同じである。
Second Embodiment Next, a second embodiment of the present invention will be described. As shown in FIG. 2, the leak inspection device used in the second embodiment is equipped with an atmospheric pressure sensor 41 for detecting atmospheric pressure (external pressure) and a temperature sensor 42 for detecting ambient temperature. Information detected by the atmospheric pressure sensor 41 and the temperature sensor 42 is sent to the control calculation section 31 . Other configurations are the same as in FIG.

<漏れ検査>
第1実施形態と同様にして検査対象Wの漏れ検査が実行され、差圧センサ20で検出される圧力変化ΔPと、前述した式(3)から検査条件下での検査対象の漏れ量Qmが得られる。
<Leak inspection>
Leakage inspection of the inspection object W is performed in the same manner as in the first embodiment, and the pressure change ΔP detected by the differential pressure sensor 20 and the leakage amount Qm of the inspection object under the inspection conditions are obtained from the above-described equation (3). can get.

なお、検査条件下での検査対象の漏れ量Qmを、式(3)の代わりに、下記式(8)から求めてもよい。

Figure 2023043985000005
ここでaはセンサ係数、Vwは検査対象Wの容積、Vsはマスタ容器21の容積である。P1はテスト圧、P2は気圧センサ41で検出された大気圧である。 Note that the leak amount Qm to be inspected under the inspection conditions may be obtained from the following equation (8) instead of the equation (3).
Figure 2023043985000005
Here, a is the sensor coefficient, Vw is the volume of the inspection target W, and Vs is the volume of the master container 21 . P1 is the test pressure and P2 is the atmospheric pressure detected by the atmospheric pressure sensor 41 .

次に、上記検査条件下での検査対象Wの漏れ量Qmから検査対象Wの欠陥の孔径Dxを演算する。
欠陥が長孔モデルの場合、ハーゲンポアズイユの式(1)を変形した下記式(9)から求める。

Figure 2023043985000006
ここで、P1は検査条件下でのテスト圧であり、P2は検査条件下で検出された大気圧(外部気圧)である。Lはモデル化欠陥の通路長さである。ηは検査条件下で検出された周囲温度での気体(本実施形態では空気)の粘性係数である。 Next, the hole diameter Dx of the defect of the inspection object W is calculated from the leak amount Qm of the inspection object W under the above inspection conditions.
When the defect is a long hole model, it is obtained from the following formula (9) obtained by modifying the Hagen-Poiseuille formula (1).
Figure 2023043985000006
where P1 is the test pressure under test conditions and P2 is the atmospheric pressure (external pressure) detected under test conditions. L is the path length of the modeled defect. η is the viscosity coefficient of the gas (air in this embodiment) at ambient temperature detected under the test conditions.

欠陥が短孔モデルの場合、式(2)を変形した下記式(10)から孔径Dxを求める。

Figure 2023043985000007
ここで、P1はテスト圧であり、P2は検査条件下で検出された大気圧(外部気圧)である。 If the defect is a short hole model, the hole diameter Dx is obtained from the following formula (10) obtained by modifying the formula (2).
Figure 2023043985000007
where P1 is the test pressure and P2 is the atmospheric pressure (external pressure) detected under test conditions.

第1実施形態と同様に、求められた孔径Dxと閾値Doとを比較して合否判定するとともに、演算した孔径Dxおよび閾値Doを表示部33に表示する。 Similar to the first embodiment, the calculated hole diameter Dx and the threshold value Do are compared to determine acceptance, and the calculated hole diameter Dx and the threshold value Do are displayed on the display unit 33 .

上述の説明から理解されるように、欠陥が短孔モデルであって、式(10)を用いて孔径Dxを求める場合には、周囲温度および欠陥の長さの情報は用いずに済み、漏れ検査装置は温度センサ42を装備しなくてもよい。 As can be seen from the above description, if the defect is a short hole model and equation (10) is used to determine the hole diameter Dx, the ambient temperature and defect length information can be dispensed with. The inspection device may not be equipped with the temperature sensor 42 .

<校正>
本実施形態では、基準漏れ器25は、漏れ検査装置の出力を校正するために用いることができる。詳述すると、上記式(1)または(2)で求められる理論上の基準漏れ孔25aの漏れ量と、第1実施形態と同様の疑似漏れ工程で実測される基準漏れ量との比較から、実測される漏れ量が理論漏れ量と一致するように漏れ検査装置の出力を校正する。
<Calibration>
In this embodiment, the reference leaker 25 can be used to calibrate the output of the leak test device. More specifically, from a comparison between the theoretical leakage amount of the reference leak hole 25a obtained by the above formula (1) or (2) and the reference leakage amount actually measured in the same pseudo-leakage process as in the first embodiment, Calibrate the output of the leak tester so that the actually measured leak rate matches the theoretical leak rate.

本発明は、前記実施形態に限られず、その趣旨を逸脱しない範囲内で種々の改変をなすことができる。
前述した実施形態では、特定物質が検査対象内に侵入するのを阻止または抑制する観点から、モデル化した欠陥の孔径の閾値を決定したが、検査対象からの特定物質の漏洩を阻止または抑制する観点から、孔径の閾値を決定してもよい。例えば、検査対象として内容物を収容した袋に窒素等の不活性ガスを充填することがあるが、この不活性ガスを特定物質として定め、外部への許容漏洩量を求め、この許容漏洩量に基づき孔径の閾値を決定する。前述した実施形態の説明において「侵入」を「漏洩」に置き換えることにより容易に理解できるので、詳細な説明を省略する。
圧力源は、エアコンプレッサー等の正圧源に限られず、真空ポンプ等の負圧源であってもよい。
漏れ検査工程で用いられる気体として空気の代わりに、ヘリウムガスや水素ガス等を用いてもよい。
漏れ量や孔径を求める式として、上述の実施形態では比較的単純化した式を用いたが、他の理論式を用いてもよい。
孔径の演算は漏れ量に基づいて行われるが、この漏れ量は測定された圧力変化から求められるものである。したがって、孔径は測定された圧力変化に基づいて演算されると表現することができる。
The present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the invention.
In the above-described embodiment, the threshold value of the pore size of the modeled defect is determined from the viewpoint of preventing or suppressing the intrusion of the specific substance into the inspection object. From a point of view, a threshold pore size may be determined. For example, there are cases where an inert gas such as nitrogen is filled in a bag containing contents as an object of inspection. Determine the pore size threshold based on Since it can be easily understood by replacing "intrusion" with "leakage" in the explanation of the above embodiment, detailed explanation is omitted.
The pressure source is not limited to a positive pressure source such as an air compressor, and may be a negative pressure source such as a vacuum pump.
Helium gas, hydrogen gas, or the like may be used instead of air as the gas used in the leak inspection process.
Although relatively simplified formulas were used in the above embodiment as formulas for obtaining the leakage amount and the pore diameter, other theoretical formulas may be used.
The pore size is calculated based on the leak rate, which is obtained from the measured pressure change. Therefore, it can be said that the pore size is calculated based on the measured pressure change.

本発明は、密封品の合否判定に適用できる。 INDUSTRIAL APPLICABILITY The present invention can be applied to acceptance/rejection determination of sealed goods.

1 テスト圧源
5 検査路
6 疑似漏れ路
15 開閉弁(第1弁)
16 開閉弁(第2弁)
20 差圧センサ(圧力測定手段)
25 基準漏れ器
25a 基準漏れ孔
31 制御演算部(制御演算手段)
33 表示部
41 気圧センサ
42 温度センサ
W 検査対象
1 Test pressure source 5 Inspection path 6 Pseudo leak path 15 Open/close valve (first valve)
16 on-off valve (second valve)
20 differential pressure sensor (pressure measuring means)
25 reference leaker 25a reference leak hole 31 control calculation section (control calculation means)
33 Display unit 41 Atmospheric pressure sensor 42 Temperature sensor W Inspection object

Claims (9)

検査対象の検査工程に先立ち、検査対象の想定される欠陥を断面円形の直管状の通路にモデル化し、このモデル化された欠陥の通路長さを決定するとともに、孔径の閾値Doを決定し、
前記欠陥の検査工程では、
検査路を介して前記検査路に接続された検査対象にテスト圧を供給し、前記検査路を閉鎖した後、前記検査路の圧力変化を測定し、
前記圧力変化または前記圧力変化から演算された気体の漏れ量に基づき、検査対象の欠陥の孔径Dxを演算し、前記演算された孔径Dxと前記孔径の閾値Doとを比較することにより、検査対象の合否判定を行うことを特徴とする欠陥検査方法。
Prior to the inspection process of the inspection object, the assumed defect of the inspection object is modeled as a straight tubular passage with a circular cross section, the passage length of this modeled defect is determined, and the hole diameter threshold value Do is determined,
In the defect inspection process,
After supplying a test pressure to an object to be inspected connected to the inspection path through the inspection path and closing the inspection path, measuring a pressure change in the inspection path,
Based on the pressure change or the amount of gas leakage calculated from the pressure change, the hole diameter Dx of the defect to be inspected is calculated, and the calculated hole diameter Dx and the threshold value Do of the hole diameter are compared to determine the A defect inspection method characterized by performing a pass/fail judgment of.
検査対象にとって侵入または漏洩を阻止または抑制すべき物質を特定し、この特定物質が検査対象に対して侵入または漏洩する量の許容値を決定し、前記通路長さを有するモデル化された欠陥を通して前記特定物質が検査対象に侵入または漏洩する量を、理論または実験により求め、侵入量または漏洩量の許容値に達する孔径に基づき前記孔径の閾値Doを決定することを特徴とする請求項1に記載の欠陥検査方法。 Identifying a substance that should be prevented or suppressed from entering or leaking into the inspection object, determining an allowable amount of the specified substance to enter or leak into the inspection object, and through a modeled defect having the path length 2. The method of claim 1, wherein the amount of the specific substance that intrudes or leaks into the object to be inspected is obtained theoretically or experimentally, and the pore diameter threshold value Do is determined based on the pore diameter that reaches the permissible value for the amount of intrusion or the amount of leakage. Defect inspection method described. 検査対象の内圧と大気圧の差が小さい場合に、拡散の理論式により、前記孔径の閾値Doを求めることを特徴とする請求項2に記載の欠陥検査方法。 3. The defect inspection method according to claim 2, wherein when the difference between the internal pressure of the object to be inspected and the atmospheric pressure is small, the threshold value Do of the hole diameter is obtained from a theoretical equation of diffusion. 検査対象の想定される欠陥が複数存在する場合に、異なる通路長さを有するモデル化された欠陥の各々が同一の侵入量または漏洩量に達する場合の孔径を求め、これら欠陥のうちから、前記検査工程において前記圧力変化または前記漏れ量が最も小さい欠陥を特定欠陥として選択し、この特定欠陥に係る孔径の閾値を、前記検査工程で用いる孔径の閾値Doとすることを特徴とする請求項2または3に記載の欠陥検査方法。 When there are multiple possible defects to be inspected, determine the pore diameter at which each of the modeled defects with different path lengths reaches the same amount of penetration or leakage; 2. A defect having the smallest pressure change or the smallest amount of leakage is selected as a specific defect in the inspection process, and a hole diameter threshold Do used in the inspection process is set as a hole diameter threshold for the specific defect. Or the defect inspection method according to 3. テスト圧源と、検査対象が接続される末端を有し前記テスト圧源からのテスト圧を検査対象に供給する検査路と、前記検査路に設けられた第1弁と、前記第1弁と前記末端との間において前記検査路に接続された圧力測定手段と、前記第1弁と前記末端との間において前記検査路に接続され外部に連なる疑似漏れ路と、前記疑似漏れ路に設けられるとともに基準漏れ孔を有する基準漏れ器と、前記疑似漏れ路において前記検査路と前記基準漏れ器との間に設けられた第2弁と、を備えた漏れ検査装置を用いた欠陥検査方法において、
前記基準漏れ孔は、検査対象で想定される欠陥を断面円形の直管状の欠陥にモデル化して決定された通路長さに対応する長さを有するとともに、既知の径を有しており、規定されたテスト圧、外部気圧の条件下において前記基準漏れ孔を通る気体の漏れ量を、規定条件下での基準漏れ量Qsとして求めておき、
検査条件下において、検査対象と同一容積で漏れの無い良品対象を前記検査路に接続した状態でテスト圧を供給した後、前記第1弁を閉じ前記第2弁を開くことにより、前記基準漏れ器を介して疑似漏れを生じさせ、この時に前記圧力測定手段で測定される前記検査路の圧力変化に基づき、検査条件下での基準漏れ量Qrを求め、
前記検査条件下において、前記検査路に検査対象を接続した状態でテスト圧を供給した後、前記第1弁および前記第2弁を閉じた状態で、前記圧力測定手段で測定される前記検査路の圧力変化に基づき、検査条件下での検査対象の漏れ量Qmを求め、
前記規定条件下での基準漏れ量Qsと前記検査条件下での基準漏れ量Qrに基づき、前記検査条件下での検査対象の漏れ量Qmを、規定条件下での検査対象の換算漏れ量Qxに換算し、
さらに、前記換算漏れ量Qxと、少なくとも前記規定条件下でのテスト圧および外部気圧の情報に基づいて、検査対象の欠陥の孔径Dxを演算し、
演算された前記孔径Dxを、モデル化された欠陥の孔径の閾値Doと比較することにより、検査対象の合否判定を行うことを特徴とする欠陥検査方法。
a test pressure source, an inspection path having an end to which an inspection object is connected and supplying the test pressure from the test pressure source to the inspection object, a first valve provided in the inspection path, and the first valve a pressure measuring means connected to the inspection path between the first valve and the terminal; a pseudo leak path connected to the inspection path between the first valve and the terminal and continuing to the outside; and a pseudo leak path provided in the pseudo leak path. and a reference leaker having a reference leak hole and a second valve provided between the inspection path and the reference leaker in the pseudo leak path,
The reference leak hole has a length corresponding to a passage length determined by modeling a defect assumed to be inspected as a straight tube defect having a circular cross section, and has a known diameter. The amount of gas leaking through the reference leak hole under the conditions of the test pressure and the external air pressure is obtained as a reference leakage amount Qs under specified conditions,
Under inspection conditions, after supplying a test pressure in a state in which a non-defective product having the same volume as the inspection object and having no leakage is connected to the inspection path, the first valve is closed and the second valve is opened, whereby the reference leakage is detected. A pseudo leak is generated through a device, and a reference leak amount Qr under inspection conditions is obtained based on the pressure change in the inspection path measured by the pressure measuring means at this time,
Under the inspection conditions, the test path is measured by the pressure measuring means while the first valve and the second valve are closed after a test pressure is supplied to the inspection path while the object to be inspected is connected to the inspection path. Based on the pressure change in
Based on the reference leakage amount Qs under the specified conditions and the reference leakage amount Qr under the inspection conditions, the leakage amount Qm to be inspected under the inspection conditions is converted to the converted leakage amount Qx to be inspected under the specified conditions. converted to
Further, calculating the hole diameter Dx of the defect to be inspected based on the converted leakage amount Qx and at least information on the test pressure and the external air pressure under the specified conditions,
A defect inspection method comprising the step of comparing the calculated hole diameter Dx with a threshold value Do of the hole diameter of a modeled defect to determine whether an object to be inspected is pass/fail.
前記孔径Dxを、前記基準漏れ孔の長さと、前記規定条件下での周囲温度の情報も加えて演算することを特徴とする請求項5に記載の欠陥検査方法。 6. The defect inspection method according to claim 5, wherein the hole diameter Dx is calculated by adding information on the length of the reference leak hole and the ambient temperature under the specified condition. テスト圧源と、検査対象が接続される末端を有し前記テスト圧源からのテスト圧を検査対象に供給する検査路と、前記検査路に設けられた第1弁と、前記第1弁と前記末端との間において前記検査路に接続された圧力測定手段と、外部気圧を測定する気圧センサと、を備えた漏れ検査装置を用いた欠陥検査方法において、
検査工程に先立ち、検査対象の想定される欠陥を断面円形の直管状の通路にモデル化し、このモデル化された欠陥の通路長さを決定するとともに、孔径の閾値Doを決定し、
前記検査工程では、
前記検査路に検査対象を接続した状態でテスト圧を供給した後、前記第1弁を閉じた状態で、前記圧力測定手段で測定される前記検査路の圧力変化に基づき、検査対象の漏れ量Qmを求め、
前記漏れ量Qmと、少なくとも前記テスト圧と前記気圧センサからの外部気圧との情報に基づいて、欠陥の孔径Dxを演算し、
演算された前記孔径Dxを孔径の閾値Doと比較することにより、検査対象の合否判定を行うことを特徴とする欠陥検査方法。
a test pressure source, an inspection path having an end to which an inspection object is connected and supplying the test pressure from the test pressure source to the inspection object, a first valve provided in the inspection path, and the first valve In a defect inspection method using a leak inspection device comprising pressure measuring means connected to the inspection path between the end and an air pressure sensor for measuring external air pressure,
Prior to the inspection process, model the assumed defect to be inspected as a straight tubular passage with a circular cross section, determine the passage length of this modeled defect, and determine the threshold Do of the hole diameter,
In the inspection process,
After supplying the test pressure with the test object connected to the test path, the leakage amount of the test object is measured based on the pressure change in the test path measured by the pressure measuring means while the first valve is closed. Find Qm,
calculating a defect pore diameter Dx based on information on the leak amount Qm and at least the test pressure and the external air pressure from the air pressure sensor;
A defect inspection method, comprising: comparing the calculated hole diameter Dx with a hole diameter threshold value Do to determine whether or not an object to be inspected is acceptable.
前記漏れ検査装置はさらに周囲温度を検出する温度センサを備えており、
前記孔径Dxを、前記モデル化された欠陥の通路長さと、前記温度センサからの周囲温度の情報も加えて演算することを特徴とする請求項7に記載の欠陥検査方法。
The leak test device further comprises a temperature sensor for detecting ambient temperature,
8. The defect inspection method according to claim 7, wherein the hole diameter Dx is calculated by adding the path length of the modeled defect and ambient temperature information from the temperature sensor.
前記漏れ検査装置はさらに、前記第1弁と前記末端との間において前記検査路に接続され外部に連なる疑似漏れ路と、前記疑似漏れ路に設けられるとともに基準漏れ孔を有する基準漏れ器と、前記疑似漏れ路において前記検査路と前記基準漏れ器との間に設けられた第2弁と、を備え、
前記基準漏れ孔は、前記モデル化された欠陥の通路長さと等しい長さを有するとともに、既知の径を有しており、
前記検査対象の検査に先立ち、検査対象と同一容積で漏れの無い良品対象を前記検査路に接続した状態でテスト圧を供給した後、前記第1弁を閉じ前記第2弁を開くことにより、前記基準漏れ器を介して疑似漏れを生じさせ、この時に前記圧力測定手段で測定される前記検査路の圧力変化に基づき、検査条件下での実測基準漏れ量を求め、
前記基準漏れ孔の長さおよび径と、テスト圧と、前記気圧センサからの外部気圧と、前記温度センサからの周囲温度の情報に基づいて、理論上の基準漏れ量を演算し、
前記実測基準漏れ量が前記理論上の基準漏れ量と一致するように、前記漏れ検査装置による漏れ量の出力値を校正することを特徴とする請求項8に記載の欠陥検査方法。
The leak test device further includes a pseudo leak path connected to the test path between the first valve and the terminal end and continuing to the outside, a reference leaker provided in the pseudo leak path and having a reference leak hole, a second valve provided between the test path and the reference leaker in the pseudo leak path;
the reference leak has a length equal to the path length of the modeled defect and a known diameter;
Prior to the inspection of the inspection target, after supplying a test pressure in a state in which a non-defective product having the same volume as the inspection target and having no leakage is connected to the inspection path, the first valve is closed and the second valve is opened, Pseudo-leakage is generated through the reference leaker, and based on the pressure change in the test path measured by the pressure measuring means at this time, an actually measured reference leak amount under test conditions is obtained;
calculating a theoretical reference leak rate based on the length and diameter of the reference leak hole, the test pressure, the external air pressure from the air pressure sensor, and the ambient temperature information from the temperature sensor;
9. The defect inspection method according to claim 8, further comprising calibrating an output value of the leak amount from the leak inspection device so that the actually measured reference leak amount matches the theoretical reference leak amount.
JP2021151774A 2021-09-17 2021-09-17 Defect inspection method Pending JP2023043985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021151774A JP2023043985A (en) 2021-09-17 2021-09-17 Defect inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021151774A JP2023043985A (en) 2021-09-17 2021-09-17 Defect inspection method

Publications (1)

Publication Number Publication Date
JP2023043985A true JP2023043985A (en) 2023-03-30

Family

ID=85725604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021151774A Pending JP2023043985A (en) 2021-09-17 2021-09-17 Defect inspection method

Country Status (1)

Country Link
JP (1) JP2023043985A (en)

Similar Documents

Publication Publication Date Title
US10816434B2 (en) Apparatus and method for leak testing
JP4684135B2 (en) Leakage inspection method and leak inspection apparatus for piping
TWI494554B (en) Method and device for differential pressure measurement
JP5620184B2 (en) Leak inspection apparatus and leak inspection method
JP2008309698A (en) Airtightness inspection device, airtightness inspection method and method for manufacturing airtight product
JP2009092585A (en) Leak detector
JP6233757B2 (en) How to inspect a leak detection system
JP2006275906A (en) Leakage inspection method and system
JPH10185749A (en) Method and apparatus for leak inspection
JP2023043985A (en) Defect inspection method
JP5113894B2 (en) Flow rate measuring method and flow rate measuring apparatus using the same
JP6695153B2 (en) Leak inspection device and method
JP3715543B2 (en) Airtight performance test method
WO2022138971A1 (en) Leak test condition design method, leak test condition design device, leak testing method, and leak testing device
US11408795B2 (en) Sealability evaluation method and the like and standard artificial leak device
JP2016118528A (en) Method and device for measuring leakage from elastic body
JP6522143B2 (en) Structure and method for container tightness inspection
JP2000088694A (en) Inspection apparatus for sealing performance of airtight container
CN115265956A (en) Pressure system air tightness leakage detection device and method
Sagi Advanced leak test methods
JP2021196229A (en) Air leak test device
JP2020122674A (en) Method for calculating diffusion flow rate or leakage hole size, reference leakage element selection method, and threshold value setting method for leakage test device
JPH1137883A (en) Method for measuring leak amount
JP4281001B2 (en) Gas leak inspection device
CN114636516B (en) Positive sample calibration device and method for checking seal integrity of medicine packaging container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240624