JP2023041084A - injection molding method - Google Patents

injection molding method Download PDF

Info

Publication number
JP2023041084A
JP2023041084A JP2021148232A JP2021148232A JP2023041084A JP 2023041084 A JP2023041084 A JP 2023041084A JP 2021148232 A JP2021148232 A JP 2021148232A JP 2021148232 A JP2021148232 A JP 2021148232A JP 2023041084 A JP2023041084 A JP 2023041084A
Authority
JP
Japan
Prior art keywords
injection
screw
correction
pressure
prevention device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021148232A
Other languages
Japanese (ja)
Inventor
祐一朗 有馬
Yuichiro Arima
昭男 岡本
Akio Okamoto
裕一郎 福田
Yuichiro Fukuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Machinery Corp Ltd
Original Assignee
Ube Machinery Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Machinery Corp Ltd filed Critical Ube Machinery Corp Ltd
Priority to JP2021148232A priority Critical patent/JP2023041084A/en
Publication of JP2023041084A publication Critical patent/JP2023041084A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

To provide an injection molding method capable of securing a stable injection resin amount regardless of an opening and closing operation of a backflow prevention device for a screw.SOLUTION: An injection molding method equipped with a backflow prevention device at a tip of a screw 11, storing a plasticized molten resin material in an injection cylinder 21 in front of the screw 11 in a metering process, and injection filling the resin material into a mold cavity 53 in an injection process, includes an operation determination mode for determining an opening and closing operation of the backflow prevention device. In the operation determination mode, an injection pressure of the injection process is a measured waveform, and when the measured waveform is within a range of preset upper and lower limits relative to the reference waveform, the opening and closing operation of the backflow prevention device is determined normal, and when a pressure rise start position of the measured waveform is retarded from a preset allowable position relative to the reference waveform, a first abnormal determination of the opening and closing operation of the backflow prevention device is made and first correction processing is performed.SELECTED DRAWING: Figure 4

Description

本発明は、スクリュの先端に逆流防止装置を備え、計量工程でスクリュ前方の射出シリンダ内に可塑化溶融した樹脂材料を貯蔵し、射出工程で金型キャビティ内に樹脂材料を射出充填する射出成形方法に関する。 The present invention is injection molding in which a backflow prevention device is provided at the tip of the screw, the plasticized and melted resin material is stored in the injection cylinder in front of the screw in the metering process, and the resin material is injected and filled into the mold cavity in the injection process. Regarding the method.

射出成形機を用いた射出成形は、先ず、材料供給装置を用いて射出シリンダ内に樹脂材料を供給する。供給された樹脂材料は、螺旋状のフライトを有するスクリュの回転運動によるせん断発熱と、射出シリンダに設けたヒータ等の熱量によって、可塑化し溶融樹脂となってスクリュ先端側に回転輸送され、射出シリンダ内に貯蔵される(計量樹脂という)。計量樹脂の貯蔵に伴いスクリュは後退動作し、所定の後退位置でスクリュの回転運動を停止してスクリュ位置が保持される(計量工程)。このスクリュの後退動作に抵抗力を負荷して、貯蔵される成形材料の溶融混錬性を調整する(背圧制御という)。 Injection molding using an injection molding machine first supplies a resin material into an injection cylinder using a material supply device. The supplied resin material is plasticized by shear heat generated by the rotating motion of the screw having a helical flight and the amount of heat generated by the heater or the like provided in the injection cylinder. stored within (referred to as weighing resin). As the resin to be measured is stored, the screw moves backward, and at a predetermined retracted position, the screw stops rotating and the screw position is held (measuring step). A resistive force is applied to the backward movement of the screw to adjust the melt-kneadability of the stored molding material (referred to as back pressure control).

次いで、スクリュを前進動作させて、計量樹脂を金型キャビティ内に射出充填する(射出工程)。溶融状態の計量樹脂の冷却固化に伴う固化収縮を補う保圧充填(保圧工程)と、金型キャビティ内で冷却保持(冷却工程)を経て、型開して金型キャビティから成形品を取り出す。この一連の成形動作を必要な成形品の個数を得るまで繰り返す。 Next, the screw is moved forward to inject and fill the measured resin into the mold cavity (injection step). After holding pressure filling (holding pressure process) to compensate for solidification shrinkage due to cooling and solidification of weighed resin in the molten state, and cooling and holding (cooling process) in the mold cavity, the mold is opened and the molded product is taken out from the mold cavity. . This series of molding operations is repeated until the required number of molded products is obtained.

ここで、スクリュの先端には、可塑化した溶融樹脂が通過する流路が形成された逆流防止装置を備える。計量工程において、回転輸送される溶融樹脂の流動圧力により、逆流防止装置が前方に押圧され、流路が開放してスクリュ先端側に計量樹脂が貯蔵される。また、射出工程において、スクリュが前進して、逆流防止装置とスクリュが当接して流路が閉鎖し、スクリュ後方側への計量樹脂の逆流が阻止される。特に、射出工程において、流路の閉鎖が曖昧な場合は、金型キャビティ内へ充填する計量樹脂量(射出充填量という)が変動し、例えば、製品重量の変動、面ハリ不良、転写不良、ウエルド、ボイド、製品変形、製品ショート等の成形不良が多発し製品品質の安定化を阻害する。また、これらの成形不良が改善できない場合は、射出成形を中断し、逆流防止装置を含むスクリュ関連の部品交換を必要とし、生産性が大きく低下することになる。そのために、逆流防止装置の流路の開閉の動作状態を正確に把握し、射出工程での計量樹脂の逆流(樹脂逆流という)を防止する提案が多くなされている。 Here, the tip of the screw is provided with a backflow prevention device in which a flow path through which the plasticized molten resin passes is formed. In the measuring process, the flow pressure of the molten resin that is rotationally transported pushes the backflow prevention device forward, opening the flow path and storing the measured resin at the tip of the screw. Further, in the injection process, the screw advances and the backflow prevention device abuts against the screw to close the flow path, thereby preventing the backflow of the measured resin to the rear side of the screw. In particular, in the injection process, if the closure of the flow path is ambiguous, the amount of metered resin filled into the mold cavity (referred to as injection filling amount) will fluctuate. Molding defects such as welds, voids, product deformation, and product shorts occur frequently, hindering the stabilization of product quality. Moreover, if these molding defects cannot be improved, the injection molding must be interrupted and the screw-related parts including the backflow prevention device must be replaced, resulting in a significant drop in productivity. For this reason, many proposals have been made to prevent backflow of the metered resin (referred to as resin backflow) in the injection process by accurately grasping the operating state of opening and closing of the flow path of the backflow prevention device.

例えば、特許文献1に示すような、計量工程の後に、スクリュ先端側の溶融樹脂を加圧して逆流防止弁を閉鎖し(加圧動作)、その状態でスクリュを後退させて貯蔵した溶融樹脂の圧力を大気圧と同等にさせる(圧抜き動作)。最初のスクリュ前進位置を基準位置として射出工程を行うことで、射出樹脂量の安定化を図ることができるとされている。また、特許文献2に示すように、計量工程後に、ノズルと金型を当接した状態で、スクリュ先端側の溶融樹脂を加圧し(スクリュは前進)、その後、スクリュ先端側の溶融樹脂の圧抜きを行う(スクリュは後退)。計量完了位置と加圧停止位置または圧抜き停止位置から補正値を求め、射出工程の射出速度の切替え点を補正することで、射出工程の樹脂逆流が防止できるとされている。 For example, as shown in Patent Document 1, after the weighing process, the molten resin on the tip side of the screw is pressurized to close the check valve (pressurization operation), and in this state, the screw is retracted to pour out the stored molten resin. Make the pressure equal to atmospheric pressure (depressurization operation). It is said that the amount of injected resin can be stabilized by performing the injection process with the initial screw advance position as the reference position. In addition, as shown in Patent Document 2, after the weighing process, the molten resin on the screw tip side is pressurized (screw moves forward) while the nozzle and the mold are in contact, and then the molten resin on the screw tip side is pressurized. Pull out (screw retracts). It is said that resin backflow in the injection process can be prevented by obtaining a correction value from the metering completion position and the pressurization stop position or depressurization stop position and correcting the injection speed switching point in the injection process.

また、特許文献3に示すような、射出開始時の逆流防止装置の流路の閉鎖遅れによる溶融樹脂の逆流量と、サックバック動作によるノズル先端部の空隙量を加算したスクリュストローク量分だけ、射出開始位置より前方に射出基準点を設ける。射出工程は、射出基準点でスクリュの先進動作を一旦停止させるとしている。これにより、ノズル先端部の空隙が消滅するとされている。さらに、特許文献4示すように、逆流防止装置を含むスクリュ部品の寸法から計量完了位置を算出する。さらに、計量完了後に、背圧を下げ(スクリュは後退)、プリ射出工程で流路を強制的に閉鎖し(スクリュは前進)、その後、背圧を下げて(スクリュは後退)、そのスクリュ後退の停止位置から計量完了位置を補正するとしている。これにより計量精度が高まるとされている。 In addition, as shown in Patent Document 3, the backflow of the molten resin due to the delay in closing the flow path of the backflow prevention device at the start of injection and the amount of space at the tip of the nozzle due to the suck back operation are added. An injection reference point is set ahead of the injection start position. In the injection process, the forward movement of the screw is temporarily stopped at the injection reference point. It is said that this eliminates the gap at the tip of the nozzle. Furthermore, as shown in Patent Document 4, the metering completion position is calculated from the dimensions of the screw part including the backflow prevention device. Furthermore, after the completion of metering, the back pressure is lowered (screw retreats), the passage is forcibly closed in the pre-injection process (screw advances), the back pressure is lowered (screw retreats), and the screw retreats. It is supposed that the weighing completion position is corrected from the stop position of the This is said to improve the measurement accuracy.

また、特許文献5に示すように、計量完了後にスクリュを前進させ、スクリュ先端側の溶融樹脂の圧力を計量背圧よりも高めて、逆流防止装置の流路を閉鎖させる。その後、スクリュを逆回転させて、逆流防止装置より後方側の圧力を下げ、さらに、スクリュを後退させるとしている。これにより、射出工程の開始までは、逆流防止装置の流路は閉鎖が維持できるとされている。 Further, as shown in Patent Document 5, the screw is moved forward after the completion of metering, and the pressure of the molten resin on the tip side of the screw is made higher than the metering back pressure to close the flow path of the backflow prevention device. After that, the screw is reversely rotated to lower the pressure on the rear side of the anti-backflow device, and the screw is further retracted. According to this, the flow path of the backflow prevention device can be kept closed until the injection process is started.

特開平3-230930号公報JP-A-3-230930 特開平4-250016号公報JP-A-4-250016 特開平7-214617号公報JP-A-7-214617 特開2002-18923号公報JP-A-2002-18923 特開2007-253388号公報JP 2007-253388 A

ここで、逆流防止装置は、スクリュ軸方向に前後進することで流路が開閉される逆止リングタイプのものが一般的であり、特許文献1から特許文献5においても、この逆止リングタイプの逆流防止装置が用いられている。そのため、特許文献1においては、計量完了で逆止リングは前方の流路開放位置にある。計量工程後の加圧動作は、前方の逆止リングに向かってスクリュが前進し、当接して流路が閉鎖される。流路が閉鎖されてスクリュ前方の溶融樹脂の圧力が上昇する。つまり、流路が閉鎖されるまでは、スクリュの前進に伴い、溶融樹脂は流路内を通ってスクリュ後方側に逆流する。この時の溶融樹脂の逆流量が見込まれていない点と、逆流量が変動する可能性がある点について考察が全くない。また、圧抜き動作はスクリュが後退して、スクリュ前方の溶融樹脂の圧力をほぼゼロになるとしている。このことは、逆止リングを押圧して流路を閉鎖させるために必要な樹脂圧が、圧抜き動作の途中から消滅しており、その結果、逆止リングはスクリュ後退動作から離れて、流路が中途半端な状態となる。つまり、特許文献1では、計量工程の完了から射出工程の開始までに逆流防止装置の流路の閉鎖を維持できず、射出工程においても溶融樹脂の逆流が心配される。また、シャットオフバルブを用いることなく、糸ヒキ等の不良を防止できるとされているが、計量工程後の加圧動作の圧力上昇で、糸ヒキ等の不良が必ず発生する。さらに、計量工程後の溶融樹脂の加圧と圧抜きにより、溶融樹脂中に含まれる揮発性ガス等が発散して、ガス巻き込みによる成形不良も大いに心配される。 Here, the backflow prevention device is generally of the check ring type in which the flow path is opened and closed by advancing back and forth in the screw axial direction. A backflow prevention device is used. Therefore, in Patent Document 1, the non-return ring is in the forward channel open position after the metering is completed. In the pressurizing operation after the metering process, the screw advances toward the non-return ring on the front and abuts to close the flow path. The flow path is closed and the pressure of the molten resin in front of the screw increases. In other words, until the flow path is closed, the molten resin flows back through the flow path to the rear side of the screw as the screw advances. There is no consideration at all about the point that the backflow of the molten resin at this time is not expected and the possibility that the backflow may fluctuate. In addition, the depressurization operation is supposed to be such that the screw retreats and the pressure of the molten resin in front of the screw becomes almost zero. This means that the resin pressure required to press the non-return ring to close the flow path disappears in the middle of the depressurization operation, and as a result, the non-return ring separates from the screw retraction operation and the flow path is closed. The road becomes half-finished. In other words, in Patent Document 1, the closed flow path of the backflow prevention device cannot be maintained from the completion of the metering process to the start of the injection process, and there is concern about the backflow of the molten resin even in the injection process. Further, it is said that defects such as threading can be prevented without using a shut-off valve. Furthermore, the pressurization and depressurization of the molten resin after the weighing process releases volatile gas and the like contained in the molten resin, and there is great concern about molding defects due to entrainment of the gas.

また、特許文献2においても、逆止リングタイプの逆流防止装置であることから、特許文献1と同様な問題が心配される。なお、ノズルと金型を当接した状態であるので、糸ヒキ等の成形不良は回避できるもの、計量工程後の補正操作を終えるまでは、金型を開いて成形品を取り出すことができず、成形サイクル短縮による生産性改善は期待できない。 Moreover, since Patent Document 2 is also a non-return ring type backflow prevention device, the same problem as in Patent Document 1 is likely to occur. In addition, since the nozzle and the mold are in contact with each other, it is possible to avoid molding defects such as stringiness, but the mold cannot be opened and the molded product cannot be taken out until the correction operation after the weighing process is completed. , productivity improvement by shortening the molding cycle cannot be expected.

また、特許文献3においても、特許文献1と同様な問題が心配される。さらに、溶融樹脂の逆流量は、逆流防止装置を含むスクリュ部品の寸法等から演算されたものであり、実際の射出成形での逆流量を示しているものではない。つまり、逆流防止装置の経年変化、溶融樹脂の種類や溶融粘度、溶融温度や射出速度条件等の溶融樹脂の逆流に大きく関係する射出成形の要素が全く無視されており、演算結果の樹脂逆流量の信頼性が疑われる。また、高温高圧の環境下となるノズル部に、ノズル先端の空隙量の計測手段を必要とし、この計測手段の計測精度や寿命等が大いに心配される。さらに、ノズル先端に空隙が生じるほどの計量後のサックバック動作では、スクリュ前方の樹脂圧は負圧となり、ノズル先端から空気を吸い込んで空気巻込み等の成形不良が心配される。さらに、逆流防止装置の前後の圧力差が大きくなり、サックバック動作により逆止リングは開放しているので、スクリュ後方側から溶融樹脂がスクリュ前方側へ流れ込んで、計量樹脂量は大きく変動する。 Also, in Patent Document 3, there is concern about the same problem as in Patent Document 1. Furthermore, the backflow of molten resin is calculated from the dimensions of the screw part including the backflow prevention device, etc., and does not indicate the backflow in actual injection molding. In other words, the elements of injection molding that are greatly related to the backflow of the molten resin, such as aging of the backflow prevention device, the type and viscosity of the molten resin, the melting temperature, and the conditions for the injection speed, are completely ignored. reliability is questionable. In addition, the nozzle section, which is in a high-temperature and high-pressure environment, requires means for measuring the void amount at the tip of the nozzle, and there are great concerns about the measurement accuracy and service life of this measuring means. Furthermore, in a suck-back operation after weighing that causes a gap at the tip of the nozzle, the resin pressure in front of the screw becomes negative, and air is sucked in from the tip of the nozzle, resulting in molding defects such as air entrainment. Furthermore, the pressure difference before and after the backflow prevention device increases, and the non-return ring is opened by the suck-back operation, so the molten resin flows from the rear side of the screw to the front side of the screw, and the measured resin amount fluctuates greatly.

また、特許文献4においては、逆流防止装置を含むスクリュ部品の寸法から補正値を求めるとしているので、特許文献3と同様な問題が心配され、さらに、特許文献1と同様な問題も心配される。また、例えば、ノズルよりも前方側に、シャットオフバルブや金型バルブゲート等の溶融樹脂の流路を開閉する手段を必ず必要とする。これらの手段がない場合は、逆止リングを強制的に閉鎖するプリ射出工程で、ノズルから溶融樹脂が漏れて、計量樹脂量の変動、糸ヒキ不良、金型キャビティ内への予期せぬ充填(ハナタレ不良)等の成形不良が必ず発生する。 Further, in Patent Document 4, since the correction value is obtained from the dimensions of the screw part including the backflow prevention device, there is concern about the same problem as in Patent Document 3, and further, the same problem as in Patent Document 1. . In addition, for example, means for opening and closing the flow path of the molten resin, such as a shut-off valve and a mold valve gate, are always required on the front side of the nozzle. Without these measures, during the pre-injection process where the non-return ring is forcibly closed, molten resin leaks from the nozzle, resulting in fluctuations in the metered resin amount, poor stringiness, and unexpected filling of the mold cavity. Molding defects such as (defective dripping) always occur.

さらに、特許文献5においては、特許文献1から特許文献4に挙げた全ての問題が心配される。また、スクリュを逆回転させることが追加されている。このスクリュの逆回転により、スクリュ内の溶融樹脂は大きく逆流し、例えば、スクリュの固体輸送領域(または輸送ゾーンという)の固体樹脂と逆流してきた溶融樹脂とが混ざると、スクリュの回転輸送能力が大きく低下し、次ショットの計量工程において、高い確率で計量樹脂が正確に貯蔵できない計量動作不良が生じる。この場合は、射出成形を中断して、スクリュ清掃等の大掛かりなメンテナンス作業を要する。 Furthermore, in Patent Document 5, all the problems listed in Patent Documents 1 to 4 are concerned. Also, it is added that the screw is reversely rotated. Due to this reverse rotation of the screw, the molten resin in the screw flows back to a large extent. In the weighing process of the next shot, there is a high probability that the weighing resin cannot be stored accurately, resulting in a weighing operation failure. In this case, the injection molding is interrupted and large-scale maintenance work such as screw cleaning is required.

そこで本発明は、スクリュの逆流防止装置の開閉動作に関係なく、安定した射出樹脂量を確保できる射出成形方法を提供することを目的とする。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide an injection molding method capable of securing a stable amount of injected resin regardless of the opening/closing operation of a backflow prevention device for a screw.

本発明の射出成形方法は、
スクリュの先端に逆流防止装置を備え、計量工程で前記スクリュ前方の射出シリンダ内に可塑化溶融した樹脂材料を貯蔵し、射出工程で金型キャビティ内に前記樹脂材料を射出充填する射出成形方法において、
前記逆流防止装置の開閉動作の判定を行う動作判定モードを備え、
前記動作判定モードは、射出工程の射出圧力を計測波形とし、前記計測波形が基準波形に対して予め設定した上下限値の範囲内である場合に、前記逆流防止装置の開閉動作を正常判定とし、前記計測波形の圧力上昇開始位置が、前記基準波形に対して予め設定した許容位置よりも遅れる場合に、前記逆流防止装置の開閉動作の第1異常判定とし、第1補正処理を行う、ことを特徴とする。
The injection molding method of the present invention is
In an injection molding method in which a backflow prevention device is provided at the tip of a screw, a plasticized and melted resin material is stored in an injection cylinder in front of the screw in a weighing process, and the resin material is injected and filled into a mold cavity in an injection process. ,
An operation determination mode for determining opening/closing operation of the backflow prevention device,
In the operation determination mode, the injection pressure in the injection process is used as a measured waveform, and when the measured waveform is within the range of the upper and lower limits set in advance with respect to the reference waveform, the open/close operation of the backflow prevention device is determined to be normal. , when the pressure rise start position of the measured waveform is delayed from the preset allowable position with respect to the reference waveform, it is determined as a first abnormality determination of the opening and closing operation of the backflow prevention device, and a first correction process is performed. characterized by

本発明の射出成形方法において、
前記第1補正処理は、前記射出工程の射出開始位置と、前記圧力上昇開始位置までの前記スクリュの距離を第1補正距離とし、前記射出工程の射出開始時の射出速度を補正速度とし、前記計量工程においては、予め設定した計量制御パターンに基づいて計量工程を開始させ、前記スクリュが計量完了位置に到達後、前記スクリュの回転動作を停止し、前記第1補正距離を前記補正速度で前記スクリュを無回転後退させ、前記無回転後退の完了位置で前記スクリュを停止させる、ことが好ましい。
In the injection molding method of the present invention,
In the first correction process, the injection start position of the injection process and the distance of the screw to the pressure increase start position are set as the first correction distance, the injection speed at the start of injection of the injection process is set as the correction speed, and the In the metering step, the metering step is started based on a preset metering control pattern, and after the screw reaches the metering completion position, the rotation of the screw is stopped, and the first correction distance is set at the correction speed. It is preferable that the screw is retracted in a non-rotational manner and stopped at a position where the non-rotational retraction is completed.

また、本発明の射出成形方法において、
前記第1補正処理は、前記無回転後退の完了位置から、予め設定した速度で前記スクリュを前進させ、前記スクリュ位置が前記計量完了位置に到達後は、予め設定した射出制御パターンに基づいて前記射出工程を開始させる、ことが好ましい。
Further, in the injection molding method of the present invention,
In the first correction process, the screw is advanced at a preset speed from the non-rotational retraction completion position, and after the screw position reaches the metering completion position, the injection control pattern is set in advance. Preferably, the injection process is started.

また、本発明の射出成形方法において、
前記動作判定モードにおいて、前記計測波形の圧力上昇開始位置が前記許容位置よりも遅れ、さらに、前記計測波形の圧力復帰位置が前記基準波形に対して予め設定した監視範囲外である場合に、前記逆流防止装置の開閉動作の第2異常判定とし、第2補正処理を行う、ことが好ましい。
Further, in the injection molding method of the present invention,
In the operation determination mode, when the pressure rise start position of the measured waveform is delayed from the allowable position and the pressure return position of the measured waveform is outside a preset monitoring range with respect to the reference waveform, the It is preferable that the second abnormality determination of the opening/closing operation of the backflow prevention device is performed, and the second correction processing is performed.

さらに、本発明の射出成形方法において、
前記第2補正処理は、前記射出工程の射出開始位置と、前記圧力復帰位置までの前記スクリュの距離を第2補正距離とし、前記計量完了位置に前記第2補正距離を加算して計量完了補正位置を求め、計量工程においては、予め設定した計量制御パターンに基づいて計量工程を開始させ、前記スクリュが前記計量完了補正位置に到達後は、前記スクリュの回転動作を停止し、前記第1補正距離を前記補正速度で前記スクリュを無回転後退させ、前記無回転後退の完了位置で前記スクリュを停止させ、射出工程においては、前記無回転後退の完了位置から、予め設定した速度で前記スクリュを前進させ、前記スクリュ位置が前記計量完了補正位置に到達後は、予め設定した射出制御パターンに基づいて前記射出工程を開始させる、ことが好ましい。
Furthermore, in the injection molding method of the present invention,
In the second correction process, the distance of the screw from the injection start position of the injection process to the pressure recovery position is set as a second correction distance, and the second correction distance is added to the measurement completion position to correct the measurement completion. In the measuring process, the measuring process is started based on a preset measuring control pattern, and after the screw reaches the measuring completion correction position, the rotation of the screw is stopped and the first correction is performed. The screw is retracted non-rotationally at the corrected speed, and stopped at the completion position of the non-rotational retraction. It is preferable that after the screw position is advanced and the screw position reaches the metering completion correction position, the injection process is started based on a preset injection control pattern.

また、本発明の射出成形方法において、
前記動作判定モードにおいて、前記計測波形の圧力上昇開始位置が前記許容位置よりも遅れ、さらに、前記計測波形の射出圧力が前記基準波形の射出圧力に復帰しない場合に、前記逆流防止装置の開閉動作の第3異常判定とし、前記逆流防止装置を含む射出装置に関する部品の交換工事を推奨する警報を発する第3補正処理を行う、ことが好ましい。
Further, in the injection molding method of the present invention,
In the operation determination mode, when the pressure rise start position of the measured waveform is delayed from the allowable position and the injection pressure of the measured waveform does not return to the injection pressure of the reference waveform, the opening and closing operation of the backflow prevention device It is preferable that, as the third abnormality determination, a third correction process is performed to issue an alarm to recommend replacement work of parts related to the injection device including the backflow prevention device.

本発明によれば、スクリュの逆流防止装置の開閉動作に関係なく、安定した射出樹脂量を確保できる射出成形方法を提供することができる。 According to the present invention, it is possible to provide an injection molding method capable of securing a stable amount of injected resin regardless of the opening/closing operation of the backflow prevention device for the screw.

本発明の実施形態に係る射出成形機の概念図である。1 is a conceptual diagram of an injection molding machine according to an embodiment of the present invention; FIG. 計量工程中の逆流防止装置の動作を示す図である。FIG. 10 illustrates the operation of the anti-backflow device during the weighing process; 逆流防止装置の動作異常を示す図である。It is a figure which shows the operation|movement abnormality of a backflow prevention apparatus. 本発明の実施形態に係る射出成形方法の全体の流れを示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the flow of the whole injection molding method which concerns on embodiment of this invention. 本発明の第1実施形態に係る射出圧力波形を示す図である。It is a figure showing an injection pressure waveform concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係る射出成形方法を示すフロー図である。It is a flow chart showing the injection molding method concerning a 1st embodiment of the present invention. 本発明の第2実施形態に係る射出圧力波形を示す図である。It is a figure which shows the injection pressure waveform based on 2nd Embodiment of this invention. 本発明の第2実施形態に係る射出成形方法を示すフロー図である。It is a flow diagram showing an injection molding method according to a second embodiment of the present invention. 本発明の第3実施形態に係る射出圧力波形を示す図である。It is a figure which shows the injection pressure waveform based on 3rd Embodiment of this invention.

以下、本発明を実施するための好適な実施形態について図面を用いて説明する。なお、以下の実施形態は、各請求項に係る発明を限定するものではない。また、実施形態の中で説明されている特徴の組合せの全てが、各請求項に係る発明の解決手段に必須であるとは限らない。また、本実施形態においては、各構成要素の尺度や寸法が誇張されて示されている場合や、一部の構成要素が省略されている場合がある。 Preferred embodiments for carrying out the present invention will be described below with reference to the drawings. In addition, the following embodiments do not limit the invention according to each claim. In addition, not all combinations of features described in the embodiments are essential for the solutions of the inventions according to the respective claims. In addition, in this embodiment, the scale and dimensions of each component may be exaggerated, and some components may be omitted.

[射出成形機]
先ず、本発明の実施形態に係る射出成形機について、図1を用いて説明する。なお、以下の説明では、本発明の実施形態に係る射出成形機として、横型射出成形機をベースとしたが、これに限定されるものではない。図1に示す射出成形機100は、射出装置10と、射出駆動部30と、射出制御部40と、射出成形金型50と、を備える。
[Injection molding machine]
First, an injection molding machine according to an embodiment of the present invention will be described with reference to FIG. In the following description, the injection molding machine according to the embodiment of the present invention is based on a horizontal injection molding machine, but the present invention is not limited to this. The injection molding machine 100 shown in FIG. 1 includes an injection device 10 , an injection drive section 30 , an injection control section 40 and an injection mold 50 .

射出成形金型50は、固定金型51と可動金型52が図示しない型締装置に支持され、型締装置により固定金型51に対して可動金型52は進退自在に動作する。ここで、可動金型52の動作に関して、固定金型51に近づく動作を型閉動作、固定金型51から離れる動作を型開動作と定義する。また、型閉動作で固定金型51と可動金型52が当接した位置を金型タッチ点、金型タッチ点から更に型閉動作方向の動作を型締動作、型締動作の完了位置を型締限、型締限から金型タッチ点までの動作を降圧動作と定義する。金型タッチ点から型締限の範囲内で、金型キャビティ53が形成される。また、固定金型51には、金型キャビティ53内に樹脂材料を充填するゲート54を備える。 In the injection molding die 50, a fixed die 51 and a movable die 52 are supported by a die clamping device (not shown), and the movable die 52 moves forward and backward with respect to the fixed die 51 by the die clamping device. Here, regarding the motion of the movable mold 52, the motion of approaching the fixed mold 51 is defined as the mold closing motion, and the motion of moving away from the fixed mold 51 is defined as the mold opening motion. In addition, the mold touch point is the position where the fixed mold 51 and the movable mold 52 abut during the mold closing operation, the mold clamping operation is the movement in the mold closing operation direction from the mold touch point, and the completion position of the mold clamping operation is The mold clamping limit and the operation from the mold clamping limit to the mold touch point are defined as the step-down operation. A mold cavity 53 is formed within the range of the mold clamping limit from the mold touch point. The stationary mold 51 is also provided with a gate 54 for filling the mold cavity 53 with a resin material.

射出装置10は、円筒状の射出シリンダ21と、射出シリンダ21内に配置され、軸を中心に回転動作と軸方向に前後進動作するスクリュ11と、を備える。射出装置10により、金型キャビティ53に向けて樹脂材料を射出充填することで、樹脂成形品を得る。 The injection device 10 includes a cylindrical injection cylinder 21 and a screw 11 that is arranged in the injection cylinder 21 and that rotates about an axis and moves forward and backward in the axial direction. A resin molded product is obtained by injecting and filling the resin material toward the mold cavity 53 by the injection device 10 .

射出シリンダ21は、外周面に複数のヒータ24が所定の間隔で配置され、図示しない温度調節装置によりヒータ24を温度制御して、射出シリンダ21を所定の温度に管理する。このヒータ24による温度管理は、後述する計量工程において、供給された樹脂材料の予熱と、可塑化時の樹脂材料への熱量付与と、可塑化された溶融樹脂の温度管理に利用される。射出シリンダ21の先端部は、円錐状の内壁面を有するシリンダヘッド22と、ノズル23を備える。金型キャビティ53内に樹脂材料を射出充填する際は、ノズルと固定金型51内のゲート54が接続される。また、射出シリンダ21の後方に材料ホッパ25を備え、図示しない材料供給装置等により材料ホッパ25から射出シリンダ21内へ樹脂材料が供給される。 A plurality of heaters 24 are arranged on the outer peripheral surface of the injection cylinder 21 at predetermined intervals, and the temperature of the heaters 24 is controlled by a temperature control device (not shown) to manage the injection cylinder 21 at a predetermined temperature. The temperature control by the heater 24 is used for preheating the supplied resin material, applying heat to the resin material during plasticization, and controlling the temperature of the plasticized molten resin in the weighing process, which will be described later. The tip of the injection cylinder 21 is provided with a cylinder head 22 having a conical inner wall surface and a nozzle 23 . When injection-filling the resin material into the mold cavity 53, the nozzle and the gate 54 in the fixed mold 51 are connected. A material hopper 25 is provided behind the injection cylinder 21, and the resin material is supplied from the material hopper 25 into the injection cylinder 21 by a material supply device or the like (not shown).

スクリュ11は、射出シリンダ21内に進退自在に配置され、射出駆動部30とスクリュ11の後端部が連結される。射出制御部40の制御指令に基づいて射出駆動部30を操作し、スクリュ11の回転動作と前後進動作が調整される。ここで、スクリュ11の動作に関して、金型キャビティ53に近い方向を前方F、前方Fへの動作を前進動作、金型キャビティ53から離れる方向を後方B、後方Bの動作を後退動作と定義する。 The screw 11 is disposed in the injection cylinder 21 so as to be movable back and forth, and the injection drive section 30 and the rear end portion of the screw 11 are connected. The injection drive unit 30 is operated based on the control command from the injection control unit 40 to adjust the rotation and forward/backward movement of the screw 11 . Here, regarding the motion of the screw 11, the direction closer to the mold cavity 53 is defined as forward F, the forward motion F is forward motion, the direction away from the mold cavity 53 is backward B, and the backward motion B is backward motion. .

また、スクリュ11には、後方Bから前方Fに向かって螺旋状のフライト12を備えている。射出駆動部30によるスクリュ11の回転動作の回転方向に対して、材料ホッパ25から供給した樹脂材料を前方Fへ回転輸送できるように、フライト12の螺旋状の向きと角度を設定する。なお、図1に示すように、フライト12は一定の間隔で一定の角度で1条の配置としたが、これに限定されることなく、例えば、間隔や角度を可変してもよく、複数条の配列としても良い。あるいは、スクリュ11の一部の範囲のみフライト12を複数条の配列としても良い。 Further, the screw 11 is provided with a helical flight 12 extending from the rear B to the front F. The helical direction and angle of the flight 12 are set so that the resin material supplied from the material hopper 25 can be rotationally transported forward F with respect to the rotation direction of the screw 11 by the injection drive unit 30 . As shown in FIG. 1, the flights 12 are arranged in a single row at a constant interval and at a constant angle, but the arrangement is not limited to this. It can also be an array of Alternatively, a plurality of flights 12 may be arranged only in a partial range of the screw 11 .

また、スクリュ11は、後方Bから前方Fに向かって直径が段階的に大きくなる円柱形状とする。つまり、スクリュ11と射出シリンダ21との隙間の容積が、後方Bから前方Fに向かって段階的に小さくなるように、例えば、輸送ゾーン(FZ)、圧縮ゾーン(CZ)、溶融ゾーン(MZ)というように設定する。これにより、材料ホッパ25から供給された樹脂材料は、スクリュ11とフライト12の回転動作により前方輸送され、容積の縮小により圧縮作用とせん断発熱が樹脂材料に作用し、ヒータ24からの熱量付与の相乗効果により、段階的に溶融化し(可塑化という)、スクリュ11の前方Fに向かって溶融樹脂が生成され、スクリュ11の前方Fに溶融樹脂が貯蔵される(計量樹脂という)。計量樹脂の増加に伴い、スクリュ11は後方B側に後退し、所定の後退位置でスクリュ11の回転動作を停止し、その停止位置を保持する(計量工程という)。このスクリュ11の後退動作に制限をかけて、成形材料の溶融混錬性を調整する(背圧制御という)。射出工程は、スクリュ11を前進させて計量樹脂を金型キャビティ53内に射出充填する。 Further, the screw 11 has a cylindrical shape whose diameter increases stepwise from the rear B to the front F. That is, the volume of the gap between the screw 11 and the injection cylinder 21 is reduced stepwise from the rear B to the front F, for example, the transport zone (FZ), the compression zone (CZ), and the melting zone (MZ). Set like this. As a result, the resin material supplied from the material hopper 25 is forwardly transported by the rotational motion of the screw 11 and the flight 12, and due to the reduction in volume, compression action and shear heat generation act on the resin material. Due to the synergistic effect, the melted resin is gradually melted (referred to as plasticization), the molten resin is generated toward the front F of the screw 11, and the molten resin is stored in the front F of the screw 11 (referred to as metering resin). As the amount of resin to be measured increases, the screw 11 retreats to the rear B side, stops rotating at a predetermined retreated position, and holds the stopped position (referred to as a metering process). The melt-kneadability of the molding material is adjusted by restricting the backward movement of the screw 11 (referred to as back pressure control). In the injection process, the screw 11 is advanced to inject and fill the mold cavity 53 with the measured resin.

ここで、射出成形に用いる樹脂材料として、例えば、自動車内装部品においては、ポリプロピレン(PP)樹脂やポリエチレン(PE)樹脂等の熱可塑性樹脂に、黒や赤や青等の着色剤を添加して部品の色調を調整することが一般的である。また、熱可塑性樹脂に対して柔軟性を与える可塑剤、結晶性樹脂に対して結晶化度を制御する核剤や透明化剤、燃焼を抑制する難燃剤、静電気の帯電を抑制する帯電防止剤、流動性や離型性を改善する滑剤、紫外線による劣化を抑制する対候剤や紫外線劣化防止剤、ガラス繊維や炭素繊維等の強化剤等の各種の添加剤が適宜選択さる。また、ポリプロピレン(PP)樹脂やポリエチレン(PE)樹脂等の汎用樹脂、ポリアミド(PA)樹脂やポリカーボネイト(PC)樹脂等のエンジニアリング樹脂、ポリフェニレンサルファイド(PPS)樹脂やポリエーテルエーテルケトン(PEEK)樹脂等の超エンジニアリング樹脂等の熱可塑性樹脂が適宜選択される。熱可塑性樹脂と添加剤を合わせて樹脂材料という。なお、熱可塑性樹脂の代わりに、例えば、フェノール(PF)樹脂やメラニン(MF)樹脂等の熱硬化性樹脂を用いても良い。 Here, as a resin material used for injection molding, for example, in automobile interior parts, a thermoplastic resin such as polypropylene (PP) resin or polyethylene (PE) resin is added with a coloring agent such as black, red, or blue. It is common to adjust the color tone of the part. In addition, plasticizers that give flexibility to thermoplastic resins, nucleating agents and clarifying agents that control the degree of crystallinity in crystalline resins, flame retardants that suppress combustion, and antistatic agents that suppress static electricity. , lubricants that improve fluidity and releasability, weathering agents and UV deterioration inhibitors that suppress deterioration due to ultraviolet rays, and reinforcing agents such as glass fibers and carbon fibers. In addition, general-purpose resins such as polypropylene (PP) resin and polyethylene (PE) resin, engineering resins such as polyamide (PA) resin and polycarbonate (PC) resin, polyphenylene sulfide (PPS) resin and polyether ether ketone (PEEK) resin, etc. A thermoplastic resin such as a super engineering resin is selected as appropriate. A combination of thermoplastic resin and additives is called a resin material. Thermosetting resins such as phenol (PF) resins and melanin (MF) resins may be used instead of thermoplastic resins.

[逆流防止装置]
次に、スクリュ11の先端部に組み込まれる逆流防止装置について、図1と、図1の破線で囲んだ領域Aを拡大した図2および図3を用いて説明する。図1は逆流防止装置の配置を示し、図2は計量工程中の逆流防止装置の動作を示し、図3は射出工程中の逆流防止装置の動作と、計量工程から射出工程の範囲内での逆流防止装置の動作異常について示す。逆流防止装置は、図1に示すように、スクリュ11から前方Fに向かって、リアシート13、内部に樹脂材料が通過する流路Rを有するリング状の逆止リング14、スクリュヘッド15が配置され、逆止リング14はスクリュ11の回転動作と連動しない非回転式のものである。なお、本発明において、これに限定されることなく、例えば、逆止リングとスクリュヘッド15の一部が勘合し、スクリュ11の回転動作と連動して逆止リングも回転動作する回転式であっても良い。また、逆シリング14の代わりに、流路内に摺動可能なボールが組み込まれた逆流防止装置であっても良い。
[Backflow prevention device]
Next, a backflow prevention device incorporated in the tip portion of the screw 11 will be described with reference to FIG. 1 and FIGS. FIG. 1 shows the arrangement of the backflow prevention device, FIG. 2 shows the operation of the backflow prevention device during the metering process, and FIG. The operation abnormality of the backflow prevention device is shown. As shown in FIG. 1, the backflow prevention device has a rear seat 13, a ring-shaped non-return ring 14 having a flow path R through which the resin material passes, and a screw head 15 arranged from the screw 11 toward the front F. , the non-return ring 14 is of a non-rotating type that does not interlock with the rotation of the screw 11 . In the present invention, without being limited to this, for example, a non-return ring and a part of the screw head 15 are fitted, and the non-return ring rotates in conjunction with the rotation of the screw 11. can be Further, instead of the reverse shilling 14, a reverse flow prevention device in which a slidable ball is incorporated in the flow path may be used.

先ず、図2(a)に示すように、計量工程においては、スクリュ11の回転運動により可塑化された樹脂材料は前方B側に流動する。この樹脂材料の流動により、逆止リング14は前方F側のスクリュヘッド15に押圧され、流路Rが開放される。樹脂材料はこの流路R内を通って、スクリュヘッド15の前方F側の射出シリンダ21内に流動し計量樹脂を得る。図中のMFは樹脂材料の流動方向を示す。計量樹脂の増加に伴い、流路Rの開放状態が維持されながらスクリュ11は後退動作する。図中のSFはスクリュ11の動作方向を示す。このスクリュ11の後退動作に制限をかけて(背圧制御)、計量樹脂の溶融混錬状態を調整し、その結果、樹脂圧力P2の計量樹脂を得る。この時、逆止リング14の後方B側の樹脂材料の樹脂圧力P1とすると、P1>P2であり、この圧力差によって逆止リング14は前方F側に押圧され、流路Rの開放が維持される。 First, as shown in FIG. 2(a), in the weighing process, the resin material plasticized by the rotational motion of the screw 11 flows to the front B side. Due to this flow of the resin material, the non-return ring 14 is pressed against the screw head 15 on the front side F, and the flow path R is opened. The resin material passes through this flow path R and flows into the injection cylinder 21 on the front side F of the screw head 15 to obtain a metered amount of resin. MF in the figure indicates the flow direction of the resin material. As the amount of resin to be measured increases, the screw 11 moves backward while maintaining the flow path R in an open state. SF in the drawing indicates the operating direction of the screw 11 . By restricting the backward movement of the screw 11 (back pressure control), the melt-kneading state of the weighed resin is adjusted, and as a result, the weighed resin having the resin pressure P2 is obtained. At this time, if the resin pressure P1 of the resin material on the rearward B side of the check ring 14 is P1>P2, the check ring 14 is pushed forward by this pressure difference, and the passage R is maintained open. be done.

次に、図2(b)に示すように、スクリュ11の回転動作を停止して計量工程を完了する。ここで、スクリュ11の回転動作の停止により、樹脂材料の前方F側への流動が停止し、逆止リング14より後方B側の樹脂圧力P1はゼロに近い状態となる。その結果、逆止リング14前後の圧力差は逆転する(P1<P2)。この圧力差の逆転により、逆止リング14は後方B側のリアシート13に押圧され、流路Rが閉鎖される。図中のGFは逆止リング14の動作方向を示す。なお、流路Rが閉鎖されるまでは、計量樹脂は流路Rを通ってスクリュ11側に逆流するが(樹脂逆流という)、逆止リング14の動作が安定しておれば、この樹脂逆流の量も安定する。その結果、安定した樹脂逆流の量を見込んで、計量樹脂の量が設定される。 Next, as shown in FIG. 2(b), the rotation of the screw 11 is stopped to complete the weighing process. Here, by stopping the rotation of the screw 11, the flow of the resin material to the front side F stops, and the resin pressure P1 on the rear side B of the check ring 14 becomes close to zero. As a result, the pressure difference across the check ring 14 reverses (P1<P2). Due to this reversal of the pressure difference, the check ring 14 is pressed against the rear seat 13 on the rearward B side, and the flow path R is closed. GF in the drawing indicates the operating direction of the non-return ring 14 . Until the flow path R is closed, the metered resin flows backward through the flow path R toward the screw 11 (referred to as resin backflow). The amount of is also stable. As a result, the amount of metered resin is set to allow for the amount of stable resin backflow.

射出工程は、図3(a)に示すように、流路Rが閉鎖された状態でスクリュ11が前進動作し、スクリュヘッド15の前方F側の計量樹脂は、ノズル22方向に流動し、金型キャビティ53内に射出充填される。逆止リング14の動作の安定性(樹脂逆流の量の安定)と、流路Rの閉鎖により、金型キャビティ53内に充填する射出充填量は高精度に確保され、高品質な成形品質の安定生産を実現する。しかしながら、実際の成形現場においては、成形材料の射出充填量が変動し、成形品質が安定しないという現象が多発している。この現象の発生理由について、図3(b)を用いて説明する。 In the injection process, as shown in FIG. 3(a), the screw 11 moves forward while the flow path R is closed, and the measured resin on the front side F of the screw head 15 flows toward the nozzle 22, and the metal is injected. Injection filling into the mold cavity 53 . Due to the stability of the operation of the check ring 14 (stable amount of backflow of resin) and the closure of the flow path R, the injection filling amount filled in the mold cavity 53 is ensured with high accuracy, and high molding quality is achieved. Realize stable production. However, in an actual molding site, a phenomenon often occurs in which the injection filling amount of the molding material fluctuates and the molding quality is unstable. The reason why this phenomenon occurs will be described with reference to FIG.

例えば、長時間の射出成形運転により、逆止リング14は、摩耗、変形、擦り傷等の損傷が必ず生じる。また、射出シリンダ21の内壁面も同様な損傷が必ず生じる。さらに、逆止リング14や射出シリンダ21の内壁面に付着した樹脂材料が、劣化して滞留樹脂として堆積される。これらによって、計量工程完了後の逆止リング14の動作が緩慢となり、流路Rが閉鎖するまでの時間が変動する。その結果、樹脂逆流の状態が変動し、計量樹脂の量が変動する現象が生じる。また、図3(b)に示すように、逆止リング14が途中で止まり、流路Rが開放状態となると、圧力差が無くなるまで(P2≒P1)、樹脂逆流が継続し、計量樹脂の量は大きく変動する。さらに、射出工程においても、開放している流路Rが閉鎖するまでは樹脂逆流が変動する。また、流路Rの閉鎖タイミングも変動する。これらの変動により、射出充填の量は大きく変動し、成形品質の安定化を確保することが非常に困難となる。 For example, long injection molding operations inevitably cause damage to the check ring 14, such as wear, deformation, and scratches. In addition, the inner wall surface of the injection cylinder 21 also suffers similar damage. Furthermore, the resin material adhering to the check ring 14 and the inner wall surface of the injection cylinder 21 deteriorates and accumulates as retained resin. As a result, the operation of the check ring 14 after the completion of the metering process becomes slow, and the time until the flow path R is closed varies. As a result, a phenomenon occurs in which the state of the resin backflow fluctuates and the amount of the metered resin fluctuates. Further, as shown in FIG. 3(b), when the check ring 14 stops halfway and the flow path R is opened, the resin backflow continues until the pressure difference disappears (P2≈P1), and the metered resin is discharged. Amounts vary greatly. Furthermore, even in the injection process, the resin backflow fluctuates until the open flow path R is closed. Moreover, the closing timing of the flow path R also fluctuates. Due to these fluctuations, the amount of injection filling fluctuates greatly, making it very difficult to ensure stable molding quality.

また、図2および図3で示した状態は、射出シリンダ21の内部が観察できる可視化装置を作成し、この可視化装置においても同様に確認された。そこで、図3(b)に示した状態を正確に検知でき改善する手段を講じることで、金型キャビティ53内への樹脂材料の射出充填の安定化を図ることができると考え、以下に示す射出成形方法を提案する。なお、このような考えは、従来技術には全く示唆されていない。 Moreover, the states shown in FIGS. 2 and 3 were also confirmed by a visualization device that allows observation of the inside of the injection cylinder 21 . Therefore, it is thought that injection and filling of the resin material into the mold cavity 53 can be stabilized by taking measures to accurately detect and improve the state shown in FIG. We propose an injection molding method. Such an idea is not suggested in the prior art at all.

[射出成形方法の全体の流れ]
次に、本発明の実施形態に係る射出成形方法の全体の流れについて、図4を用いて説明する。先ず、固定金型51と可動金型52を型締動作して金型キャビティ53を形成する(型締工程)。次に、射出工程を開始する。射出工程は、予め設定した射出速度と射出圧力の射出制御パターンに基づいて、射出制御部40は射出駆動部30を操作してスクリュ11を前進動作させて、金型キャビティ53内に計量樹脂を射出充填する(射出動作)。スクリュ11の位置Sが射出保圧切替え位置VPに到達すると、射出充填された計量樹脂の冷却固化に伴う固化収縮を補う保圧工程と、金型キャビティ53内で冷却固化させる冷却工程を経て、型開して金型キャビティから冷却固化した成形品を取り出す。
[Overall Flow of Injection Molding Method]
Next, the overall flow of the injection molding method according to the embodiment of the present invention will be described with reference to FIG. First, the fixed mold 51 and the movable mold 52 are clamped to form the mold cavity 53 (mold clamping step). Next, the injection process is started. In the injection process, the injection control unit 40 operates the injection drive unit 30 to move the screw 11 forward based on the injection control pattern of the injection speed and injection pressure set in advance, and the measured resin is injected into the mold cavity 53. Injection filling (injection operation). When the position S of the screw 11 reaches the injection and holding pressure switching position VP, through a holding pressure step for compensating for solidification shrinkage due to cooling and solidification of the weighed resin injected and filled, and a cooling step for cooling and solidifying in the mold cavity 53, The mold is opened and the cooled and solidified product is removed from the mold cavity.

射出工程の開始と同時に、逆止リング14の動作と流路Rの開閉状態の判定を行う動作判定モードを起動させて、射出工程の射出圧力波形(計測波形という)を射出制御部40で取得し、波形評価を行う。この計測波形が、予め設定した基準波形に対して許容範囲内に収まっていると評価されると、逆止リング14の動作と流路Rの開閉状態は正常判定され、射出成形の安定運転が保証される。計測波形と基準波形が相違する場合は、次のステップに進む。先ず、計測波形と基準波形の相違点が、射出開始からの射出圧力の上昇タイミングの遅れのみである場合、逆止リング14の動作と流路Rの閉鎖状態に軽微な異常が生じているとして、射出制御部40は第1異常判定を発信し第1補正処理を行う。 Simultaneously with the start of the injection process, the operation determination mode for determining the operation of the check ring 14 and the open/closed state of the flow path R is started, and the injection pressure waveform (referred to as the measured waveform) in the injection process is acquired by the injection control unit 40. and perform waveform evaluation. When this measured waveform is evaluated to be within the allowable range with respect to the preset reference waveform, the operation of the check ring 14 and the opening/closing state of the flow path R are determined to be normal, and the stable operation of injection molding can be performed. Guaranteed. If the measured waveform and the reference waveform are different, proceed to the next step. First, if the only difference between the measured waveform and the reference waveform is the delay in the injection pressure rise timing from the start of injection, it is assumed that a slight abnormality has occurred in the operation of the check ring 14 and the closed state of the flow path R. , the injection control unit 40 issues a first abnormality determination and performs a first correction process.

射出圧力上昇の遅れが確認され、さらに、遅れた射出圧力が射出制御パターンの射出圧力設定値までの復帰の有無の評価を行う。第1異常判定の場合は、射出圧力の復帰タイミングが後述する監視範囲内である。この復帰タイミングが監視範囲よりも遅れる場合、逆止リング14の動作と流路Rの閉鎖状態に中程度の異常が生じているものとして、射出制御部40は第2異常判定を発信し第2補正処理を行う。また、射出圧力が復帰できない場合、逆止リング14や射出シリンダ21を含む射出装置10の部品に、重大な異常が生じているとして、射出制御部40は第3異常判定し、例えば、警報を発してメンテナンス作業を行うことを推奨する第3補正処理を行う。 A delay in injection pressure rise is confirmed, and furthermore, evaluation is made as to whether or not the delayed injection pressure has returned to the injection pressure set value of the injection control pattern. In the case of the first abnormality determination, the return timing of the injection pressure is within the monitoring range described later. If the return timing is later than the monitoring range, the injection control unit 40 issues a second abnormality determination, assuming that there is a moderate abnormality in the operation of the check ring 14 and the closed state of the flow path R. Perform correction processing. Further, when the injection pressure cannot be restored, the injection control unit 40 judges that there is a serious abnormality in the parts of the injection device 10 including the check ring 14 and the injection cylinder 21, and makes a third abnormality determination, for example, issues an alarm. A third correction process is performed to recommend that maintenance work be performed.

[第1実施形態の射出成形方法]
次に、本発明の第1実施形態に係る射出成形方法について、図4と図5を用いて説明する。図5は、横軸にスクリュ11の位置S、縦軸に射出圧力とした射出工程中の射出圧力波形を示す。また、図6は、図4に示した第1異常判定に続く第1補正処理のフロー図である。ここで、射出圧力は、例えば、スクリュ11の後方B側の射出駆動部30に圧力センサを取付け、スクリュが受ける樹脂圧を検知して射出圧力としても良い。または、油圧駆動の射出駆動部30では、供給する油圧の圧力から算出した射出圧力としても良く、電動駆動の射出駆動部30では、電動モータの駆動トルクから算出した射出圧力としても良い。なお、射出シリンダ21やシリンダヘッド22あるいはノズル23に圧力センサを取付けて、樹脂圧を直接検知して射出圧力としても良いが、高温高圧の部位に圧力センサを取付けることから、取付け部から計量樹脂が漏れ出や圧力センサの故障等による射出成形運転の中断が想定されるので注意が必要である。
[Injection molding method of the first embodiment]
Next, the injection molding method according to the first embodiment of the present invention will be described with reference to FIGS. 4 and 5. FIG. FIG. 5 shows the injection pressure waveform during the injection process, with the horizontal axis representing the position S of the screw 11 and the vertical axis representing the injection pressure. FIG. 6 is a flowchart of the first correction process subsequent to the first abnormality determination shown in FIG. For the injection pressure, for example, a pressure sensor may be attached to the injection drive unit 30 on the rear B side of the screw 11 to detect the resin pressure received by the screw and determine the injection pressure. Alternatively, in the hydraulic injection driving section 30, the injection pressure may be calculated from the supplied hydraulic pressure, and in the electric injection driving section 30, the injection pressure may be calculated from the drive torque of the electric motor. A pressure sensor may be attached to the injection cylinder 21, the cylinder head 22, or the nozzle 23 to directly detect the resin pressure as the injection pressure. It is assumed that the injection molding operation will be interrupted due to leakage or failure of the pressure sensor.

先ず、図5(a)に示すように、射出開始位置SS(計量完了位置KE)から射出保圧切替え位置VPに向かって、スクリュ11を前進動作させて金型キャビティ53内に計量樹脂を射出充填させる。その時の射出制御パターンは、実線で示す基準波形Kとする。また、良品成形を得ることができる上限値Hと下限値Lを破線で示す。なお、上限値Hおよび下限値Lは、過去の射出成形実績から求めるか、あるいは、樹脂の流動解析ツールを用いて算出しても良い。この基準波形Kに計測波形NG1を重ね合わせて波形評価を行う。計測波形NG1の射出圧力の上昇が遅れ、その上昇開始位置PRが基準波形Kの上限値Hおよび下限値Lから算出される許容位置SKから外れて(PR>SK)、かつ、計測波形NG1の射出圧力が基準波形Kに復帰し、その復帰位置PFが監視範囲KHの範囲内である場合(KH≧PF)を、第1異常判定とし第1補正処理を行う。 First, as shown in FIG. 5A, the screw 11 is advanced from the injection start position SS (measurement completion position KE) toward the injection holding pressure switching position VP to inject the measured resin into the mold cavity 53. let it fill. The injection control pattern at that time is assumed to be a reference waveform K indicated by a solid line. Also, the upper limit value H and the lower limit value L at which non-defective products can be obtained are indicated by dashed lines. The upper limit value H and the lower limit value L may be obtained from past injection molding results, or may be calculated using a resin flow analysis tool. Waveform evaluation is performed by superimposing the measured waveform NG1 on this reference waveform K. FIG. The rise of the injection pressure of the measured waveform NG1 is delayed, the rise start position PR deviates from the allowable position SK calculated from the upper limit value H and the lower limit value L of the reference waveform K (PR>SK), and the measured waveform NG1 When the injection pressure returns to the reference waveform K and the return position PF is within the monitoring range KH (KH≧PF), the first abnormality determination is made and the first correction process is performed.

第1補正処理は、図6に示すように、第1補正距離SB1と補正速度SV1を求める。第1補正距離SB1は、図5(a)に示す、計測波形の射出圧力の上昇開始位置PRを射出制御部40に設定する(SB1=PR)。また、計量完了位置KEに上昇開始位置SB1を加算して、計量完了補正位置KH1を射出制御部40に設定する。計量完了補正位置KH1は、次ショットの射出開始補正位置SH1となる。補正速度SV1は、図5(a)に示す、基準波形の射出開始時の射出速度V1を射出制御部40設定する(SV1=V1)。これらの設定結果を、図5(b)に示す。 In the first correction process, as shown in FIG. 6, a first correction distance SB1 and a correction speed SV1 are obtained. For the first correction distance SB1, the injection pressure increase start position PR of the measured waveform shown in FIG. 5(a) is set in the injection control unit 40 (SB1=PR). Also, the metering completion correction position KH1 is set in the injection control unit 40 by adding the ascending start position SB1 to the metering completion position KE. The metering completion correction position KH1 becomes the injection start correction position SH1 for the next shot. As the correction speed SV1, the injection control unit 40 sets the injection speed V1 at the start of injection of the reference waveform shown in FIG. 5A (SV1=V1). These setting results are shown in FIG.

次に、図5(b)の設定結果に基づいて、図6に示すように、計量工程と射出動作を行う。先ず、計量工程は、スクリュ11の回転数や背圧制御等の計量条件を変えることなく、予め設定された計量制御パターンに基づいて計量動作を行う。スクリュ11の位置Sが計量完了位置KEに達すると、スクリュ11の回転動作を停止させる。その後、直ちに、補正速度SV1の後退速度で、スクリュ11を計量完了補正位置KH1まで無回転で後退させて停止させる。この後退の停止位置は、引き続き行われる射出動作の射出開始補正位置SH1となる。これにより、逆止リング14はスクリュヘッド15側に位置し、流路Rは開いているが、逆止リング14の前後の圧力差は無くなり(P1=P2)、樹脂逆流を確実に止めることができる。また、仮に、摩耗傷や滞留樹脂等で逆シリング14が射出シリンダ21の内壁面と引っ掛かって、逆シリングの動作が緩慢となっている状態であっても、このスクリュ11の後退動作により、引っ掛かりが解けて逆シリング14の動作を阻止するようなものを確実に排除することができる。さらに、スクリュ11の過剰な後退動作は、逆シリング14の前方F側の樹脂圧力P2が負圧となり、スクリュ11側の樹脂材料がスクリュヘッド15の前方F側に漏れ出て、計量樹脂の量が過剰に増大するという不具合が生じることがある。この不具合は、第1補正距離SB1の設定により確実に防止することができる。 Next, as shown in FIG. 6, a weighing process and an injection operation are performed based on the setting result of FIG. 5(b). First, in the weighing process, the weighing operation is performed based on a preset weighing control pattern without changing the weighing conditions such as the number of revolutions of the screw 11 and back pressure control. When the position S of the screw 11 reaches the metering completion position KE, the rotation of the screw 11 is stopped. Immediately thereafter, the screw 11 is retracted to the metering completion correction position KH1 at the retraction speed of the correction speed SV1 without rotation and stopped. The stop position of this retraction becomes the injection start correction position SH1 of the subsequent injection operation. As a result, the check ring 14 is positioned on the screw head 15 side, and the flow path R is open, but the pressure difference before and after the check ring 14 disappears (P1=P2), and the back flow of the resin can be reliably stopped. can. Further, even if the reverse shilling 14 is caught on the inner wall surface of the injection cylinder 21 due to wear scars, retained resin, etc., and the reverse shilling operation is slow, the backward movement of the screw 11 will prevent the reverse shilling from being caught. Anything that would unravel and block the operation of the inverse shilling 14 can be reliably eliminated. Furthermore, excessive retraction of the screw 11 causes the resin pressure P2 on the front side F of the reverse silling 14 to become a negative pressure, causing the resin material on the screw 11 side to leak out to the front side F of the screw head 15, resulting in the amount of resin to be measured. may be excessively increased. This problem can be reliably prevented by setting the first correction distance SB1.

射出動作は、スクリュ11の位置Sが計量完了位置KEに達するまで、所定の速度でスクリュ11を前進させる。この前進の過程で、逆止リング14とリアシート13とが当接し、流路Rの閉鎖を確実なものとする。流路Rの閉鎖後は、逆止リング14の前方F側の樹脂圧力P2を高め、計量完了位置KEで、本来の計量工程で示す背圧制御の樹脂圧に復帰される。そのため、計量完了位置KE以降の射出工程は、予め設定した射出制御パターンを変更することなく射出工程、射出保圧切替え、保圧工程、冷却工程と型開・製品取出し工程を進めることができる。なお、計量完了位置KEまでのスクリュの前進速度は、リアシート13と逆止リング14が当接した時に、逆止リング14が弾かれない程度の速度を設定する。あるいは、計量完了位置KEの前後のスクリュ11の前進動作がスムーズに引継ぎされるために、補正速度SV1(=射出速度V1)を前進速度としても良い。これにより、射出成形の運転中に突然、逆止リング14の動作と流路Rの閉鎖状態に異常が生じ成形不良が発生したとしても、直ちに異常を検知することができ、適切な補正処理を行うことで、異常を回避することができる。その結果、次ショットの射出成形から良品成形に復帰することができ、損失を最小限に抑えることが可能となる。 In the injection operation, the screw 11 is advanced at a predetermined speed until the position S of the screw 11 reaches the metering completion position KE. During this forward movement, the non-return ring 14 and the rear seat 13 come into contact with each other to ensure that the passage R is closed. After the passage R is closed, the resin pressure P2 on the front side F of the check ring 14 is increased, and at the metering completion position KE, the resin pressure is returned to the back pressure controlled resin pressure shown in the original metering process. Therefore, in the injection process after the weighing completion position KE, the injection process, the injection holding pressure switching, the holding pressure process, the cooling process, and the mold opening/product ejection process can proceed without changing the preset injection control pattern. The advancing speed of the screw to the metering completion position KE is set to a speed that does not flip the check ring 14 when the rear seat 13 and the check ring 14 come into contact with each other. Alternatively, the correction speed SV1 (=injection speed V1) may be the forward speed so that the forward movement of the screw 11 before and after the metering completion position KE is smoothly taken over. As a result, even if an abnormality occurs in the operation of the non-return ring 14 and the closed state of the flow path R during the operation of injection molding and a molding defect occurs, the abnormality can be detected immediately, and appropriate correction processing can be performed. By doing so, anomalies can be avoided. As a result, it is possible to return to good product molding from the injection molding of the next shot, and it is possible to minimize the loss.

[第2実施形態の射出成形方法]
次に、本発明の第2実施形態に係る射出成形方法について、図7と図8を用いて説明する。図7は、図5と同様に、横軸にスクリュ11の位置S、縦軸に射出圧力とした射出工程中の射出圧力波形を示す。また、図8は、図4に示した第2異常判定に続く第2補正処理のフロー図である。なお、第1実施形態と重複する箇所については説明を割愛する。
[Injection molding method of the second embodiment]
Next, an injection molding method according to a second embodiment of the present invention will be described with reference to FIGS. 7 and 8. FIG. As in FIG. 5, FIG. 7 shows the injection pressure waveform during the injection process, with the horizontal axis representing the position S of the screw 11 and the vertical axis representing the injection pressure. FIG. 8 is a flowchart of second correction processing following the second abnormality determination shown in FIG. In addition, description is omitted about the part which overlaps with 1st Embodiment.

先ず、図7(a)に示すように、計測波形NG2の射出圧力の上昇開始位置PRが遅れ、許容位置SKから外れて(PR>SK)、かつ、計測波形NG2の射出圧力が基準波形Kに復帰し、その復帰位置PFが監視範囲KHの範囲外である場合(KH<PF)を、第2異常判定とし第2補正処理を行う。第2補正処理は、図8に示すように、第1補正処理と同様の第1補正距離SB1と補正速度SV1を求め、さらに、計量完了位置KEを後方B側にオフセットさせる第2補正距離QFを求める(KE+QF)。このオフセット後の計量完了位置KE2とする。この第2補正距離QFは、図7(a)に示す、計測波形の射出圧力の復帰位置PFを射出制御部40に設定する(QF=PF)。また、計量完了位置KE2に第1補正距離SB1を加算して(KE2+SB1)、計量完了補正位置KH2として射出制御部40に設定する。計量完了補正位置KH2は、次ショットの射出開始補正位置SH2となる。これらの設定結果を、図7(b)に示す。 First, as shown in FIG. 7(a), the injection pressure rise start position PR of the measured waveform NG2 is delayed and deviates from the allowable position SK (PR>SK), and the injection pressure of the measured waveform NG2 reaches the reference waveform K. , and when the return position PF is outside the monitoring range KH (KH<PF), the second abnormality determination is performed and the second correction process is performed. In the second correction process, as shown in FIG. 8, a first correction distance SB1 and a correction speed SV1 are obtained in the same manner as in the first correction process. (KE+QF). The weighing completion position KE2 after this offset is set. This second correction distance QF sets the return position PF of the injection pressure of the measured waveform shown in FIG. 7A in the injection control unit 40 (QF=PF). Also, the first correction distance SB1 is added to the metering completion position KE2 (KE2+SB1) and set in the injection control unit 40 as the metering completion correction position KH2. The metering completion correction position KH2 becomes the injection start correction position SH2 for the next shot. These setting results are shown in FIG.

次に、図7(b)の設定結果に基づいて、図8に示すように、計量工程と射出動作を行う。先ず、計量工程は、オフセット後の計量完了位置KE2に基づいて、スクリュ11の回転数や背圧制御等の計量条件のうち、各制御の切替え位置のみ変更を行う。変更後の計量条件に基づいて計量動作を行い、スクリュ11の位置Sが計量完了位置KE2に達すると、スクリュ11の回転動作を停止させる。その後、直ちに、補正速度SV1の後退速度で、スクリュ11を計量完了補正位置KH2まで無回転で後退させて停止させる。この後退の停止位置は、引き続き行われる射出動作の射出開始補正位置SH2となる。これにより、第1実施形態と同様の改善効果を得る。さらに、スクリュ11の後方B側へのオフセットにより、逆止リング14と射出シリンダ21の内壁面との接触状態や滞留樹脂の体積状態が変わり、逆止リング14の動作や流路Rの開閉状態の改善が期待される。射出成形で日常的に使用していない射出シリンダ21の範囲は、摩耗損傷や滞留樹脂は少ない。オフセットした計量完了補正位置KH2が、この範囲に該当すれば、改善の期待度はさらに高まる。 Next, as shown in FIG. 8, the weighing process and the injection operation are performed based on the setting result shown in FIG. 7(b). First, in the weighing process, only the switching position of each control among the weighing conditions such as the rotational speed of the screw 11 and back pressure control is changed based on the weighing completion position KE2 after the offset. The metering operation is performed based on the changed metering conditions, and when the position S of the screw 11 reaches the metering completion position KE2, the rotation of the screw 11 is stopped. Immediately thereafter, the screw 11 is retracted to the metering completion correction position KH2 at the retraction speed of the correction speed SV1 without rotation and stopped. The stop position of this retraction becomes the injection start correction position SH2 of the subsequent injection operation. Thereby, an improvement effect similar to that of the first embodiment is obtained. Furthermore, due to the offset of the screw 11 toward the rear B side, the state of contact between the check ring 14 and the inner wall surface of the injection cylinder 21 and the volume state of the retained resin change, and the operation of the check ring 14 and the opening/closing state of the flow path R change. is expected to improve. The area of the injection cylinder 21 that is not routinely used in injection molding has less wear damage and less residual resin. If the offset metering completion correction position KH2 falls within this range, the degree of improvement is expected to increase further.

射出工程は、スクリュ11の位置Sが計量完了位置KE2に達するまで、所定の速度でスクリュ11を前進させる。この前進の過程で、第1実施形態と同様に、流路Rの閉鎖と計量樹脂の圧力調整を行う。計量完了位置KE2以降の射出工程は、計量条件の変更と同様に、各制御の切替え位置を変更した射出制御パターンに基づいて射出工程を行う。射出保圧切替え位置VP以降は、第1実施形態と同じである。これにより、第1実施形態と同様の改善効果を得る。また、射出成形の安定生産の復帰により、逆止リング14を含む射出装置10の部品の延命効果が期待できる。さらに、摩耗損傷や滞留樹脂が少ない射出シリンダ21の範囲に、計量完了補正位置KH2が該当すれば、例えば、滞留樹脂の剥離による異物不良を回避することができる。また、第2異常判定を受けて、逆止リング14等の射出装置10の交換部品を手配する等の事前対応により、不意のトラブルによる長時間の生産停止を回避することができる。 In the injection process, the screw 11 is advanced at a predetermined speed until the position S of the screw 11 reaches the metering completion position KE2. In the course of this forward movement, the passage R is closed and the pressure of the metered resin is adjusted, as in the first embodiment. In the injection process after the metering completion position KE2, the injection process is performed based on the injection control pattern in which the switching position of each control is changed, similar to the change of the metering conditions. The position after the injection/holding pressure switching position VP is the same as in the first embodiment. Thereby, an improvement effect similar to that of the first embodiment is obtained. In addition, the restoration of stable injection molding production can be expected to extend the life of parts of the injection device 10 including the non-return ring 14 . Furthermore, if the metering completion correction position KH2 falls within the range of the injection cylinder 21 where there is little wear damage and residual resin, for example, it is possible to avoid foreign matter defects due to peeling of the residual resin. In addition, it is possible to prevent long-term production stoppages due to unexpected troubles by taking advance measures such as arranging replacement parts for the injection device 10 such as the non-return ring 14 in response to the second abnormality determination.

[第3実施形態の射出成形方法]
次に、本発明の第3実施形態に係る射出成形方法について、図9を用いて説明する。図9は、図5および図7と同様に、横軸にスクリュ11の位置S、縦軸に射出圧力とした射出工程中の射出圧力波形を示す。なお、第1実施形態および第2実施形態と重複する箇所については説明を割愛する。
[Injection molding method of the third embodiment]
Next, an injection molding method according to a third embodiment of the invention will be described with reference to FIG. FIG. 9, like FIGS. 5 and 7, shows the injection pressure waveform during the injection process, with the horizontal axis representing the position S of the screw 11 and the vertical axis representing the injection pressure. In addition, description is omitted about the part which overlaps with 1st Embodiment and 2nd Embodiment.

先ず、図9(a)に示すように、計測波形NG3の射出圧力の上昇開始位置PRが遅れ、許容位置SKから外れて(PR>SK)、かつ、計測波形NG3の射出圧力が基準波形Kに復帰しない場合を、第3異常判定とし第3補正処理を行う。なお、第1補正処理を行っても、計測波形NG3の射出圧力が基準波形Kに復帰しない場合や、図9(b)に示すように、第2補正処理を行ったとしても、計測波形NG3の射出圧力が基準波形Kに復帰しない場合も、第3異常判定とし第3補正処理を行う。 First, as shown in FIG. 9(a), the injection pressure rise start position PR of the measured waveform NG3 is delayed and deviates from the allowable position SK (PR>SK), and the injection pressure of the measured waveform NG3 is the reference waveform K. A third abnormality determination is made when the state does not return to the normal state, and a third correction process is performed. Note that even if the first correction process is performed, the injection pressure of the measured waveform NG3 does not return to the reference waveform K, or as shown in FIG. 9B, even if the second correction process is performed, the measured waveform NG3 If the injection pressure does not return to the reference waveform K, the third abnormality determination is made and the third correction process is performed.

ここで、計測波形NG3の射出圧力が基準波形Kに復帰できない理由については、例えば、逆止リング14や射出シリンダ21の内壁面の摩耗、変形、擦り傷、滞留樹脂の堆積等の状態が著しく劣化しているために、流路Rの開閉動作の機能が正常に作用しない、重大な異常状態となっていることが原因である。つまり、第3異常判定とは、射出成形の安定生産が継続できないことを示唆する。そのため、第3補正処理は、警報を発信し、射出成形運転を中断し、逆止リング14等の計量工程や射出工程に影響を与える射出装置10の部品交換のメンテナンス作業を行うことを推奨する。これにより、成形不良品が大量に発生することを防止でき、また、適切なタイミングでのメンテナンス作業により、射出成形の安定生産の早期回復ができ、高い生産効率を確保することができる。 Here, the reason why the injection pressure of the measured waveform NG3 cannot return to the reference waveform K is, for example, that the check ring 14 or the inner wall surface of the injection cylinder 21 is worn, deformed, scratched, or accumulated in accumulated resin. This is because the function of opening and closing the flow path R does not work properly, resulting in a serious abnormal condition. That is, the third abnormality determination suggests that stable injection molding production cannot be continued. Therefore, in the third correction process, it is recommended to issue a warning, interrupt the injection molding operation, and perform maintenance work such as replacement of parts of the injection device 10 that affect the weighing process and the injection process, such as the check ring 14. . As a result, it is possible to prevent a large number of defective molded products from being generated, and by performing maintenance work at an appropriate timing, it is possible to quickly restore stable injection molding production and ensure high production efficiency.

[効果]
このように、射出工程中の射出圧力波形から、射出成形の品質に最も影響を及ぼす、計量工程の完了から射出工程の範囲内の、逆流防止装置の流路開閉状態の良否状態の検知と、樹脂逆流に程度を正確に行うことができる。また、射出工程に続く、次ショットの計量工程で的確な補正処理を行うことができる。その結果、不良品の発生を最小限に抑えることができ、高品質な成形品の射出成形の安定運転を提供することができる。また、射出成形の品質に影響を与える、逆流防止装置を含む射出装置の関連部品の状態を、3段階に分類し、各分類に応じた適切な補正処理を行としている。これにより、不意のトラブルによる射出成形の運転中断を避けることができ、高い生産効率の射出成形運転を提供することができる。
[effect]
In this way, from the injection pressure waveform during the injection process, the quality of the injection molding is most affected from the completion of the weighing process to the injection process. Accurate degree of resin backflow can be achieved. Further, accurate correction processing can be performed in the weighing process for the next shot following the injection process. As a result, the occurrence of defective products can be minimized, and stable operation of injection molding of high-quality molded products can be provided. In addition, the states of parts related to the injection device, including the backflow prevention device, which affect the quality of injection molding, are classified into three stages, and appropriate correction processing is performed according to each classification. As a result, interruption of injection molding operation due to unexpected trouble can be avoided, and injection molding operation with high production efficiency can be provided.

以上、本発明の好適な実施形態について説明したが、本発明の技術範囲は、上述した実施形態に記載された範囲には限定されない。上記の実施形態には多様な変更または改良を加えることが可能である。 Although the preferred embodiments of the present invention have been described above, the technical scope of the present invention is not limited to the ranges described in the above-described embodiments. Various modifications or improvements can be added to the above embodiments.

100 射出成形機
10 射出装置
11 スクリュ
12 フライト
13 リアシート
14 逆止リング
15 スクリュヘッド
21 射出シリンダ
22 シリンダヘッド
23 ノズル
24 ヒータ
25 材料ホッパ
30 射出駆動部
40 射出制御部
50 射出成形金型
51 固定金型
52 可動金型
53 金型キャビティ
54 ゲート
F 前方
B 後方
A 領域
R 流路
MF 成形材料の流動方向
SF スクリュの動作方向
GF 逆止リングの動作方向
P1 逆止リングより後方B側の樹脂圧力
P2 逆止リングより前方F側の樹脂圧力
S スクリュ位置
VP 射出保圧切替え位置
SS 射出開始位置
SH1、SH2 射出開始補正位置
KE、KE2 計量完了位置
KH1、KH2 計量完了補正位置
K 基準波形
H 上限値
L 下限値
NG1、NG2、NG3 計測波形
PR 上昇開始位置
PF 復帰位置
SK 許容位置
KH 監視範囲
SB1 第1補正距離
QF 第2補正距離
SV1 補正速度
V1 射出速度
REFERENCE SIGNS LIST 100 injection molding machine 10 injection device 11 screw 12 flight 13 rear seat 14 check ring 15 screw head 21 injection cylinder 22 cylinder head 23 nozzle 24 heater 25 material hopper 30 injection drive section 40 injection control section 50 injection mold 51 fixed mold 52 Movable mold 53 Mold cavity 54 Gate F Front B Rear A Region R Flow path MF Flow direction of molding material SF Operating direction of screw GF Operating direction of check ring P1 Resin pressure on B side behind check ring P2 Reverse Resin pressure on the front F side of the retaining ring S Screw position VP Injection holding pressure switching position SS Injection start position SH1, SH2 Injection start correction position KE, KE2 Metering completion position KH1, KH2 Metering completion correction position K Reference waveform H Upper limit L Lower limit Value NG1, NG2, NG3 Measurement waveform PR Rise start position PF Return position SK Allowable position KH Monitoring range SB1 First correction distance QF Second correction distance SV1 Correction speed V1 Injection speed

Claims (6)

スクリュの先端に逆流防止装置を備え、計量工程で前記スクリュ前方の射出シリンダ内に可塑化溶融した樹脂材料を貯蔵し、射出工程で金型キャビティ内に前記樹脂材料を射出充填する射出成形方法において、
前記逆流防止装置の開閉動作の判定を行う動作判定モードを備え、
前記動作判定モードは、射出工程の射出圧力を計測波形とし、前記計測波形が基準波形に対して予め設定した上下限値の範囲内である場合に、前記逆流防止装置の開閉動作を正常判定とし、前記計測波形の圧力上昇開始位置が、前記基準波形に対して予め設定した許容位置よりも遅れる場合に、前記逆流防止装置の開閉動作の第1異常判定とし、第1補正処理を行う、ことを特徴とする射出成形方法。
In an injection molding method in which a backflow prevention device is provided at the tip of a screw, a plasticized and melted resin material is stored in an injection cylinder in front of the screw in a weighing process, and the resin material is injected and filled into a mold cavity in an injection process. ,
An operation determination mode for determining opening/closing operation of the backflow prevention device,
In the operation determination mode, the injection pressure in the injection process is used as a measured waveform, and when the measured waveform is within the range of the upper and lower limits set in advance with respect to the reference waveform, the open/close operation of the backflow prevention device is determined to be normal. , when the pressure rise start position of the measured waveform is delayed from the preset allowable position with respect to the reference waveform, it is determined as a first abnormality determination of the opening and closing operation of the backflow prevention device, and a first correction process is performed. An injection molding method characterized by:
前記第1補正処理は、前記射出工程の射出開始位置と、前記圧力上昇開始位置までの前記スクリュの距離を第1補正距離とし、前記射出工程の射出開始時の射出速度を補正速度とし、前記計量工程においては、予め設定した計量制御パターンに基づいて計量工程を開始させ、前記スクリュが計量完了位置に到達後、前記スクリュの回転動作を停止し、前記第1補正距離を前記補正速度で前記スクリュを無回転後退させ、前記無回転後退の完了位置で前記スクリュを停止させる、請求項1記載の射出成形方法。 In the first correction process, the injection start position of the injection process and the distance of the screw to the pressure increase start position are set as the first correction distance, the injection speed at the start of injection of the injection process is set as the correction speed, and the In the metering step, the metering step is started based on a preset metering control pattern, and after the screw reaches the metering completion position, the rotation of the screw is stopped, and the first correction distance is set at the correction speed. 2. The injection molding method according to claim 1, wherein the screw is non-rotationally retracted and the screw is stopped at a position where the non-rotational retraction is completed. 前記第1補正処理は、前記無回転後退の完了位置から、予め設定した速度で前記スクリュを前進させ、前記スクリュ位置が前記計量完了位置に到達後は、予め設定した射出制御パターンに基づいて前記射出工程を開始させる、請求項1または2に記載の射出成形方法。 In the first correction process, the screw is advanced at a preset speed from the non-rotational retraction completion position, and after the screw position reaches the metering completion position, the injection control pattern is set in advance. 3. The injection molding method according to claim 1 or 2, wherein an injection process is started. 前記動作判定モードにおいて、前記計測波形の圧力上昇開始位置が前記許容位置よりも遅れ、さらに、前記計測波形の圧力復帰位置が前記基準波形に対して予め設定した監視範囲外である場合に、前記逆流防止装置の開閉動作の第2異常判定とし、第2補正処理を行う、請求項1から3のいずれか1項に記載の射出成形方法。 In the operation determination mode, when the pressure rise start position of the measured waveform is delayed from the allowable position and the pressure return position of the measured waveform is outside a preset monitoring range with respect to the reference waveform, the 4. The injection molding method according to any one of claims 1 to 3, wherein a second correction process is performed as a second abnormality determination of the opening/closing operation of the backflow prevention device. 前記第2補正処理は、前記射出工程の射出開始位置と、前記圧力復帰位置までの前記スクリュの距離を第2補正距離とし、前記計量完了位置に前記第2補正距離を加算して計量完了補正位置を求め、計量工程においては、予め設定した計量制御パターンに基づいて計量工程を開始させ、前記スクリュが前記計量完了補正位置に到達後は、前記スクリュの回転動作を停止し、前記第1補正距離を前記補正速度で前記スクリュを無回転後退させ、前記無回転後退の完了位置で前記スクリュを停止させ、射出工程においては、前記無回転後退の完了位置から、予め設定した速度で前記スクリュを前進させ、前記スクリュ位置が前記計量完了補正位置に到達後は、予め設定した射出制御パターンに基づいて前記射出工程を開始させる、請求項4記載の射出成形方法。 In the second correction process, the distance of the screw from the injection start position of the injection process to the pressure recovery position is set as a second correction distance, and the second correction distance is added to the measurement completion position to correct the measurement completion. In the measuring process, the measuring process is started based on a preset measuring control pattern, and after the screw reaches the measuring completion correction position, the rotation of the screw is stopped and the first correction is performed. The screw is retracted non-rotationally at the corrected speed, and stopped at the completion position of the non-rotational retraction. 5. The injection molding method according to claim 4, wherein after the screw is advanced and the screw position reaches the metering completion correction position, the injection process is started based on a preset injection control pattern. 前記動作判定モードにおいて、前記計測波形の圧力上昇開始位置が前記許容位置よりも遅れ、さらに、前記計測波形の射出圧力が前記基準波形の射出圧力に復帰しない場合に、前記逆流防止装置の開閉動作の第3異常判定とし、前記逆流防止装置を含む射出装置に関する部品の交換工事を推奨する警報を発する第3補正処理を行う、請求項4または5に記載の射出成形方法。 In the operation determination mode, when the pressure rise start position of the measured waveform is delayed from the allowable position and the injection pressure of the measured waveform does not return to the injection pressure of the reference waveform, the opening and closing operation of the backflow prevention device 6. The injection molding method according to claim 4 or 5, wherein the third abnormality determination is performed, and a third correction process is performed to generate an alarm recommending replacement work of parts related to the injection device including the backflow prevention device.
JP2021148232A 2021-09-13 2021-09-13 injection molding method Pending JP2023041084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021148232A JP2023041084A (en) 2021-09-13 2021-09-13 injection molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021148232A JP2023041084A (en) 2021-09-13 2021-09-13 injection molding method

Publications (1)

Publication Number Publication Date
JP2023041084A true JP2023041084A (en) 2023-03-24

Family

ID=85641474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021148232A Pending JP2023041084A (en) 2021-09-13 2021-09-13 injection molding method

Country Status (1)

Country Link
JP (1) JP2023041084A (en)

Similar Documents

Publication Publication Date Title
JP6998814B2 (en) Injection molding machine control device and injection molding machine
JP2007237498A (en) Error-monitoring method of injection molding machine
JP2023041084A (en) injection molding method
CN108688109B (en) Injection molding machine and information processing device for injection molding
JP7023771B2 (en) Injection molding machine
JP4889574B2 (en) Control method of injection molding machine
CN113001919B (en) Injection molding machine, control method thereof, and recording medium storing control program
JP6910825B2 (en) Injection molding machine and evaluation system
KR20210056905A (en) Injection device and gas dissolution method of injection device
JPH07108575A (en) Tandem type injection molding machine
JP2012143960A (en) Method of changing resin and color for injection molding machine
JP2023059073A (en) injection molding method
JP2901010B2 (en) Operation method of injection molding machine
CN113459450B (en) Injection molding machine
CN108290330B (en) Method for ending molding cycle of injection molding machine
JP5698294B2 (en) Weighing method in the preparation process for starting the molding cycle
WO2020235147A1 (en) Method for measuring fluidity index of molten resin
CN116265226A (en) Control device for injection molding machine
CN113459390B (en) Injection molding machine
JP7297660B2 (en) mold equipment
EP0493619B1 (en) Method of detecting abnormal filling in injection molding machine
JP2023093235A (en) Abnormality inspection method of shut-off nozzle, injection molding device, and injection molding unit
JP2023082943A (en) Control device and control method of injection molding machine
JPH11147239A (en) Injection control method
JP2023063824A (en) Weighing control method for injection molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240328

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20240527