JP2023035928A5 - - Google Patents
Info
- Publication number
- JP2023035928A5 JP2023035928A5 JP2022132165A JP2022132165A JP2023035928A5 JP 2023035928 A5 JP2023035928 A5 JP 2023035928A5 JP 2022132165 A JP2022132165 A JP 2022132165A JP 2022132165 A JP2022132165 A JP 2022132165A JP 2023035928 A5 JP2023035928 A5 JP 2023035928A5
- Authority
- JP
- Japan
- Prior art keywords
- output image
- loss
- image
- determining
- neural network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US17/464,036 | 2021-09-01 | ||
| US17/464,036 US12505344B2 (en) | 2021-09-01 | 2021-09-01 | Neural network training based on consistency loss |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2023035928A JP2023035928A (ja) | 2023-03-13 |
| JP2023035928A5 true JP2023035928A5 (enExample) | 2025-08-27 |
Family
ID=85286379
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2022132165A Pending JP2023035928A (ja) | 2021-09-01 | 2022-08-23 | 一貫性損失に基づくニューラルネットワークのトレーニング |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US12505344B2 (enExample) |
| JP (1) | JP2023035928A (enExample) |
| KR (1) | KR20230033622A (enExample) |
| CN (1) | CN115759195A (enExample) |
Families Citing this family (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US12327277B2 (en) | 2021-04-12 | 2025-06-10 | Snap Inc. | Home based augmented reality shopping |
| US12412205B2 (en) | 2021-12-30 | 2025-09-09 | Snap Inc. | Method, system, and medium for augmented reality product recommendations |
| US11928783B2 (en) * | 2021-12-30 | 2024-03-12 | Snap Inc. | AR position and orientation along a plane |
| US12499626B2 (en) | 2021-12-30 | 2025-12-16 | Snap Inc. | AR item placement in a video |
| JP7700186B2 (ja) | 2023-08-29 | 2025-06-30 | キヤノン株式会社 | 情報処理装置、学習装置、及びプログラム |
| WO2025230370A1 (ko) * | 2024-04-29 | 2025-11-06 | 삼성전자 주식회사 | 신경망 모델을 사용하여 이미지를 처리하기 위한 방법 및 장치 |
| CN119850751B (zh) * | 2025-01-08 | 2025-08-12 | 北京中科思创云智能科技有限公司 | 基于海洋环境的几何一致性无监督双目标定方法 |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10572979B2 (en) * | 2017-04-06 | 2020-02-25 | Pixar | Denoising Monte Carlo renderings using machine learning with importance sampling |
| US10769761B2 (en) * | 2017-06-30 | 2020-09-08 | Kla-Tencor Corp. | Generating high resolution images from low resolution images for semiconductor applications |
| WO2021230708A1 (en) * | 2020-05-15 | 2021-11-18 | Samsung Electronics Co., Ltd. | Image processing method, electronic device and readable storage medium |
-
2021
- 2021-09-01 US US17/464,036 patent/US12505344B2/en active Active
-
2022
- 2022-08-23 JP JP2022132165A patent/JP2023035928A/ja active Pending
- 2022-08-30 KR KR1020220109151A patent/KR20230033622A/ko active Pending
- 2022-09-01 CN CN202211062950.8A patent/CN115759195A/zh active Pending
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP2023035928A5 (enExample) | ||
| CN110728633B (zh) | 多曝光度高动态范围反色调映射模型构建方法及装置 | |
| CN108510485B (zh) | 一种基于卷积神经网络的无参照图像质量评估方法 | |
| CN110097609B (zh) | 一种基于样本域的精细化绣花纹理迁移方法 | |
| US12277676B2 (en) | Image processing method and apparatus based on machine learning | |
| CN111835983A (zh) | 一种基于生成对抗网络的多曝光图高动态范围成像方法及系统 | |
| JP7512150B2 (ja) | 情報処理装置、情報処理方法およびプログラム | |
| CN111080531B (zh) | 一种水下鱼类图像的超分辨率重建方法、系统及装置 | |
| JP2019032808A (ja) | 機械学習方法および装置 | |
| CN111292251B (zh) | 图像偏色校正方法、装置以及计算机存储介质 | |
| CN116170601B (zh) | 基于四列列向量分块奇异值分解的图像压缩方法 | |
| CN114511475B (zh) | 一种基于改进Cycle GAN的图像生成方法 | |
| CN112580473A (zh) | 一种融合运动特征的视频超分辨率重构方法 | |
| CN114648457B (zh) | 图像增强方法、装置、设备及可读存储介质 | |
| CN113538244A (zh) | 一种基于自适应权重学习的轻量化超分辨率重建方法 | |
| CN115588055B (zh) | 数字病理图像的色彩标准化方法及系统 | |
| CN118710537B (zh) | 深度学习模型的暗光图像增强方法 | |
| CN119152806A (zh) | 显示补偿方法、亮度控制模型的训练方法及相关装置 | |
| Lin et al. | Nonuniform lattice regression for modeling the camera imaging pipeline | |
| CN119676094A (zh) | 一种基于联邦图神经网络工业物联网设备检测方法及系统 | |
| CN116777971A (zh) | 一种基于水平可变形注意力模块的双目立体匹配方法 | |
| CN116245968A (zh) | 基于Transformer的LDR图像生成HDR图像的方法 | |
| CN115705616A (zh) | 基于结构一致性统计映射框架的真实图像风格迁移方法 | |
| Yoshimura et al. | PQDynamicISP: Dynamically controlled image signal processor for any image sensors pursuing perceptual quality | |
| CN118982471A (zh) | 一种水下图像增强方法、装置、存储介质及电子设备 |