CN115759195A - 基于一致性损失的神经网络训练 - Google Patents

基于一致性损失的神经网络训练 Download PDF

Info

Publication number
CN115759195A
CN115759195A CN202211062950.8A CN202211062950A CN115759195A CN 115759195 A CN115759195 A CN 115759195A CN 202211062950 A CN202211062950 A CN 202211062950A CN 115759195 A CN115759195 A CN 115759195A
Authority
CN
China
Prior art keywords
loss
image
output image
neural network
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211062950.8A
Other languages
English (en)
Chinese (zh)
Inventor
O·奥雷菲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Synaptics Inc
Original Assignee
Synaptics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Synaptics Inc filed Critical Synaptics Inc
Publication of CN115759195A publication Critical patent/CN115759195A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/09Supervised learning
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/82Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20224Image subtraction

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • Computing Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Linguistics (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Multimedia (AREA)
  • Databases & Information Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)
CN202211062950.8A 2021-09-01 2022-09-01 基于一致性损失的神经网络训练 Pending CN115759195A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/464,036 US12505344B2 (en) 2021-09-01 2021-09-01 Neural network training based on consistency loss
US17/464036 2021-09-01

Publications (1)

Publication Number Publication Date
CN115759195A true CN115759195A (zh) 2023-03-07

Family

ID=85286379

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211062950.8A Pending CN115759195A (zh) 2021-09-01 2022-09-01 基于一致性损失的神经网络训练

Country Status (4)

Country Link
US (1) US12505344B2 (enExample)
JP (1) JP2023035928A (enExample)
KR (1) KR20230033622A (enExample)
CN (1) CN115759195A (enExample)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12327277B2 (en) 2021-04-12 2025-06-10 Snap Inc. Home based augmented reality shopping
US12412205B2 (en) 2021-12-30 2025-09-09 Snap Inc. Method, system, and medium for augmented reality product recommendations
US11928783B2 (en) * 2021-12-30 2024-03-12 Snap Inc. AR position and orientation along a plane
US12499626B2 (en) 2021-12-30 2025-12-16 Snap Inc. AR item placement in a video
JP7700186B2 (ja) 2023-08-29 2025-06-30 キヤノン株式会社 情報処理装置、学習装置、及びプログラム
WO2025230370A1 (ko) * 2024-04-29 2025-11-06 삼성전자 주식회사 신경망 모델을 사용하여 이미지를 처리하기 위한 방법 및 장치
CN119850751B (zh) * 2025-01-08 2025-08-12 北京中科思创云智能科技有限公司 基于海洋环境的几何一致性无监督双目标定方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10572979B2 (en) * 2017-04-06 2020-02-25 Pixar Denoising Monte Carlo renderings using machine learning with importance sampling
US10769761B2 (en) * 2017-06-30 2020-09-08 Kla-Tencor Corp. Generating high resolution images from low resolution images for semiconductor applications
WO2021230708A1 (en) * 2020-05-15 2021-11-18 Samsung Electronics Co., Ltd. Image processing method, electronic device and readable storage medium

Also Published As

Publication number Publication date
JP2023035928A (ja) 2023-03-13
US12505344B2 (en) 2025-12-23
US20230063209A1 (en) 2023-03-02
KR20230033622A (ko) 2023-03-08

Similar Documents

Publication Publication Date Title
CN115759195A (zh) 基于一致性损失的神经网络训练
Li et al. Luminance-aware pyramid network for low-light image enhancement
Li et al. LightenNet: A convolutional neural network for weakly illuminated image enhancement
Xiao et al. Brightness and contrast controllable image enhancement based on histogram specification
US20200234402A1 (en) Method and system for end-to-end image processing
US11887218B2 (en) Image optimization method, apparatus, device and storage medium
CN107257452B (zh) 一种图像处理方法、装置及计算设备
JP7512150B2 (ja) 情報処理装置、情報処理方法およびプログラム
CN109472757B (zh) 一种基于生成对抗神经网络的图像去台标方法
Li et al. Hdrnet: Single-image-based hdr reconstruction using channel attention cnn
CN110580696A (zh) 一种细节保持的多曝光图像快速融合方法
Lin et al. Aglldiff: Guiding diffusion models towards unsupervised training-free real-world low-light image enhancement
US12272021B2 (en) Data pre-processing for low-light images
Tan et al. High dynamic range imaging for dynamic scenes with large-scale motions and severe saturation
CN109671044A (zh) 一种基于可变图像分解的多曝光图像融合方法
US11625816B2 (en) Learning device, image generation device, learning method, image generation method, and program
CN116977190A (zh) 图像处理方法、装置、设备、存储介质及程序产品
CN118781004B (zh) 基于零参考多曝光融合网络的图像和视频曝光矫正方法
CN114862709A (zh) 一种图像增强方法、装置及存储介质
CN117392033A (zh) 基于多流特征融合的水下图像增强方法
CN116152111A (zh) 一种注意力机制下的低照度图像增强算法模型
Cotogni et al. Select & Enhance: Masked-based image enhancement through tree-search theory and deep reinforcement learning
Jung et al. Deep low-contrast image enhancement using structure tensor representation
Yang et al. Multi-scale extreme exposure images fusion based on deep learning
He et al. Optimizing 4D Lookup Table for Low-light Video Enhancement via Wavelet Priori

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination