JP2023031341A - プログラム、位置特定装置、位置特定方法、位置特定システム - Google Patents

プログラム、位置特定装置、位置特定方法、位置特定システム Download PDF

Info

Publication number
JP2023031341A
JP2023031341A JP2021136772A JP2021136772A JP2023031341A JP 2023031341 A JP2023031341 A JP 2023031341A JP 2021136772 A JP2021136772 A JP 2021136772A JP 2021136772 A JP2021136772 A JP 2021136772A JP 2023031341 A JP2023031341 A JP 2023031341A
Authority
JP
Japan
Prior art keywords
communication terminal
radio waves
area
devices
signal strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021136772A
Other languages
English (en)
Inventor
有二 斉藤
Yuji Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sato Holdings Corp
Original Assignee
Sato Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sato Holdings Corp filed Critical Sato Holdings Corp
Priority to JP2021136772A priority Critical patent/JP2023031341A/ja
Publication of JP2023031341A publication Critical patent/JP2023031341A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

【課題】従来よりも精度良く物体の位置を特定する。【解決手段】本発明のある態様は、エリア内の異なる位置に配置された複数の装置から送信される電波を受信する通信端末の前記エリア内の位置を特定するために、コンピュータに所定の方法を実行させるプログラムである。上記方法は、エリア内の複数の位置の各位置の位置情報と、各位置に通信端末を配置したときに通信端末が複数の装置の少なくとも一部から受信する電波の受信信号強度情報と、に基づいて作成される機械学習モデルを取得し、取得した機械学習モデルを利用して、エリア内に配置された通信端末が複数の装置の少なくとも一部から受信する電波の受信信号強度情報を基に、通信端末のエリア内の位置情報を特定すること、を含む。【選択図】図5

Description

本発明は、プログラム、位置特定装置、位置特定方法、及び、位置特定システムに関する。
従来から、屋内に設置された少なくとも3箇所の送信装置から発信される電波を基に3点測位法により屋内の物体の位置を特定する方法が知られており、様々な分野に利用されている。この3点測位法では、物体に受信端末を取り付け、距離に応じて減衰する電波の特性を利用して、受信端末における電波の受信信号強度から物体の位置を測位する方法である。
例えば特許文献1には、複数の中継装置と、配送する荷物に取り付けられた無線タグと、管理サーバとを備えた荷物管理システムにおいて、3点測位法により無線タグの現在位置を特定することが記載されている。このシステムでは、各中継装置は、所定の距離内にある無線タグと無線通信し、無線タグが複数の電波を受信できた場合、受信強度の高い順に、少なくとも3つの受信電波強度を管理サーバに送信する。管理サーバでは、少なくとも3つの受信電波強度の測定値から、3点測位法により無線タグの現在位置を特定する。
特開2018-8772号公報
しかし、従来の3点測位法は、物体の大まかな位置はわかるものの正確な位置を特定するのが難しい(つまり、測位精度が低い)という問題がある。例えば、屋内に棚などの設置物や人の往来がある場合には、送信装置から発信される電波の反射等による干渉から揺らぎが生じるため、実際の受信信号強度が、距離の二乗に反比例する理想的な受信信号強度から外れ、結果的に測位精度が低下することになる。
そこで、本発明の目的は、従来よりも精度良く物体の位置を特定することである。
本発明のある態様は、エリア内の異なる位置に配置された複数の装置から送信される電波を受信する通信端末の前記エリア内の位置を特定するために、コンピュータに所定の方法を実行させるプログラムである。前記方法は、
前記エリア内の複数の位置の各位置の位置情報と、各位置に前記通信端末を配置したときに前記通信端末が前記複数の装置の少なくとも一部から受信する電波の受信信号強度情報と、に基づいて作成される機械学習モデルを取得し、
前記取得した機械学習モデルを利用して、前記エリア内に配置された前記通信端末が前記複数の装置の少なくとも一部から受信する電波の受信信号強度情報を基に、前記通信端末の前記エリア内の位置情報を特定すること、を含む。
本発明のある態様によれば、従来よりも精度良く物体の位置を特定することができる。
一実施形態の位置特定システムの適用例を説明する図である。 図1に示すフロアにおいて機械学習のために使用される複数の位置(学習用位置)を例示する図である。 RSSIデータベースを例示する図である。 教師データ群の基礎となる一連のRSSIデータセットを示す図である。 一実施形態の位置特定システムの機能ブロック図である。 サーバの学習部におけるニューラルネットワークを概略的に示す図である。
以下、本発明の一実施形態に係る位置特定システムについて説明する。
実施形態の位置特定システムでは、通信端末の可動エリア(例えば、倉庫やオフィス等のフロア)内に所定の電波を送信する複数の装置を異なる位置に配置し、当該電波を通信端末が受信したときの受信信号強度情報に基づいて通信端末の位置を特定する。通信端末の位置を特定する(つまり、通信端末を測位する)ことは、通信端末が取り付けられた物体、あるいは通信端末が内在される物体の位置を特定することと等価である。
所定の電波を送信する複数の装置は、如何なる通信装置でもよいが、例えばアクセスポイントやビーコン機器などである。アクセスポイントは、例えばWi-Fi(登録商標)等のIEEE802.11規格に適合した通信を行う機器である。ビーコン機器の場合には、例えば、Bluetooth(登録商標) Low Energyに適合した通信を行う機器である。
通信端末は、複数の装置から送信される電波を受信できればよく、例えば、受信機能付きのコンピュータ装置でもよいし、プリンタでもよいし、スマートフォンや無線タグでもよい。その際、複数の装置から送信される電波には、送信元の装置を特定する識別情報(装置ID)の信号が含まれており、通信装置は、各装置の装置IDと、各装置から送信される電波を受信したときの受信信号強度情報と、を対応付けることができる。
実施形態の位置特定システムでは、電波の受信信号強度から3点測位法を用いて物体の位置を特定するのではなく、機械学習を行うことで物体の位置を特定する。好ましくは、機械学習は教師あり学習であり、教師データは、エリア内の位置の情報(位置データ)、及び、当該位置に通信端末を配置したときに通信端末が受信する電波の受信信号強度情報である。エリア内の多数の位置に対応した教師データからなる教師データ群を基に機械学習モデルを構築することで、エリア内の通信端末の位置を高精度に特定することができるようになる。
以下、一実施形態の位置特定システムをより具体的に説明する。
図1に、一実施形態に係る位置特定システム1の適用例を示す。図1は、一例として屋内のオフィスのフロアFL(エリアの一例)に配置される通信端末2の位置を特定するための位置特定システム1を示している。なお、図1では、1つの通信端末2のみを記載しているが、その限りではない。複数の通信端末2の位置を特定することもできる。
位置特定システム1では、フロアFLの予め決められた位置に、所定の電波を送信する複数のアクセスポイントAP1~AP7(複数の装置の一例)が設置されている。各アクセスポイントは、固有の識別情報であるアクセスポイントIDを含む信号(電波)を発信し、通信端末2が電波を受信する。各アクセスポイントは、例えば、通信端末2がLAN(Local Area Network)に接続するときの無線装置である。
通信端末2は、いずれかのアクセスポイントを経由して、あるいは直接に、ネットワークNWに接続することで、サーバ5(位置特定装置、情報処理装置の一例)と通信可能である。ネットワークNWは限定しないが、例えば、上記LANのほか、WAN(Local Area Network)、移動通信網等が挙げられる。
一実施形態の位置特定システム1において通信端末2の測位を可能とするには、先ず、通信端末2の位置を特定するための機械学習モデルを作成する必要がある。
一実施形態では、機械学習モデルは、教師あり学習により作成される。教師あり学習において使用される教師データは、フロアFL内の位置のデータ(位置データ)、及び、当該位置に通信端末2を配置したときに通信端末2が受信する複数のアクセスポイントからの電波の受信信号強度情報である。以下では、受信信号強度情報を、RSSI(Received Signal Strength Indicator)、又はRSSIデータという。RSSIは、通信端末2の受信部に入力されるアクセスポイントからの電波の受信信号の強度を示す数値(dBm)である。
以下の説明では、あるアクセスポイントから送信された電波を通信端末2が受信したときのRSSIデータを、当該アクセスポイントに対するRSSIデータという。例えば、アクセスポイントAP5から送信された電波を通信端末2が受信したときのRSSIデータを、「アクセスポイントAP5に対するRSSIデータ」と表記する。
図2は、教師データ群を作成するときに、通信端末2を配置する複数の位置を例示する図である。
図2に示す例では、フロアFLの縦及び横をそれぞれ所定距離の間隔に区切ることでP1,1~PM,NのM×N個の位置(以下、適宜「学習用位置」という。)が定義される。例えば機械学習の訓練フェーズ(後述する)では、このM×N個の各学習用位置に通信端末2を配置し、各学習用位置において通信端末2がRSSIデータを取得(測定)する。フロアFL上の学習用位置を所定距離の間隔で区切ることで、通信端末2の位置を特定する際に通信端末2がフロアFL上のいずれの場合にある場合でも一定の位置精度が担保される。
しかし、その限りではなく、複数の学習用位置は、図2に示すようにフロアFLの縦及び横をそれぞれ所定距離の間隔に区切った場合の位置に限られない。必要とする位置精度のレベルに応じて学習用位置を定義することができる。例えば、大まかな位置精度でよい領域では、隣接する学習用位置の間隔を広げてもよいし、高い位置精度が求められる領域では、隣接する学習用位置の間隔を狭めてもよい。
図3に、各学習用位置において取得されるRSSIデータベースを例示する。
一実施形態では、各位置(例えば、図3の学習用位置P1,1)に通信端末2を配置した場合に、異なる時刻におけるフロアFL内のアクセスポイントAP1~AP7に対する7個のRSSIデータに基づいて、RSSIデータ群を取得する。ここで、RSSIデータ群とは、複数のアクセスポイントの各アクセスポイントIDと、各アクセスポイントに対するRSSIデータとが対応付けられたものである。
例えば、図1に示すオフィスが朝9時から夕方5時までの8時間利用される場合、通信端末2は、図3に示すように1秒ごとにアクセスポイントAP1~AP7から受信する電波のRSSIデータ群を取得し、サーバ5に測定結果(取得したRSSIデータ群)を通知する。各位置を対象として異なる時刻において複数個のデータを取得することは、測定環境であるオフィスの実際の状況を教師データ群に反映できる点で好ましい。フロアFLにいる人の人数や活動状況(例えば、人の移動状態や人が操作するコンピュータ装置等の電波の状況など)は、アクセスポイントから送信される電波のオフィス内の伝搬環境に影響を及ぼす。そこで、オフィスが利用されている時間に亘って満遍なくデータを取得することで、ロバスト性の高い機械学習モデルを構築することができる。
8時間の間、1秒ごとにRSSIデータ群を取得した場合、1つの学習用位置に対して28800回の各アクセスポイントに対するRSSIデータ群が得られる。したがって、すべての学習用位置(図2のM×N個の位置)に対する測定が完了すると、RSSIデータベースには、28800×M×N回の7個のアクセスポイントに対するRSSIデータ群が含まれることになる。
通信端末2は、7個のアクセスポイントからの電波のRSSIデータを測定する度に(つまり、上記例では1秒おきに)1回分のRSSIデータ群をサーバ5に送信する。その場合、サーバ5において、通信端末2から受信したRSSIデータ群を基に、RSSIデータベースが逐次更新される。あるいは、通信端末2は、1つの位置を対象としたすべてのRSSIデータ群の測定が完了する度に、当該RSSIデータ群をサーバ5に送信してもよい。
RSSIデータ群の測定回数は、学習用位置に応じて変動させて、教師データを収集するときの省力化を図ることができる。
すなわち、複数の学習用位置のうち、複数のアクセスポイントに対するRSSIの変動が大きい学習用位置において取得するRSSIデータ群の数を、RSSIの変動が小さい学習用位置において取得するRSSIデータ群の数よりも多く取得することが好ましい。例えば、フロアにおいて人の往来がほとんどない領域では、当該領域内に通信端末2を配置したときのRSSIは安定しており、異なる時刻で測定してもRSSIの変動がないか、極めて小さいため、RSSIデータ群の取得回数は少なくてよい。それに対して、フロアにおいて人の往来が頻繁に発生する領域では、人による電波の遮断が発生しやすく、異なる時刻で測定したときのRSSIの変動が比較的大きいため、RSSIデータ群の取得回数が多い方が好ましい。
一実施形態では、RSSIデータベースは、1回の測定で得られる7個のアクセスポイントに対するRSSIデータ群のうち一部が含まれる。例えば、1回の測定において7個のアクセスポイントから得られる7個のRSSIデータのうち、RSSIが大きい順に所定数のRSSIデータが選択され、RSSIデータベースに記録される。
図4は、1回の測定タイミングにおいてRSSIが大きい順に3個のRSSIデータを含むRSSIデータ群がRSSIデータベースに記録される例が示される。なお、3個のRSSIデータとするのは一例に過ぎず、RSSIデータベースに記録されるRSSIデータ群に含まれるRSSIデータの数は任意に設定可能である。ここで、比較的小さいRSSIのRSSIデータを記録しないのは、小さいRSSIとなるアクセスポイントからの電波が途切れることがあり、良い教師データとならない可能性があるからである。
サーバ5は、作成されたRSSIデータベースを基に、教師あり学習を行う際の基礎となる教師データ群を作成する。教師データ群の各教師データは、RSSIデータベースの1レコード分のデータ(データセット)に対応している。教師データは、RSSIデータ群と学習用位置の組合せからなる。図4に示すRSSIデータベースを基に教師データ群を作成した場合、例えば、以下のような教師データが作成される。ここで、以下の例において、AP2,AP3,AP4は、アクセスポイントIDを示している。
{AP2:-62dBm,AP3:-58dBm,AP4:-54dBm、P1,1
{AP2:-61dBm,AP3:-59dBm,AP4:-56dBm、P1,1
{AP2:-60dBm,AP3:-55dBm,AP4:-53dBm、P1,1
{AP2:-63dBm,AP3:-55dBm,AP4:-54dBm、P1,1
一実施形態では、サーバ5は、作成された教師データ群を基に教師あり学習を行い、機械学習モデルを作成する。好ましくは、教師あり学習に対して深層学習が適用されるが、他の機械学習手法を適宜適用することもできる。
機械学習モデルを作成した後は、検証フェーズ(後述する)に移行し、作成した機械学習モデルの汎化性能が十分であるか検証することが好ましい。
機械学習モデルが作成された後、位置特定システム1の運用(つまり、フロアFLの任意の位置にある通信端末2の位置特定)が開始される。
位置特定システム1の運用が開始されると、通信端末2は、フロアFL内のアクセスポイントAP1~AP7に対するRSSIデータ群、又は、当該RSSIデータ群のうちRSSIが大きい順に所定数のRSSIデータを含むRSSIデータ群を、逐次サーバ5に送信する。
サーバ5は、通信端末2からRSSIデータ群を受信すると、作成済みの機械学習モデルを利用して、通信端末2の現在の位置を特定(推定)する。つまり、サーバ5は、通信端末2から取得したRSSIデータ群を機械学習モデルに入力して、通信端末2の現在の位置データを取得する。
次に、図5を参照して、位置特定システム1の構成について説明する。
図5は、一実施形態に係る位置特定システム1を構成する各装置のハードウェア構成を示すブロック図である。
図5に示すように、通信端末2は、制御部21、ストレージ22、操作入力部23、表示部24、RSSI測定部25、及び、受信部26を備える。
サーバ5は、制御部51及びストレージ52を備える。
図示しないが、通信端末2とサーバ5は、互いにネットワークNWを介して通信を行うための通信インタフェースを備える。通信インタフェースは、サーバ5と通信端末2の間で予め定義された通信プロトコルに従って通信を行う。
通信端末2において、制御部21は、マイクロプロセッサを主体として構成され、通信端末2の全体を制御する。
ストレージ22は、不揮発性のメモリであり、例えばフラッシュメモリ等のSSD(Solid State Drive)である。操作入力部23及び表示部24は、任意的構成要素である。通信端末2が、例えばスマートフォンである場合には、操作入力部23及び表示部24が存在するが、通信端末2が無線タグなどの場合には、操作入力部23及び表示部24は存在しない。
受信部26は、アクセスポイントAP1~AP7からの電波を受信するアンテナ及び受信機を備え、受信した電波を復調して受信信号に含まれるアクセスポイントIDを取得する。
RSSI測定部25は、受信部26と協働して各アクセスポイントに対するRSSIを測定することで、電波の送信元の各アクセスポイントのアクセスポイントIDと、各アクセスポイントに対するRSSIデータとを対応付ける。
制御部21のマイクロプロセッサがプログラムを実行することで、制御部21は、データ提供部211及び位置特定要求部212として機能する。
データ提供部211(情報提供部の一例)は、教師データ群を作成するための基礎となるRSSIデータ群を取得する。前述したように、データ提供部211は、各学習用位置の位置データ(学習用位置データ)と、各学習用位置における複数のアクセスポイントの少なくとも一部に対するRSSIデータ群とをサーバ5に提供する。サーバ5が受信したデータは、RSSIデータベース(RSSI DB)521に蓄積される。
位置特定要求部212は、システムの運用開始後にサーバ5に対して、複数のアクセスポイントの少なくとも一部に対するRSSIデータ群を含む位置特定要求を行う。
本実施形態のサーバ5は、制御部51及びストレージ52を備える。
制御部51は、マイクロプロセッサを主体として構成され、サーバ5の全体を制御する。
ストレージ52は、不揮発性のメモリであり、例えばHDD(Hard Disk Drive)等の大容量記憶装置である。ストレージ52は、RSSIデータベース521、教師データ群522、及び、機械学習モデル523を格納する。
制御部51のマイクロプロセッサがプログラムを実行することで、制御部51は、教師データ作成部511、学習部512、及び、位置特定部513として機能する。
教師データ作成部511は、RSSIデータベース521を基に教師データ群522を作成する。
RSSIデータベース521では、図3及び図4に例示したとおり、フロアFL内の複数の位置の各学習用位置と、複数のアクセスポイントの少なくとも一部から受信する電波のRSSIデータ群と、が対応付けられている。
教師データ群522は、フロアFL内の複数の位置の各学習用位置の教師データからなる教師データ群である。各教師データは、対応する学習用位置データと、対応する学習用位置に通信端末2を配置したときに通信端末2が複数のアクセスポイントの少なくとも一部から受信する電波のRSSIデータ群との組合せである。前述したように、各学習用位置に対応して、異なる時刻に複数の教師データを用意することが好ましい。
学習部512(モデル取得部の一例)は、教師データ群522に基づいて教師あり学習を実行し、機械学習モデル523を作成する。学習部512は、作成した機械学習モデル523をストレージ52に格納する。
位置特定部513(位置情報特定部の一例)は、通信端末2から位置特定要求を取得すると、通信端末2の位置を特定する。位置特定要求には、フロアFL内に配置された通信端末2が複数のアクセスポイントの少なくとも一部から受信する電波のRSSIデータ群が含まれる。位置特定部513は、作成された機械学習モデル523を利用して、位置特定要求に含まれるRSSIデータ群を基に、通信端末2のフロアFL内の位置を特定(推定)する。
なお、サーバ5以外の情報処理装置において教師あり学習を実行することで作成された機械学習モデルをサーバ5が取得する場合には、サーバ5において学習部512は必要ない。
次に、図6を参照して、機械学習の一例として、機械学習モデルを構築する際に行われる深層学習について説明する。図6は、学習部512において教師あり学習を進める際に用いられるニューラルネットワークを模式的に示している。図6に示すように、ニューラルネットワークは、入力層Liと隠れ層Lhと出力層Loを含み、各層がニューロンを模擬したモデルである。図6に示すニューラルネットワークは、便宜的に各層が3つのノードからなる場合を図示しているが、その限りではなく、ノードの数は、適宜設定可能である。
入力層Liは、教師データ群522の各教師データを入力するための層である。例えば、教師データが{AP2:-62dBm,AP3:-58dBm,AP4:-54dBm、P1,1}である場合、入力層Liの入力X,X,X,…,Xは、各アクセスポイントに対するRSSI(AP2:-62dBm,AP3:-58dBm,AP4:-54dBm)からなるRSSIデータ群である。
隠れ層Lhは、深層学習の場合には複数の層から構成される。隠れ層Lhに含まれる層数および各層のノード数は、良好な推定精度を得るために適宜設定可能である。
出力層Loは、フロアFL上に設定されたM×N個の各位置に判定される確率を出力するための層であり、学習用位置の数に相当する数のノードから構成される。図7に例示する出力層Loは、出力Z,Z,Z,…,Z(例えば、m=M×N)を含む。
図6に示すニューラルネットワークでは、例えば、入力層Liの入力X,X,X,…,Xの各々に対して重みを乗算して加算した結果を、隠れ層Lhの第1層のノードY,Y,Y,…,Yに出力する。第1層の各ノードに出力するときの入力X,X,X,…,Xに対する重み付けは、ノードごとに異なってよい。
同様にして、出力層Loまでの隣接する層間の各ノードに対して、重みを乗算して加算する処理を順次行っていくことで、出力Z,Z,Z,…,Zを得る。
出力Z,Z,Z,…,Zは、教師データの正解データT,T,T,…,Tと比較される。ここで、教師データが上述した{AP2:-62dBm,AP3:-58dBm,AP4:-54dBm、P1,1}である場合、教師データに含まれる正解データはP1,1である。
深層学習では、ニューラルネットワークの各層の重みを少しずつ調整し、教師データ(正解データ)との誤差を小さくする処理が行われる。すなわち、学習の初期段階では、すぐに期待した通りの値は出力されないため、正解データと出力値(図6の例では、出力Z,Z,Z,…,Z)の誤差をとり、誤差を各層に逆伝播(バックプロパゲーション)させて正解データに近付くように各層の重みを調整する。
なお、学習部512は、上述した深層学習を訓練と検証の2つのフェーズに分けて処理を行うことが好ましい。この場合、教師データは、訓練用データと検証用データに分けられる。
訓練フェーズでは、学習部512は、上述したようにして、訓練用データに含まれるRSSIデータ群を入力層Liに入力し、得られたZ,Z,Z,…,Zと正解データとの誤差が少なくなるように各層の重みを調整する。
次いで、検証フェーズでは、学習部512は、訓練フェーズで調整された重みが設定されたニューラルネットワークに対して、検証用データ(つまり、重みの設定に関与していない教師データ群)に含まれる複数の教師データの各々を入力層Liに入力する。学習部512は、得られたZ,Z,Z,…,Zと正解データとの誤差が少ない場合には汎化性能があると判断して、訓練フェーズで設定された重みを基に運用を開始することを決定する。誤差が大きい場合には汎化性能が十分ではないと判断して、訓練フェーズに戻り、再度各層の重みが調整される。
汎化性能があると判断されたニューラルネットワークは、機械学習モデル523としてストレージ52に格納される。
訓練フェーズ及び/又は検証フェーズでは、特定された通信端末2の位置と、通信端末2の実際の位置とが所定の条件を満たす場合に、実際の位置(通信端末2を配置した位置)と、通信端末2が複数のアクセスポイントの少なくとも一部から受信する電波のRSSIデータ群と、を新たな教師データとすることで、機械学習モデルを更新することも好ましい。それによって、機械学習モデルによる位置精度をさらに向上させることができる。
特定された通信端末2の位置と、通信端末2の実際の位置とが満たすべき条件は限定しないが、例えば、両位置間の距離が所定値以下であるという条件である。つまり、機械学習モデルによって特定された通信端末2の位置と、通信端末2の実際の位置とのずれが小さい場合に、取得したRSSIデータ群を新たな教師データとしてもよい。
以上説明したように、本実施形態の位置特定システム1では、システムの運用前に、通信端末2のフロアにおける位置と、フロアに固定配置された複数のアクセスポイントから送信される電波を受信したときの通信端末2のRSSIデータ群と、に基づいて、予めRSSIデータ群と通信端末2の位置との関係を学習させて機械学習モデルを作成する。そして、システムの運用後、フロアの任意の位置に配置された通信端末2が取得する複数のアクセスポイントに対するRSSIデータ群を機械学習モデルに入力することで、通信端末2の位置を特定するように構成される。
そのため、従来利用されていた3点測位法によりも精度良く位置を特定することができる。これは以下の理由による。すなわち、オフィス等、通信端末2の移動可能エリアには棚や机等の設置物が存在するが、当該設置物によって各RSSIデータから送信される電波の揺らぎが生じることから、3点測位法では実際の電波の伝播が理論値から逸脱し、位置特定精度が低い。それに対して、機械学習モデルを利用する場合には、そのような電波の揺らぎによるRSSIデータの変動をも反映された上で機械学習モデルが構築されるため、3点測位法を利用する場合よりも位置精度が高くなる。
また、従来利用されていた3点測位法では、電波を送信する3個の装置で画定される三角形の領域内に測位対象が存在する必要があるが、上記位置特定システム1では、そのような制約を必要としない。
機械学習モデルを構築する際には、各学習用位置を対象として異なる時刻において複数個のデータを取得することが好ましい。電波の揺らぎや電波の遮蔽が、オフィスにある棚や机等の設置物、オフィス内の人の往来、及び、人が使用するアクセスポイント以外の通信装置(例えば、コンピュータ装置)によっても生じ得る。そのため、各学習用位置を対象として異なる時刻において複数個のデータを取得して、その複数個のデータを教師データとすることで、位置精度をさらに高めることができる。
上述した位置特定システム1は、様々な分野にて応用することができる。
例えば、物流倉庫において、通信端末2に相当するプリンタを配置した場合、プリンタの位置を特定することで、プリンタの位置に応じた印字データをホストから送信する。例えば、プリンタが出荷口にあると判断された場合には、出荷に対応する印字データをプリンタに送信し、プリンタが製造ラインの特定の工程に位置すると判断された場合には、当該工程に対応する印字データをプリンタに送信する。
また、工場や倉庫で働く作業者が所持する携帯端末の位置を特定することで、作業者の位置を特定することができるため、作業者の配置や生産ラインの効率等の分析を行うことができる。
また、作業者が広い倉庫や工場において、通信端末2に相当するプリンタを置いた場所がわからなくなった場合、プリンタの位置を容易に特定することができる。
以上、本発明のプログラム、位置特定装置、位置特定方法、及び、位置特定システムの実施形態について詳細に説明したが、本発明は上記の実施形態に限定されない。また、上記の実施形態は、本発明の主旨を逸脱しない範囲において、種々の改良や変更が可能である。
図4では、1回の測定において7個のアクセスポイントから得られる7個のRSSIデータのうち、RSSIが大きい順に所定数(この例では3個)のRSSIデータが選択され、RSSIデータベースに記録される場合について説明したが、その限りではない。各アクセスポイントの送信電力が一定である場合には、概ね、通信端末2を学習用位置に配置したときの各アクセスポイントに対するRSSIデータは、当該学習用位置と各アクセスポイントが配置されている位置との距離と相関がある。そこで、1回の測定において7個のアクセスポイントから得られる7個のRSSIデータのうち、学習用位置との距離が近い順に所定数のアクセスポイントに対するRSSIデータが選択され、RSSIデータベースに記録してもよい。
複数のアクセスポイントの電波の送信出力は必ずしも同一でなくてもよい。いずれかのアクセスポイントが送信出力を例えば適応制御等により変動させなければよく、一定とする送信出力はアクセスポイントごとに異なっていても構わない。
1…位置特定システム
2…通信端末
21…制御部
211…データ提供部
212…位置特定要求部
22…ストレージ
23…操作入力部
24…表示部
25…RSSI測定部
26…受信部
5…サーバ
51…制御部
511…教師データ作成部
512…学習部
513…位置特定部
52…ストレージ
521…RSSIデータベース
522…教師データ群
523…機械学習モデル
AP1~AP7…アクセスポイント
FL…フロア
P…位置
NW…ネットワーク

Claims (9)

  1. エリア内の異なる位置に配置された複数の装置から送信される電波を受信する通信端末の前記エリア内の位置を特定するために、コンピュータに所定の方法を実行させるプログラムであって、前記方法は、
    前記エリア内の複数の位置の各位置の位置情報と、各位置に前記通信端末を配置したときに前記通信端末が前記複数の装置の少なくとも一部から受信する電波の受信信号強度情報と、に基づいて作成される機械学習モデルを取得し、
    前記取得した機械学習モデルを利用して、前記エリア内に配置された前記通信端末が前記複数の装置の少なくとも一部から受信する電波の受信信号強度情報を基に、前記通信端末の前記エリア内の位置情報を特定すること、を含む、
    プログラム。
  2. 前記機械学習モデルを作成する際において、前記複数の装置の少なくとも一部から受信する電波の受信信号強度情報とは、前記複数の装置から前記通信端末が受信する電波の受信信号強度のうち大きい順に所定数の受信信号強度情報である、
    請求項1に記載されたプログラム。
  3. 前記機械学習モデルを作成する際において、前記複数の装置の少なくとも一部から受信する電波の受信信号強度情報とは、前記複数の装置のうち前記通信端末が配置された位置から近い順に所定数の装置から受信する電波の受信信号強度情報である、
    請求項1に記載されたプログラム。
  4. 前記方法は、
    特定された前記通信端末の位置情報と、前記通信端末の実際の位置情報とが所定の条件を満たす場合に、前記実際の位置情報と、前記通信端末が前記複数の装置の少なくとも一部から受信する電波の受信信号強度情報と、に基づいて、前記機械学習モデルを更新すること、をさらに含む、
    請求項1から3のいずれか一項に記載されたプログラム。
  5. 前記機械学習モデルは、教師あり学習により作成されるモデルであって、前記複数の位置のうち、前記複数の装置から送信される電波の受信信号強度の変動が大きい位置に対する教師データを、受信信号強度の変動が小さい位置に対する教師データよりも多く取得することで作成される、
    請求項1から4のいずれか一項に記載されたプログラム。
  6. 前記複数の位置は、前記エリア内において所定距離の間隔で設定される、
    請求項1から5のいずれか一項に記載されたプログラム。
  7. エリア内の異なる位置に配置された複数の装置から送信される電波を受信する通信端末の前記エリア内の位置を特定する位置特定装置であって、
    前記エリア内の複数の位置の各位置の位置情報と、各位置に前記通信端末を配置したときに前記通信端末が前記複数の装置の少なくとも一部から受信する電波の受信信号強度情報と、に基づいて作成される機械学習モデルを取得するモデル取得部と、
    前記機械学習モデルを利用して、前記エリア内に配置された前記通信端末が前記複数の装置の少なくとも一部から受信する電波の受信信号強度情報を基に、前記通信端末の前記エリア内の位置情報を特定する位置情報特定部と、
    を備えた位置特定装置。
  8. エリア内の異なる位置に配置された複数の装置から送信される電波を受信する通信端末の前記エリア内の位置を推定する位置特定方法であって、
    前記エリア内の複数の位置の各位置の位置情報と、各位置に前記通信端末を配置したときに前記通信端末が前記複数の装置の少なくとも一部から受信する電波の受信信号強度情報と、に基づいて作成される機械学習モデルを取得し、
    前記機械学習モデルを利用して、前記エリア内に配置された前記通信端末が前記複数の装置の少なくとも一部から受信する電波の受信信号強度情報を基に、前記通信端末の前記エリア内の位置情報を特定する、
    位置特定方法。
  9. エリア内の異なる位置に配置された複数の装置から送信される電波を受信する通信端末と、前記通信端末と通信可能な情報処理装置と、を含み、前記通信端末の前記エリア内の位置を特定する位置特定システムであって、
    前記通信端末は、
    前記複数の装置の少なくとも一部から受信する電波の受信信号強度情報を前記情報処理装置に提供する情報提供部を有し、
    前記情報処理装置は、
    前記エリア内の複数の位置の各位置の位置情報と、各位置に前記通信端末を配置したときに前記通信端末が前記複数の装置の少なくとも一部から受信する電波の受信信号強度情報と、に基づいて作成される機械学習モデルを取得するモデル取得部と、
    前記機械学習モデルを利用して、前記エリア内に配置された前記通信端末が前記複数の装置の少なくとも一部から受信する電波の受信信号強度情報を基に、前記通信端末の前記エリア内の位置情報を特定する位置情報特定部と、を有する、
    位置特定システム。
JP2021136772A 2021-08-25 2021-08-25 プログラム、位置特定装置、位置特定方法、位置特定システム Pending JP2023031341A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021136772A JP2023031341A (ja) 2021-08-25 2021-08-25 プログラム、位置特定装置、位置特定方法、位置特定システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021136772A JP2023031341A (ja) 2021-08-25 2021-08-25 プログラム、位置特定装置、位置特定方法、位置特定システム

Publications (1)

Publication Number Publication Date
JP2023031341A true JP2023031341A (ja) 2023-03-09

Family

ID=85416645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021136772A Pending JP2023031341A (ja) 2021-08-25 2021-08-25 プログラム、位置特定装置、位置特定方法、位置特定システム

Country Status (1)

Country Link
JP (1) JP2023031341A (ja)

Similar Documents

Publication Publication Date Title
EP3136319B1 (en) Method and system for asset tracking in an enterprise environment
Ni et al. LANDMARC: Indoor location sensing using active RFID
Motamedi et al. Localization of RFID-equipped assets during the operation phase of facilities
Song et al. A proximity-based method for locating RFID tagged objects
CN110913344B (zh) 协同目标跟踪系统和方法
KR101730269B1 (ko) 실내 디바이스 위치를 추정하는 방법
EP2916139B1 (en) A computer implemented system and method for wi-fi based indoor localization
CN102752855B (zh) 基于路径规则和预测的室内人员定位系统及方法
JP5420245B2 (ja) クライアント装置補助ロケーションデータ獲得方式
CN101923118B (zh) 建筑物影响估计装置及建筑物影响估计方法
Ozer et al. Improving the accuracy of bluetooth low energy indoor positioning system using kalman filtering
JP2021517246A (ja) 無線信号分析に基づく存在検出
US20130035109A1 (en) Devices, Methods, and Systems for Radio Map Generation
CN107250829A (zh) 检查无线电模型数据的健康状况
US20220167305A1 (en) Devices and Methods for Automatically Labelling High-Accuracy Indoor Localization and Determining Location Information
KR102052519B1 (ko) 저전력 블루투스 기반의 실내 측위 방법 및 장치
EP3836575B1 (en) Location tracking of assets
JP2023031341A (ja) プログラム、位置特定装置、位置特定方法、位置特定システム
Pendão et al. FastGraph-Organic 3D Graph for Unsupervised Location and Mapping
JP2011185646A (ja) 管理サーバ、位置推定用設備システム及び位置推定システム
CN104717740A (zh) 收集与训练定位数据的方法、装置与系统
Ivanov et al. Automatic WLAN localization for industrial automation
WO2022234294A1 (en) Determining locations of mobile devices from wireless signals
CN115258481A (zh) 货物清点方法、装置、设备及存储介质
Biaz et al. Dynamic signal strength estimates for indoor wireless communications