JP2023028674A - Civil engineering materials using gypsum board waste material and its manufacturing method - Google Patents

Civil engineering materials using gypsum board waste material and its manufacturing method Download PDF

Info

Publication number
JP2023028674A
JP2023028674A JP2021134521A JP2021134521A JP2023028674A JP 2023028674 A JP2023028674 A JP 2023028674A JP 2021134521 A JP2021134521 A JP 2021134521A JP 2021134521 A JP2021134521 A JP 2021134521A JP 2023028674 A JP2023028674 A JP 2023028674A
Authority
JP
Japan
Prior art keywords
gypsum board
board waste
less
waste
civil engineering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021134521A
Other languages
Japanese (ja)
Inventor
知雄 関戸
Tomoo Sekido
聖一 塩川
Seiichi Shiokawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shiokawa Co Ltd
University of Miyazaki NUC
Original Assignee
Shiokawa Co Ltd
University of Miyazaki NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shiokawa Co Ltd, University of Miyazaki NUC filed Critical Shiokawa Co Ltd
Priority to JP2021134521A priority Critical patent/JP2023028674A/en
Publication of JP2023028674A publication Critical patent/JP2023028674A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

To provide a civil engineering material and its manufacturing method that suppresses the generation of hydrogen sulfide in a simple manner while utilizing gypsum board waste material.SOLUTION: The solidified material of the invention consists of 30-70 mass% of gypsum board waste material classified into 5 mm or less in particle size and 70-30 mass% of cementitious solidifying material.SELECTED DRAWING: Figure 4

Description

新規性喪失の例外適用申請有り There is an application for exception to loss of novelty

本発明は、石膏ボード廃材を利用した土木資材とその製造方法に関する。 TECHNICAL FIELD The present invention relates to a civil engineering material using gypsum board waste and a method for producing the same.

従来から、新築住宅を建設する際に発生する新築系の石膏ボード廃材は、石膏と紙とに分離された後に、例えば、石膏ボード用の原料やセメント添加用の石膏として、あるいは土壌(地盤)改良材や固化材として、そのほとんどが再生利用されている。しかし、住宅等の解体等で発生する解体系の石膏ボード廃材の再生利用率は、低い状態にある。 Conventionally, gypsum board waste materials generated when constructing new houses are separated into gypsum and paper, and then used as raw materials for gypsum boards, gypsum for adding cement, or soil (ground). Most of them are recycled as improving materials and solidifying materials. However, the recycling rate of gypsum board waste materials generated from demolition of houses and the like is in a low state.

解体系の石膏ボード廃材の再生利用率が低い理由として、埋立処分された際の嫌気的環境下において、高濃度硫化水素が発生する虞があることが挙げられる。詳しくは、嫌気的環境下において、石膏ボード廃材から生じる硫化水素は、石膏板と紙とを張り合わせるグルコース糊(有機質)と、紙に残留する硫酸カルシウム(CaSO・2HO)に起因しており、硫酸還元菌の微生物活動により生じている。そのため、解体系の石膏ボード廃材は管理型埋立地において埋立処分されており、処分費用の負担増加が問題となっている。 One of the reasons for the low recycling rate of gypsum board waste materials from demolition systems is the possibility of generation of high-concentration hydrogen sulfide under an anaerobic environment during landfill disposal. Specifically, in an anaerobic environment, hydrogen sulfide generated from gypsum board waste is caused by glucose glue (organic) that bonds the gypsum board and paper together and calcium sulfate (CaSO 4 .2H 2 O) remaining in the paper. It is produced by the microbial activity of sulfate-reducing bacteria. Therefore, gypsum board waste materials from dismantling are landfilled in controlled landfill sites, and an increase in the burden of disposal costs has become a problem.

そこで、解体系の石膏ボード廃材から再利用可能な造粒物を製造する方法が提案されている。当該製造方法には、主に石膏ボード廃材の破砕工程、風力振動選別や加熱処理を行う紙成分の除去工程、添加剤の混合工程、混合物の造粒工程の4つの工程がある。このうち、混合工程において、アルカリ(炭酸カルシウム等)を添加しpH8以上にすること、および酸化還元電位が負電位の環境下で混合を行うことで、製造された造粒物における硫化水素ガスの発生を抑制している(例えば、特許文献1参照)。 Therefore, a method for producing reusable granules from dismantled gypsum board waste has been proposed. The manufacturing method mainly includes four steps: a gypsum board crushing step, a paper component removal step involving wind vibration sorting and heat treatment, an additive mixing step, and a mixture granulation step. Among these, in the mixing step, by adding an alkali (such as calcium carbonate) to pH 8 or higher and mixing in an environment where the oxidation-reduction potential is negative, hydrogen sulfide gas in the produced granules is reduced. The occurrence is suppressed (see Patent Document 1, for example).

特開2005-224752号公報(第1頁、第1図)Japanese Patent Application Laid-Open No. 2005-224752 (page 1, FIG. 1)

しかし、特許文献1に記載の解体系の石膏ボード廃材から再利用可能な造粒物を製造する方法は、破砕工程時において、石膏ボード廃材を10mm以下を目安に破砕していることから、破砕された石膏ボードに残留している紙成分が多く、紙成分の除去のために風力振動選別や加熱処理を行い、さらに特別な環境下で添加剤を用いpH調整を行う必要があり、主な工程以外の処理が多く煩雑であった。 However, in the method of manufacturing reusable granules from disassembled gypsum board waste material described in Patent Document 1, the gypsum board waste material is crushed to a size of 10 mm or less during the crushing process. There are many residual paper components in the gypsum board that has been processed, and it is necessary to perform wind vibration sorting and heat treatment to remove the paper components, and to adjust the pH using additives under a special environment. Many processes other than the process were complicated.

本発明は、このような問題点に着目してなされたもので、石膏ボード廃材を利用しながら、簡便に硫化水素の発生を抑制させた土木資材とその製造方法を提供することを目的とする。 The present invention has been made in view of such problems, and an object of the present invention is to provide a civil engineering material and a method for manufacturing the same, in which generation of hydrogen sulfide is easily suppressed while utilizing gypsum board waste. .

前記課題を解決するために、本発明の石膏ボード廃材を利用した土木資材は、
5mm以下の粒度に分級された石膏ボード廃材30~70質量%と、セメント系固化材70~30質量%とから構成された固化体であることを特徴としている。
この特徴によれば、石膏ボード廃材を5mm以下の粒度に分級することで、石膏ボード廃材に付着していた紙の多くが除去されることから、嫌気的環境下において硫酸還元菌の栄養源となる有機物量を大幅に削減することができ、固化体から硫化水素がほぼ発生しない。加えて、固化体は、石膏ボード廃材と、セメント系固化材とから構成されることにより、圧縮強度に優れる。よって、簡便に硫化水素の発生を抑制させた土木資材を提供することができる。
In order to solve the above problems, the civil engineering material using the gypsum board waste material of the present invention is
It is characterized by being a solidified body composed of 30 to 70% by mass of gypsum board waste classified to a particle size of 5 mm or less and 70 to 30% by mass of a cement-based solidifying material.
According to this feature, by classifying the gypsum board waste material to a particle size of 5 mm or less, most of the paper attached to the gypsum board waste material is removed. It is possible to greatly reduce the amount of organic matter, and almost no hydrogen sulfide is generated from the solidified material. In addition, the solidified body is excellent in compressive strength because it is composed of the gypsum board waste material and the cement-based solidifying material. Therefore, it is possible to easily provide a civil engineering material that suppresses the generation of hydrogen sulfide.

前記石膏ボード廃材は、2mm以下の粒度に分級することで硫化水素の発生が抑制されていることを特徴としている。
この特徴によれば、石膏ボード廃材に付着していたより多くの紙が除去されるので、硫化水素の発生リスクが一層低減する。
The gypsum board waste material is characterized in that generation of hydrogen sulfide is suppressed by classifying it into particles of 2 mm or less.
According to this feature, more paper adhering to the gypsum board waste is removed, further reducing the risk of generating hydrogen sulfide.

前記セメント系固化材は、ポルトランドセメントと、ガラスとの混合物であることを特徴としている。
この特徴によれば、固化体の圧縮強度が増す上、軽量化される。
The cement-based solidifying material is characterized by being a mixture of Portland cement and glass.
According to this feature, the compressive strength of the solidified body is increased and the weight is reduced.

本発明の石膏ボード廃材を利用した土木資材の製造方法は、
石膏ボード廃材を破砕する破砕工程と、
破砕された前記石膏ボード廃材を5mm以下の粒度まで分級を行う分級工程と、
前記分級工程において分級された粒径5mm以下の前記石膏ボード廃材とセメント系固化材とを混合させる混合工程と、
混合された前記石膏ボード廃材と前記セメント系固化材とを固化させる固化工程と、を含むことを特徴としている。
この特徴によれば、破砕工程を経た石膏ボード廃材を分級工程において直径5mm以下の粒度に分級することで、石膏ボード廃材に付着していた紙の多くが除去されることから、嫌気的環境下において硫酸還元菌の栄養源となる有機物量を大幅に削減することができる。さらに、混合工程においてセメント系固化材と混合し固化工程を経ることで土木資材の圧縮強度が向上する。よって、石膏ボード廃材を利用しながらも簡便に硫化水素の発生を抑制させた土木資材の製造方法を提供することができる。
The method for producing a civil engineering material using the gypsum board waste material of the present invention includes:
A crushing process for crushing gypsum board scraps;
a classification step of classifying the crushed gypsum board waste material to a particle size of 5 mm or less;
A mixing step of mixing the gypsum board waste material having a particle size of 5 mm or less classified in the classification step and a cement-based solidifying material;
and a solidifying step of solidifying the mixed gypsum board waste material and the cement-based solidifying material.
According to this feature, by classifying the gypsum board waste material that has undergone the crushing process into particles with a diameter of 5 mm or less in the classification process, most of the paper adhering to the gypsum board waste material is removed, so that it can be used in an anaerobic environment. It is possible to greatly reduce the amount of organic matter that is a nutrient source for sulfate-reducing bacteria. Furthermore, the compressive strength of the civil engineering material is improved by mixing with the cement-based solidifying material in the mixing process and passing through the solidifying process. Therefore, it is possible to provide a method for producing a civil engineering material that easily suppresses the generation of hydrogen sulfide while utilizing gypsum board waste.

前記混合工程において、含水比0.31以上0.38未満で混合することを特徴としている。
この特徴によれば、石膏ボード廃材とセメント系固化材とからなる固化体の圧縮強度がより向上する。
In the mixing step, the mixing is performed at a water content ratio of 0.31 or more and less than 0.38.
According to this feature, the compressive strength of the solidified body composed of the gypsum board waste material and the cement-based solidifying material is further improved.

本発明の実施例において石膏ボード廃材を破砕した破砕廃石膏の粒度分布を測定した結果を示すグラフである。1 is a graph showing the results of measuring the particle size distribution of crushed waste gypsum obtained by crushing gypsum board waste in an example of the present invention. 実施例において(a)~(e)は石膏ボード廃材を破砕した破砕廃石膏を金属製網ふるいを用いて粒度別にふるい分けした態様を示す写真である。(a) to (e) in Examples are photographs showing aspects of crushed waste gypsum obtained by crushing gypsum board waste material and sieving them by particle size using a metal mesh sieve. 実施例において廃石膏と廃ガラスの配合比を変化させ作製した供試体の圧縮強度を測定した結果を示す表である。4 is a table showing the results of measuring the compressive strength of specimens produced by changing the compounding ratio of waste gypsum and waste glass in Examples. 実施例において破砕廃石膏の粒度別に測定した硫化水素の発生ポテンシャル測定結果を示す表である。4 is a table showing the results of measurement of hydrogen sulfide generation potential measured for each particle size of crushed waste gypsum in Examples. 実施例において含水比を変化させ作製した供試体の圧縮強度を測定した結果を示す表である。4 is a table showing the results of measuring the compressive strength of specimens produced with varying water content ratios in Examples.

発明者らは、石膏ボード廃材を利用しながら、簡便に硫化水素の発生を抑制させた土木資材として、5mm以下の粒度に分級された石膏ボード廃材と、セメント系固化材とから構成される固化体が優れるとの知見を得た。 The inventors have developed a solidification material composed of gypsum board waste classified to a particle size of 5 mm or less and a cement-based solidification material as a civil engineering material that easily suppresses the generation of hydrogen sulfide while using gypsum board waste. I got the knowledge that the body is superior.

本発明の土木資材について説明する。土木資材は、5mm以下、好ましくは3mm以下、更に好ましくは、2mm以下の粒度に分級された石膏ボード廃材30~70質量%と、セメント系固化材70~30質量%、更に好ましくは石膏ボード廃材30~40質量%と、セメント系固化材70~60質量%とを混合して固化させた固化体である。尚、土木資材は、固化されて板状あるいは塊状に成形されることが好ましいが、粒状に成形されるものであってもよい。 The civil engineering material of the present invention will be described. The civil engineering materials consist of 30 to 70% by mass of gypsum board waste classified to a particle size of 5 mm or less, preferably 3 mm or less, more preferably 2 mm or less, and 70 to 30% by mass of cement-based solidifying material, more preferably gypsum board waste. It is a solidified product obtained by mixing 30 to 40% by mass and 70 to 60% by mass of a cement-based solidifying material and solidifying. The civil engineering material is preferably solidified and shaped into a plate or block, but may be shaped into granules.

このように、土木資材は、5mm以下の粒度に分級された石膏ボード廃材を用いることにより、石膏ボード廃材に付着していた紙、詳しくは、紙および紙に付着したグルコース糊等の有機物(本明細書において、特に断らない限り、紙に付着した有機物も含めて紙と称す。)の多くを除去することができる。また、好ましくは3mm以下、更に好ましくは、2mm以下の粒度に分級された石膏ボード廃材を用いることにより、石膏ボード廃材に付着していた紙を完全に除去することができる。これにより、石膏ボード廃材から嫌気的環境下において硫酸還元菌の栄養源となる有機物量を大幅に削減することができ、石膏ボード廃材を利用した土木資材からの硫化水素の発生を抑制することができる。 In this way, by using gypsum board waste classified to a particle size of 5 mm or less, the civil engineering materials can be reduced to paper adhering to the gypsum board waste, more specifically, paper and organic substances such as glucose glue adhering to the paper (this In the specification, unless otherwise specified, the organic matter attached to the paper is also referred to as paper.) can be removed. Further, by using gypsum board waste material classified to a particle size of preferably 3 mm or less, more preferably 2 mm or less, the paper adhering to the gypsum board waste material can be completely removed. As a result, it is possible to greatly reduce the amount of organic matter that becomes a nutrient source for sulfate-reducing bacteria from gypsum board waste in an anaerobic environment, and to suppress the generation of hydrogen sulfide from civil engineering materials using gypsum board waste. can.

また、土木資材は、石膏ボード廃材と混合されるセメント系固化材として、ポルトランドセメントと、ガラスとの混合物を用いることにより、土木資材の圧縮強度を向上させることができるとともに、軽量化することができる。更に好ましくは、土木資材は、ポルトランドセメント30~35質量%に対して、石膏ボード廃材とガラスを合計した残り70~65質量%について石膏ボード廃材:ガラス=50:50となるように配合することにより、土木資材の圧縮強度を向上させることができるとともに、軽量化することができる。 In addition, by using a mixture of Portland cement and glass as a cement-based solidifying material mixed with gypsum board waste, the civil engineering materials can be improved in compressive strength and reduced in weight. can. More preferably, the civil engineering materials are blended so that Portland cement is 30 to 35% by mass, and the remaining 70 to 65% by mass of gypsum board scraps and glass are mixed in a ratio of 50:50 for gypsum board scraps:glass. As a result, the compressive strength of the civil engineering material can be improved, and the weight can be reduced.

また、ガラスについても石膏ボード廃材と同じく、粒度2mm以下に破砕されているものを用いることが好ましい。同程度の粒度のガラス及び石膏ボード廃材と、セメントを混合させることで、土木資材内において石膏ボード廃材粒子とガラス粒子が満遍なく配置されやすいことから、ガラスが土木資材内において細骨材として機能し、土木資材の圧縮強度が均一に上昇する。 Also, as with the gypsum board waste, it is preferable to use glass that has been crushed to a particle size of 2 mm or less. By mixing cement with glass and gypsum board waste materials of the same particle size, the gypsum board waste particles and glass particles tend to be evenly distributed in the civil engineering materials, so the glass functions as a fine aggregate in the civil engineering materials. , the compressive strength of civil engineering materials increases uniformly.

また、土木資材は、石膏ボード廃材とセメント系固化材以外には不可避的不純物以外を含まないものを以下実施例では説明するが、本発明はこれら以外の材料を含んでいても良く、好ましくは20質量%以下、更に好ましくは10質量%以下含んでいてもよい。これら以外の材料として、例えば、界面活性剤や減水材などの混和剤や、セメント混和用ポリマーや膨張剤などの混和材を加えることとしてもよい。 In the following examples, civil engineering materials that do not contain any unavoidable impurities other than gypsum board scraps and cement-based solidifying materials will be described, but the present invention may contain materials other than these, preferably It may contain 20% by mass or less, more preferably 10% by mass or less. As materials other than these, for example, an admixture such as a surfactant or a water reducing agent, or an admixture such as a cement admixture polymer or swelling agent may be added.

また、土木資材は、石膏ボード廃材とセメント系固化材を上述した配合比としたものを含水比0.30以上0.70未満、好ましくは含水比0.31以上0.38未満、更に好ましくは、含水比0.32以上0.34未満で混合することにより、土木資材の圧縮強度をさらに向上させることができる。 In addition, the civil engineering material has a water content ratio of 0.30 or more and less than 0.70, preferably 0.31 or more and less than 0.38, more preferably 0.31 or more and less than 0.38, more preferably 0.30 or more and less than 0.70, more preferably 0.30 or more and less than 0.70, more preferably 0.31 or more and less than 0.38. By mixing at a water content ratio of 0.32 or more and less than 0.34, the compressive strength of the civil engineering material can be further improved.

また、本発明の石膏ボード廃材を利用した土木資材の製造方法は、石膏ボード廃材を破砕する破砕工程と、破砕された石膏ボード廃材を5mm以下、好ましくは3mm以下、更に好ましくは2mm以下の粒度まで分級を行う分級工程と、分級工程において分級された石膏ボード廃材とセメント系固化材(好ましくはポルトランドセメントと、ガラスとの混合物)とを混合させる混合工程と、混合物を固化させる固化工程と、を備える。 In addition, the method for producing civil engineering materials using gypsum board waste material of the present invention includes a crushing step of crushing gypsum board waste material, and crushing the crushed gypsum board waste material to a particle size of 5 mm or less, preferably 3 mm or less, more preferably 2 mm or less. a mixing step of mixing the gypsum board waste classified in the classifying step with a cement-based solidifying material (preferably a mixture of Portland cement and glass); a solidifying step of solidifying the mixture; Prepare.

このように、土木資材は、5mm以下、好ましくは3mm以下、更に好ましくは、2mm以下の粒度に分級された石膏ボード廃材を用いることにより、簡便に硫化水素の発生を抑制することができる。さらに、土木資材は、5mm以下、好ましくは3mm以下、更に好ましくは、2mm以下の粒度に分級された石膏ボード廃材30~70質量%と、セメント系固化材70~30質量%の配合比の固化体により構成されることにより、硫化水素の発生を抑制しつつ、十分な圧縮強度を有する土木資材とすることができる。 In this way, by using gypsum board waste classified to a particle size of 5 mm or less, preferably 3 mm or less, more preferably 2 mm or less, as civil engineering materials, generation of hydrogen sulfide can be easily suppressed. Furthermore, the civil engineering material is solidified at a mixing ratio of 30 to 70% by mass of gypsum board waste classified to a particle size of 5 mm or less, preferably 3 mm or less, more preferably 2 mm or less, and 70 to 30% by mass of cement-based solidification material. By being composed of a solid body, it is possible to obtain a civil engineering material having sufficient compressive strength while suppressing the generation of hydrogen sulfide.

本発明に係る石膏ボード廃材を利用した土木資材を実施するための形態を実施例に基づいて以下に説明する。尚、土木資材について、十分な固化体強度を得るための条件、石膏ボード廃材の前処理方法、および硫化水素発生ポテンシャルを測定し、有効利用に適した配合方法や前処理方法を明らかにするため、以下の実験を行った。 A mode for carrying out civil engineering materials using gypsum board waste materials according to the present invention will be described below based on examples. In addition, regarding civil engineering materials, the conditions for obtaining sufficient solidified body strength, the pretreatment method of gypsum board waste, and the hydrogen sulfide generation potential are measured, and the mixing method and pretreatment method suitable for effective use are clarified. , conducted the following experiments.

土木資材に用いた石膏ボード廃材およびガラスは、2019年に某産業廃棄物処理施設に搬入された解体系の石膏ボード廃材と廃ガラスである。また、セメントは、普通ポルトランドセメント(太平洋セメント社製)を用いた。 The gypsum board waste and glass used as civil engineering materials are dismantled gypsum board waste and waste glass brought into a certain industrial waste disposal facility in 2019. Ordinary Portland cement (manufactured by Taiheiyo Cement Co., Ltd.) was used as the cement.

まず、破砕工程として石膏ボード廃材をジョークラッシャーで粗破砕した後、回転式破砕機で破砕し、破砕廃石膏を得た。 First, as a crushing step, gypsum board waste was roughly crushed with a jaw crusher and then crushed with a rotary crusher to obtain crushed waste gypsum.

次に、分級工程として破砕廃石膏を金属製網ふるい(JIS試験用金属製網ふるい JIS Z 8801-1:2000)で5mm以上、5~3mm、3~2mm、2~1mm、1mm以下に分級した。 Next, as a classification step, the crushed waste gypsum is classified into 5 mm or more, 5 to 3 mm, 3 to 2 mm, 2 to 1 mm, and 1 mm or less with a metal mesh sieve (JIS test metal mesh sieve JIS Z 8801-1: 2000). bottom.

破砕廃石膏のそれぞれの画分の質量を測定し、累積粒度分布を求めた。図1の累積粒度分布に示されるように、粒径5mm以下の廃石膏の割合は約80%、また、粒径2mm以下の廃石膏の割合は約60%であることが分かった。 The mass of each fraction of crushed waste gypsum was measured to determine the cumulative particle size distribution. As shown in the cumulative particle size distribution of FIG. 1, the percentage of waste gypsum with a particle size of 5 mm or less was about 80%, and the percentage of waste gypsum with a particle size of 2 mm or less was about 60%.

次に、上記破砕廃石膏中に含まれる紙の質量割合を測定した。測定は、図2(a)~(e)に示されるように100g程度の代表試料をそれぞれ採取し、手選別により繊維質の紙等を目視により分け、それぞれの質量を測定し、割合を求めた。破砕廃石膏に含まれる紙の質量割合結果を表1に示す。 Next, the mass ratio of paper contained in the crushed waste gypsum was measured. For the measurement, as shown in FIGS. 2(a) to 2(e), representative samples of about 100 g are sampled, and fibrous paper or the like is visually separated by hand sorting, the mass of each is measured, and the ratio is obtained. rice field. Table 1 shows the mass ratio of paper contained in the crushed waste gypsum.

Figure 2023028674000002
Figure 2023028674000002

表1に示されるように、粒度5mm以上の破砕廃石膏には紙が多く含まれていた。また、粒度3~5mmの破砕廃石膏には極めて僅かに紙が含まれていた。粒度3mm以下の破砕廃石膏には紙が含まれていなかった。この実験結果により、石膏ボード廃材に付着した紙は、破砕によって廃石膏よりも小さくなりにくいことから、特に粒度5mm以下のふるい分けの際において、紙がふるいの網目上に残りやすく、その多くを除去できることが確認できた。 As shown in Table 1, crushed waste gypsum with a particle size of 5 mm or more contained a large amount of paper. Also, the crushed waste gypsum with a particle size of 3 to 5 mm contained an extremely small amount of paper. The crushed waste gypsum with a particle size of 3 mm or less contained no paper. According to the results of this experiment, since the paper adhering to the gypsum board waste is less likely to become smaller than the waste gypsum by crushing, especially when sieving particles with a particle size of 5 mm or less, the paper tends to remain on the mesh of the sieve, and most of it is removed. I have confirmed that it is possible.

次に、粒径2mm以下の廃石膏と、上述した石膏ボード廃材と同様の破砕手順で破砕した粒径2mm以下の廃ガラスとを用いて供試体を作成した。使用材料は、普通ポルトランドセメント(C)、廃石膏(P)、廃ガラス(G)とし、廃石膏と廃ガラスの配合比(質量%)を変化させ3種類作製した。また、これらの材料を混合する混合工程における含水比(w)は、0.38とした。配合条件については下記表2に示す。 Next, waste gypsum with a particle size of 2 mm or less and waste glass with a particle size of 2 mm or less crushed by the same crushing procedure as the above-mentioned gypsum board waste material were used to prepare specimens. The materials used were ordinary Portland cement (C), waste gypsum (P), and waste glass (G), and three types were produced by changing the mixing ratio (% by mass) of waste gypsum and waste glass. Moreover, the water content ratio (w) in the mixing step of mixing these materials was set to 0.38. The compounding conditions are shown in Table 2 below.

Figure 2023028674000003
Figure 2023028674000003

供試体は、圧縮強度試験用に直径50mm、高さ100mmの円柱状の固化体として作製した。また、供試体は1種類につき3本ずつ振動による締固めで固化体を作製し、固化工程として20±2℃で気中養生させた。養生条件は7日、14日、28日、63日、91日、183日とした。供試体は1種類につき3本ずつ一軸圧縮試験(JIS A1216に準拠)を行い、圧縮強度を測定した。 A specimen was prepared as a columnar solidified body with a diameter of 50 mm and a height of 100 mm for a compressive strength test. For each type of specimen, three specimens were compacted by vibration to form a solidified body, which was cured in the air at 20±2° C. as a solidification process. The curing conditions were 7 days, 14 days, 28 days, 63 days, 91 days and 183 days. Three specimens of each type were subjected to a uniaxial compression test (according to JIS A1216) to measure the compressive strength.

図3に含水比0.38のときの、廃石膏Aと廃ガラスの配合比を変化させたときの供試体の一軸圧縮強度を示す。すべての養生期間において廃石膏:ガラス=50:50(供試体Y3)の圧縮強度が最も高く、養生期間183日で15.5N/mmとなった。また、廃石膏量が廃ガラス量に対して少ない方が、圧縮強度が増加することが確認できた。圧縮強度が増加した要因として、廃ガラスの細骨材としての効果によるものと推測される。また、廃石膏量が多くなると、固化体中においてエトリンガイトが生成され、その結晶の膨張により圧縮強度が低下したものと推測される。尚、すべての供試体Y1~Y3において、養生期間183日で空洞ブロック(コンクリートブロックA種)のJIS規格値(JIS A 5406)である8N/mmを超えていることから、擁壁等への利用が可能であると考えられる。 FIG. 3 shows the unconfined compressive strength of the test piece when the blending ratio of the waste gypsum A and the waste glass was changed when the water content ratio was 0.38. The compressive strength of waste gypsum:glass=50:50 (specimen Y3) was the highest in all curing periods, reaching 15.5 N/mm 2 after 183 days of curing. It was also confirmed that the compressive strength increased when the amount of waste gypsum was smaller than the amount of waste glass. The reason for the increase in compressive strength is presumed to be the effect of waste glass as a fine aggregate. In addition, it is presumed that when the amount of waste gypsum increased, ettringite was generated in the solidified body, and the compressive strength decreased due to expansion of the crystals. It should be noted that all specimens Y1 to Y3 exceeded the JIS standard value (JIS A 5406) of 8 N/mm 2 for hollow blocks (concrete block type A) after a curing period of 183 days. It is considered possible to use

次いで、粒度別にふるい分けした破砕廃石膏の硫化水素の発生ポテンシャル測定を行った。詳しくは、1000mLの三角フラスコに破砕廃石膏200gを入れ、窒素ガスで脱気した脱気水を400mL入れた直後に、10秒ほど手攪拌した。次に、フラスコ内の気相を窒素ガスで2分間置換し、ゴム栓で密閉したものを40℃の恒温室で1週間培養した。1週間後、フラスコの気相中の硫化水素ガス濃度をポータブルガスクロマトグラフィーGA5000で測定した。また、石膏ボード廃材に使われていた紙のみを手ではがし、1000mLの三角フラスコに紙20gを入れ、上記の方法で硫化水素ガス発生実験を行った。実験結果について下記表3及び図4に示す。 Next, the hydrogen sulfide generation potential of the crushed waste gypsum sieved by particle size was measured. Specifically, 200 g of crushed waste gypsum was placed in a 1,000 mL Erlenmeyer flask, and 400 mL of degassed water degassed with nitrogen gas was added, followed by manual stirring for about 10 seconds. Next, the gas phase in the flask was replaced with nitrogen gas for 2 minutes, and the flask was sealed with a rubber stopper and cultured in a constant temperature room at 40°C for 1 week. After one week, the hydrogen sulfide gas concentration in the gas phase of the flask was measured with a portable gas chromatograph GA5000. In addition, only the paper used for the gypsum board waste was peeled off by hand, 20 g of the paper was placed in a 1000 mL Erlenmeyer flask, and hydrogen sulfide gas generation experiment was performed by the above method. The experimental results are shown in Table 3 below and FIG.

Figure 2023028674000004
Figure 2023028674000004

表3及び図4に示されるように、粒度5mm以上の画分から硫化水素が発生(50ppm以上)した。これは、表1に示すように、この画分の紙の割合が高いため、紙に付着するグルコース糊等の有機物の量が多くなることが硫化水素の発生原因であると推測される。また、粒度5mm以下の破砕廃石膏からは、硫化水素は発生しなかった。粒度3~5mmの破砕廃石膏には僅かに紙が付着していたが、付着した紙が極少量だったため硫化水素は発生しなかったものと推測される。また、表3に示されるように、紙のみを用いた実験においては、18.5ppmの硫化水素が検出され、5mm以上廃石膏よりも濃度が低くかった。これは、紙を剥がしてもグルコース糊が廃石膏に多く残存していたためと考えられる。 As shown in Table 3 and FIG. 4, hydrogen sulfide was generated (50 ppm or more) from the fraction with a particle size of 5 mm or more. As shown in Table 1, it is presumed that the amount of organic matter such as glucose glue adhering to the paper increases because the proportion of paper in this fraction is high, which is the cause of the generation of hydrogen sulfide. Further, no hydrogen sulfide was generated from crushed waste gypsum having a particle size of 5 mm or less. A small amount of paper adhered to the crushed waste gypsum with a particle size of 3 to 5 mm. Also, as shown in Table 3, in the experiment using only paper, 18.5 ppm of hydrogen sulfide was detected, and the concentration was lower than that of waste gypsum by 5 mm or more. This is probably because a large amount of glucose paste remained in the waste gypsum even after the paper was peeled off.

以上の結果より、粒度5mm以下、好ましくは3mm以下、更に好ましくは、粒度2mm以下に破砕された廃石膏を利用することで、紙が十分に除去され、硫化水素の発生しない固化体を作製することができることが確認できた。 From the above results, by using waste gypsum crushed to a particle size of 5 mm or less, preferably 3 mm or less, more preferably 2 mm or less, paper is sufficiently removed and a solidified body that does not generate hydrogen sulfide is produced. I have confirmed that it is possible.

次いで、混合工程において含水比を変化させたときの供試体の圧縮強度を測定した。図5にセメント30質量%、廃石膏とガラスを合計した残り70質量%について廃石膏:ガラス=50:50の配合比で混合し、含水比を0.3~0.37に変化させたときの供試体の圧縮強度試験の結果を示す。 Next, the compressive strength of the specimen was measured when the water content ratio was changed in the mixing process. In FIG. 5, 30% by mass of cement and the remaining 70% by mass of waste gypsum and glass were mixed at a mixing ratio of waste gypsum:glass = 50:50, and the water content was changed from 0.3 to 0.37. shows the results of the compressive strength test of the specimen.

図5に示されるように、養生期間91日では、含水比0.33の場合に最も高い圧縮強度を得ることができた。また、含水比0.37の場合には混合水量が多くなり、流動性が大きくなったが、圧縮強度は低下した。 As shown in FIG. 5, in the curing period of 91 days, the highest compressive strength could be obtained in the case of the water content ratio of 0.33. In addition, when the water content ratio was 0.37, the amount of mixed water increased and the fluidity increased, but the compressive strength decreased.

以上、本発明の実施例と変形例を図面により説明してきたが、具体的な構成はこれら実施例に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。 Although the embodiments and modifications of the present invention have been described above with reference to the drawings, the specific configuration is not limited to these embodiments, and the present invention may be modified or added without departing from the gist of the present invention. Included in the invention.

前記実施例では、セメント系固化材としてポルトランドセメントを使用する形態を例示したが、本発明はこれに限定されるものではなく、例えば、混合セメントや特殊セメントやエコセメントを使用することとしてもよい。また、ポルトランドセメントにフライアッシュやクリンカアッシュなどの石炭灰、砂や砂利、ケイ酸ナトリウム、高炉スラグや製鋼スラグ、焼却灰や汚泥などを混合し使用することとしてもよい。尚、フライアッシュを混合する場合は、ポルトランドセメントからフライアッシュに置換する割合を25%以下とすることにより、圧縮強度を維持することができる。 Although Portland cement is used as the cementitious solidifying material in the above examples, the present invention is not limited to this, and for example, mixed cement, special cement, or ecocement may be used. . Portland cement may be mixed with fly ash, clinker ash, and other coal ash, sand, gravel, sodium silicate, blast furnace slag, steelmaking slag, incineration ash, sludge, and the like. In addition, when fly ash is mixed, the compressive strength can be maintained by setting the ratio of replacement of Portland cement to fly ash to 25% or less.

また、前記実施例では、粒径2mm以下のガラスを使用する形態を例示したが、本発明はこれに限定されるものではなく、例えば、ガラスの粒度を適宜変更することとしてもよい。 Further, in the above-described examples, the form using glass having a particle size of 2 mm or less was exemplified, but the present invention is not limited to this, and for example, the particle size of the glass may be appropriately changed.

また、前記実施例では、産業廃棄物処理施設に搬入された解体系の石膏ボード廃材を使用する形態を例示したが、本発明はこれに限定されるものではなく、例えば、新築系の石膏ボード廃材や、新築系と解体系とが混在する石膏ボード廃材を使用することとしてもよい。 In addition, in the above-described embodiment, a mode of using gypsum board waste materials from demolition systems brought into an industrial waste treatment facility was exemplified, but the present invention is not limited to this, and for example, gypsum board waste from new construction systems is used. It is also possible to use waste materials or gypsum board waste materials that are a mixture of newly built and demolished materials.

また、前記実施例では、固化工程として20±2℃で7日、14日、28日、63日、91日、183日気中養生させる形態を例示したが、本発明はこれに限定されるものではなく、例えば、温度や養生日数を変更してもよいし、固化体の脱水を促進する機材等を利用してもよい。 In addition, in the above-described examples, the solidification process was performed at 20±2° C. for 7 days, 14 days, 28 days, 63 days, 91 days, and 183 days, but the present invention is limited to this. Instead, for example, the temperature or the number of curing days may be changed, or a device or the like that promotes dehydration of the solidified material may be used.

産業上の利用分野Industrial field of application

道路路盤材、コンクリートブロック製品等の土木資材として利用することができる。 It can be used as civil engineering materials such as roadbed materials and concrete block products.

Claims (5)

5mm以下の粒度に分級された石膏ボード廃材30~70質量%と、セメント系固化材70~30質量%とから構成された固化体であることを特徴とする石膏ボード廃材を利用した土木資材。 A civil engineering material using gypsum board waste, characterized by being a solidified body composed of 30 to 70% by mass of gypsum board waste classified to a particle size of 5 mm or less and 70 to 30% by mass of a cement-based solidifying material. 前記石膏ボード廃材は、2mm以下の粒度に分級することで硫化水素の発生が抑制されていることを特徴とする請求項1に記載の石膏ボード廃材を利用した土木資材。 2. The civil engineering material using gypsum board waste according to claim 1, wherein the gypsum board waste is classified to have a particle size of 2 mm or less to suppress generation of hydrogen sulfide. 前記セメント系固化材は、ポルトランドセメントと、ガラスとの混合物であることを特徴とする請求項1または2に記載の石膏ボード廃材を利用した土木資材。 3. A civil engineering material using gypsum board waste according to claim 1 or 2, wherein said cement-based solidifying material is a mixture of Portland cement and glass. 石膏ボード廃材を破砕する破砕工程と、
破砕された前記石膏ボード廃材を5mm以下の粒度まで分級を行う分級工程と、
前記分級工程において分級された粒径5mm以下の前記石膏ボード廃材とセメント系固化材とを混合させる混合工程と、
混合された前記石膏ボード廃材と前記セメント系固化材とを固化させる固化工程と、を含む石膏ボード廃材を利用した土木資材の製造方法。
A crushing process for crushing gypsum board scraps;
a classification step of classifying the crushed gypsum board waste material to a particle size of 5 mm or less;
A mixing step of mixing the gypsum board waste material having a particle size of 5 mm or less classified in the classification step and a cement-based solidifying material;
and a solidification step of solidifying the mixed gypsum board waste material and the cement-based solidifying material.
前記混合工程において、含水比0.31以上0.38未満で混合することを特徴とする請求項4に記載の石膏ボード廃材を利用した土木資材の製造方法。 5. The method for producing a civil engineering material using gypsum board waste according to claim 4, wherein in the mixing step, the water content is mixed at a water content of 0.31 or more and less than 0.38.
JP2021134521A 2021-08-20 2021-08-20 Civil engineering materials using gypsum board waste material and its manufacturing method Pending JP2023028674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021134521A JP2023028674A (en) 2021-08-20 2021-08-20 Civil engineering materials using gypsum board waste material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021134521A JP2023028674A (en) 2021-08-20 2021-08-20 Civil engineering materials using gypsum board waste material and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2023028674A true JP2023028674A (en) 2023-03-03

Family

ID=85330947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021134521A Pending JP2023028674A (en) 2021-08-20 2021-08-20 Civil engineering materials using gypsum board waste material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2023028674A (en)

Similar Documents

Publication Publication Date Title
Sua-iam et al. Use of limestone powder during incorporation of Pb-containing cathode ray tube waste in self-compacting concrete
Do et al. Development of a new cementless binder for controlled low strength material (CLSM) using entirely by-products
CN108503386A (en) The technique for preparing baking-free ceramicite using metallurgical contaminated soil
Chin et al. Characterization of sewage sludge ASH (SSA) in cement mortar
Bheel et al. Synergic effect of millet husk ash and wheat straw ash on the fresh and hardened properties of Metakaolin-based self-compacting geopolymer concrete
Li et al. Approach to the management of magnesium slag via the production of Portland cement clinker
CN114671633B (en) Full-solid-waste clinker-free cementing material, conductive mortar and preparation method thereof
JPH11171628A (en) Cement composition using burnt ash of sewage sludge, use of the same cement composition and formed product and structure using the same composition
Wang et al. Preparation of backfill materials by solidifying municipal solid waste incineration fly ash with slag-based cementitious materials
Jing et al. Experimental study on iron ore tailings sand and municipal solid waste incineration fly ash used in semi-rigid base of asphalt pavement
JP2009028639A (en) Sludge treatment method
JP2023028674A (en) Civil engineering materials using gypsum board waste material and its manufacturing method
JP2005272546A (en) Soil neutralizing and solidifying material, and improved method for neutralizing and solidifying soil
Hassooni et al. Evaluation the effect of reuse sewage sludge and sewage sludge ash on concrete for cement replacement
JP6292257B2 (en) Hydrated solidified product using desulfurized slag
JP2014001122A (en) Fired product
JP2003192403A (en) Portland cement for concrete
JP5423515B2 (en) Cement-based solidified material and method for producing the same
JP2005041750A (en) Industrial waste regenerated aggregate and method of producing the same
JP2004105783A (en) Solidification material and solidification method for soil
JP7120950B2 (en) Method for producing fly ash mixed material
JP2004115291A (en) Solidified body using coal ash, and method of producing the same
JP2007176793A (en) Method for manufacturing fired product of incineration ash
Šerović et al. Utilization of solidified industrial hazardous waste in construction: A case study
JP4773702B2 (en) Cement composition and method for producing the same

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20210831