JP5423515B2 - Cement-based solidified material and method for producing the same - Google Patents

Cement-based solidified material and method for producing the same Download PDF

Info

Publication number
JP5423515B2
JP5423515B2 JP2010064029A JP2010064029A JP5423515B2 JP 5423515 B2 JP5423515 B2 JP 5423515B2 JP 2010064029 A JP2010064029 A JP 2010064029A JP 2010064029 A JP2010064029 A JP 2010064029A JP 5423515 B2 JP5423515 B2 JP 5423515B2
Authority
JP
Japan
Prior art keywords
gypsum
cement
mass
content
solidified material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010064029A
Other languages
Japanese (ja)
Other versions
JP2011195379A (en
Inventor
英喜 中田
和公 岩田
行雄 田坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2010064029A priority Critical patent/JP5423515B2/en
Publication of JP2011195379A publication Critical patent/JP2011195379A/en
Application granted granted Critical
Publication of JP5423515B2 publication Critical patent/JP5423515B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、石膏ボード廃材から回収した再生石膏を使用したセメント系固化材及びその製造方法に関する。   The present invention relates to a cement-based solidified material using recycled gypsum recovered from gypsum board waste material and a method for producing the same.

店舗や住宅の改装等で発生する新築系の石膏ボード廃材は、石膏部分と紙類とを分離し、回収された石膏分を石膏ボード製造用の原料やセメント用石膏の一部として使用する再資源化が進められている。一方、建築物の解体現場で発生する解体系の石膏ボード廃材の大部分は再資源化されることがなく、最終処分されている。その際、処分場の条件によっては硫化水素が発生する可能性があることから管理型処分場での処分が義務付けられ、分別が不徹底な場合は石膏ボード廃材片が混入した廃棄物も管理型処分場に持込まなければならず、処分場の逼迫が懸念されている。また、処理コスト問題から不適正処理や不法投棄にも繋がる恐れがあるとの指摘もある。処分場の確保や環境保全等の観点から、石膏ボード廃材の再資源化技術の開発が今後益々強く望まれるところである。   Newly constructed gypsum board waste generated by renovation of stores and homes, etc., separates the gypsum part from paper and recycles the recovered gypsum part as raw material for gypsum board production or as part of cement gypsum. Resources are being promoted. On the other hand, most of the scrapped gypsum board waste generated at the site of building demolition is not recycled and is finally disposed of. At that time, depending on the conditions of the disposal site, hydrogen sulfide may be generated, so disposal at the management type disposal site is obligatory, and if the separation is not thorough, the waste mixed with gypsum board waste pieces is also managed type There is concern about the tightness of the disposal site. There are also indications that processing costs could lead to inappropriate processing and illegal dumping. From the standpoints of securing a disposal site and environmental protection, development of recycling technology for gypsum board waste is strongly desired in the future.

石膏ボード廃材の再資源化技術の一つとして、セメント組成物用の石膏成分として有効利用する試みが期待されている。しかしながら、石膏ボード廃材から回収した石膏中には、石膏ボードを製造する過程で用いられた紙類が含まれているため、モルタル等の左官性や流動性の低下が起こることが報告されている(例えば、特許文献1)。また、石膏ボード廃材には有機混和剤、例えばポリオキシエチレンアルキルエーテルサルフェートやポリオキシエチレンアルキルフェニルエーテルサルフェート等の界面活性剤が含まれているため、界面活性剤の空気連行作用によってセメント硬化体の単位容積重量の低下及びこれに伴う圧縮強さの低下が起こることが報告されている(例えば、特許文献1)。更に、解体系の石膏ボード廃材には解体工事時に発生する金属類や建設発生土等の不純物が混入することがあり、紙類及び界面活性剤以外の不純物の混入による石膏純度の低下がセメント硬化体の強度低下を引起こす要因となる。   As one of the technologies for recycling gypsum board waste, attempts to effectively use it as a gypsum component for cement compositions are expected. However, since the gypsum recovered from gypsum board waste contains paper used in the process of producing gypsum board, it has been reported that the plasterability and fluidity of mortar and the like deteriorate. (For example, patent document 1). The gypsum board waste material contains organic admixtures, for example, surfactants such as polyoxyethylene alkyl ether sulfate and polyoxyethylene alkyl phenyl ether sulfate. It has been reported that a decrease in unit volume weight and a corresponding decrease in compressive strength occur (for example, Patent Document 1). In addition, scrapping gypsum board waste materials may contain impurities such as metals and soil generated during demolition work, and the deterioration of gypsum purity due to the inclusion of impurities other than paper and surfactants can cause cement hardening. It becomes a factor that causes a decrease in strength of the body.

石膏ボード廃材中に含有される不純物、例えば紙類と界面活性剤を除去して再生石膏を得る方法、あるいは石膏ボード廃材から得た再生石膏を使用するセメント組成物やその製造方法が数多く提案されている(特許文献1〜8)。その代表的なものとして、石膏ボード廃材中に残存する紙類と界面活性剤をそれらの分解温度以上で加熱処理する方法がある。例えば、石膏ボード廃材を600〜1100℃に加熱し、紙類及び界面活性剤を燃焼、除去し、得られたII型無水石膏をセメント用石膏として再利用する方法(特許文献1)、石膏ボード廃材中に含まれる紙類を除去した後に界面活性剤の分解温度以上でかつ400℃以下の温度で加熱処理して得られた半水石膏やIII型無水石膏を、水和処理して二水石膏を得て、これらをセメントクリンカーに添加することによりセメント組成物を製造する方法(特許文献2)等が提案されている。   Many methods have been proposed for obtaining recycled gypsum by removing impurities such as paper and surfactants in gypsum board waste, or for using cement gypsum obtained from gypsum board waste and its manufacturing method. (Patent Documents 1 to 8). As a typical example, there is a method in which papers and surfactants remaining in gypsum board waste are heat-treated at a decomposition temperature or higher. For example, a method of heating gypsum board waste to 600-1100 ° C., burning and removing papers and surfactants, and reusing the obtained type II anhydrous gypsum as cement gypsum (Patent Document 1), gypsum board Hemihydrate gypsum and type III anhydrous gypsum obtained by removing the papers contained in the waste and heat-treating at a temperature not lower than the decomposition temperature of the surfactant and not higher than 400 ° C. A method of producing a cement composition by obtaining gypsum and adding them to a cement clinker (Patent Document 2) has been proposed.

しかしながら、特許文献1のような石膏ボード廃材の処理方法における高温で加熱処理する工程は、熱的にも設備的にも不経済であり、好ましい手段とは言えないことが指摘されている(特許文献3)。また、特許文献2に示される石膏ボード廃材の処理方法では、必要に応じて半水石膏やIII型無水石膏に水を加えて水和処理する工程を必要とするが、この工程は煩雑であることが指摘されている(特許文献4)。   However, it has been pointed out that the heat treatment process at a high temperature in the method for treating gypsum board waste as disclosed in Patent Document 1 is not economical and economical, and is not a preferable means (patent) Reference 3). Moreover, in the processing method of the gypsum board waste material shown by patent document 2, although the process of adding water to hemihydrate gypsum or type III anhydrous gypsum is required as needed, this process is complicated. (Patent Document 4).

一方で、石膏ボード廃材に硫酸を添加して加温することにより含有される界面活性剤を分解するとともに石膏をII型無水石膏に変換し、これをセメントの石膏成分として添加する方法(特許文献3)、石膏ボード廃材中に残存する界面活性剤を吸着する吸着剤を添加し、界面活性剤を除去したセメント組成物を得る方法(特許文献5)、石膏ボード廃材の粉砕物を水洗し、回収された石膏中に含有される界面活性剤の量を低減する方法(特許文献6)等が提案されている。   On the other hand, a method of adding a sulfuric acid to a waste gypsum board and heating it to decompose the contained surfactant and converting the gypsum into type II anhydrous gypsum and adding it as a gypsum component of cement (Patent Document) 3) A method for obtaining a cement composition from which a surfactant is removed by adding an adsorbent that adsorbs the surfactant remaining in the gypsum board waste material (Patent Document 5), washing the pulverized gypsum board waste material with water, A method for reducing the amount of surfactant contained in the collected gypsum (Patent Document 6) has been proposed.

しかしながら、特許文献4の方法では、余剰の硫酸を除去するための中和処理等の後処理が必要となり、工程が複雑化するという問題が存在することが指摘されている(特許文献6)。また、特許文献6の方法では、水洗した後の廃液に界面活性剤やそれ以外の水溶性有機化合物が溶出することから、COD値の高い廃液が発生し、廃液処理に高度な処理工程が必要となることが指摘されている(特許文献7)。   However, it has been pointed out that the method of Patent Document 4 requires a post-treatment such as a neutralization process for removing excess sulfuric acid, and the process is complicated (Patent Document 6). Further, in the method of Patent Document 6, since the surfactant and other water-soluble organic compounds are eluted in the waste liquid after washing with water, a waste liquid with a high COD value is generated, and an advanced treatment process is required for the waste liquid treatment. (Patent Document 7).

更に、特別な設備や廃液処理工程等を必要としない手段として、石膏ボード廃材より回収した再生石膏を少なくとも一部として使用するセメント組成物に消泡剤を混合したセメント組成物及びその製造方法が提案されている(特許文献8)。再生石膏に消泡剤を添加することにより、回収石膏中の界面活性剤による気泡の発生を低減し、モルタルやコンクリートの圧縮強さの低下を抑制することが可能であることが見出されている。また、特許文献8では、再生石膏中の紙類の含有量は5質量%以下、より好ましくは2質量%以下とされ、使用される消泡剤はセメントの水和反応による硬化を著しく阻害しないものであれば、公知のものが特に制限無く使用できることが記載されている。   Furthermore, as a means that does not require special equipment, waste liquid treatment process, etc., there is a cement composition in which a defoaming agent is mixed with a cement composition that uses recycled gypsum recovered from gypsum board waste as at least a part thereof, and a method for producing the same. It has been proposed (Patent Document 8). It has been found that by adding an antifoaming agent to the reclaimed gypsum, it is possible to reduce the generation of bubbles due to the surfactant in the recovered gypsum and to suppress the decrease in compressive strength of mortar and concrete. Yes. Further, in Patent Document 8, the content of paper in the reclaimed gypsum is 5% by mass or less, more preferably 2% by mass or less, and the antifoaming agent used does not significantly inhibit hardening due to cement hydration reaction. If it is a thing, it will be described that a well-known thing can be especially used without a restriction | limiting.

一方、セメント組成物あるいはセメント系固化材を水と混ぜてスラリー化し、そのセメント系スラリーを用いて軟弱地盤を改良する方法が近年脚光を浴びている。このとき、セメント系スラリー中に紙類が存在すると、スラリーをポンプ圧送する際にポンプ圧送不良やスクリーン閉塞等の問題が生じやすい。このため、石膏ボード廃材を用いたセメント組成物の製造方法には紙類の含有量を厳しく管理することが重要である。再生石膏中の紙類等の不純物は凝集する石膏粒子に包含された形態で存在しているため、特許文献8のセメント組成物の製造方法では、紙類等の不純物の含有量を測定し、所定量以下に管理することは難しい。また、特許文献8では、セメント組成物の強度低下要因となり得る再生石膏中の紙類や界面活性剤以外の不純物を管理する項目についても具体的に示されていない。   On the other hand, a method of mixing a cement composition or a cement-based solidifying material with water to form a slurry and improving the soft ground using the cement-based slurry has recently attracted attention. At this time, if papers are present in the cementitious slurry, problems such as poor pumping and screen blockage tend to occur when the slurry is pumped. For this reason, it is important to strictly control the content of papers in the method for producing a cement composition using waste gypsum board. Impurities such as paper in the reclaimed gypsum are present in a form included in the gypsum particles that aggregate, so in the method for producing a cement composition of Patent Document 8, the content of impurities such as paper is measured, It is difficult to manage below a predetermined amount. Further, Patent Document 8 does not specifically show items for managing impurities other than papers and surfactants in the regenerated gypsum that can be a factor for reducing the strength of the cement composition.

更に、特許文献8では、使用する消泡剤はセメントの水和反応による硬化を著しく阻害しないものであれば、公知のものが特に制限無く使用できるとされており、消泡剤の選択に関する特段の記載はない。しかしながら、石膏ボード廃材中に残存するポリオキシエチレンアルキルエーテルサルフェート等の界面活性剤によって生じる気泡の発生を低減するときに、消泡剤の選択が適切でない場合には消泡効果が得られないこともある。例えば、セメント系スラリーの場合、通常のモルタル配合やコンクリート配合とは水粉体比が大きく異なり、例えば水粉体比80〜100質量%となるケースが多く、モルタルやコンクリートに比べて過剰な水が存在する。セメント系スラリーのように水が過剰に存在する場合、分子量の大きい高級アルコールやシリコーン系のような疎水性の高い消泡剤では消泡剤成分がスラリー中の気泡周辺に分散あるいは拡張できず、消泡効果が得られにくい。石膏ボード廃材から回収した再生石膏を含有するセメント組成物に添加混合する消泡剤に望まれる要件としては、セメントの水和に対する影響だけでなく、セメント組成物の配合や使用条件等によって、消泡剤を構成する特定の主成分を考慮することが好ましい。   Further, in Patent Document 8, it is said that any known antifoaming agent can be used without particular limitation as long as it does not significantly inhibit the hardening due to the hydration reaction of cement. There is no description. However, when reducing the generation of bubbles caused by surfactants such as polyoxyethylene alkyl ether sulfate remaining in gypsum board waste, the defoaming effect cannot be obtained if the choice of defoaming agent is not appropriate. There is also. For example, in the case of cement-based slurry, the water-powder ratio is greatly different from normal mortar blending and concrete blending, for example, there are many cases where the water-powder ratio is 80 to 100% by mass, which is excessive water compared to mortar and concrete. Exists. When water is present excessively as in a cement slurry, the defoamer component cannot be dispersed or expanded around the bubbles in the slurry with a high-molecular-weight higher alcohol or silicone-based antifoam agent having a high molecular weight. Defoaming effect is difficult to obtain. Desirable requirements for antifoaming agents added to and mixed with cement compositions containing reclaimed gypsum recovered from gypsum board waste materials include not only the effect on cement hydration, but also the composition and usage conditions of the cement composition. It is preferable to consider the specific main components that make up the foam.

特開平10−36149号公報Japanese Patent Laid-Open No. 10-36149 特開2003−24900号公報JP 2003-24900 A 特開平10−45446号公報Japanese Patent Laid-Open No. 10-45446 特開2005−336005号公報JP 2005-336005 A 特開平10−45442号公報Japanese Patent Laid-Open No. 10-45442 特開2002−255598号公報JP 2002-255598 A 特開2003−128416号公報JP 2003-128416 A 特開2006−111464号公報JP 2006-111464 A

本発明は、石膏ボード廃材から回収された再生石膏を有効にかつ比較的多量に活用できるセメント系固化材及びその製造方法に関する。即ち、石膏ボード廃材から不純物を除去して回収された再生石膏中のSO含有量を制御・管理し、再生石膏を適切な粒子径に分級し、再生石膏中に含まれる紙類及び界面活性剤に由来の炭素含有量を制御・管理するとともに、再生石膏を用いたセメント系固化材に好適な消泡剤を見出すことにより、セメント系固化材が本来有する強度発現特性やスラリー工法での作業性及び施工性を損なうことがないセメント系固化材及びその製造方法を提供することを目的とする。 The present invention relates to a cement-based solidified material capable of effectively and utilizing a relatively large amount of recycled gypsum recovered from gypsum board waste material and a method for producing the same. That is, the SO 3 content in the recycled gypsum recovered by removing impurities from the gypsum board waste material is controlled and managed, the recycled gypsum is classified into an appropriate particle size, and the papers and surface activity contained in the recycled gypsum By controlling and managing the carbon content derived from the agent and finding a suitable defoaming agent for the cement-based solidified material using recycled gypsum, work in the strength development characteristics inherent in the cement-based solidified material and work in the slurry method It aims at providing the cement-type solidification material which does not impair property and workability, and its manufacturing method.

本発明者等は、斯かる実情を鑑み、鋭意検討した結果、石膏ボード廃材から回収された再生石膏をセメント系固化材の石膏成分として有効にかつ比較的多量に活用できる手段として着目し、セメント系固化材の製造方法に関して、再生石膏中のSO含有量を制御・管理し、再生石膏を適切な粒子径に分級し、再生石膏中に含まれる紙類及び界面活性剤に由来の炭素含有量を制御・管理するとともに、石膏ボード廃材から回収される再生石膏を用いたセメント系固化材に好適な消泡剤を見出すことにより、本発明を完成した。即ち、本発明は、(A)石膏ボード廃材から不純物を除去し、SO含有量が43質量%以上である石膏を分別・回収して再生石膏原料を得る工程と、(B)工程(A)で得られた再生石膏原料を最大粒子径が0.5〜1.0mmの範囲の石膏粒子に分級する工程と、(C)工程(B)で分級された石膏粒子に含まれる炭素含有量を0.7質量%以下に調整する工程と、(D)工程(C)で調整された石膏粒子に曇点が3〜25℃であるポリエーテル系の消泡剤を添加混合する工程と、を含む工程により再生石膏を得たのち、(E)得られた再生石膏をセメントに添加混合する工程、を含むセメント系固化材の製造方法である。本発明はまた、石膏ボード廃材を原料とする最大粒子径が0.5〜1.0mmの範囲であり、炭素含有量が0.7質量%以下である石膏粒子と、曇点が3〜25℃であるポリエーテル系の消泡剤と、セメントとを含むセメント系固化材である。 As a result of intensive studies in view of such circumstances, the present inventors have paid attention to the recycled gypsum recovered from the gypsum board waste as an effective and relatively large amount of means as a gypsum component of the cement-based solidified material. Controlling and managing SO 3 content in reclaimed gypsum, classifying reclaimed gypsum to an appropriate particle size, and containing carbon derived from paper and surfactants contained in reclaimed gypsum The present invention was completed by controlling and managing the amount and finding an antifoaming agent suitable for a cement-based solidifying material using recycled gypsum recovered from gypsum board waste. That is, the present invention includes (A) a step of removing impurities from gypsum board waste material, separating and collecting gypsum having an SO 3 content of 43% by mass or more to obtain a recycled gypsum raw material, and (B) step (A The step of classifying the reclaimed gypsum raw material obtained in step 1) into gypsum particles having a maximum particle size in the range of 0.5 to 1.0 mm, and the carbon content contained in the gypsum particles classified in step (B). A step of adjusting the amount of the defoaming agent to 0.7% by mass or less, a step of (D) adding and mixing a polyether antifoaming agent having a cloud point of 3 to 25 ° C. to the gypsum particles adjusted in step (C), And (E) a step of adding and mixing the obtained reclaimed gypsum to the cement, and a method for producing a cement-based solidified material. The present invention also includes gypsum particles having a maximum particle diameter of 0.5 to 1.0 mm and a carbon content of 0.7% by mass or less, and a cloud point of 3 to 25. A cement-based solidifying material containing a polyether-based antifoaming agent at a temperature of C and cement.

本発明のセメント系固化材及びその製造方法は、セメント系固化材が本来有する強度発現特性やスラリー工法での作業性及び施工性を損なうことがなく、石膏ボード廃材から回収された再生石膏の再資源化及び環境保全の面において有効な手段となる。   The cement-based solidified material and the method for producing the same of the present invention can recycle recycled gypsum recovered from gypsum board waste material without impairing the strength development characteristics inherent in the cement-based solidified material and the workability and workability of the slurry method. It becomes an effective means in terms of resource recycling and environmental conservation.

以下、本発明に係るセメント系固化材及びその製造方法の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of a cement-based solidified material and a method for producing the same according to the present invention will be described in detail.

本発明は、(A)石膏ボード廃材から不純物を除去し、SO含有量が43質量%以上である石膏を分別・回収して再生石膏原料を得る工程と、(B)工程(A)で得られた再生石膏原料を最大粒子径が0.5〜1.0mmの範囲の石膏粒子に分級する工程と、(C)工程(B)で分級された石膏粒子に含まれる炭素含有量を0.7質量%以下に調整する工程と、(D)工程(C)で調整された石膏粒子に曇点が3〜25℃であるポリエーテル系の消泡剤を添加混合する工程と、を含む工程により再生石膏を得たのち、(E)得られた再生石膏をセメントに添加混合する工程、を含むセメント系固化材の製造方法である。本発明はまた、上記工程(A)〜(E)によって製造されたセメント系固化材であり、具体的には、石膏ボード廃材を原料とする最大粒子径が0.5〜1.0mmの範囲であり、炭素含有量が0.7質量%以下である石膏粒子と、曇点が3〜25℃であるポリエーテル系の消泡剤と、セメントとを含むセメント系固化材である。 The present invention includes (A) a step of removing impurities from gypsum board waste, and separating and collecting gypsum having an SO 3 content of 43% by mass or more to obtain a regenerated gypsum raw material; and (B) step (A). The step of classifying the obtained regenerated gypsum raw material into gypsum particles having a maximum particle size in the range of 0.5 to 1.0 mm, and the carbon content contained in the gypsum particles classified in (C) step (B) is 0. A step of adjusting to 7% by mass or less, and a step of (D) adding and mixing a polyether antifoaming agent having a cloud point of 3 to 25 ° C. to the gypsum particles adjusted in the step (C). A method for producing a cement-based solidified material comprising the steps of: (E) adding and mixing the obtained recycled gypsum to cement after obtaining recycled gypsum by the process. The present invention is also a cement-based solidified material produced by the above steps (A) to (E), specifically, a maximum particle size of 0.5 to 1.0 mm using gypsum board waste as a raw material. And a cement-based solidifying material comprising gypsum particles having a carbon content of 0.7% by mass or less, a polyether antifoaming agent having a cloud point of 3 to 25 ° C., and cement.

本実施形態において用いられる石膏ボード廃材としては、例えば、石膏ボード製造工場で発生する廃材、新築工事現場で発生する石膏ボードの端材や余剰材に加えて、店舗や住宅の改装等で発生する新築系の石膏ボード廃材が挙げられる。また、従来最終処分されていた建築物解体現場等で発生する解体系の石膏ボード廃材は、解体時に発生する不純物、例えば金属類や建設発生土を除去することにより、再生石膏原料として使用することができる。   As the gypsum board waste material used in the present embodiment, for example, waste material generated at a gypsum board manufacturing plant, gypsum board scraps and surplus materials generated at a new construction site, and generated by renovation of a store or a house, etc. Newly constructed gypsum board waste material. Dismantled gypsum board waste generated at the site of building demolition, which has been finally disposed of, should be used as recycled gypsum raw material by removing impurities generated during demolition, such as metals and construction soil. Can do.

本発明は、工程(A)で、石膏ボード廃材から不純物を除去し、SO含有量が43質量%以上である石膏を分別・回収して再生石膏原料を得る。ここで、不純物とは、紙類のほか、建設残土、金属類を意味する。本発明の再生石膏原料の形態は二水石膏が主成分であり、純度100%の二水石膏のSO含有量は46.5質量%である。また残余には、CaOが約32質量%、結合水21質量%、その他は不純物由来の少量成分(SiO、Al、Fe)が含まれる。工程(A)のSO含有量は43質量%以上であり、好ましくは44質量%以上、より好ましくは45質量%以上である(二水石膏の純度は各々92.5質量%、94.6質量%、96.8質量%に相当する)。SO含有量が43質量%未満では、処理対象土によっては、セメント系固化材の本来の強度発現性を発揮することができない恐れがあり好ましくない。なお、石膏中のSO含有量の測定は、JIS R 9101「セッコウの化学分析方法」に準拠して行った。 In the step (A), the present invention removes impurities from the gypsum board waste material, and separates and collects gypsum having an SO 3 content of 43% by mass or more to obtain a recycled gypsum raw material. Here, impurities mean paper, construction residual soil, and metals. The form of the recycled gypsum raw material of the present invention is mainly composed of dihydrate gypsum, and the SO 3 content of 100% pure dihydrate gypsum is 46.5% by mass. In addition, the remainder contains about 32% by mass of CaO, 21% by mass of bound water, and other minor components derived from impurities (SiO 2 , Al 2 O 3 , Fe 2 O 3 ). The SO 3 content in the step (A) is 43% by mass or more, preferably 44% by mass or more, more preferably 45% by mass or more (the purity of dihydrate gypsum is 92.5% by mass and 94.6%, respectively). Mass%, corresponding to 96.8 mass%). If the SO 3 content is less than 43% by mass, depending on the soil to be treated, the original strength development of the cement-based solidified material may not be exhibited, which is not preferable. The SO 3 content in the gypsum was measured in accordance with JIS R 9101 “Analytical Method for Gypsum”.

工程(A)において、解体系の石膏ボード廃材を再生石膏原料とする場合は、例えば手選別、トロンメル、ふるいを用いて、解体時に発生する不純物、例えば紙類、金属類や建設発生土を除去する。石膏ボード廃材から紙類等の不純物を除去する方法としては公知の方法を特に制限なく採用することができる。例えば、石膏ボード廃材をジョークラッシャー等で解砕し、所定のメッシュサイズの篩いを用いて大きな紙類と石膏を分離した後、風選によって紙類を除去する方法や、石膏ボード廃材をロール間で圧縮し、石膏分を粉状にして紙類と石膏とを分離する方法等が挙げられる。   In step (A), when the gypsum board waste material from disassembly is used as recycled gypsum raw material, impurities generated during dismantling, such as paper, metals, and construction soil, are removed using, for example, hand sorting, trommel, and sieve. To do. As a method for removing impurities such as paper from the gypsum board waste material, a known method can be employed without any particular limitation. For example, after crushing gypsum board waste with a jaw crusher, etc. and separating large paper and gypsum using a sieve with a predetermined mesh size, the paper can be removed by wind separation, or gypsum board waste can be removed between rolls. And a method of separating the paper and the gypsum by compressing the gypsum into a powder form.

本発明は、工程(B)で、工程(A)で得られた再生石膏原料を、最大粒子径が0.5〜1.0mmの範囲の石膏粒子に分級する。分級する石膏の最大粒子径は、好ましくは0.5〜0.9mm、より好ましくは0.5〜0.8mmの範囲である。最大粒子径が0.5mm未満であると、本発明の工程(A)及び(B)のプロセスが煩雑となり、生産性を高める上で好ましくない。このため、分級は最大粒子径を0.5mm以上に管理して行う。最大粒子径が1.0mmを超えると、石膏粒子に包含される紙類等の不純物の分析及び管理精度が低下するとともに、セメント系固化材をスラリー形態で使用する場合に、スラリー中で石膏粒子が沈降分離し、スラリーの施工性を損なう恐れがあるため好ましくない。工程(B)では、特定のメッシュサイズの篩い設備等を用いて分級することができる。   In the step (B), the present invention classifies the recycled gypsum raw material obtained in the step (A) into gypsum particles having a maximum particle size in the range of 0.5 to 1.0 mm. The maximum particle size of the gypsum to be classified is preferably in the range of 0.5 to 0.9 mm, more preferably 0.5 to 0.8 mm. When the maximum particle size is less than 0.5 mm, the processes of the steps (A) and (B) of the present invention become complicated, which is not preferable for improving productivity. For this reason, classification is performed by managing the maximum particle size to 0.5 mm or more. When the maximum particle size exceeds 1.0 mm, the accuracy of analysis and management of impurities such as papers included in the gypsum particles is lowered, and when the cement-based solidified material is used in a slurry form, the gypsum particles in the slurry. Is not preferable because it may precipitate and separate and impair the workability of the slurry. In the step (B), classification can be performed using a sieving equipment having a specific mesh size.

本発明は、工程(C)で、工程(B)で分級された石膏粒子に含まれる炭素含有量を0.7質量%以下に調整する。石膏中に含有される炭素は、石膏ボード廃材中に含まれる紙類と界面活性剤に由来するものである。石膏中の炭素含有量は好ましくは0.6質量%以下、より好ましくは0.5質量%以下に調整する。石膏中の炭素含有量が0.7質量%を超えている場合には、紙類の除去が不十分であり、セメント系固化材の本来の強度発現性を発揮することができない恐れがあるとともに、セメント系固化材スラリーをポンプ圧送するときに圧送不良や閉塞等の問題が生じる恐れがあるため好ましくない。この場合は、低炭素含有量、例えば0.7質量%以下の石膏を適量混合して、原料石膏ボード廃材中の炭素含有量を0.7質量%以下とする。なお、石膏中の炭素含有量は、高周波燃焼−赤外吸収法による炭素硫黄同時分析装置(LECO製、CS−400型)を用いて測定することができる。   In the step (C), the present invention adjusts the carbon content contained in the gypsum particles classified in the step (B) to 0.7% by mass or less. The carbon contained in the gypsum is derived from the paper and the surfactant contained in the gypsum board waste material. The carbon content in the gypsum is preferably adjusted to 0.6% by mass or less, more preferably 0.5% by mass or less. When the carbon content in the gypsum exceeds 0.7% by mass, the removal of paper is insufficient, and the original strength development of the cement-based solidified material may not be exhibited. In addition, when the cement-based solidifying material slurry is pumped, problems such as poor pumping and blockage may occur. In this case, a suitable amount of gypsum having a low carbon content, for example, 0.7% by mass or less is mixed so that the carbon content in the raw material gypsum board waste is 0.7% by mass or less. The carbon content in gypsum can be measured using a simultaneous carbon-sulfur analyzer (manufactured by LECO, model CS-400) using a high-frequency combustion-infrared absorption method.

更に、本発明は、工程(D)で、工程(C)で調整された石膏粒子に曇点が3〜25℃であるポリエーテル系の消泡剤を添加混合する。本発明のセメント系固化材において、石膏ボード廃材に含有される界面活性剤に起因する気泡を効率的に消泡するには、水に分散しやすく、セメント系スラリー中に形成される気泡の表面(泡膜)を局部的に薄くし、気泡を破る破泡効果の高い消泡剤を使用することが好ましい。   Furthermore, this invention adds and mixes the polyether antifoamer whose cloud point is 3-25 degreeC to the gypsum particle | grains adjusted at the process (C) at process (D). In the cement-based solidified material of the present invention, in order to efficiently defoam bubbles caused by the surfactant contained in the gypsum board waste material, it is easy to disperse in water, and the surface of the bubbles formed in the cement-based slurry It is preferable to use an antifoaming agent having a high foam breaking effect that locally thins (foam film) and breaks bubbles.

消泡のメカニズムは大きく分類すると、抑泡と破泡に区別される。抑泡は水不溶性物質あるいは疎水性物質等を添加し、形成される泡膜の表面に水不溶性物質あるいは疎水性物質が挟まれることにより泡膜の形成を抑えることで、その代表的なものとして分子量の大きい脂肪酸、高級アルコール、シリコーン系等の消泡剤がある。一方、破泡は親水基と疎水基をもっている物質を添加し、親水基は泡膜への拡張性を高め、疎水基は泡膜を局部的に破壊する作用があり、その代表的なものとして分子量の小さいポリエーテル系の消泡剤等がある。   The defoaming mechanism can be broadly classified into foam suppression and bubble breakage. A typical example of foam suppression is the addition of a water-insoluble substance or a hydrophobic substance to suppress the formation of a foam film by sandwiching a water-insoluble substance or a hydrophobic substance on the surface of the formed foam film. There are antifoaming agents such as fatty acids with higher molecular weights, higher alcohols, and silicones. On the other hand, for foam breakage, a substance having a hydrophilic group and a hydrophobic group is added, the hydrophilic group enhances the expandability to the foam film, and the hydrophobic group has the action of locally destroying the foam film. There are polyether-based antifoaming agents with low molecular weight.

工程(D)で使用する消泡剤としては、市販のポリエーテル系の消泡剤を用いることができる。例えば、ポリオキシアルキレングリコールを主成分とするものが好ましい。また、本発明では,ポリエーテル系の消泡剤とアニオン系界面活性剤や非イオン界面活性剤との混合物を使用することができる。本発明のポリエーテル系の消泡剤はポリエチレングリコールとポリプロピレングリコールのブロック重合体や、異種のポリエーテル系の消泡剤を併用することもできる。更に、電気的な反発を生じさせずに気泡の安定化を阻害する非イオン性のポリエーテル系の消泡剤を使用することがより好ましい。また、添加混合する消泡剤の量は、再生石膏100質量部に対して、0.05〜10質量部であることが好ましい。より好ましくは、0.1〜5質量部であり、さらに好ましくは0.3〜1質量部であり、最も好ましくは0.3〜0.7質量部である。   As the antifoaming agent used in the step (D), a commercially available polyether antifoaming agent can be used. For example, what has polyoxyalkylene glycol as a main component is preferable. In the present invention, a mixture of a polyether-based antifoaming agent and an anionic surfactant or a nonionic surfactant can be used. The polyether antifoaming agent of the present invention can be used in combination with a block polymer of polyethylene glycol and polypropylene glycol or a different polyether antifoaming agent. Furthermore, it is more preferable to use a nonionic polyether antifoaming agent that inhibits the stabilization of bubbles without causing electrical repulsion. Moreover, it is preferable that the quantity of the antifoamer to add and mix is 0.05-10 mass parts with respect to 100 mass parts of regenerated gypsum. More preferably, it is 0.1-5 mass parts, More preferably, it is 0.3-1 mass part, Most preferably, it is 0.3-0.7 mass part.

また、工程(D)で使用するポリエーテル系の消泡剤の曇点は3〜25℃、好ましくは3〜20℃、より好ましくは3〜17℃である。ポリエーテル化合物は、温度が低下するにつれて水に溶けやすくなるという特徴があり、ポリエーテル系消泡剤は環境温度の低下により水に溶け消泡効果が失われやすくなる。本発明で用いられる消泡剤の曇点は低いほうが好ましい。作業環境温度が低くなると、曇点が25℃を超える消泡剤はセメント系固化材スラリー中の水に溶解しやすく、本来の気泡抑制作用が低下するため好ましくはない。曇点が3℃未満の消泡剤を用いた場合では、環境温度の上昇に伴い、消泡剤成分が分離する恐れがあるため好ましくない。   Moreover, the cloud point of the polyether type | system | group antifoamer used at a process (D) is 3-25 degreeC, Preferably it is 3-20 degreeC, More preferably, it is 3-17 degreeC. The polyether compound has a feature that it easily dissolves in water as the temperature decreases, and the polyether antifoaming agent dissolves in water due to a decrease in environmental temperature, and the defoaming effect tends to be lost. The defoaming agent used in the present invention preferably has a low cloud point. When the working environment temperature is lowered, an antifoaming agent having a cloud point of more than 25 ° C. is not preferable because it easily dissolves in water in the cement-based solidifying material slurry and lowers the original bubble suppression effect. In the case where an antifoaming agent having a cloud point of less than 3 ° C. is used, the antifoaming agent component may be separated as the environmental temperature rises, which is not preferable.

更に、工程(D)で使用する消泡剤は、粘度が50〜1000mPa・s、好ましくは100〜800mPa・s、より好ましくは150〜600mPa・sである。本発明で使用するポリエーテル系の消泡剤は原液を噴霧し、添加混合することが好ましい。消泡剤の粘度が低いほど、石膏に均一に混合するため、粘度は消泡剤が本来有する消泡効果を低下させない範囲で低いほうが好ましい。粘度が1000mPa・sを超えると、石膏への均一添加が難しくなるだけでなく、均一添加混合および圧送のための付帯設備費用が嵩むため、実用上好ましくない。   Further, the antifoaming agent used in the step (D) has a viscosity of 50 to 1000 mPa · s, preferably 100 to 800 mPa · s, more preferably 150 to 600 mPa · s. The polyether antifoaming agent used in the present invention is preferably sprayed with a stock solution and added and mixed. The lower the viscosity of the antifoaming agent, the more uniformly mixed with the gypsum. Therefore, it is preferable that the viscosity is as low as possible so as not to reduce the antifoaming effect inherent to the antifoaming agent. When the viscosity exceeds 1000 mPa · s, not only uniform addition to gypsum becomes difficult, but also costs for incidental equipment for uniform addition mixing and pumping increase, which is not preferable in practice.

本発明は、工程(A)〜(D)を経て得られた再生石膏を、工程(E)でセメントに添加混合する。この工程により、石膏ボード廃材から回収された再生石膏を比較的多量に活用することができる。再生石膏の添加量は、セメント系固化材中のSO含有量が1〜10質量%となるように添加混合することが好ましく、より好ましくは2〜9質量%、さらに好ましくは3〜8質量%である。SO含有量が1質量%未満では、処理対象土によっては、セメント系固化材としての本来の強度発現性を発揮できないケースもあるため好ましくない。SO含有量が10質量%を超えると石膏添加によるセメントの希釈により強度発現性が低下するため好ましくない。 In the present invention, the regenerated gypsum obtained through steps (A) to (D) is added to and mixed with cement in step (E). By this step, a relatively large amount of recycled gypsum recovered from the gypsum board waste material can be used. The added amount of the regenerated gypsum is preferably added and mixed so that the SO 3 content in the cement-based solidified material is 1 to 10% by mass, more preferably 2 to 9% by mass, and further preferably 3 to 8% by mass. %. If the SO 3 content is less than 1% by mass, depending on the soil to be treated, there are cases where the original strength development as a cement-based solidifying material cannot be achieved, which is not preferable. If the SO 3 content exceeds 10% by mass, strength development is reduced due to the dilution of cement by adding gypsum, which is not preferable.

本発明のセメント系固化材の製造において使用するセメントは、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント及び耐硫酸塩ポルトランドセメント等のポルトランドセメントや、高炉セメント、フライアッシュセメント及びシリカセメント等の混合セメントを使用できる。   The cement used in the production of the cement-based solidified material of the present invention includes ordinary Portland cement, early-strength Portland cement, moderately hot Portland cement and sulfate-resistant Portland cement, Portland cement, blast furnace cement, fly ash cement, silica cement, etc. Can be used.

また、本発明のセメント系固化材の製造においては、本発明の効果を著しく阻害しない範囲であれば、高炉水砕スラグ、高炉徐冷スラグ、フライアッシュ、石灰石微粉末、炭酸カルシウム、消石灰等の各種混合材を添加することができる。   Further, in the production of the cement-based solidified material of the present invention, blast furnace granulated slag, blast furnace slow-cooled slag, fly ash, fine limestone powder, calcium carbonate, slaked lime, etc., as long as the effects of the present invention are not significantly impaired. Various mixed materials can be added.

更に、本発明のセメント系固化材の製造においては、天然石膏、排煙脱硫石膏、フッ酸石膏、リン酸石膏等を同時に使用することもできる。石膏の形態としては、二水石膏、半水石膏、無水石膏のいずれの形態でも使用することができるが、セメント系固化材スラリーの良好な施工性を確保する上では二水石膏、無水石膏を主成分とするものが好ましいと言える。   Furthermore, natural gypsum, flue gas desulfurization gypsum, hydrofluoric acid gypsum, phosphoric acid gypsum and the like can be used simultaneously in the production of the cement-based solidified material of the present invention. As the form of gypsum, dihydrate gypsum, hemihydrate gypsum, and anhydrous gypsum can be used, but dihydrate gypsum and anhydrous gypsum are used to ensure good workability of the cement-based solidifying material slurry. It can be said that the main component is preferable.

以下に、実施例を用いて本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES The present invention will be described in detail below using examples, but the present invention is not limited to these examples.

<石膏の調製及びキャラクター>
まず、石膏ボード廃材から紙類等の不純物を除去した再生石膏原料を回収した後、目開き1mmの篩いを用いて最大粒子径が1mm以下となるように分級し、3種類の再生石膏を得た(再生石膏A〜C)。また、比較用にセメント仕上げ用石膏として用いられる排煙脱硫二水石膏を準備した。石膏中のSO含有量の測定は、JIS R 9101「セッコウの化学分析方法」に準拠して行った。再生石膏中のSiO含有量の測定は、JIS R 5202:1999「ポルトランドセメントの化学分析方法」に準じて行った。また、石膏に含まれる炭素含有量は高周波燃焼−赤外吸収法による炭素硫黄同時分析装置(LECO製、CS−400型)を用いて測定した。石膏中に含まれる紙類の含有量は水220gに石膏25gを分散させた後、石膏スラリーをろ過することにより浮遊した紙類を分離し、その乾燥質量から求めた。石膏の密度はJIS R 5201「セメントの物理試験方法」に従って測定した。その結果を表1に示す。
<Preparation of plaster and character>
First, recycled gypsum raw material from which impurities such as paper have been removed from the gypsum board waste material is collected, and then classified using a sieve with an opening of 1 mm so that the maximum particle size is 1 mm or less, to obtain three types of recycled gypsum. (Regenerated gypsum A to C). For comparison, flue gas desulfurized dihydrate gypsum used as cement finishing gypsum was prepared. The SO 3 content in the gypsum was measured in accordance with JIS R 9101 “Method for chemical analysis of gypsum”. The SiO 2 content in the reclaimed gypsum was measured according to JIS R 5202: 1999 “Chemical analysis method of Portland cement”. Moreover, the carbon content contained in gypsum was measured using a carbon-sulfur simultaneous analyzer (manufactured by LECO, model CS-400) by a high-frequency combustion-infrared absorption method. The content of paper contained in the gypsum was obtained by dispersing 25 g of gypsum in 220 g of water and then separating the floating paper by filtering the gypsum slurry and determining the dry mass. The density of gypsum was measured according to JIS R 5201 “Cement physical test method”. The results are shown in Table 1.

Figure 0005423515
Figure 0005423515

<消泡剤とそのキャラクター>
市販されているポリエーテル系、オイル系、アルコール系及びシリコーン系等の各種消泡剤を使用した。ポリエーテル系の消泡剤の曇点の測定は、消泡剤1質量%に調製した水溶液を用いて測定した。また、消泡剤の粘度はB型粘度計(TOKIMEC製、DVL−BII型)を用いて測定した。なお、粘度の測定温度は25℃とした。
<Antifoam and its character>
Various commercially available antifoaming agents such as polyether, oil, alcohol and silicone were used. The cloud point of the polyether antifoaming agent was measured using an aqueous solution prepared to 1% by mass of the antifoaming agent. Moreover, the viscosity of the antifoaming agent was measured using a B-type viscometer (manufactured by TOKIMEC, DVL-BII type). The temperature for measuring the viscosity was 25 ° C.

<セメント系固化材の調製>
まず、再生石膏A、B及びCの各々100質量部に対して、消泡剤を0.5質量部添加し、2分間混合した。次いで、普通ポルトランドセメント(宇部三菱セメント社製、SO含有量:2.00質量%、ブレーン比表面積:3380cm/g)に、固化材中のSO含有量が6.5±0.1質量%となるように、消泡剤含有の再生石膏を添加混合し、セメント系固化材を調製した。なお、比較用に排煙脱硫二水石膏を使用したセメント系固化材も調製した。なお、セメント及びセメント系固化材中のSO含有量は、JIS R 5202:1999「ポルトランドセメントの化学分析方法」に準じて測定した。
<Preparation of cement-based solidification material>
First, 0.5 parts by mass of an antifoaming agent was added to 100 parts by mass of each of the regenerated gypsums A, B, and C, and mixed for 2 minutes. Next, ordinary Portland cement (manufactured by Ube Mitsubishi Cement, SO 3 content: 2.00% by mass, Blaine specific surface area: 3380 cm 2 / g), SO 3 content in the solidified material is 6.5 ± 0.1. An antifoam-containing regenerated gypsum was added and mixed so that the mass% was obtained, thereby preparing a cement-based solidified material. A cement-based solidified material using flue gas desulfurized dihydrate gypsum was also prepared for comparison. The SO 3 content in the cement and cement-based solidified material was measured according to JIS R 5202: 1999 “Chemical analysis method of Portland cement”.

<セメント系固化材スラリーの気泡発生率の測定>
環境温度20℃において、セメント系固化材220gと水220gとをミキサーで1分間撹拌し、セメント系固化材スラリー(水粉体比:100質量%)を調製した。20℃で調製されたセメント系固化材スラリーをメスシリンダーに入れ、下記(1)式及び(2)式を用いて、スラリーの気泡発生率を測定した。なお、(1)式のスラリーの理論容積は、水の密度を0.998g/cmとし、表1に示す石膏の密度を用いて算出した。
気泡発生量(mL)=スラリーの全容積(実測値)−スラリーの理論容積(計算値) (1)
気泡発生率(容積%)=(気泡発生量/スラリーの理論容積)×100 (2)
<Measurement of bubble generation rate of cement solidified slurry>
At an environmental temperature of 20 ° C., 220 g of cement-based solidified material and 220 g of water were stirred for 1 minute with a mixer to prepare a cement-based solidified material slurry (water powder ratio: 100% by mass). The cement-based solidified material slurry prepared at 20 ° C. was placed in a graduated cylinder, and the bubble generation rate of the slurry was measured using the following formulas (1) and (2). The theoretical volume of the slurry of formula (1) was calculated using the density of water as 0.998 g / cm 3 and the density of gypsum shown in Table 1.
Bubble generation amount (mL) = total volume of slurry (actual value)-theoretical volume of slurry (calculated value) (1)
Bubble generation rate (volume%) = (bubble generation amount / theoretical volume of slurry) × 100 (2)

<セメント系固化材スラリーのスクリーン閉塞性の確認試験>
環境温度20℃において、目開き1mmのメッシュ(直径62mm)にセメント系固化材スラリー440g(水粉体比:100質量%)を大気圧下で全量通過させ、通過したスラリーを再度上記メッシュに全量通過させた。この操作を10回繰返すことにより、スラリー中の紙類によるスクリーンの閉塞性を評価した。
<Confirmation test of screen blockage of cement-based solidifying material slurry>
At an ambient temperature of 20 ° C., 440 g of cement-based solidified material slurry (water / powder ratio: 100% by mass) is passed through a mesh having a mesh size of 1 mm (diameter 62 mm) under atmospheric pressure, and the passed slurry is again passed through the mesh. I let it pass. By repeating this operation 10 times, the blockage of the screen by the paper in the slurry was evaluated.

<セメント系固化材を用いた固化処理土の一軸圧縮強さ試験>
固化処理土の一軸圧縮強さ試験では、対象処理土として粘性土(含水比:70.0質量%、湿潤密度:1.649g/cm)を使用した。セメント系固化材の添加量は粘性土1mに対して100kgとした。セメント系固化材と粘性土をホバートミキサーで3分間練り混ぜ、JGS 0821−2000「安定処理土の締固めをしない供試体作製方法」に準拠して、固化処理土を直径50mm×高さ100mmの供試体を作製し、20℃で材齢7日まで密封養生した。材齢7日の固化処理土の一軸圧縮強さをJIS A 1216「土の一軸圧縮試験方法」に準じて測定した。
<Uniaxial compressive strength test of solidified soil using cement-based solidified material>
In the uniaxial compressive strength test of the solidified soil, viscous soil (water content ratio: 70.0 mass%, wet density: 1.649 g / cm 3 ) was used as the target treated soil. The amount of cement-based solidifying material added was 100 kg per 1 m 3 of clay soil. Cement-based solidified material and viscous soil are kneaded with a Hobart mixer for 3 minutes, and the solidified soil is 50 mm in diameter and 100 mm in height according to JGS 0821-2000 “Method for preparing specimen without compaction of stabilized soil”. A specimen was prepared and sealed and cured at 20 ° C. until the material age was 7 days. The uniaxial compressive strength of the solidified soil of 7 days of age was measured according to JIS A 1216 “Soil uniaxial compressive test method”.

<実施例1〜2、比較例1及び参考例>
固化材中のSO含有量が6.5±0.1質量%となるように各種の再生石膏を使用して得たセメント系固化材を用いて行った固化処理土の一軸圧縮強さを表2に、そのセメント系固化材スラリーの気泡発生率及びスクリーン閉塞性を表3に示す。ここで使用した消泡剤は、ポリアルキレングリコール誘導体を主成分とするポリエーテル系のもの(タイプA、日本油脂(株)製、商品名:ディスホームC−118)であった。
<Examples 1-2, Comparative Example 1 and Reference Example>
The uniaxial compressive strength of the solidified soil obtained using cement-based solidified material obtained by using various types of recycled gypsum so that the SO 3 content in the solidified material becomes 6.5 ± 0.1% by mass. Table 2 shows the bubble generation rate and screen closing property of the cement-based solidifying material slurry. The antifoaming agent used here was a polyether-based material (type A, manufactured by NOF Corporation, trade name: Dishome C-118) mainly composed of a polyalkylene glycol derivative.

Figure 0005423515
Figure 0005423515

Figure 0005423515
Figure 0005423515

表2に示すように、実施例1のセメント系固化材を用いた固化処理土の一軸圧縮強さは、排煙脱硫二水石膏を用いたセメント系固化材による結果(参考例)と同程度で良好であった。SO含有量が43質量%を下回り、炭素含有量が0.7質量%を超える再生石膏Bを使用した比較例1のセメント系固化材では、固化処理土の一軸圧縮強さが低下した。本発明のように、再生石膏中のSO含有量が43質量%以上で、炭素含有量が0.7質量%以下であれば、セメント系固化材が本来有する強度発現性を90%以上確保することができ、問題とはならないことが明らかとなった。 As shown in Table 2, the uniaxial compressive strength of the solidified soil using the cement-based solidified material of Example 1 is approximately the same as the result (reference example) of the cement-based solidified material using flue gas desulfurized dihydrate gypsum. It was good. SO 3 content is below 43 wt%, the carbon content is cement solidifying material of Comparative Example 1 using recycled gypsum B exceeding 0.7 mass%, the uniaxial compressive strength of the solidification soil is decreased. As in the present invention, when the SO 3 content in the reclaimed gypsum is 43% by mass or more and the carbon content is 0.7% by mass or less, the strength expression inherent in the cement-based solidified material is ensured by 90% or more. It became clear that it was not a problem.

表3に示すように、炭素含有量を低く管理した再生石膏A及びCを用いたセメント系固化材スラリーではスクリーンの閉塞がなかった(実施例1〜2)。一方、炭素含有量が0.84質量%と多い再生石膏Bを用いた場合には、実験開始後直ちにメッシュが詰まり、スクリーン閉塞が生じやすいと判定した(比較例1)。   As shown in Table 3, the cement-based solidified material slurry using the reclaimed gypsum A and C whose carbon content was kept low did not clog the screen (Examples 1 and 2). On the other hand, when regenerated gypsum B having a carbon content as high as 0.84% by mass was used, it was determined that the mesh was clogged immediately after the start of the experiment, and screen clogging was likely to occur (Comparative Example 1).

<実施例1及び3、比較例3〜7>
再生石膏A100質量部に対して、市販の各種消泡剤を0.5質量部添加混合した再生石膏Aを用いたセメント系固化材スラリーの気泡発生率を測定した結果を表4に示す。また、比較のために消泡剤を添加混合していないセメント系固化材についても同様に測定した。
<Examples 1 and 3, Comparative Examples 3 to 7>
Table 4 shows the results of measuring the bubble generation rate of the cement-based solidifying material slurry using the regenerated gypsum A obtained by adding and mixing 0.5 parts by mass of various commercially available antifoaming agents with respect to 100 parts by mass of the regenerated gypsum A. For comparison, the same measurement was performed for a cement-based solidified material to which an antifoaming agent was not added and mixed.

Figure 0005423515

タイプA:ポリアルキレングリコール誘導体、日本油脂(株)製、商品名:ディスホームC−118
タイプB:ポリエーテルとアニオン系界面活性剤の混合物、サンノプコ(株)製、商品名:ダッポー408
Figure 0005423515

Type A: Polyalkylene glycol derivative, manufactured by NOF Corporation, trade name: Dishome C-118
Type B: Mixture of polyether and anionic surfactant, manufactured by San Nopco, trade name: Dappo 408

表4に示すように、ポリエーテル系の消泡剤を用いたセメント系固化材スラリーでは、気泡の発生は抑えられた(実施例1及び3)。しかしながら、比較例3〜6のように、疎水性物質として鉱油、疎水性シリカ、油脂類、シリコーンを含む消泡剤を用いたセメント系固化材スラリーでは、気泡の発生を効果的に抑制することはできなかった。   As shown in Table 4, in the cement-based solidifying material slurry using the polyether-based antifoaming agent, the generation of bubbles was suppressed (Examples 1 and 3). However, as in Comparative Examples 3 to 6, in the cement-based solidified material slurry using an antifoaming agent containing mineral oil, hydrophobic silica, fats and silicone as a hydrophobic substance, the generation of bubbles is effectively suppressed. I couldn't.

<実施例1、実施例3〜6、比較例8>
再生石膏A100質量部に対して、曇点の異なる市販の各種のポリエーテル系消泡剤を0.5質量部添加混合したセメント系固化材スラリーの気泡発生率を測定した結果を表5に示す。
<Example 1, Examples 3-6, Comparative Example 8>
Table 5 shows the results of measuring the bubble generation rate of a cement-based solidified material slurry obtained by adding and mixing 0.5 parts by mass of various commercially available polyether defoamers having different cloud points with respect to 100 parts by mass of recycled gypsum A. .

Figure 0005423515

タイプA:ポリアルキレングリコール誘導体、日本油脂(株)製、商品名:ディスホームC−118
タイプB:ポリエーテルとアニオン系界面活性剤の混合物、サンノプコ(株)製、商品名:ダッポー408
タイプC:ポリエーテルとポリエチレングリコール型非イオン界面活性剤の混合物、サンノプコ(株)製、商品名:ダッポー406
タイプD:ポリエチレングリコール型非イオン界面活性剤等の混合物、サンノプコ(株)製、商品名:ダッポー401
タイプE:ポリエチレングリコール型非イオン界面活性剤等の混合物、サンノプコ(株)製、商品名:ダッポー404
タイプF:ポリオキシアルキレン非イオン界面活性剤、サンノプコ(株)製、商品名:SNデフォーマー180
Figure 0005423515

Type A: Polyalkylene glycol derivative, manufactured by NOF Corporation, trade name: Dishome C-118
Type B: Mixture of polyether and anionic surfactant, manufactured by San Nopco, trade name: Dappo 408
Type C: Mixture of polyether and polyethylene glycol type nonionic surfactant, manufactured by San Nopco, trade name: Dappo 406
Type D: a mixture of polyethylene glycol type nonionic surfactant, etc., manufactured by San Nopco Co., Ltd., trade name: Dappo 401
Type E: a mixture of polyethylene glycol type nonionic surfactants, manufactured by San Nopco Co., Ltd., trade name: Dappo 404
Type F: Polyoxyalkylene nonionic surfactant, manufactured by San Nopco Co., Ltd., trade name: SN deformer 180

表5に示すように、曇点が3〜25℃の範囲にあるポリエーテル系の消泡剤を使用したセメント系固化材スラリーの気泡の発生は抑えられた(実施例1、3、4,5及び6)。比較例8のように、曇点が高いポリエーテル系の消泡剤を使用したセメント系固化材スラリーでは、気泡発生率が大きく低下しなかった。   As shown in Table 5, the generation of bubbles in the cement-based solidifying material slurry using a polyether-based antifoaming agent having a cloud point in the range of 3 to 25 ° C. was suppressed (Examples 1, 3, 4, and 4). 5 and 6). As in Comparative Example 8, in the cement-based solidified material slurry using the polyether-based antifoaming agent having a high cloud point, the bubble generation rate was not significantly reduced.

Claims (5)

(A)石膏ボード廃材から不純物を除去し、SO含有量が43質量%以上である石膏を分別・回収して再生石膏原料を得る工程と、
(B)工程(A)で得られた再生石膏原料を最大粒子径が0.5〜1.0mmの範囲の石膏粒子に分級する工程と、
(C)工程(B)で分級された石膏粒子に含まれる炭素含有量を0.7質量%以下に調整する工程と、
(D)工程(C)で調整された石膏粒子に曇点が3〜25℃であるポリエーテル系の消泡剤を添加混合する工程と、を含む工程により再生石膏を得たのち、
(E)得られた再生石膏をセメントに添加混合する工程、
を含むことを特徴とするセメント系固化材の製造方法。
(A) removing impurities from gypsum board waste, and separating and collecting gypsum having a SO 3 content of 43% by mass or more to obtain a regenerated gypsum raw material;
(B) a step of classifying the regenerated gypsum raw material obtained in step (A) into gypsum particles having a maximum particle size in the range of 0.5 to 1.0 mm;
(C) adjusting the carbon content contained in the gypsum particles classified in step (B) to 0.7% by mass or less;
(D) After obtaining the reclaimed gypsum by a process including adding and mixing a polyether antifoaming agent having a cloud point of 3 to 25 ° C. to the gypsum particles adjusted in the step (C),
(E) adding and mixing the obtained recycled gypsum to cement;
A method for producing a cement-based solidified material, comprising:
工程(D)において、添加混合する消泡剤が、再生石膏100質量部に対して0.05〜10質量部である、請求項1記載のセメント系固化材の製造方法。   The manufacturing method of the cement-type solidification material of Claim 1 whose defoamer to add and mix in a process (D) is 0.05-10 mass parts with respect to 100 mass parts of reproduction | regeneration gypsum. 工程(E)において、再生石膏を、セメント系固化材中のSO含有量が1〜10質量%となるように添加混合する、請求項1又は2記載のセメント系固化材の製造方法。 The method for producing a cement-based solidified material according to claim 1 or 2, wherein in step (E), the regenerated gypsum is added and mixed so that the SO 3 content in the cement-based solidified material is 1 to 10% by mass. 石膏ボード廃材を原料とする最大粒子径が0.5〜1.0mmの範囲であり、炭素含有量が0.7質量%以下である石膏粒子と、曇点が3〜25℃であるポリエーテル系の消泡剤と、セメントとを含むセメント系固化材。   Gypsum particles having a maximum particle size of 0.5 to 1.0 mm and a carbon content of 0.7% by mass or less, and a polyether having a cloud point of 3 to 25 ° C. Cement-based solidifying material comprising an antifoaming agent and cement. SO含有量が1〜10質量%である、請求項4記載のセメント系固化材。 SO 3 content is 1 to 10 mass%, according to claim 4 cement solidifying material according.
JP2010064029A 2010-03-19 2010-03-19 Cement-based solidified material and method for producing the same Active JP5423515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010064029A JP5423515B2 (en) 2010-03-19 2010-03-19 Cement-based solidified material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010064029A JP5423515B2 (en) 2010-03-19 2010-03-19 Cement-based solidified material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011195379A JP2011195379A (en) 2011-10-06
JP5423515B2 true JP5423515B2 (en) 2014-02-19

Family

ID=44874054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010064029A Active JP5423515B2 (en) 2010-03-19 2010-03-19 Cement-based solidified material and method for producing the same

Country Status (1)

Country Link
JP (1) JP5423515B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6088277B2 (en) * 2013-02-07 2017-03-01 株式会社トクヤマ How to use waste gypsum board
JP6450550B2 (en) * 2014-09-29 2019-01-09 石坂産業株式会社 Sorting equipment for earth and sand mixed waste including waste gypsum board

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07157761A (en) * 1993-12-08 1995-06-20 Chichibu Onoda Cement Corp Soil stabilization treating material and method for soil stabilization treatment

Also Published As

Publication number Publication date
JP2011195379A (en) 2011-10-06

Similar Documents

Publication Publication Date Title
KR100917117B1 (en) Filler for Iron reinforcing rod joint and construction method for filling-up of iron reinforcing rod joint using the same
CN105884301B (en) It is a kind of be capable of 620 meters of super high pump-conveyings exempt from High-strength self-compaction concrete and preparation method thereof of shaking
CN105819783A (en) Salt frost resistant concrete curbstone prepared from waste slurry of concrete mixing station and preparation method thereof
JP2002047052A (en) Concrete and method of producing the same
CN110407490A (en) A kind of preparation method of the compound high additive cement of inorganic solid waste
JP2005255456A (en) Hydraulic composition
JP2018100204A (en) Method of producing cement composition
JP5583429B2 (en) Hydraulic composition
JP2008094679A (en) Grout composition and grout material using the same
JP5423515B2 (en) Cement-based solidified material and method for producing the same
JP6292257B2 (en) Hydrated solidified product using desulfurized slag
JP2003335565A (en) High performance concrete
JP2003192403A (en) Portland cement for concrete
JP4810914B2 (en) Fine powder for concrete composition, fresh concrete and method for improving fluidity thereof
JP7042643B2 (en) Cement composition
JP5464558B2 (en) Method for producing cement composition
JP6837856B2 (en) Expandable admixture for exposed concrete and exposed concrete containing it
CN110304885A (en) The cement mortar and preparation method thereof of high additive solid waste preparation
JP2010195601A (en) Cement composition
JP2006193393A (en) High-flow concrete
JP6479461B2 (en) Cement additive and cement composition
JP2001039746A (en) Cement admixture, cement composition containing the same and concrete using the same composition
JP2004105783A (en) Solidification material and solidification method for soil
JP4773702B2 (en) Cement composition and method for producing the same
JP2009126717A (en) Calcium silicate hydrate-based material and calcium silicate hydrate-based building material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5423515

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250