JP2023027961A - Information processing device and ophthalmologic examination device - Google Patents

Information processing device and ophthalmologic examination device Download PDF

Info

Publication number
JP2023027961A
JP2023027961A JP2021133354A JP2021133354A JP2023027961A JP 2023027961 A JP2023027961 A JP 2023027961A JP 2021133354 A JP2021133354 A JP 2021133354A JP 2021133354 A JP2021133354 A JP 2021133354A JP 2023027961 A JP2023027961 A JP 2023027961A
Authority
JP
Japan
Prior art keywords
tomographic image
eye
image
tomographic
view
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021133354A
Other languages
Japanese (ja)
Inventor
理宇眞 ▲高▼橋
Riuma Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2021133354A priority Critical patent/JP2023027961A/en
Publication of JP2023027961A publication Critical patent/JP2023027961A/en
Pending legal-status Critical Current

Links

Images

Abstract

To improve visibility of an attention region of an eye to be examined.SOLUTION: An information processing device for acquiring a tomographic image of an eye to be examined using an interference light obtained by combining a return light from the eye to be examined irradiated with a measurement light and a reference light includes: control means for controlling scanning means for scanning the measurement light in the eye to be examined with a selected field angle when any one of a plurality of field angles including a first field angle and a second field angle narrower than the first field angle is selected as a field angle for acquiring the tomographic image of the eye to be examined; and display control means for displaying, in a display region, a first tomographic image acquired with the first field angle when the first field angle is selected, and displaying a partial image included in a second tomographic image acquired with the second field angle, which is shorter in the length in a depth direction of the eye to be examined than the second tomographic image so that it fits with the display region when the second field angle is selected.SELECTED DRAWING: Figure 8

Description

本明細書に開示される技術は、情報処理装置及び眼科検査装置に関する。 The technology disclosed in this specification relates to an information processing apparatus and an ophthalmologic examination apparatus.

光干渉断層計(OCT;Optical Coherence Tomography)などの断層画像撮影装置を用いると、被検眼内部の構造を三次元的に観察できる。OCTは、疾病の診断をより的確に行うために有用であることから眼科診療に広く用いられている。 Using a tomography apparatus such as an optical coherence tomography (OCT) allows three-dimensional observation of the internal structure of the subject's eye. OCT is widely used in ophthalmology because it is useful for more accurately diagnosing diseases.

OCTの種別として、例えば、広帯域な光源とマイケルソン干渉計を組み合わせたTD-OCT(Time domain OCT)がある。TD-OCTは、参照ミラーの位置を一定速度で移動させ、参照光と信号アームで取得した後方散乱光との合波により得られる干渉光を計測することで、被検眼における深さ方向の反射光強度分布を得る。 As a type of OCT, for example, there is TD-OCT (Time domain OCT) combining a broadband light source and a Michelson interferometer. TD-OCT moves the position of the reference mirror at a constant speed and measures the interference light obtained by combining the reference light and the backscattered light acquired by the signal arm. Obtain the light intensity distribution.

ここで、TD-OCTでは参照ミラーの機械的な移動が必要であるため高速な画像取得が難しかった。そこで、より高速に画像を取得するOCTの種別として、広帯域光源を用いて分光器を介して干渉光を取得するSD-OCT(Spectral domain OCT)が開発された。 Here, TD-OCT requires mechanical movement of the reference mirror, making high-speed image acquisition difficult. Therefore, SD-OCT (Spectral domain OCT), which acquires interference light through a spectroscope using a broadband light source, has been developed as a type of OCT that acquires images at a higher speed.

さらに、高速で波長を掃引する波長掃引光源を用いて時間的に分光することで高周波の干渉光を検出可能なSS-OCT(Swept Source OCT)が開発された。SS-OCTを用いることで、被検眼の脈絡膜や強膜などの組織が含まれた広画角かつ高深さ範囲の断層画像を取得できる。 Furthermore, SS-OCT (Swept Source OCT) capable of detecting high-frequency interference light has been developed by temporally dispersing light using a wavelength-swept light source that sweeps wavelengths at high speed. By using SS-OCT, it is possible to obtain a tomographic image with a wide angle of view and a high depth range that includes tissues such as the choroid and sclera of the subject's eye.

特許文献1には、広画角でかつ高深さ範囲の断層画像が取得された場合、断層画像を等倍に拡大することで層境界を視認しやすくする技術が開示されている。 Japanese Patent Application Laid-Open No. 2002-200003 discloses a technique that, when a tomographic image with a wide angle of view and a high depth range is acquired, magnifies the tomographic image by 1:1 to make it easier to visually recognize the layer boundary.

特開2021-37170号公報Japanese Patent Application Laid-Open No. 2021-37170

ここで、特許文献1で開示されるような広画角でかつ高深さ範囲の断層画像だけでなく、開示される画角よりも狭い画角でかつ高深さ範囲の断層画像を取得する場合が考えられる。このとき、狭い画角で取得された断層画像が高深さ範囲であるにも関わらず、例えば、広い画角で取得された断層画像が表示される表示領域と同じ表示領域に合うように表示させると、被検眼の組織や網膜の層境界などの注目領域が深さ方向につぶれてしまうため視認しづらくなる場合があった。 Here, in addition to a tomographic image with a wide angle of view and a high depth range as disclosed in Patent Document 1, there are cases where a tomographic image with a narrower angle of view and a high depth range than the disclosed angle of view is acquired. Conceivable. At this time, even though the tomographic image acquired with the narrow angle of view is in the high depth range, for example, the tomographic image acquired with the wide angle of view is displayed so as to match the same display area. As a result, the target area such as the tissue of the eye to be inspected or the layer boundary of the retina collapses in the depth direction, which sometimes makes it difficult to see.

狭い画角かつ高深さ範囲で取得された断層画像を表示領域に表示させる際に、特許文献1で開示されるように断層画像を単純に等倍に拡大させてしまうと、被検眼の深さ方向に交差する方向における断層画像の一部の領域が表示されなくなってしまう。 When a tomographic image acquired with a narrow angle of view and a high depth range is displayed in the display area, if the tomographic image is simply enlarged to the same size as disclosed in Patent Document 1, the depth of the eye to be examined A part of the tomographic image in the direction intersecting the direction is not displayed.

開示の技術の一つは、被検眼の注目領域の視認性を向上することを目的とする。 One of the disclosed technologies aims to improve the visibility of the attention area of the subject's eye.

なお、前記目的に限らず、後述する発明を実施するための形態に示す各構成により導かれる作用効果であって、従来の技術によっては得られない作用効果を奏することも本件の他の目的の一つとして位置づけることができる。 In addition to the above object, it is also another object of the present invention to achieve an effect derived from each configuration shown in the mode for carrying out the invention described later, and an effect that cannot be obtained by the conventional technology. can be positioned as one.

本明細書に開示される技術は、
測定光が照射された被検眼からの戻り光と参照光とを合波して得た干渉光を用いて前記被検眼の断層画像を取得する情報処理装置であって、
前記被検眼の断層画像を取得する画角として、第1の画角と前記第1の画角よりも狭い第2の画角とを含む複数の画角のうちいずれかが選択された場合に、前記選択された画角で前記被検眼において前記測定光を走査する走査手段を制御する制御手段と、
前記第1の画角が選択された場合、前記第1の画角で取得された第1の断層画像を表示領域に表示させ、前記第2の画角が選択された場合、前記第2の画角で取得された第2の断層画像に含まれる部分画像であって前記第2の断層画像よりも被検眼における深さ方向の長さが短い部分画像を、前記表示領域に合わせるように表示させる表示制御手段と、
を備える。
The technology disclosed in this specification is
An information processing apparatus for acquiring a tomographic image of an eye to be inspected using interference light obtained by combining reference light and return light from an eye to be inspected irradiated with measurement light,
when one of a plurality of angles of view including a first angle of view and a second angle of view narrower than the first angle of view is selected as the angle of view for acquiring the tomographic image of the eye to be inspected; , a control means for controlling a scanning means for scanning the measurement light in the eye to be inspected at the selected angle of view;
When the first angle of view is selected, a first tomographic image acquired at the first angle of view is displayed in the display area, and when the second angle of view is selected, the second tomographic image is displayed. A partial image included in the second tomographic image acquired at the angle of view and having a shorter length in the depth direction of the eye to be inspected than the second tomographic image is displayed so as to match the display area. a display control means for
Prepare.

本明細書に開示される技術によれば、被検眼の注目領域の視認性を向上することができる。 According to the technology disclosed in this specification, it is possible to improve the visibility of the attention area of the subject's eye.

実施例1~4に係る眼科システムを説明する図である。1 is a diagram illustrating an ophthalmologic system according to Examples 1 to 4; FIG. 実施例1~4に係る眼科検査装置に含まれる測定光学系を説明する図である。FIG. 3 is a diagram for explaining a measurement optical system included in the ophthalmologic examination apparatus according to Examples 1 to 4; 実施例1~4に係る断層画像の表示の一例を説明する図である。FIG. 5 is a diagram illustrating an example of display of tomographic images according to Examples 1 to 4; 実施例1~4に係る情報処理装置の概略的な構成を説明する図である。1 is a diagram illustrating a schematic configuration of an information processing apparatus according to Examples 1 to 4; FIG. 実施例1に係る表示画面の一例を示す図である。FIG. 10 is a diagram showing an example of a display screen according to the first embodiment; FIG. 実施例1に係る表示画面の一例を示す図である。FIG. 10 is a diagram showing an example of a display screen according to the first embodiment; FIG. 実施例1に係る表示画面の一例を示す図である。FIG. 10 is a diagram showing an example of a display screen according to the first embodiment; FIG. 実施例1に係る情報処理装置の動作フローの一例を示す図である。4 is a diagram illustrating an example of an operation flow of the information processing apparatus according to the first embodiment; FIG. 実施例2に係る表示画面の一例を示す図である。FIG. 11 is a diagram showing an example of a display screen according to Example 2; 実施例2に係る情報処理装置の動作フローの一例を示す図である。FIG. 10 is a diagram illustrating an example of an operation flow of an information processing apparatus according to the second embodiment; 実施例3に係る撮影画面の一例を示す図である。FIG. 11 is a diagram illustrating an example of a photographing screen according to Example 3; 実施例3に係る情報処理装置の動作フローの一例を示す図である。FIG. 13 is a diagram illustrating an example of an operation flow of an information processing apparatus according to the third embodiment; 実施例4に係る断層画像の表示の一例を説明する図である。FIG. 11 is a diagram illustrating an example of display of a tomographic image according to Example 4; 実施例4に係る情報処理装置の動作フローの一例を示す図である。FIG. 14 is a diagram illustrating an example of an operation flow of an information processing apparatus according to a fourth embodiment;

以下、本明細書に開示される技術を実施するための例示的な実施例を、図面を参照して説明する。なお、以下の実施例で説明する寸法、材料、形状、及び構成要素の相対的な位置等は任意であり、本明細書に開示される技術が適用される装置の構成又は様々な条件に応じて変更できる。 Exemplary embodiments for implementing the technology disclosed herein will now be described with reference to the drawings. Note that the dimensions, materials, shapes, relative positions of components, and the like described in the following examples are arbitrary, and may vary depending on the configuration of the device to which the technology disclosed herein is applied or various conditions. can be changed by

例えば、実施例に記載のSD-OCTによって取得される断層画像の深さ方向の寸法は2mmで記載されているが、2mmに限定されない。また、実施例内で扱われる断層画像の被検眼における深さ方向の長さ(撮影深度)は、眼科検査装置の種別ごとに固定である場合を説明するが、1つの眼科検査装置によって複数の撮影深度で断層画像の取得ができる構成であってもよい。 For example, although the dimension in the depth direction of the tomographic image obtained by SD-OCT described in the examples is described as 2 mm, it is not limited to 2 mm. Also, the length of the tomographic image in the depth direction (imaging depth) of the eye to be examined, which is handled in the embodiments, is fixed for each type of ophthalmologic examination apparatus. The configuration may be such that a tomographic image can be acquired at an imaging depth.

また、図面において、同一であるか又は機能的に類似している要素を示すために図面間で同じ参照符号を用いる。また、各図面において説明上重要ではない構成要素、部材、処理の一部は省略して表示する場合がある。 Also, the same reference numbers are used in the drawings to indicate identical or functionally similar elements. In addition, in each drawing, some components, members, and processes that are not important for explanation may be omitted.

<実施例1>
図1から図7を参照して、本実施例の眼科システム10について説明する。眼科システム10は、取得した断層画像の被検眼における深さ方向の長さと、断層画像を取得した断層画像撮影装置の種別とのいずれかに応じて、異なるスケールを適用して断層画像を表示することができる。
<Example 1>
An ophthalmologic system 10 of this embodiment will be described with reference to FIGS. 1 to 7. FIG. The ophthalmologic system 10 displays a tomographic image by applying a different scale according to either the length of the acquired tomographic image in the depth direction of the eye to be examined or the type of the tomographic imaging apparatus that acquired the tomographic image. be able to.

ここで、深さ方向が長い断層画像又はSS-OCTによって取得された断層画像が選択された場合、断層画像の深さ方向における一部の領域のみ、すなわち部分画像を表示領域に合わせるように表示させるスケールで表示される。取得されたままの断層画像よりも深さ方向が短い部分画像を表示することで、断層画像が深さ方向につぶされることがなく、注目領域を視認しやすくすることができる。 Here, when a tomographic image having a long depth direction or a tomographic image acquired by SS-OCT is selected, only a partial region in the depth direction of the tomographic image, that is, a partial image is displayed so as to fit the display region. displayed on a scale that allows By displaying a partial image that is shorter in the depth direction than the tomographic image as it is acquired, the tomographic image is not crushed in the depth direction, and the region of interest can be easily recognized visually.

断層画像撮影装置であるOCTによって取得される断層画像の深さ方向の長さ(撮影深度)は、被検眼に照射される測定光の性質と、干渉光を受光するセンサの性質とに依存する。取得される断層画像の深さ方向の長さを変更するためには、光源の変更やサンプリング速度の変更などの光学系の構成の煩雑な変更及び調整が必要であるため、深さ方向の長さは変更不可である場合がある。本実施例では、取得した断層画像を後処理することによって、光学系の構成の煩雑な変更及び調整をすることなく注目領域を視認しやすく表示させることができる。 The length in the depth direction (imaging depth) of a tomographic image acquired by OCT, which is a tomographic imaging apparatus, depends on the properties of the measurement light that irradiates the eye to be inspected and the properties of the sensor that receives the interference light. . In order to change the length in the depth direction of the acquired tomographic image, it is necessary to make complicated changes and adjustments to the configuration of the optical system, such as changing the light source and changing the sampling speed. length may be immutable. In the present embodiment, by post-processing the acquired tomographic image, it is possible to display the attention area in an easy-to-visually-recognizable manner without complicated changes and adjustments of the configuration of the optical system.

(システムの構成)
図1を参照して、眼科システム10の構成の一例を説明する。図1は本実施例に係る眼科システム10の構成を示す図である。図1に示すように、眼科システム10は、情報処理装置の一例である眼科制御装置110が、インターフェースを介して断層画像撮影装置100(OCTとも呼ばれる)、記憶部120、入力部130、表示部140と通信可能に接続されたシステムである。
(System configuration)
An example of the configuration of the ophthalmic system 10 will be described with reference to FIG. FIG. 1 is a diagram showing the configuration of an ophthalmologic system 10 according to this embodiment. As shown in FIG. 1, an ophthalmologic system 10 includes an ophthalmologic control device 110, which is an example of an information processing device, and a tomographic imaging device 100 (also called OCT), a storage unit 120, an input unit 130, and a display unit via an interface. 140 and a system communicatively connected thereto.

断層画像撮影装置100は、被検眼の断層画像を撮影する装置であり、測定光学系101、ステージ部102及びベース部103を備える。断層画像撮影装置100として、波長掃引光源を用いて測定光が照射された被検眼からの戻り光と参照光とを合波して得た干渉光を用いて断層画像を取得する眼科検査装置であるSS-OCTを説明する。 A tomographic image capturing apparatus 100 is an apparatus that captures a tomographic image of an eye to be examined, and includes a measurement optical system 101 , a stage section 102 and a base section 103 . The tomographic imaging apparatus 100 is an ophthalmologic examination apparatus that acquires a tomographic image using interference light obtained by combining reference light and return light from an eye to be inspected irradiated with measurement light using a wavelength swept light source. A certain SS-OCT is described.

なお、後述するように眼科制御装置110は、眼科検査装置の別の一例であるSD-OCTと接続可能に構成されてもよい。SD-OCTは分光器を介して干渉光を検出する。 As will be described later, the ophthalmologic control apparatus 110 may be configured to be connectable to SD-OCT, which is another example of an ophthalmologic examination apparatus. SD-OCT detects interfering light through a spectroscope.

測定光学系101は前眼観察像、被検眼のSLO眼底像、断層画像を取得するための光学系である。ステージ部102は、測定光学系101を前後左右に移動可能にする。 A measurement optical system 101 is an optical system for acquiring an anterior eye observation image, an SLO fundus image of an eye to be examined, and a tomographic image. The stage unit 102 enables the measurement optical system 101 to move forward, backward, leftward, and rightward.

眼科制御装置110は、ステージ部102の制御、アライメント動作の制御、断層画像の再構成、画像の表示などを実行するコンピュータである。記憶部120は、断層撮像用のプログラム(撮影パターンなど)、患者情報、過去検査の撮影データや画像データ、計測データなどを記憶する。 The ophthalmologic control apparatus 110 is a computer that controls the stage unit 102, controls alignment operations, reconstructs tomographic images, displays images, and the like. The storage unit 120 stores programs for tomographic imaging (such as imaging patterns), patient information, imaging data and image data of past examinations, measurement data, and the like.

入力部130はコンピュータへの指示を行い、具体的にはキーボードとマウスから構成される。表示部140は、例えばモニターから成る。なおタッチパネルを使用する場合は、入力部130の一部または全てが表示部140に内蔵される。 The input unit 130 gives instructions to the computer, and is specifically composed of a keyboard and a mouse. The display unit 140 is composed of, for example, a monitor. When using a touch panel, part or all of the input unit 130 is built into the display unit 140 .

(断層画像撮影装置の構成)
本実施例の断層画像撮影装置100における測定光学系の構成について図2を用いて説明する。ここでは、SS-OCTの構成を例に説明する。
(Configuration of tomography apparatus)
The configuration of the measurement optical system in the tomography apparatus 100 of this embodiment will be described with reference to FIG. Here, the configuration of SS-OCT will be described as an example.

まず、測定光学系101の内部について説明する。断層画像撮影装置100は、射出される光の周波数が掃引される波長掃引光源211と、干渉光を生成するOCT干渉部220と、干渉光を検出する検出部230と、干渉光に基づいて、被検体200の眼底の情報を取得する眼科制御装置110とを有している。さらに、断層画像撮影装置100は、測定アーム250と参照アーム260を有している。 First, the inside of the measurement optical system 101 will be described. The tomography apparatus 100 includes a wavelength-swept light source 211 that sweeps the frequency of emitted light, an OCT interference unit 220 that generates interference light, a detection unit 230 that detects the interference light, and based on the interference light, and an ophthalmologic control device 110 that acquires information on the fundus of the subject 200 . Furthermore, the tomography apparatus 100 has a measurement arm 250 and a reference arm 260 .

なお、断層画像撮影装置100は走査型検眼鏡(Scanning Laser Ophthalmoscope:以下、SLO)用の光源212を備え、眼底からの反射光を得るためのSLO光学系280、前眼部撮影部290を有する構成であってもよい。また、断層画像撮影装置100は、眼底を可視光によって照明し眼底正面画像を取得する眼底カメラの機能を有していてもよい。 The tomography apparatus 100 includes a scanning laser ophthalmoscope (hereinafter referred to as SLO) light source 212, an SLO optical system 280 for obtaining light reflected from the fundus, and an anterior segment imaging unit 290. It may be a configuration. Further, the tomography apparatus 100 may have a function of a fundus camera that illuminates the fundus with visible light and obtains a front image of the fundus.

なお、本実施例では被検体200が人眼である例を説明するが、これに限るものではない。 In this embodiment, an example in which the subject 200 is a human eye will be described, but the present invention is not limited to this.

OCT干渉部220は、カプラ221、222を有している。まず、カプラ221は、波長掃引光源211から射出された光を眼底へ照射する測定光と参照光とに分岐する。この実施例において、分岐比は2:8程度であり、測定光:参照光=2:8とする。 The OCT interference section 220 has couplers 221 and 222 . First, the coupler 221 splits the light emitted from the wavelength swept light source 211 into measurement light and reference light for irradiating the fundus. In this embodiment, the branching ratio is approximately 2:8, and the ratio of measurement light:reference light is 2:8.

測定光は、測定アーム250を経由して被検体200である眼底に照射される。より具体的には、測定アーム250に入射した照射光は、偏光コントローラ251で偏光状態を整えられた後、コリメータ252から空間光として射出される。その後、照射光は、X走査スキャナー253、レンズ254、255、Y走査スキャナー256、ダイクロイックミラー273、レンズ257、フォーカスステージ259に固定されたフォーカスレンズ258、対物レンズ276を介して被検体200の眼底に照射される。 The measurement light is applied to the fundus of the subject 200 via the measurement arm 250 . More specifically, the irradiation light that has entered the measurement arm 250 is emitted from the collimator 252 as spatial light after having its polarization state adjusted by the polarization controller 251 . Thereafter, the irradiated light passes through an X scanning scanner 253, lenses 254 and 255, a Y scanning scanner 256, a dichroic mirror 273, a lens 257, a focus lens 258 fixed to a focus stage 259, and an objective lens 276. is irradiated to

なお、X走査スキャナー253、Y走査スキャナー256は眼底を照射光で走査する機能を有する走査手段である。走査手段によって、測定光の眼底への照射位置が変えられる。また、ダイクロイックミラー103は、波長1000nm~1100nmの光を反射し、それ以外の光を透過する特性を有する。 The X scanning scanner 253 and the Y scanning scanner 256 are scanning means having a function of scanning the fundus with irradiation light. The scanning means changes the irradiation position of the measurement light onto the fundus. Further, the dichroic mirror 103 has a characteristic of reflecting light with a wavelength of 1000 nm to 1100 nm and transmitting other light.

そして、眼底からの後方散乱光(反射光)は、再び上述の光学経路をたどり測定アーム250から射出される。そして、カプラ221を経由してカプラ222に入射する。前記の分岐比に従い、眼底からの戻り光の8割がカプラ222に導かれる。 Then, the backscattered light (reflected light) from the fundus retraces the optical path described above and is emitted from the measurement arm 250 . Then, it enters the coupler 222 via the coupler 221 . 80% of the return light from the fundus is led to the coupler 222 according to the above branching ratio.

一方、参照光は参照アーム260を経由し、カプラ222に入射する。より具体的には、参照アーム260に入射した参照光は、偏光コントローラ261で偏光状態を整えられた後、コリメータ262から空間光として射出される。その後、参照光は分散補償ガラス263、光路長調整光学系264、分散調整プリズムペア265を通り、コリメータレンズ266を介して光ファイバーに入射され、参照アーム260から射出されてカプラ222に入射する。 On the other hand, the reference light passes through reference arm 260 and enters coupler 222 . More specifically, the reference light incident on the reference arm 260 is emitted from the collimator 262 as spatial light after having its polarization state adjusted by the polarization controller 261 . After that, the reference light passes through the dispersion compensating glass 263 , the optical path length adjusting optical system 264 and the dispersion adjusting prism pair 265 , enters the optical fiber via the collimator lens 266 , exits from the reference arm 260 and enters the coupler 222 .

カプラ222で測定アーム250を経由した被検体200の反射光と参照アーム260を通った光とが合波され干渉する。そして、その干渉光を検出部230で検出する。検出部230は、差動検出器231とA/D変換器232を有している。まず、検出部230では、カプラ222で干渉光を発生させた後すぐに分波された干渉光を差動検出器231で検出する。 The coupler 222 multiplexes and interferes with the reflected light from the subject 200 that has passed through the measurement arm 250 and the light that has passed through the reference arm 260 . Then, the interference light is detected by the detector 230 . The detection section 230 has a differential detector 231 and an A/D converter 232 . First, in the detector 230 , the differential detector 231 detects the demultiplexed interference light immediately after the coupler 222 generates the interference light.

そして、差動検出器231で電気信号に変換されたOCT干渉信号をA/D変換器232でデジタル信号に変換している。ここで、図2の断層画像撮影装置100では、干渉光のサンプリングは、波長掃引光源211の中に組み込まれたkクロック発生部が発信するkクロック信号に基づいて等光周波数(等波数)間隔に行われる。A/D変換器232が出力したデジタル信号は眼科制御装置110に送られる。 Then, the OCT interference signal converted into an electric signal by the differential detector 231 is converted into a digital signal by the A/D converter 232 . Here, in the tomography apparatus 100 of FIG. 2, the interference light is sampled at equal light frequency (equal wavenumber) intervals based on the k clock signal generated by the k clock generator incorporated in the wavelength swept light source 211. is performed on The digital signal output by the A/D converter 232 is sent to the ophthalmic control device 110 .

以上は、被検体200のある1点における断層に関する情報の取得のプロセスであり、このように被検体の奥行き方向の断層に関する情報を取得することをA-scanと呼ぶ。また、A-scanと直交する方向で被検体の断層に関する情報、すなわち2次元画像を取得するための走査方向をB-scan、更にA-scan、及びB-scanのいずれの走査方向とも直交する方向に走査することをC-scanと呼ぶ。 The above is the process of acquiring information on a tomogram at one point on the subject 200, and acquiring information on a tomogram in the depth direction of the subject in this way is called A-scan. In addition, the scanning direction for acquiring information on the tomogram of the subject in a direction orthogonal to A-scan, that is, a two-dimensional image, is orthogonal to both A-scan and B-scan. Scanning in a direction is called a C-scan.

また、3次元断層像を取得する際に眼底面内に2次元ラスター走査する場合、高速な走査方向がB-scan、B-scanをその直交方向に並べて走査する低速な走査方向をC-scanと呼ぶ。A-scan及びB-scanを行うことで2次元の断層像が得られ、A-scan、B-scan及びC-scanを行うことで、3次元の断層像を得ることができる。B-scan、C-scanは、上述したX走査スキャナー253、Y走査スキャナー256により行われる。 In addition, when two-dimensional raster scanning is performed in the fundus of the eye when acquiring a three-dimensional tomographic image, B-scan is the high-speed scanning direction, and C-scan is the low-speed scanning direction in which the B-scans are arranged in the orthogonal direction. call. A two-dimensional tomographic image can be obtained by performing A-scan and B-scan, and a three-dimensional tomographic image can be obtained by performing A-scan, B-scan and C-scan. B-scan and C-scan are performed by the X scanning scanner 253 and Y scanning scanner 256 described above.

なお、X走査スキャナー253、Y走査スキャナー256は、それぞれ回転軸が互いに直交するよう配置された偏向ミラーで構成されている。X走査スキャナー253は、X軸方向の走査を行い、Y走査スキャナー256は、Y軸方向の走査を行う。X軸方向、Y軸方向の各方向は、眼球の眼軸方向に対して垂直な方向で、互いに垂直な方向である。また、B-scan、C-scanのようなライン走査方向と、X軸方向またはY軸方向とは、一致していなくてもよい。このため、B-scan、C-scanのライン走査方向は、取得したい2次元の断層像あるいは3次元の断層像に応じて、適宜決めることができる。 The X-scanning scanner 253 and the Y-scanning scanner 256 are composed of deflection mirrors arranged so that their rotation axes are orthogonal to each other. The X scanning scanner 253 performs scanning in the X-axis direction, and the Y scanning scanner 256 performs scanning in the Y-axis direction. Each of the X-axis direction and the Y-axis direction is a direction perpendicular to the axial direction of the eyeball and perpendicular to each other. Also, the line scanning direction such as B-scan and C-scan does not have to match the X-axis direction or the Y-axis direction. Therefore, the B-scan and C-scan line scanning directions can be appropriately determined according to the two-dimensional tomographic image or the three-dimensional tomographic image to be obtained.

SLO光源212から射出された光はSLO光学系280を介して眼底へ照射される。より具体的にはSLO光学系280に入射した光は、コリメータ281から平行光として空間へ射出される。その後、穴あきミラー271の穴あき部を通過し、レンズ282を介し、X走査スキャナー283、レンズ284、285、Y走査スキャナー286を介し、ダイクロイックミラー272に到達する。 Light emitted from the SLO light source 212 is applied to the fundus via the SLO optical system 280 . More specifically, the light incident on the SLO optical system 280 is emitted from the collimator 281 into space as parallel light. After that, it passes through the perforated portion of the perforated mirror 271 , passes through the lens 282 , the X scanning scanner 283 , the lenses 284 and 285 , and the Y scanning scanner 286 and reaches the dichroic mirror 272 .

なお、X走査スキャナー283、Y走査スキャナー286は、SLO用の走査手段の一例であり、共通のXY走査スキャナーとしてOCT用のX走査スキャナー253、Y走査スキャナー256の構成としても良い。ダイクロイックミラー272は、760nm~800nmを反射し、それ以外の光を透過する特性を有する。ダイクロイックミラー272にて反射された光は、OCTと同様の光路を経由し、被検体200の眼底に到達する。 The X scanning scanner 283 and Y scanning scanner 286 are examples of scanning means for SLO, and the X scanning scanner 253 and Y scanning scanner 256 for OCT may be configured as a common XY scanning scanner. The dichroic mirror 272 has the characteristic of reflecting light of 760 nm to 800 nm and transmitting other light. The light reflected by the dichroic mirror 272 reaches the fundus of the subject 200 via an optical path similar to that of OCT.

眼底に照射された測定光は、眼底で反射・散乱され、上述の光学経路をたどり穴あきミラー271に達する。穴あきミラー271で反射された光が、レンズ287を介し、アバランシェフォトダイオード(以下、APD)288で受光され、電気信号に変換されて、コンピュータ110に送られる。 The measurement light applied to the fundus is reflected and scattered by the fundus, follows the optical path described above, and reaches the perforated mirror 271 . Light reflected by the perforated mirror 271 passes through a lens 287 and is received by an avalanche photodiode (APD) 288 , converted into an electrical signal, and sent to the computer 110 .

ここで、穴あきミラー271の位置は、被検眼の瞳孔位置と共役となっており、眼底に照射された測定光が反射・散乱された光のうち、瞳孔周辺部を通った光が、穴あきミラー271によって反射される。 Here, the position of the perforated mirror 271 is conjugate with the position of the pupil of the eye to be examined. It is reflected by the aperture mirror 271 .

前眼部撮影部290は、波長860nmの照明光を発するLEDから成る照明光源295により前眼部を照明する。前眼部で反射された光は、対物レンズ276を介してダイクロイックミラー275に達する。ダイクロイックミラー275は、820nm~920nmの光を反射し、それ以外の光を透過する特性を有する。ダイクロイックミラー105で反射された光は、レンズ291、292、293を介し、前眼部カメラ294で受光される。前眼部カメラ294で受光された光は電気信号に変換され、眼科制御装置110で受ける。 The anterior segment imaging unit 290 illuminates the anterior segment with an illumination light source 295 composed of an LED that emits illumination light with a wavelength of 860 nm. Light reflected by the anterior segment reaches the dichroic mirror 275 via the objective lens 276 . The dichroic mirror 275 has the characteristic of reflecting light of 820 nm to 920 nm and transmitting light of other wavelengths. The light reflected by the dichroic mirror 105 is received by an anterior eye camera 294 via lenses 291 , 292 and 293 . The light received by the anterior eye camera 294 is converted into electrical signals and received by the ophthalmic controller 110 .

内部固視灯225は、内部固視灯用表示部226、レンズ227で構成される。内部固視灯用表示部226として複数の発光ダイオード(LD)がマトリックス状に配置されたものを用いる。発光ダイオードの点灯位置は、撮影したい部位に合わせて変更される。内部固視灯用表示部226からの光は、レンズ227を介し、被検眼に導かれる。内部固視灯用表示部226から射出される光は520nmで、設定した所望のパターンが表示される。 The internal fixation light 225 is composed of an internal fixation light display unit 226 and a lens 227 . A plurality of light emitting diodes (LD) arranged in a matrix is used as the internal fixation lamp display unit 226 . The lighting position of the light-emitting diode is changed according to the part to be photographed. Light from the internal fixation lamp display unit 226 is guided to the subject's eye via the lens 227 . The light emitted from the internal fixation lamp display unit 226 has a wavelength of 520 nm, and the set desired pattern is displayed.

眼科制御装置110はデジタル信号に変換した干渉信号を信号処理することで、断層画像を取得する。さらに、モーションコントラストデータを解析することで血管造影画像を取得してもよい。同様に、眼科制御装置110は、APD288から送られてくるデジタル信号に変換されたSLOの眼底信号を処理し、SLO画像を計算する。また、前眼部カメラ294から送られてくる信号を処理し、前眼部画像を構成する。 The ophthalmologic control apparatus 110 acquires a tomographic image by signal processing the interference signal converted into a digital signal. Additionally, an angiographic image may be obtained by analyzing the motion contrast data. Similarly, the ophthalmology controller 110 processes the digitally converted SLO fundus signal from the APD 288 and computes an SLO image. It also processes the signals sent from the anterior eye camera 294 to form an anterior eye image.

続いて、信号処理の結果得られた眼底および前眼部の情報が表示部140によって表示される。 Subsequently, the display unit 140 displays the information of the fundus and the anterior segment obtained as a result of the signal processing.

ここではSS-OCTを例に断層画像撮影装置100の光学系を説明したが、SD-OCTなど他の構成の断層画像撮影装置を用いることも可能である。 Here, the optical system of the tomographic imaging apparatus 100 has been described by taking SS-OCT as an example, but it is also possible to use a tomographic imaging apparatus having another configuration such as SD-OCT.

(断層画像の表示)
次に図3を参照して、深さ方向の長さが異なる断層画像を同じ大きさの表示領域に配置することによる、表示上の見え方の違いを説明する。図3は異なる種別の断層画像撮影装置であるSD-OCTとSS-OCTとから得られるそれぞれの断層画像と、それぞれの断層画像全体を同じ大きさの表示領域に表示したときの画像との表示の例を示す。
(Display of tomographic image)
Next, with reference to FIG. 3, a difference in display appearance due to arranging tomographic images having different lengths in the depth direction in display areas of the same size will be described. FIG. 3 shows tomographic images obtained from SD-OCT and SS-OCT, which are different types of tomographic imaging apparatuses, and an image when the entire tomographic image is displayed in the same size display area. shows an example of

図3(a)は、SD-OCTで被検眼200の眼底を撮影した断層画像300であり、断層画像300には網膜層301が映し出される。正常眼では一般的に、SD-OCTで取得された断層画像には、網膜色素上皮以下の脈絡部分からの戻り光が減衰して脈絡膜部分の途中部分302までが描出された画像となる。 FIG. 3(a) is a tomographic image 300 of the fundus of the subject's eye 200 photographed by SD-OCT, and a retinal layer 301 is projected on the tomographic image 300. FIG. Generally, in a normal eye, a tomographic image obtained by SD-OCT is an image in which the return light from the choroid part below the retinal pigment epithelium is attenuated and the middle part 302 of the choroid part is visualized.

図3(c)は、SS-OCTによって被検眼200の眼底を撮影した断層画像320である。高深さ範囲で断層画像を取得可能なSS-OCTで撮影することで、断層画像320に網膜及び脈絡膜を含む領域321を映し出すことが可能である。 FIG. 3(c) is a tomographic image 320 of the fundus of the subject's eye 200 captured by SS-OCT. A region 321 including the retina and the choroid can be displayed on the tomographic image 320 by imaging with SS-OCT, which can acquire a tomographic image in a high depth range.

断層画像300又は320が表示部に表示される場合、選択されたスケールに基づいて画像の大きさが変更される。例えば、深さ方向と横方向の1ピクセルの長さが同じになるスケール(Realスケール)や、表示領域に合わせるように画像の深さ方向と横方向とをそれぞれ拡大・縮小し表示するスケール(Fitスケール)など、選択されるスケールの種類に合わせて画像の縦横比を変更されてもよい。 When the tomographic image 300 or 320 is displayed on the display unit, the size of the image is changed based on the selected scale. For example, a scale that makes the length of one pixel in the depth direction and the horizontal direction the same (Real scale), or a scale that enlarges/reduces an image in the depth direction and the horizontal direction respectively so as to match the display area ( Fit scale), the aspect ratio of the image may be changed according to the type of scale selected.

Fitスケールで断層画像300と320とを同じ大きさの表示領域に表示した場合、元の画像の縦横比の違いのため表示される網膜の見え方が異なってしまう。図3(b)はSD-OCTによって取得される断層画像を表示した断層画像310である。一方、図3(d)に示されるように、SS-OCTによって取得される断層画像を表示した断層画像330では、深さ方向につぶされて注目領域の1つである網膜部分の視認性が低下する。 When the tomographic images 300 and 320 are displayed in the display area of the same size on the Fit scale, the displayed retina looks different due to the difference in the aspect ratio of the original images. FIG. 3(b) is a tomographic image 310 displaying a tomographic image acquired by SD-OCT. On the other hand, as shown in FIG. 3D, in a tomographic image 330 displaying a tomographic image obtained by SS-OCT, the visibility of the retina portion, which is one of the attention areas, is reduced in the depth direction. descend.

(眼科制御装置の構成)
次に図4を参照して、情報処理装置の一例である眼科制御装置110の構成を説明する。図4は眼科制御装置110の構成を概略的に示す。眼科制御装置110は断層画像撮影装置100及び入力部130、表示部140と接続されており、撮影制御部410、画像取得部420、記憶部120、表示制御部430が設けられている。
(Configuration of ophthalmic control device)
Next, with reference to FIG. 4, the configuration of the ophthalmic control device 110, which is an example of the information processing device, will be described. FIG. 4 schematically shows the configuration of the ophthalmic control device 110. As shown in FIG. The ophthalmologic control apparatus 110 is connected to the tomographic imaging apparatus 100, the input unit 130, and the display unit 140, and is provided with an imaging control unit 410, an image acquisition unit 420, a storage unit 120, and a display control unit 430.

情報処理装置の一例である眼科制御装置110は、例えば、パーソナルコンピュータ、タブレット端末、携帯端末などのいずれかであってよい。また、眼科検査装置が本明細書に開示される情報処理装置の機能を実現する構成であってもよい。開示される情報処理装置の機能が、情報処理装置と眼科検査装置とを含む複数の装置が通信可能に接続された眼科システムによって実現されてもよい。なお、情報処理装置は眼科検査装置に専用の情報処理装置に限らず、例えばCTやMRIなどの眼科以外の検査装置と接続可能であってもよい。 The ophthalmologic control device 110, which is an example of an information processing device, may be, for example, a personal computer, a tablet terminal, a mobile terminal, or the like. Further, the ophthalmologic examination apparatus may be configured to implement the functions of the information processing apparatus disclosed in this specification. The functions of the disclosed information processing device may be realized by an ophthalmologic system in which a plurality of devices including an information processing device and an ophthalmologic examination device are communicably connected. The information processing apparatus is not limited to an information processing apparatus dedicated to an ophthalmologic examination apparatus, and may be connectable to, for example, a CT or MRI examination apparatus other than an ophthalmologic examination apparatus.

撮影制御部410は、断層画像撮影装置100を制御することで、撮影アライメントの調整や撮影の実施、撮影された前眼観察像・SLO眼底像や断層画像の信号データの取得などを行う。また、撮影された断層画像の撮影パターン、撮影アライメントパラメータ、SLO眼底像などを記憶部120に格納する。 The imaging control unit 410 controls the tomography apparatus 100 to adjust the imaging alignment, perform imaging, and acquire signal data of the anterior ocular observation image/SLO fundus image and tomographic image. In addition, the storage unit 120 stores the photographing pattern of the photographed tomographic image, the photographing alignment parameter, the SLO fundus image, and the like.

さらに撮影制御部410は、画像取得部420を介して断層画像撮影装置100により撮影された断層画像の信号データから信号処理により断層画像を生成し、記憶部120に格納する。なお、撮影アライメント時に取得する信号データは記憶部120には格納せずプレビュー画像として表示制御部410に送られる。 Further, the imaging control unit 410 generates a tomographic image by signal processing from the signal data of the tomographic image captured by the tomographic imaging apparatus 100 via the image acquiring unit 420 and stores the generated tomographic image in the storage unit 120 . It should be noted that the signal data acquired at the time of photographing alignment is not stored in the storage unit 120 but sent to the display control unit 410 as a preview image.

また画像取得部420は撮影されたデータがOCTA方式の撮影パターンの場合は、同一位置を走査した断層画像からモーションコントラスト画像を生成し、生成した断層画像と共に記憶部120に格納する。また、画像取得部420は、取得した断層画像の層境界を解析して解析結果も断層画像と共に記憶部120に保存する。 When the captured data is an OCTA imaging pattern, the image acquisition unit 420 generates a motion contrast image from a tomographic image obtained by scanning the same position, and stores it in the storage unit 120 together with the generated tomographic image. The image acquiring unit 420 also analyzes the layer boundary of the acquired tomographic image and stores the analysis result together with the tomographic image in the storage unit 120 .

表示制御部430は、撮影画像装置100から撮影制御部410を介して取得した、撮影アライメントを行うための前眼観察像やSLO眼底像、断層画像のプレビュー表示や取得された断層画像、SLO眼底像を、表示部140に表示させる。ここで、表示部140は、例えばディスプレイやプロジェクターなどのいずれかであってよい。なお、表示部140は眼科制御装置110と直接接続されていなくてもよく、例えば、眼科システムに含まれるいずれかの情報処理装置と有線又は無線の通信接続によって接続可能に構成されていればよい。 The display control unit 430 displays a preview of an anterior ocular observation image, an SLO fundus image, a tomographic image, an acquired tomographic image, and an SLO fundus image for performing imaging alignment, which are acquired from the imaging apparatus 100 via the imaging control unit 410 . The image is displayed on the display unit 140 . Here, the display unit 140 may be, for example, a display or a projector. Note that the display unit 140 may not be directly connected to the ophthalmologic control apparatus 110, and may be configured to be connectable to any information processing apparatus included in the ophthalmologic system through a wired or wireless communication connection, for example. .

また、表示制御部430は、ユーザが入力部130を介して入力された内容に基づいて表示部140の表示変更や撮影制御部410への指示を行う。入力部130は、例えば、マウスやキーボード、タッチペンなどの少なくともいずれかである。また、入力部130と表示部140の両方の機能を備えるタッチパネルディスプレイを用いる構成であってもよい。 Further, the display control unit 430 changes the display of the display unit 140 and instructs the imaging control unit 410 based on the contents input by the user via the input unit 130 . The input unit 130 is, for example, at least one of a mouse, a keyboard, a touch pen, and the like. Alternatively, a configuration using a touch panel display having both functions of the input unit 130 and the display unit 140 may be used.

さらに、表示制御部430は、記憶部120に保存された断層画像やSLO眼底像のいずれかをユーザが入力部130によって選択する指示に応じて、選択された画像を表示部140に表示する。 Furthermore, the display control unit 430 displays the selected image on the display unit 140 in response to the user's instruction to select either the tomographic image or the SLO fundus image stored in the storage unit 120 through the input unit 130 .

記憶部120は、患者情報(患者の氏名、年齢、性別など)と、撮影した断層画像撮影装置110の装置情報(機種の名前、OCTの種別など)を保持する。さらに記憶部120は、撮影した断層画像やモーションコントラスト画像、SLO画像、撮影パターン情報(左右眼、撮影サイズ、撮影形式、X軸方向のスキャン数、Y軸方向のスキャン数、同一位置の繰り返し走査回数など)、撮影アライメントパラメータ情報(固視灯位置、撮影位置、SLOとOCTのフォーカス値、C-Gate位置など)やユーザが設定したパラメータ(輝度コントラスト調整値、写損の判定など)を保持する。 The storage unit 120 holds patient information (patient's name, age, sex, etc.) and apparatus information (model name, OCT type, etc.) of the tomographic imaging apparatus 110 that took the image. Further, the storage unit 120 stores captured tomographic images, motion contrast images, SLO images, imaging pattern information (left and right eyes, imaging size, imaging format, number of scans in the X-axis direction, number of scans in the Y-axis direction, repeated scanning at the same position). number of times, etc.), imaging alignment parameter information (fixation lamp position, imaging position, SLO and OCT focus values, C-Gate position, etc.), and parameters set by the user (brightness/contrast adjustment value, imaging error judgment, etc.) do.

また、取得手段の一例である画像取得部420が取得する画像は、撮影制御部410によって取得される画像だけでなく、システムの外部に保存されているデータを取り込んだものも含まれる。その場合は画像だけではなく、被検眼の情報、装置情報、撮影パターン情報、撮影アライメントパラメータ情報、ユーザが設定したパラメータ全ての情報及び解析結果も一緒に取得され、記憶部120で記憶される。なお、取り込んだデータの状態が古い場合や解析結果に破損がある場合などは、古い情報の更新や取り込んだ眼科システム10が持つ解析内容での再解析をして、記憶部120に記憶させる。 The images acquired by the image acquisition unit 420, which is an example of acquisition means, include not only the images acquired by the imaging control unit 410, but also the data stored outside the system. In this case, not only the image but also the information of the eye to be inspected, the device information, the imaging pattern information, the imaging alignment parameter information, the information of all the parameters set by the user, and the analysis result are acquired together and stored in the storage unit 120 . If the state of the fetched data is old or the analysis result is damaged, the old information is updated or re-analyzed with the fetched analysis contents of the ophthalmic system 10, and stored in the storage unit 120.例文帳に追加

(本実施例に係る表示画面及び拡大表示画面)
図5と図6を参照して、本実施例の表示制御部430が断層画像をレポートとして表示部140に表示させる際の表示について説明する。図5は、レポートの一例である表示画面500であり、記憶部120に保存された断層画像と断層画像に付随する情報とを表示する。
(Display screen and enlarged display screen according to the present embodiment)
Display when the display control unit 430 of the present embodiment causes the display unit 140 to display a tomographic image as a report will be described with reference to FIGS. 5 and 6. FIG. FIG. 5 shows a display screen 500 as an example of a report, which displays tomographic images saved in the storage unit 120 and information associated with the tomographic images.

ここで、断層画像に付随する情報として、測定光を走査するスキャンモードと、左右眼と、検査日時と、患者情報との少なくとも一つを表示させてもよい。表示部に表示させる情報が多く断層画像を表示させる表示領域が限られる場合においても、断層画像の深さ方向の長さに応じてスケールを変更することで、注目領域を視認しやすくすることができる。 Here, at least one of the scan mode for scanning the measurement light, left and right eyes, examination date and time, and patient information may be displayed as information accompanying the tomographic image. Even when there is a lot of information to be displayed on the display unit and the display area for displaying the tomographic image is limited, changing the scale according to the length of the tomographic image in the depth direction makes it easier to visually recognize the region of interest. can.

また、表示画面500は、不図示の患者画面で患者を選択する指示に応じて、選択された患者の被検眼の断層画像を表示してもよい。 Further, the display screen 500 may display a tomographic image of the selected patient's eye to be examined in response to an instruction to select a patient on a patient screen (not shown).

図6は、拡大表示画面600であり、断層画像の1つを拡大表示する。拡大表示画面600は、表示画面500で表示された断層画像の1つから拡大表示画面600に遷移することで表示される。 FIG. 6 shows an enlarged display screen 600 that enlarges and displays one of the tomographic images. The enlarged display screen 600 is displayed by transitioning from one of the tomographic images displayed on the display screen 500 to the enlarged display screen 600 .

表示画面500は検査選択リスト表示領域510と選択検査内容表示領域520を持つ。検査選択リスト表示領域510では、記憶部120に保存されている検査データが、1撮影を1検査としてリスト状に並べられる。検査は検査日時、撮影機種、左右眼の単位でグルーピングされ、グルーピングされた中の検査は検査日時のうち撮影時間順に並べられる。このとき、検査日時のうち撮影日は降順で撮影時間は昇順で並べられる。 The display screen 500 has an examination selection list display area 510 and a selected examination content display area 520 . In the examination selection list display area 510, the examination data stored in the storage unit 120 are arranged in a list with one imaging as one examination. Examinations are grouped by examination date and time, imaging model, and right and left eyes, and examinations in the grouping are arranged in order of imaging time in examination date and time. At this time, the photographing dates are arranged in descending order, and the photographing times are arranged in ascending order.

また、検査選択リスト表示領域510は他にも撮影パターンごとにグルーピングする表示に切り替えることもできる。検査選択リスト表示領域510内に表示された検査から1つを選択検査511としてユーザが選択することで、選択検査511の断層画像、撮影パターン情報などの検査情報が記憶部120から読みだされて、選択検査内容表示領域520に表示される。 In addition, the examination selection list display area 510 can also be switched to a display grouped for each imaging pattern. When the user selects one of the examinations displayed in the examination selection list display area 510 as the selected examination 511 , examination information such as a tomographic image and imaging pattern information of the selected examination 511 is read from the storage unit 120 . , are displayed in the selected examination content display area 520 .

選択検査内容表示領域520では、1検査表示、左右眼表示、過去検査比較などの目的別の検査表示レイアウトが指定でき、選択されている検査表示レイアウトに応じた画像および検査情報が表示される。選択検査内容表示領域520では画像を表示する領域としてSLO眼底像表示領域521や断層画像表示領域522がある。 In the selected examination content display area 520, an examination display layout for each purpose such as one examination display, left and right eye display, and past examination comparison can be specified, and an image and examination information corresponding to the selected examination display layout are displayed. In the selected examination content display area 520, there are an SLO fundus image display area 521 and a tomographic image display area 522 as areas for displaying images.

SLO眼底像表示領域521には、選択検査511のSLO画像が表示され、断層画像表示領域522で表示される断層画像の位置や方向がSLO画像上に示される。断層画像表示領域522は、選択検査511の断層画像の少なくとも1つが表示でき、SLO眼底像表示領域521で示した位置と方向に対応した断層画像が表示される。また、断層画像表示領域522上には断層画像の深さ方向とX軸方向それぞれの実寸を示すスケールが表示される。 The SLO image of the selected examination 511 is displayed in the SLO fundus image display area 521, and the position and direction of the tomographic image displayed in the tomographic image display area 522 are indicated on the SLO image. The tomographic image display area 522 can display at least one tomographic image of the selected examination 511 , and the tomographic image corresponding to the position and direction indicated in the SLO fundus image display area 521 is displayed. Further, on the tomographic image display area 522, a scale indicating the actual size of the tomographic image in the depth direction and the X-axis direction is displayed.

なお、眼底上の特定の領域内を等間隔にスキャンすることで行われる3D撮影など複数の断層画像を扱う検査では、総断層画像数と表示されている断層画像が何枚目かを示す数字が断層画像表示領域522上に表示される。この場合、断層画像はSLO眼底像表示領域521や断層画像表示領域522上のマウススクロールやマウスクリックなどで表示する断層画像を変更できる。表示する断層画像を変更する指示に応じて、SLO眼底像表示領域521上で示される断層画像の位置及び断層画像表示領域522上で示される何枚目の断層画像かを示す数字が変更される。 In examinations that handle multiple tomographic images, such as 3D imaging, in which a specific area on the fundus is scanned at equal intervals, a number indicating the total number of tomographic images and the number of displayed tomographic images is displayed. is displayed on the tomographic image display area 522 . In this case, the tomographic image to be displayed can be changed by mouse scrolling or mouse clicking on the SLO fundus image display area 521 or the tomographic image display area 522 . In response to an instruction to change the tomographic image to be displayed, the position of the tomographic image displayed on the SLO fundus image display area 521 and the number indicating the number of the tomographic image displayed on the tomographic image display area 522 are changed. .

拡大表示画面600は、断層画像表示領域522においてダブルクリック、不図示の右クリックメニューまたは不図示の拡大用ボタンといった拡大画面の表示操作によって表示される。拡大表示画面600は拡大断層画像表示領域610と断層画像操作領域620を持つ。 The enlarged display screen 600 is displayed by an enlarged screen display operation such as a double-click, a right-click menu (not shown), or an enlargement button (not shown) in the tomographic image display area 522 . The enlarged display screen 600 has an enlarged tomographic image display area 610 and a tomographic image operation area 620 .

拡大断層画像表示領域610は断層画像表示領域522よりも広い領域を持ち、断層画像表示領域522に表示されていた断層画像が表示される。断層画像操作領域620は、断層画像スケール選択領域621を持ち、拡大断層画像表示領域610の断層画像のスケールを変更することができる。拡大表示画面600が表示された時のスケールは断層画像表示領域522の拡大画面表示操作を行った時と同じ縦横比(Defaultスケール)で表示され、断層画像スケール選択領域621で選択したスケールに応じて拡大断層画像表示領域610に表示される断層画像が変更される。 The enlarged tomographic image display area 610 has a larger area than the tomographic image display area 522, and the tomographic image displayed in the tomographic image display area 522 is displayed. The tomographic image operation area 620 has a tomographic image scale selection area 621 and can change the scale of the tomographic image in the enlarged tomographic image display area 610 . The scale when the enlarged display screen 600 is displayed is displayed with the same aspect ratio (default scale) as when the enlarged screen display operation of the tomographic image display area 522 is performed. to change the tomographic image displayed in the enlarged tomographic image display area 610 .

(本実施例に係るSS-OCTで撮影された断層画像の表示フロー)
次に図7を参照して本実施例に係るSS-OCTで撮影された断層画像を表示するフローについて説明する。図7は本実施例に係る断層画像表示のための動作のフローチャートを示す。
(Display flow of tomographic image captured by SS-OCT according to the present embodiment)
Next, a flow for displaying a tomographic image captured by SS-OCT according to the present embodiment will be described with reference to FIG. FIG. 7 shows a flow chart of the operation for displaying a tomographic image according to this embodiment.

SS-OCTで撮影された深さ方向が長い断層画像を同じ表示領域に合わせるように表示させた場合、SD-OCTで撮影された深さ方向の短い断層画像と比べると網膜部分が薄く表示される。そこで、断層画像を撮影した断層画像撮影装置100の種別と断層画像の深さ方向の長さとのいずれかに応じて、表示制御部430がスケールを変更することにより、深さ方向の長さが異なる断層画像を取得した場合でも視認性の高い断層画像を断層画像表示領域522に表示する。 When a tomographic image with a long depth direction captured by SS-OCT is displayed so as to fit in the same display area, the retinal portion is displayed thinner than a tomographic image with a short depth direction captured by SD-OCT. be. Therefore, the display control unit 430 changes the scale according to either the type of the tomographic imaging apparatus 100 that captured the tomographic image or the length of the tomographic image in the depth direction, so that the length in the depth direction is A highly visible tomographic image is displayed in the tomographic image display area 522 even when different tomographic images are acquired.

具体的には、ステップS701で、ユーザは表示画面500に表示させる対象の検査を選択し、表示制御部430は記憶部120から選択された検査で取得された断層画像を読み込む。このとき、断層画像が撮影された断層画像撮影装置100の装置情報や撮影パターン情報も記憶部120から取得する。 Specifically, in step S<b>701 , the user selects an examination to be displayed on the display screen 500 , and the display control unit 430 reads the tomographic image obtained by the selected examination from the storage unit 120 . At this time, device information and imaging pattern information of the tomographic image capturing apparatus 100 that captured the tomographic image are also acquired from the storage unit 120 .

ステップS702では、表示制御部430がステップS701で同時に取得した装置情報から、SD-OCTやSS-OCTといった断層画像を撮影した断層画像撮影装置100の種別を確認する。 In step S702, the display control unit 430 confirms the type of the tomographic imaging apparatus 100, such as SD-OCT or SS-OCT, that captured the tomographic image from the apparatus information simultaneously acquired in step S701.

ステップS703では、ステップS702で確認した断層画像撮影装置100の種別に基づいて、表示制御部430が断層画像を表示するスケールを決定する。ここでは断層画像撮影装置100の種別がSD-OCTだった場合は、断層画像表示領域522に断層画像全体を合わせるように表示するFitスケールが選択される。断層画像撮影装置100の種別がSS-OCTだった場合は、断層画像全体を表示させるのではなく、SD-OCTのFitスケール時の深さ方向の長さである2mmと同じ長さの部分画像を断層画像表示領域522に合わせるように表示する、2mm Depthスケールが選択される。 In step S703, the display control unit 430 determines the scale for displaying the tomographic image based on the type of the tomographic imaging apparatus 100 confirmed in step S702. Here, when the type of the tomographic imaging apparatus 100 is SD-OCT, a Fit scale is selected so that the entire tomographic image is displayed in the tomographic image display area 522 . When the type of the tomographic imaging apparatus 100 is SS-OCT, instead of displaying the entire tomographic image, a partial image having the same length as 2 mm, which is the length in the depth direction of the SD-OCT Fit scale, is displayed. is displayed so as to match the tomographic image display area 522, a 2 mm depth scale is selected.

なお、取得された断層画像の深さ方向の長さをステップS702において確認し、ステップS703において断層画像の深さ方向の長さに応じて断層画像を表示させるスケールを決定してもよい。このとき、断層画像の深さ方向の長さが所定の長さ、例えば2mm以下である場合は断層画像全体を断層画像表示領域522に合わせるように表示させる。また、断層画像の深さ方向の長さが所定の長さ、例えば2mmより長い場合はもとの断層画像よりも深さ方向の長さが短い部分画像を断層画像表示領域522に合わせるように表示させる。 Note that the length of the acquired tomographic image in the depth direction may be checked in step S702, and the scale for displaying the tomographic image may be determined in step S703 according to the length of the tomographic image in the depth direction. At this time, if the length of the tomographic image in the depth direction is a predetermined length, for example, 2 mm or less, the entire tomographic image is displayed so as to be aligned with the tomographic image display area 522 . In addition, if the length of the tomographic image in the depth direction is longer than a predetermined length, for example, 2 mm, a partial image having a shorter length in the depth direction than the original tomographic image is displayed in the tomographic image display area 522 . display.

ここで、断層画像を表示させるスケールを切り替える深さ方向の長さの基準として、一般的なSD-OCTで撮影される断層画像の深さ範囲の長さである2mmを説明したが、これに限られない。また、上述のスケールの設定はデフォルトで行いユーザの操作によって後からスケールを変更する構成や、ユーザがスケールを予め設定可能な構成にしてもよい。 Here, 2 mm, which is the length of the depth range of a tomographic image captured by general SD-OCT, has been described as a reference for the length in the depth direction for switching the scale for displaying the tomographic image. Not limited. Alternatively, the scale may be set by default, and the scale may be changed later by the user's operation, or the scale may be set in advance by the user.

ステップS704では、表示制御部430がステップS702で読み込んだ断層画像の横方向及び深さ方向それぞれの実寸長を取得する。横の実寸は撮影パターン情報の撮影サイズから取得し、深さ方向の実寸は装置情報と共に保存されている場合は装置情報から取得しても、ステップS702で確認した断層画像撮影装置100の種別から固定の値として割り当ててもよい。また、断層画像のオリジナルサイズで1ピクセルが示す実寸長及び断層画像のピクセル数を画像情報として取得して算出してもよい。 In step S704, the display control unit 430 acquires the actual lengths of the tomographic image read in step S702 in the horizontal direction and the depth direction. The actual horizontal dimension is acquired from the imaging size of the imaging pattern information, and the actual depth dimension is acquired from the device information if it is stored together with the device information. May be assigned as a fixed value. Alternatively, the actual length indicated by one pixel in the original size of the tomographic image and the number of pixels of the tomographic image may be obtained and calculated as image information.

ステップS705では、表示制御部430が断層画像表示領域522のサイズを確認する。 In step S<b>705 , the display control unit 430 confirms the size of the tomographic image display area 522 .

ステップS706では、表示制御部430がステップS703からステップS705までで確認したスケール、断層画像の実寸長と表示領域のサイズから、断層画像の横方向及び深さ方向それぞれで拡大縮小倍率を算出する。Fitスケールの場合は、式1のようにそれぞれの倍率Rx、Rzを求める。 In step S706, the display control unit 430 calculates enlargement/reduction magnifications in the horizontal and depth directions of the tomographic image from the scale confirmed in steps S703 to S705, the actual length of the tomographic image, and the size of the display area. In the case of the Fit scale, respective magnifications Rx and Rz are obtained as shown in Equation (1).

Figure 2023027961000002
Figure 2023027961000002

ここで、Tx、Tzは記憶部120に保存されているオリジナルの断層画像の横方向及び深さ方向のピクセル数を示している。また、Ax、Azは断層画像表示領域522の縦横のピクセル数を示している。2mm Depthスケールの場合は、式2のように深さ方向で2mmのピクセル数が表示領域のピクセル数になるように倍率Rx、Rzを求める。 Here, Tx and Tz indicate the number of pixels in the horizontal direction and depth direction of the original tomographic image stored in the storage unit 120 . Ax and Az indicate the number of vertical and horizontal pixels of the tomographic image display area 522 . In the case of the 2 mm depth scale, the magnifications Rx and Rz are calculated so that the number of pixels in the depth direction of 2 mm becomes the number of pixels in the display area, as shown in Equation (2).

Figure 2023027961000003
Figure 2023027961000003

ここで、Tx、TzとAx、Azは式1と同様にオリジナルの断層画像の横方向及び深さ方向のピクセル数と断層画像表示領域522の横方向及び深さ方向のピクセル数を示す。StzはステップS704で求めた断層画像の深さ方向の実寸長を示す。Sazは断層画像表示領域522で表示する実寸長を示し、ここでは2mmとなる。 Here, Tx, Tz and Ax, Az indicate the number of pixels in the horizontal direction and the depth direction of the original tomographic image and the number of pixels in the horizontal direction and the depth direction of the tomographic image display area 522 as in Equation 1. Stz indicates the actual length in the depth direction of the tomographic image obtained in step S704. Saz indicates the actual length displayed in the tomographic image display area 522, which is 2 mm here.

ここで、Rzが1以上の場合には、断層画像の深さ方向が拡大される。深さ方向が拡大される場合、断層画像のうち表示領域に入らない部分が生じる。このため、部分画像が対応する断層画像の位置を移動し、移動した先の部分画像に表示を更新させるための指示を受け付けるスクロールバーを設ける。断層画像表示領域522内にスクロールバーが表示される場合、Axはスクロールバー分のピクセル数を除いた値で算出する。なお、スクロールバーを設けずに、断層画像の表示領域に入らない部分をトリミングする構成にしてもよい。 Here, when Rz is 1 or more, the depth direction of the tomographic image is enlarged. When the depth direction is enlarged, a portion of the tomographic image that does not fit within the display area is generated. Therefore, a scroll bar is provided for receiving an instruction to move the position of the tomographic image corresponding to the partial image and update the display to the partial image after the movement. When a scroll bar is displayed in the tomographic image display area 522, Ax is calculated by excluding the number of pixels for the scroll bar. It should be noted that a configuration may be adopted in which a portion outside the display area of the tomographic image is trimmed without providing the scroll bar.

ステップS707では、表示制御部430がS706で求めた倍率で拡大・縮小された断層画像を生成する。ニアレストネイバー法やバイリニア法、バイキュービック法、機械学習による超解像などによって補間を行うことで、拡大・縮小された断層画像が生成される。 In step S707, the display control unit 430 generates a tomographic image enlarged/reduced by the magnification obtained in S706. Enlarged/reduced tomographic images are generated by performing interpolation using the nearest neighbor method, bilinear method, bicubic method, super-resolution by machine learning, or the like.

ステップS708では、S706で求めた倍率が1以上の場合、表示領域に表示される部分画像の被検眼における位置を決定する。デフォルト位置として断層画像のうち中央が部分画像として表示される位置を指定することが望ましい。また、断層画像を解析することにより層境界が求められている場合、網膜が部分画像の中央部に表示されるように位置を指定してもよい。 In step S708, if the magnification obtained in S706 is 1 or more, the position of the partial image displayed in the display area on the subject's eye is determined. As a default position, it is desirable to designate a position where the center of the tomographic image is displayed as a partial image. Further, when the layer boundary is obtained by analyzing the tomographic image, the position may be specified so that the retina is displayed in the central portion of the partial image.

なお、3D撮影で撮影された断層画像の場合は断層画像毎で網膜の位置が異なるため、中央にあたる断層画像又は黄斑中心や乳頭中心を通る断層画像の網膜が中央部に来る位置を指定してもよい。また、断層画像毎に網膜が中央部に配置される位置を指定してもよい。さらに、断層画像内でも網膜の高さが異なるため、網膜の最も低い部分が中央となる位置ではなく断層画像表示領域522の底部よりも少し上に位置するよう指定することで、断層画像内の網膜全体が断層画像表示領域522内に表示できる。 In the case of tomographic images taken by 3D imaging, the position of the retina differs for each tomographic image. good too. Alternatively, a position where the retina is arranged at the center may be specified for each tomographic image. Furthermore, since the height of the retina varies even within the tomographic image, by specifying that the lowest part of the retina is positioned slightly above the bottom of the tomographic image display area 522 instead of the central position, The entire retina can be displayed within the tomographic image display area 522 .

ステップS709では、表示制御部430が断層画像表示領域522内に、ステップS707で生成した断層画像をステップS708で指定した位置で表示する。このとき、断層画像表示領域522に表示される断層画像の被検眼における深さ方向の位置をユーザの指示に応じて変更可能なようにスクロールバーを表示させてもよい。すなわち、スクロールバーを操作することで、部分画像として表示される被検眼の位置をデフォルト位置から変更し、部分画像の表示を異なる部分画像の表示に更新する構成であってもよい。 In step S709, the display control unit 430 displays the tomographic image generated in step S707 in the tomographic image display area 522 at the position specified in step S708. At this time, a scroll bar may be displayed so that the position of the tomographic image displayed in the tomographic image display area 522 in the depth direction of the eye to be examined can be changed according to the user's instruction. That is, by operating the scroll bar, the position of the subject's eye displayed as a partial image may be changed from the default position, and the display of the partial image may be updated to display a different partial image.

上述した本実施例によれば、例えばSS-OCTで撮影された、深さ方向に長い断層画像を表示領域に表示させる場合においても注目領域を視認しやすくなる。また、網膜部分を大きく見せるために、ユーザが操作して断層画像のスケールを変更したり拡大表示画面600を表示したりする必要がなくなり、ユーザビリティが向上する。 According to the above-described embodiment, even when displaying a tomographic image that is long in the depth direction and is captured by SS-OCT in the display area, it becomes easy to visually recognize the attention area. In addition, it is not necessary for the user to change the scale of the tomographic image or display the enlarged display screen 600 in order to make the retina portion appear larger, thereby improving usability.

なお、SD-OCTで撮影された断層画像を拡大表示画面600の拡大断層画像表示領域610上でFitスケール表示することで、断層画像を大きく表示する場合がある。SS-OCTで撮影された断層画像で同様の表示を行う場合においても、断層画像スケール選択領域621の2mm Depthスケールを選択することで、図6(b)のように、SD-OCTのFitスケール表示と同じ見た目で表示することができる。 In some cases, the tomographic image captured by SD-OCT is displayed in a Fit scale on the enlarged tomographic image display area 610 of the enlarged display screen 600 to display the tomographic image in a large size. Even when a tomographic image captured by SS-OCT is displayed in the same manner, by selecting the 2 mm depth scale in the tomographic image scale selection area 621, the SD-OCT Fit scale is displayed as shown in FIG. It can be displayed in the same appearance as the display.

また、S702からS703では断層画像撮影装置100の種別から表示スケールを設定したが、予め検査毎に指定の初期表示スケールを紐づけておき、その情報を使用してスケールを決定することもできる。例えば、撮影パターンを作成する際に、検査の情報として初期表示スケールが設定できるようにすることで紐づけることができる。 In addition, in S702 and S703, the display scale is set according to the type of the tomographic imaging apparatus 100, but it is also possible to associate a specified initial display scale with each examination in advance and use that information to determine the scale. For example, when an imaging pattern is created, an initial display scale can be set as examination information so that it can be linked.

断層画像撮影装置100がSS-OCTなどの広画角・高深達の断層画像を撮影する種別だった場合にのみ2mm Depthスケールが設定することができるようにしてもよい。また、狭画角の撮影パターンの時は2mm Depthを初期状態にすることで、撮影する前に狭画角と広画角の撮影毎で表示を含めた検査条件を設定することができる。 The 2 mm depth scale may be set only when the tomographic image capturing apparatus 100 is of a type such as SS-OCT for capturing a wide angle of view/high depth of field tomographic image. In addition, by setting 2 mm depth to the initial state in the case of a narrow field angle imaging pattern, it is possible to set inspection conditions including display for each narrow field angle and wide field angle imaging before imaging.

なお、検査毎ではなく断層画像を表示するに狭画角の断層画像の時、自動的に2mm Depthスケールが設定されてもよい。この場合、予め設定された撮影画角以下のものを狭画角断層画像と指定することで切り替えることができる。 Note that the 2 mm depth scale may be automatically set when displaying a tomographic image with a narrow angle of view instead of for each examination. In this case, it is possible to switch by designating a tomographic image having an angle of view equal to or less than a predetermined angle of view as a narrow angle of view tomographic image.

また、断層画像撮影装置100の種別に関わらず、表示制御部430が取得した断層画像の深さ方向の長さに応じてスケールを設定する構成であってもよい。例えば、断層画像の深さ方向の長さが一定の長さより長い場合、断層画像の一部の領域のみを表示させ、断層画像の深さ方向の長さが一定の長さ以下である場合、断層画像の全体を表示させてもよい。具体的には、断層画像の深さ方向の長さが2mmを超える場合は、深さ方向の長さが2mmの領域のみを表示させ、断層画像の深さ方向の長さが2mm以下である場合は、断層画像の全体を表示させてもよい。なお、表示スケールを切り替える境界は適宜設定できる。 Moreover, regardless of the type of the tomographic imaging apparatus 100, the scale may be set according to the length of the tomographic image acquired by the display control unit 430 in the depth direction. For example, if the length of the tomographic image in the depth direction is longer than a certain length, only a partial region of the tomographic image is displayed, and if the length of the tomographic image in the depth direction is less than or equal to the certain length, The entire tomographic image may be displayed. Specifically, when the length in the depth direction of the tomographic image exceeds 2 mm, only the region with the length in the depth direction of 2 mm is displayed, and the length in the depth direction of the tomographic image is 2 mm or less. In some cases, the entire tomographic image may be displayed. Note that the boundary for switching the display scale can be set as appropriate.

加えて、本実施例ではステップS704で深さ方向の長さを取得し、ステップS706でその長さを用いて倍率を求めたが、表示上の1ピクセル当たりの実寸サイズが同じになるよう揃える方法であればこれに限らない。例えば、各断層画像撮影装置の撮影深度が無い場合でも、1ピクセル同士の大きさの比率が求められる場合は、式2のSta/Stzに比率を置き換えることで、倍率を求めることができる。 In addition, in this embodiment, the length in the depth direction is obtained in step S704, and the magnification is obtained using that length in step S706. The method is not limited to this. For example, even if there is no imaging depth for each tomographic imaging apparatus, if the ratio between the sizes of one pixel can be obtained, the magnification can be obtained by replacing the ratio with Sta/Stz in Equation 2.

今回は、狭画角で撮影された検査で表示する場合に、2mm Depthスケールで表示する方法を述べたが、広画角撮影時でも2mm Depthスケールでの表示ができてよい。その場合、深さ方向だけでなくX軸方向もSD-OCTの画角に合わせたスケールに拡大表示する構成にしてもよい。広画角の俯瞰的な断層画像の表示と狭画角の従来と同様のSD-OCTと同じ断層画像の表示両方を切り替えて表示することで診断効率が向上する。 This time, the method of displaying on the 2 mm depth scale when displaying an examination photographed with a narrow angle of view has been described, but it would be nice to be able to display on the 2 mm depth scale even when photographing with a wide angle of view. In that case, not only the depth direction but also the X-axis direction may be enlarged and displayed on a scale matching the angle of view of SD-OCT. Diagnosis efficiency is improved by switching between display of a bird's-eye view tomographic image with a wide angle of view and display of the same tomographic image as the conventional SD-OCT with a narrow angle of view.

さらに、実施例内では撮影深度が長い断層画像撮影装置の種別をSS-OCT、撮影深度が短い断層画像撮影装置の種別をSD-OCTで記載したが、撮影深度が長いSD-OCTと撮影深度が短いSD-OCTとを用いてもよい。 Furthermore, in the embodiments, the type of tomographic imaging apparatus with a long imaging depth is described as SS-OCT, and the type of tomographic imaging apparatus with a short imaging depth is described as SD-OCT. A short SD-OCT may also be used.

<実施例2>
本実施例では、複数の検査を同時に表示可能な構成において、比較先の検査を撮影した断層画像撮影装置100の種別が異なる場合に比較元の検査に応じたスケールを決定する例について説明する。表示される複数の検査として、検査選択リスト表示領域510で選択した選択検査511以外にも、選択検査511との比較対象として選択される検査がある。その場合、比較する検査が異なる種別の断層画像撮影装置100によって行われたものであっても、断層画像の見え方は同じであることが望ましい。
<Example 2>
In this embodiment, in a configuration capable of displaying a plurality of examinations at the same time, an example will be described in which a scale is determined according to a comparison source examination when the type of the tomographic imaging apparatus 100 that captured the comparison destination examination is different. In addition to the selected examination 511 selected in the examination selection list display area 510 , there are examinations selected as comparison targets with the selected examination 511 as the plurality of examinations to be displayed. In this case, it is desirable that the appearance of the tomographic images be the same even if the examinations to be compared are performed by different types of tomographic imaging apparatuses 100 .

なお、本実施例では、異なる種別の断層画像撮影装置で撮影された複数の断層画像の表示においても、断層構造の縦横比が似た状態で表示されることを同じ見た目であると表現するが、厳密に同じ見た目でなくてもよく、目視による断層構造の比較が行いやすい状態であればよい。 In this embodiment, even when displaying a plurality of tomographic images captured by different types of tomographic imaging apparatuses, displaying the tomographic structures with similar aspect ratios is expressed as having the same appearance. , It does not have to look exactly the same, as long as it is easy to visually compare the tomographic structures.

(本実施例に係る断層画像比較表示画面)
図8を参照して本実施例の表示制御部430が表示する複数の異なる検査を並べて表示する画面の例を説明する。図8は記憶部120に保存されている断層画像を含む検査を2つ並べて表示する断層画像比較表示画面800である。
(Tomographic image comparison display screen according to the present embodiment)
An example of a screen displaying a plurality of different examinations side by side, which is displayed by the display control unit 430 of the present embodiment, will be described with reference to FIG. FIG. 8 shows a tomographic image comparison display screen 800 that displays two examinations including tomographic images stored in the storage unit 120 side by side.

断層画像表示画面800は表示画面500と同様に検査選択リスト表示領域810と選択検査内容表示領域820を持ち、検査選択リスト表示領域810から選択検査811を選び、選択検査内容表示領域820に表示させる。なお、記憶部120に保存された検査に複数種別の断層画像撮影装置100で撮影した検査が混ざっている場合は、断層画像撮影装置100の種別や機種名、もしくは種別や機種名を示すアイコンや記号を表示してもよい。 Similar to the display screen 500, the tomographic image display screen 800 has an examination selection list display area 810 and a selected examination content display area 820. A selected examination 811 is selected from the examination selection list display area 810 and displayed in the selected examination content display area 820. . Note that when examinations captured by multiple types of tomographic imaging apparatuses 100 are mixed in the examinations stored in the storage unit 120, the type and model name of the tomographic imaging apparatus 100, or an icon indicating the type and model name, or symbols may be displayed.

検査選択リスト表示領域810に表示する選択検査内容表示領域820では、左右眼比較や過去検査比較などの比較レポートを指定することで、複数の検査を表示することができる。比較レポートには選択検査表示領域823と比較先検査表示領域822を表示することができ、それぞれで撮影日時、左右眼、断層画像撮影装置100の種別などの検査情報、SLO眼底画像、断層画像を表示することができる。 In the selected examination content display area 820 displayed in the examination selection list display area 810, a plurality of examinations can be displayed by designating comparison reports such as left-right eye comparison and past examination comparison. A selected examination display area 823 and a comparison destination examination display area 822 can be displayed in the comparison report, and examination information such as imaging date/time, left and right eyes, type of tomographic imaging apparatus 100, SLO fundus image, and tomographic image can be displayed in each of them. can be displayed.

選択検査表示領域823には検査選択リスト表示領域810から選択した選択検査811の検査情報と画像が表示される。比較先検査表示領域822では、過去に撮影された同一の撮影パターンの検査が表示される。比較対象とする検査はユーザによって指定することができ、比較検査選択ボタン821を選択することで、不図示の比較対象検査選択画面から1つ以上の過去検査を指定することで、比較先検査表示領域822に並べて表示することができる。なお、初期表示として選択検査811に最も近い過去の同一撮影パターン検査を自動的に表示してもよい。 The selected examination display area 823 displays examination information and images of the selected examination 811 selected from the examination selection list display area 810 . In the comparison destination examination display area 822, examinations of the same imaging pattern that have been photographed in the past are displayed. An examination to be compared can be specified by the user, and by selecting a comparison examination selection button 821, one or more past examinations can be specified from a comparison examination selection screen (not shown), and comparison destination examination display can be performed. They can be displayed side by side in area 822 . As an initial display, the examination of the same imaging pattern in the past that is closest to the selected examination 811 may be automatically displayed.

(本実施例に係る異なる断層画像撮影装置で撮影された比較先画像の表示フロー)
図9を参照して本実施例に係る比較先画像がSS-OCTの断層画像で、比較元画像がSD-OCTの断層画像として、断層画像を並べて表示する場合の断層画像の表示フローについて説明する。図9は本実施例に係る比較先断層画像表示のための動作のフローチャートを示す。
(Display Flow of Comparison Target Images Captured by Different Tomographic Imaging Apparatuses According to the Present Embodiment)
Referring to FIG. 9, a tomographic image display flow in the case where the tomographic image according to the present embodiment is an SS-OCT tomographic image and the comparison source image is an SD-OCT tomographic image and the tomographic images are displayed side by side will be described. do. FIG. 9 shows a flow chart of the operation for displaying a comparative tomographic image according to this embodiment.

異なる断層画像撮影装置100の種別で撮影した断層画像を並べて表示する場合、同一の撮影パターンで撮影しても、深さ方向となる縦の解像度や撮影される断層画像の実寸長が異なるため、深さ方向には異なる厚みで断層画像が表示される。そのため、表示制御部430は比較元と比較先の断層画像撮影装置100の種別及び比較元のスケールに合わせて比較先の断層画像のスケールを設定することで、断層画像撮影装置100の種別が異なる場合でも同じ見た目で断層画像を並べて表示する。 When tomographic images captured by different types of tomographic imaging apparatuses 100 are displayed side by side, the vertical resolution in the depth direction and the actual length of the captured tomographic images differ even if the images are captured using the same imaging pattern. A tomographic image is displayed with different thicknesses in the depth direction. Therefore, the display control unit 430 sets the scale of the comparison target tomographic image according to the type of the comparison source and comparison target tomographic imaging apparatuses 100 and the comparison source scale, so that the types of the tomographic imaging apparatuses 100 are different. To display the tomographic images side by side with the same appearance even in the case of

具体的には、ステップS901で表示制御部430はユーザが選択した検査または初期表示の比較先検査として選ばれた検査の断層画像及び検査情報を記憶部120から取得する。ステップS902で、表示制御部430は比較元となる選択検査811とステップS901で選択した比較先検査の断層画像撮影装置100の種別を確認する。 Specifically, in step S<b>901 , the display control unit 430 acquires from the storage unit 120 the tomographic image and the examination information of the examination selected by the user or the examination selected as the comparison target examination of the initial display. In step S902, the display control unit 430 confirms the type of the selected examination 811 serving as a comparison source and the type of the tomographic imaging apparatus 100 of the comparison target examination selected in step S901.

ステップS903で、表示制御部430はS902で確認した種別と比較元の断層画像が表示しているスケールを元に比較先検査の断層画像のスケールを決定する。比較元検査と比較先検査で同じ断層画像撮影装置100の種別だった場合は、同一のスケールを選択する。比較元検査と比較先検査で異なる断層画像撮影装置100の種別だった場合は、比較元検査のスケールに応じて、比較先検査と比較元検査の断層画像の1ピクセルの実寸長が縦横それぞれで同じになるようにスケールを決定する。 In step S903, the display control unit 430 determines the scale of the tomographic image of the comparison target examination based on the type confirmed in S902 and the scale displayed on the comparison source tomographic image. If the same type of tomographic imaging apparatus 100 is used in the comparison source examination and the comparison destination examination, the same scale is selected. If the type of tomographic imaging apparatus 100 differs between the comparison source inspection and the comparison target inspection, the actual length of one pixel of the tomographic images of the comparison target inspection and the comparison source inspection is vertical and horizontal according to the scale of the comparison source inspection. Determine the scale to be the same.

例えば、比較元検査がSD-OCTで撮影された検査で断層画像がFitスケールで表示されている時に、比較先検査がSS-OCTで撮影された検査の場合は、断層画像表示領域がSD-OCTの深さ方向の長さと同じ長さになる2mm Depthスケールを選択する。また、比較元検査がSS-OCTで撮影された検査で断層画像が2mm Depthスケールで表示されている時に、比較先検査がSD-OCTの場合はFitスケールで選択し、比較元検査のSS-OCTの断層画像がFitスケールで表示されている時は、比較先検査のSD-OCTの断層画像は5mm Depthスケールが選択される。 For example, if the comparison source examination is an SD-OCT examination and the tomographic image is displayed in the Fit scale, and the comparison target examination is an SS-OCT examination, the tomographic image display area is SD-OCT. Select a 2 mm Depth scale that is the same length as the OCT depth dimension. In addition, when the comparison source examination is an examination taken by SS-OCT and the tomographic image is displayed on a 2 mm depth scale, if the comparison destination examination is SD-OCT, select it on the Fit scale, and select the SS- When the OCT tomographic image is displayed in the Fit scale, the 5 mm depth scale is selected for the SD-OCT tomographic image of the comparison target examination.

ステップS904からステップS909にかけて、ステップS903で設定したスケールで比較先検査の断層画像を比較先検査表示領域822に表示する。表示方法はステップS704からステップS709と同じである。なお、ステップS908のスクロールバーの位置においては、比較元検査の断層画像の層境界の情報をもとに、同じ位置になるように設定してもよい。 From step S904 to step S909, the tomographic image of the comparison target examination is displayed in the comparison target examination display area 822 with the scale set at step S903. The display method is the same as in steps S704 to S709. Note that the position of the scroll bar in step S908 may be set to the same position based on the layer boundary information of the tomographic image of the comparison source examination.

上述した本実施例によれば、断層画像撮影装置100の種別が異なる断層画像を比較表示する際に、複数の断層画像を同じ見た目で表示することができる。これにより、ユーザ操作することで表示を調整することなく、断層画像撮影装置100の種別の異なる複数の断層画像を同じ見た目で観察ができ非常に好ましかった。 According to the present embodiment described above, when tomographic images of different types of tomographic imaging apparatuses 100 are comparatively displayed, a plurality of tomographic images can be displayed with the same appearance. Accordingly, it is possible to observe a plurality of tomographic images of different types of the tomographic imaging apparatus 100 with the same appearance without adjusting the display by user operation, which is very preferable.

なおここでは、撮影サイズが同じ場合に限定したがこれに限らない。撮影サイズが異なる検査が選択された場合でも、ステップS906からステップS908で、断層画像の横方向も式2の深さ方向と同様の拡大縮小率を算出して断層画像をリスケールし、比較元の断層画像と同じ位置になるようにスクロールバーの位置を決定することで、同じ見た目で表示することができる。 Note that although the case where the photographing sizes are the same is limited here, the present invention is not limited to this. Even if an examination with a different imaging size is selected, in steps S906 to S908, the tomographic image is rescaled by calculating the same enlargement/reduction ratio as in the depth direction of Equation 2 in the horizontal direction of the tomographic image, and the comparison source is rescaled. By determining the position of the scroll bar so that it is at the same position as the tomographic image, it can be displayed in the same appearance.

また、本実施例では比較先の検査を表示する時のフローについて述べたが、比較元の表示スケールを変更した場合でも、スケールの種別を変更後のスケールでステップS902からステップS909を行うことで、比較先の断層画像の表示を同じ見た目にすることができる。さらには、比較先の表示スケールを変更した場合も、ステップS902からステップS909のフローを比較元と比較先を入れ替えて実施することで、比較元の断層画像の表示を同じ見た目にすることができる。 In addition, in this embodiment, the flow for displaying the comparison target examination has been described. , the display of the tomographic image to be compared can be made to have the same appearance. Furthermore, even when the display scale of the comparison target is changed, the display of the comparison source tomographic image can be made to have the same appearance by executing the flow from step S902 to step S909 by switching the comparison source and the comparison target. .

加えて、本実施例では断層画像撮影装置の種別が異なる断層画像として、SS-OCTとSD-OCTの断層画像の比較を記載したが、これに限らない。SD-OCTの中でも、長い撮影深度のSD-OCTと短い撮影深度のSD-OCTそれぞれの断層画像を並べて表示する場合も、それぞれの撮影深度と比較元の断層画像の表示スケールの種別をもとに、比較先の断層画像のスケールを選定することで、複数の断層画像を同じ見た目で表示することができる。 In addition, in this embodiment, comparison of tomographic images of SS-OCT and SD-OCT has been described as tomographic images of different types of tomographic imaging apparatuses, but the present invention is not limited to this. Among SD-OCT, even when tomographic images of SD-OCT with a long imaging depth and SD-OCT with a short imaging depth are displayed side by side, based on the type of display scale of each imaging depth and the comparison source tomographic image. Furthermore, by selecting the scale of the tomographic images to be compared, it is possible to display a plurality of tomographic images with the same appearance.

<実施例3>
本実施例では、広画角で高深達な断層画像撮影装置100で撮影を行う時に、狭画角の断層画像を撮影する時の断層画像のプレビュー表示の例について説明する。SS-OCTなどの広画角で高深達な断層画像撮影装置100において、SD-OCTと同じ撮影パターンを用いた撮影を行う時、SD-OCTの撮影と同じ見た目で撮影できることが望ましい。
<Example 3>
In the present embodiment, an example of preview display of a tomographic image when capturing a tomographic image with a wide angle of view and a high depth of field will be described. In a tomographic imaging apparatus 100 such as SS-OCT, which has a wide angle of view and a high depth of field, it is desirable to be able to perform imaging with the same appearance as SD-OCT imaging when performing imaging using the same imaging pattern as SD-OCT imaging.

なお、本実施例では、異なる種別の断層画像撮影装置で撮影された複数の断層画像の表示においても、断層構造の縦横比が似た状態で表示されることを同じ見た目であると表現するが、厳密に同じ見た目でなくてもよく、目視による断層構造の比較が行いやすい状態であればよい。 In this embodiment, even when displaying a plurality of tomographic images captured by different types of tomographic imaging apparatuses, displaying the tomographic structures with similar aspect ratios is expressed as having the same appearance. , It does not have to look exactly the same, as long as it is easy to visually compare the tomographic structures.

(本実施例に係る断層画像比較表示画面)
図10を参照して本実施例の表示制御部430が表示する、断層画像を撮影する撮影画面の例を説明する。図10は断層画像撮影装置100から撮影制御部410を介して断層画像を撮影し、取得するための断層画像撮影画面1000である。
(Tomographic image comparison display screen according to the present embodiment)
An example of a photographing screen for photographing a tomographic image, displayed by the display control unit 430 of this embodiment, will be described with reference to FIG. FIG. 10 shows a tomographic image capturing screen 1000 for capturing and acquiring a tomographic image from the tomographic image capturing apparatus 100 via the capturing control unit 410 .

断層画像撮影画面1000は撮影パターン表示領域1010と撮影プレビュー表示領域1020を持つ。撮影パターン表示領域1010では左右眼や調整モード、スキャンモード、固視灯の種別等が示される。なお、ユーザはマウス等の入力部130を使って、スキャンモードや固視灯の種別を変更することができる。 A tomographic imaging screen 1000 has an imaging pattern display area 1010 and an imaging preview display area 1020 . In the imaging pattern display area 1010, left and right eyes, adjustment mode, scan mode, type of fixation lamp, and the like are displayed. Note that the user can change the scan mode and the type of fixation lamp using the input unit 130 such as a mouse.

撮影プレビュー表示領域1020は、前眼プレビュー表示部1021、SLOプレビュー表示部1022、断層プレビュー表示領域1023を持ち、断層画像撮影装置100から取得される前眼プレビュー画像、SLOプレビュー画像、断層プレビュー画像をそれぞれの表示部にライブ画像としてリアルタイムに表示する。SLOプレビュー表示部1020では、断層画像の撮影パターン及び固視灯位置をSLOプレビュー画像上に表示する。 The imaging preview display area 1020 has an anterior ocular preview display area 1021, an SLO preview display area 1022, and a tomographic preview display area 1023, and displays an anterior ocular preview image, an SLO preview image, and a tomographic preview image acquired from the tomographic imaging apparatus 100. It is displayed in real time as a live image on each display unit. The SLO preview display unit 1020 displays the imaging pattern of the tomographic image and the fixation lamp position on the SLO preview image.

またユーザは入力部130を介して断層画像の撮影パターンのサイズや位置及び固視灯位置を変更することができる。撮影パターンが変更された場合、撮影制御部410は変更に合わせて断層画像撮影装置100の断層プレビュー画像の取得内容が変更され、変更後の断層プレビュー画像が断層プレビュー表示部1023に映し出される。 Also, the user can change the size and position of the tomographic image capturing pattern and the fixation lamp position via the input unit 130 . When the imaging pattern is changed, the imaging control unit 410 changes the content of the tomographic preview image acquired by the tomographic imaging apparatus 100 according to the change, and the tomographic preview image after the change is displayed on the tomographic preview display unit 1023 .

(本実施例に係るSS-OCTで狭画角撮影する時の断層画像の表示フロー)
図11を用いて本実施例に係るSS-OCTのように広画角かつ高深さ範囲の断層画像を取得可能な断層画像撮影装置100で、SD-OCTと同じような狭画角の撮影を行う際の断層画像の表示フローについて説明する。図11は本実施例に係るSS-OCTの撮影で狭画角撮影時の断層画像表示のための動作のフローチャートを示す。
(Display flow of tomographic image when performing narrow-angle imaging with SS-OCT according to the present embodiment)
Using FIG. 11, a tomographic imaging apparatus 100 capable of acquiring a tomographic image with a wide angle of view and a high depth range like SS-OCT according to the present embodiment can perform imaging with a narrow angle of view similar to SD-OCT. A display flow of a tomographic image when performing the operation will be described. FIG. 11 shows a flow chart of the operation for displaying a tomographic image during SS-OCT imaging with a narrow angle of view according to this embodiment.

SS-OCTで狭画角の断層画像を撮影する場合、断層プレビュー表示領域1023には、狭画角で深さ方向が長く網膜部分が薄くなった断層画像が表示される。ここで、表示制御部430が狭画角撮影時に断層プレビュー画像のスケールを変更することで、SS-OCTでの撮影においてもSD-OCTでの断層プレビュー画像と同じ見た目で断層プレビュー画像を表示することができる。 When capturing a tomographic image with a narrow angle of view by SS-OCT, a tomographic image with a narrow angle of view, a long depth direction, and a thin retina is displayed in the tomographic preview display area 1023 . Here, the display control unit 430 changes the scale of the tomographic preview image during narrow-angle imaging, so that the tomographic preview image is displayed in the same appearance as the tomographic preview image in SD-OCT even in imaging with SS-OCT. be able to.

具体的には、ステップS1101でユーザは入力部130を介して撮影パターン表示領域1010上で撮影パターンを選択する。なお、撮影パターンの選択後にSLOプレビュー表示上で撮影パターンのサイズを変更することもできる。 Specifically, the user selects an imaging pattern on the imaging pattern display area 1010 via the input unit 130 in step S1101. Note that the size of the imaging pattern can also be changed on the SLO preview display after the imaging pattern is selected.

ステップS1102では、表示制御部430がステップS1101で指定された撮影パターンの狭画角かどうかの判定を行う。例えば、画角がSD-OCTの撮影画角である10mm以下の場合は狭画角として判定する。 In step S1102, the display control unit 430 determines whether the imaging pattern specified in step S1101 has a narrow angle of view. For example, when the angle of view is 10 mm or less, which is the angle of view for SD-OCT imaging, it is determined as a narrow angle of view.

ステップS1103では、表示制御部430がステップS1102の判定結果からスケールを決定する。狭画角の場合は2mm Depthスケールに設定し、狭画角でない場合はFitスケール表示を設定する。すなわち、狭画角で撮影された断層画像を表示させる場合には、断層画像のうち深さ方向の長さが短い部分画像を表示させる。このとき、縦横でそれぞれ撮影するCross撮影パターンの場合、それぞれで画角が異なる場合があるが、それぞれで狭画角の判定を行ってスケールを設定してもよいし、1つでも狭画角が判定された場合は全て狭画角でのスケールに統一して設定してもよい。 In step S1103, the display control unit 430 determines the scale from the determination result of step S1102. If the angle of view is narrow, the 2 mm depth scale is set, and if the angle of view is not narrow, the Fit scale display is set. That is, when displaying a tomographic image captured with a narrow angle of view, a partial image having a short length in the depth direction of the tomographic image is displayed. At this time, in the case of a cross shooting pattern in which images are taken vertically and horizontally, the angle of view may differ for each. is determined, the scale may be uniformly set for a narrow angle of view.

ステップS1104では、表示制御部430が断層画像撮影装置100から取得される断層プレビュー画像の縦横の実寸長の確認をする。横方向の実寸長はステップ1101で設定した撮影パターンから、深さ方向の実寸長は断層画像撮影装置100の情報として予め記憶しているか、断層画像撮影装置100と通信して取得した情報を使用する。 In step S<b>1104 , the display control unit 430 confirms the actual vertical and horizontal lengths of the tomographic preview image acquired from the tomographic imaging apparatus 100 . The actual length in the horizontal direction is based on the imaging pattern set in step 1101, and the actual length in the depth direction is stored in advance as information of the tomographic imaging apparatus 100, or information obtained by communicating with the tomographic imaging apparatus 100 is used. do.

ステップS1105では、表示制御部430が断層プレビュー表示領域1023の縦横のピクセル数を確認する。 In step S<b>1105 , the display control unit 430 confirms the number of vertical and horizontal pixels in the tomographic preview display area 1023 .

ステップS1106では、表示制御部430が断層画像取得装置100から取得される断層プレビュー画像の縦横のピクセル数を確認する。断層プレビュー画像の縦横のピクセル数は断層画像撮影装置100の情報として予め記憶しているか、断層画像撮影装置100と通信して取得した情報を使用する。 In step S<b>1106 , the display control unit 430 checks the number of vertical and horizontal pixels of the tomographic preview image acquired from the tomographic image acquiring apparatus 100 . The number of vertical and horizontal pixels of the tomographic preview image is stored in advance as information of the tomographic imaging apparatus 100, or information obtained by communicating with the tomographic imaging apparatus 100 is used.

ステップS1107では、表示制御部430がステップS1103からステップS1106までで確認したスケール、断層プレビュー画像の実寸と表示領域のサイズ及び断層プレビュー画像のサイズから、断層プレビュー画像の縦横それぞれで拡大縮小倍率を算出する。算出手法はステップS706と同じ方法となる。 In step S1107, the display control unit 430 calculates scaling factors for each of the vertical and horizontal dimensions of the tomographic preview image from the scale confirmed in steps S1103 to S1106, the actual size of the tomographic preview image, the size of the display area, and the size of the tomographic preview image. do. The calculation method is the same as in step S706.

ステップS1108では、断層画像撮影装置100から撮影制御部410が画像取得部420を介して断層プレビュー画像を取得し、表示制御部430に渡す。 In step S<b>1108 , the imaging control unit 410 acquires a tomographic preview image from the tomographic imaging apparatus 100 via the image acquisition unit 420 and passes it to the display control unit 430 .

ステップS1109では、表示制御部430がS1107で求めた倍率で拡大・縮小された断層画像を生成する。ニアレストネイバー法やバイリニア法、バイキュービック法、機械学習による超解像などによって補間を行うことで、拡大・縮小された断層画像が生成される。 In step S1109, the display control unit 430 generates a tomographic image enlarged/reduced at the magnification calculated in step S1107. Enlarged/reduced tomographic images are generated by performing interpolation using the nearest neighbor method, bilinear method, bicubic method, super-resolution by machine learning, or the like.

ステップS1110では、S1107で求めた倍率が1以上の時、断層プレビュー画像のデフォルト位置を決定する。デフォルト位置として断層画像の中央が部分画像として表示される位置を指定する。なお断層画像は深さ方向に暗くなる傾向があるため、狭画角で網膜がはみ出ない範囲で明るい部分で撮影できる位置を設定してもよい。また、脈絡膜観察モードなど、撮影する対象によって位置が変更されてもよい。 In step S1110, when the magnification obtained in S1107 is 1 or more, the default position of the tomographic preview image is determined. Specify the position where the center of the tomographic image is displayed as a partial image as the default position. Since the tomographic image tends to become darker in the depth direction, a position may be set at which a bright portion can be photographed within a range where the retina does not protrude at a narrow angle of view. Also, the position may be changed depending on the object to be imaged, such as in the choroid observation mode.

なお、断層画像撮影装置100が断層画像を映し出す位置を自動的に決定する機能を持つ場合は、断層画像を映し出す位置が初期表示位置と合うようにしてもよいし、現在断層プレビュー表示領域1023が表示している位置にあうようにしてもよい。 Note that if the tomographic imaging apparatus 100 has a function of automatically determining the position where the tomographic image is displayed, the position where the tomographic image is displayed may match the initial display position, or the current tomographic preview display area 1023 may be You may make it match the displayed position.

ステップS1111では、表示制御部430が断層プレビュー表示領域1023内に、ステップS1109で生成した断層プレビュー画像をステップS1110で指定した位置で表示する。 In step S1111, the display control unit 430 displays the tomographic preview image generated in step S1109 in the tomographic preview display area 1023 at the position specified in step S1110.

表示制御部は断層プレビュー画像を断層画像撮影装置100から撮影制御部410及び画像取得部420を介して動画として連続して取得する間は、ステップ1109からS1111を繰り返す。その間、ステップS1110での表示位置は前の状態を維持する。ユーザによって表示位置が変更された場合も、変更後の位置を維持して断層プレビュー画像を表示する。 The display control unit repeats steps 1109 to S1111 while continuously acquiring tomographic preview images as moving images from the tomographic imaging apparatus 100 via the imaging control unit 410 and the image acquiring unit 420 . Meanwhile, the display position in step S1110 maintains the previous state. To display a tomographic preview image while maintaining the changed position even when the display position is changed by the user.

上述した本実施例によれば、SS-OCTなどの深さ方向に長い断層画像を取得する断層画像撮影装置100の断層プレビュー表示を、SD-OCTで撮影する時と同じ見た目で表示することができる。これにより、被検眼の注目領域、例えば網膜の視認性を向上できる。 According to the present embodiment described above, the tomographic preview display of the tomographic imaging apparatus 100 that acquires a tomographic image that is long in the depth direction, such as SS-OCT, can be displayed in the same appearance as SD-OCT imaging. can. Thereby, the visibility of the attention area of the eye to be examined, for example, the retina can be improved.

さらに、狭画角判定時に、SD-OCTと同じSLOプレビュー画像の範囲にSLOプレビュー画像を拡大して表示することで、撮影パターンの位置調整などがより精度高く実施できるようになりユーザビリティが向上する。 Furthermore, when determining a narrow angle of view, by displaying an enlarged SLO preview image within the same SLO preview image range as SD-OCT, it becomes possible to adjust the position of the imaging pattern with higher accuracy, improving usability. .

なお、ステップS1102で撮影パターンの画角から狭画角の判定を行ったが、ステップS1101で選択する撮影パターンに予め狭画角のモードかどうかを設定しておき、設定によって判定する方法でもよい。 Although the narrow angle of view is determined from the angle of view of the shooting pattern in step S1102, a method of determining whether the narrow angle of view mode is set in advance for the shooting pattern selected in step S1101 and making the determination based on the setting may be used. .

<実施例4>
本実施例の眼科システム10は、眼科検査装置の一例である断層画像撮影装置100によって取得される断層画像の画角に応じて、異なるスケールを適用して断層画像を表示することができる。
<Example 4>
The ophthalmologic system 10 of the present embodiment can display tomographic images by applying different scales according to the angle of view of the tomographic images acquired by the tomographic imaging apparatus 100, which is an example of an ophthalmologic examination apparatus.

ここで、狭い画角で撮影された断層画像が選択された場合、断層画像の深さ方向における一部の領域のみ、すなわち部分画像を表示領域に表示するスケールで表示される。取得されたままの断層画像よりも深さ方向が短い部分画像を表示することで、注目領域、例えば網膜を視認しやすくすることができる。 Here, when a tomographic image captured with a narrow angle of view is selected, only a partial area in the depth direction of the tomographic image, ie, a partial image is displayed in the display area. By displaying a partial image that is shorter in the depth direction than the acquired tomographic image, it is possible to make it easier to visually recognize a region of interest, for example, the retina.

断層画像撮影装置であるOCTによって取得される断層画像の深さ方向の長さ(撮影深度)は、被検眼に照射される測定光の性質と、干渉光を受光するセンサの性質とに依存する。取得される断層画像の深さ方向の長さを変更するためには、光源の変更やサンプリング速度の変更などの光学系の構成の煩雑な変更及び調整が必要であるため、深さ方向の長さは変更不可である場合がある。本実施例では、取得した断層画像を後処理することによって、光学系の構成の煩雑な変更及び調整をすることなく注目領域を視認しやすく表示させることができる。 The length in the depth direction (imaging depth) of a tomographic image acquired by OCT, which is a tomographic imaging apparatus, depends on the properties of the measurement light that irradiates the eye to be inspected and the properties of the sensor that receives the interference light. . In order to change the length in the depth direction of the acquired tomographic image, it is necessary to make complicated changes and adjustments to the configuration of the optical system, such as changing the light source and changing the sampling speed. length may be immutable. In the present embodiment, by post-processing the acquired tomographic image, it is possible to display the attention area in an easy-to-visually-recognizable manner without complicated changes and adjustments of the configuration of the optical system.

装置構成は実施例1~3と同様であるため、説明を省略する。 Since the device configuration is the same as that of Examples 1 to 3, description thereof is omitted.

図12を用いて、断層画像撮影装置100によって広角と狭角とを切り替えて撮影を行う場合の断層画像の表示について説明する。 Display of a tomographic image when the tomographic imaging apparatus 100 switches between wide-angle and narrow-angle imaging will be described with reference to FIG. 12 .

断層画像撮影装置100、例えばSS-OCTを用いることで、図12(a)のような広画角かつ高深さ範囲の断層画像を撮影することが可能である。広画角かつ高深さ範囲の断層画像を取得することで、広い範囲の網膜を観察し黄斑部から離れた位置における異常を発見することができる。 By using the tomographic image capturing apparatus 100, for example, SS-OCT, it is possible to capture a tomographic image with a wide angle of view and a high depth range as shown in FIG. 12(a). By acquiring a tomographic image with a wide angle of view and a high depth range, it is possible to observe a wide range of the retina and discover abnormalities at positions away from the macula.

ここで、より狭い画角で断層画像を取得することで、広画角の断層画像よりも横方向の解像度の高い断層画像を取得する場合が考えられる。このとき、図12(a)の断層画像が表示される表示領域と同じ表示領域に、狭い画角かつ高深さ範囲の断層画像の全体を表示すると、深さ方向がつぶれてしまい、注目領域の一例である網膜が視認しづらくなる場合がある。 Here, it is conceivable that a tomographic image with a higher lateral resolution than a tomographic image with a wide angle of view may be obtained by acquiring a tomographic image with a narrower angle of view. At this time, if the entire tomographic image with a narrow angle of view and a high depth range is displayed in the same display area as the tomographic image shown in FIG. For example, the retina may become difficult to see.

本実施例では、図12(b)のように取得されたままの断層画像よりも深さ方向が短い部分画像を表示する。このとき、スクロールバー等によるユーザの指示に応じて、部分画像として表示されない領域を新たに表示させる構成であってもよい。また、部分画像として表示されない領域は予めトリミング処理する構成であってもよい。 In this embodiment, as shown in FIG. 12B, a partial image having a depth direction shorter than that of the tomographic image as it is acquired is displayed. At this time, an area that is not displayed as a partial image may be newly displayed according to a user's instruction using a scroll bar or the like. Moreover, the area which is not displayed as a partial image may be trimmed in advance.

図13を用いて、断層画像撮影装置100を制御して断層画像を取得し、断層画像の画角に応じて表示スケールを異ならせるための動作フローを説明する。 An operation flow for controlling the tomography apparatus 100 to acquire a tomographic image and changing the display scale according to the angle of view of the tomographic image will be described with reference to FIG. 13 .

ステップS1301において、ユーザは撮影を行う撮影パターンの選択・変更を行う。撮影パターンは、画角を含む。撮影パターンとして、他にも、左右眼、撮影サイズ、撮影形式、X軸方向のスキャン数、Y軸方向のスキャン数、同一位置の繰り返し走査回数などの設定を行ってもよい。 In step S1301, the user selects/changes a photographing pattern for photographing. The shooting pattern includes an angle of view. As the photographing pattern, left and right eyes, photographing size, photographing format, the number of scans in the X-axis direction, the number of scans in the Y-axis direction, the number of repeated scans at the same position, and the like may be set.

ステップS1302において、断層画像撮影装置100を制御し、S1301で設定された撮影パターンに基づく断層画像の取得を行う。続いて、ステップS1303において取得された断層画像の画角を確認する。このとき、断層画像に紐づけられた画角の情報を確認してもよいし、断層画像撮影装置100に設定された断層画像の画角を確認してもよい。 In step S1302, the tomography apparatus 100 is controlled to acquire a tomographic image based on the imaging pattern set in S1301. Subsequently, the angle of view of the tomographic image acquired in step S1303 is confirmed. At this time, the angle of view information associated with the tomographic image may be checked, or the angle of view of the tomographic image set in the tomographic imaging apparatus 100 may be checked.

ステップS1304において、画角に応じた断層画像の表示スケールの決定を行う。このとき、狭い画角で撮影された断層画像が選択された場合、断層画像の深さ方向における一部の領域のみ、すなわち部分画像を表示領域に表示するスケールで表示させる。また、広い画角で撮影された断層画像が選択された場合は画像の全体を表示領域に表示させるスケールで表示させる。例えば、狭い画角の場合は2mm Depth、広い画角の場合はFitスケールのように設定してもよい。 In step S1304, the display scale of the tomographic image is determined according to the angle of view. At this time, when a tomographic image captured with a narrow angle of view is selected, only a partial area in the depth direction of the tomographic image, that is, a partial image is displayed in the display area. Also, when a tomographic image captured with a wide angle of view is selected, the entire image is displayed on a scale that allows it to be displayed in the display area. For example, it may be set to 2 mm Depth for a narrow angle of view and Fit scale for a wide angle of view.

ステップS1305~S1310での画像処理及び表示の動作フローは、実施例1と同様であるため説明を省略する。 The operation flow of image processing and display in steps S1305 to S1310 is the same as that of the first embodiment, so description thereof will be omitted.

なお、断層画像を表示させるレポートとして、図12のように異なる画角で取得された複数の断層画像を並べて表示させてもよいし、同じ画角の断層像のみを表示させてもよい。そのほかの複数の断層画像を表示させる場合の表示方法は実施例1と同様であるため、説明を省略する。 As a report for displaying tomographic images, a plurality of tomographic images acquired at different angles of view may be displayed side by side as shown in FIG. 12, or only tomographic images at the same angle of view may be displayed. Since the display method for displaying a plurality of other tomographic images is the same as that of the first embodiment, description thereof is omitted.

<その他の実施例>
本明細書の実施例1~4は適宜組み合わせて実施されてもよい。
<Other Examples>
Examples 1 to 4 of the present specification may be practiced in combination as appropriate.

また、本明細書に開示される技術は、上述した様々な実施例の1以上の機能を実現するソフトウェア(プログラム)を、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータがプログラムを読出し実行する処理でも実現可能である。コンピュータは、1つ又は複数のプロセッサ若しくは回路を有し、コンピュータ実行可能命令を読み出し実行するために、分離した複数のコンピュータ又は分離した複数のプロセッサ若しくは回路のネットワークを含みうる。 In addition, the technology disclosed in this specification supplies software (programs) that realize one or more functions of the various embodiments described above to a system or device via a network or a storage medium, and the system or device can also be implemented by a process in which the computer reads and executes the program. A computer has one or more processors or circuits and may include separate computers or a network of separate processors or circuits for reading and executing computer-executable instructions.

このとき、プロセッサ又は回路は、中央演算処理装置(CPU)、マイクロプロセッシングユニット(MPU)、グラフィクスプロセッシングユニット(GPU)、特定用途向け集積回路(ASIC)、又はフィールドプログラマブルゲートウェイ(FPGA)を含みうる。また、プロセッサ又は回路は、デジタルシグナルプロセッサ(DSP)、データフロープロセッサ(DFP)、又はニューラルプロセッシングユニット(NPU)を含みうる。 As such, the processor or circuitry may include a central processing unit (CPU), a microprocessing unit (MPU), a graphics processing unit (GPU), an application specific integrated circuit (ASIC), or a field programmable gateway (FPGA). Also, the processor or circuitry may include a digital signal processor (DSP), data flow processor (DFP), or neural processing unit (NPU).

Claims (19)

測定光が照射された被検眼からの戻り光と参照光とを合波して得た干渉光を用いて前記被検眼の断層画像を取得する情報処理装置であって、
前記被検眼の断層画像を取得する画角として、第1の画角と前記第1の画角よりも狭い第2の画角とを含む複数の画角のうちいずれかが選択された場合に、前記選択された画角で前記被検眼において前記測定光を走査する走査手段を制御する制御手段と、
前記第1の画角が選択された場合、前記第1の画角で取得された第1の断層画像を表示領域に表示させ、前記第2の画角が選択された場合、前記第2の画角で取得された第2の断層画像に含まれる部分画像であって前記第2の断層画像よりも被検眼における深さ方向の長さが短い部分画像を、前記表示領域に合わせるように表示させる表示制御手段と、
を備える情報処理装置。
An information processing apparatus for acquiring a tomographic image of an eye to be inspected using interference light obtained by combining reference light and return light from an eye to be inspected irradiated with measurement light,
when one of a plurality of angles of view including a first angle of view and a second angle of view narrower than the first angle of view is selected as the angle of view for acquiring the tomographic image of the eye to be inspected; , a control means for controlling a scanning means for scanning the measurement light in the eye to be inspected at the selected angle of view;
When the first angle of view is selected, a first tomographic image acquired at the first angle of view is displayed in the display area, and when the second angle of view is selected, the second tomographic image is displayed. A partial image included in the second tomographic image acquired at the angle of view and having a shorter length in the depth direction of the eye to be inspected than the second tomographic image is displayed so as to match the display area. a display control means for
Information processing device.
測定光が照射された被検眼からの戻り光と参照光とを合波して得た干渉光を用いて前記被検眼の断層画像を取得する情報処理装置であって、
前記被検眼の第1の断層画像と前記第1の断層画像の前記被検眼における深さ方向の長さよりも深さ方向の長さが長い第2の断層画像とを含む複数の断層画像のうち少なくとも一つを選択するユーザの指示に応じて、前記選択された断層画像を取得する取得手段と、
前記第1の断層画像が選択された場合、前記第1の断層画像を表示領域に表示させ、前記第2の断層画像が選択された場合、前記第2の断層画像に含まれる部分画像であって前記第2の断層画像よりも被検眼における深さ方向の長さが短い部分画像を前記表示領域に合わせるように表示させる表示制御手段と、
を備える情報処理装置。
An information processing apparatus for acquiring a tomographic image of an eye to be inspected using interference light obtained by combining reference light and return light from an eye to be inspected irradiated with measurement light,
Among a plurality of tomographic images including a first tomographic image of the eye to be inspected and a second tomographic image having a longer length in the depth direction than the length of the first tomographic image in the eye to be inspected Acquisition means for acquiring the selected tomographic image in accordance with a user's instruction to select at least one;
When the first tomographic image is selected, the first tomographic image is displayed in a display area, and when the second tomographic image is selected, it is a partial image included in the second tomographic image. display control means for displaying a partial image having a length in the depth direction of the eye to be inspected that is shorter than the second tomographic image so as to match the display area;
Information processing device.
前記測定光は波長掃引光源によって照射される請求項1又は2に記載の情報処理装置。 3. The information processing apparatus according to claim 1, wherein said measurement light is emitted from a wavelength swept light source. 分光器を介して取得される干渉光を用いるSD-OCTによって取得される第1の断層画像と、波長掃引光源によって測定光が照射された被検眼からの戻り光と参照光とを合波して得た干渉光を用いて前記被検眼の断層画像を取得するSS-OCTによって取得される第2の断層画像とのうち少なくとも1つを選択するユーザの指示に応じて、前記選択された断層画像を取得する取得手段と、
前記第1の断層画像が選択された場合、前記第1の断層画像を表示領域に表示させ、前記第2の断層画像が選択された場合、前記第2の断層画像に含まれる部分画像であって前記第2の断層画像よりも前記被検眼における深さ方向の長さが短い部分画像を前記表示領域に合わせるように表示させる表示制御手段と、
を備える情報処理装置。
A first tomographic image obtained by SD-OCT using interfering light obtained through a spectroscope, and the return light from the subject's eye irradiated with the measurement light by the wavelength swept light source and the reference light are combined. A second tomographic image acquired by SS-OCT that acquires a tomographic image of the eye to be inspected using the coherent light obtained by an acquisition means for acquiring an image;
When the first tomographic image is selected, the first tomographic image is displayed in a display area, and when the second tomographic image is selected, it is a partial image included in the second tomographic image. display control means for displaying a partial image having a length in the depth direction of the eye to be inspected that is shorter than the second tomographic image so as to match the display area;
Information processing device.
前記表示制御手段は、前記第2の断層画像における前記部分画像の表示を、前記部分画像とは異なる部分画像の表示にユーザの指示に応じて更新する請求項1乃至4のいずれか1項に記載の情報処理装置。 5. The display control unit according to any one of claims 1 to 4, wherein the display of the partial image in the second tomographic image is updated to display a partial image different from the partial image in accordance with a user's instruction. The information processing device described. 前記表示制御手段は、前記第2の断層画像を解析することで得られる層境界の情報を用いて得られた前記部分画像を、前記表示領域に合わせるように表示させる請求項1乃至5のいずれか1項に記載の情報処理装置。 6. The display control means according to any one of claims 1 to 5, wherein the partial image obtained using layer boundary information obtained by analyzing the second tomographic image is displayed so as to match the display area. 1. The information processing apparatus according to 1. 前記表示制御手段は、前記第1の断層画像と前記第2の断層画像との少なくとも1つをレポートとして表示部に表示させ、前記被検眼に測定光を走査するスキャンモードと、左右眼と、検査日時と、患者情報との少なくとも一つを前記表示部にさらに表示させる請求項1乃至6のいずれか1項に記載の情報処理装置。 The display control means causes a display unit to display at least one of the first tomographic image and the second tomographic image as a report, a scan mode for scanning the eye to be inspected with measurement light, left and right eyes, The information processing apparatus according to any one of claims 1 to 6, wherein at least one of examination date and time and patient information is further displayed on the display unit. 前記表示制御手段は、前記第1の断層画像と前記第2の断層画像とを含む複数の断層画像のうち少なくとも2つを比較元画像と比較先画像として選択するユーザの指示に応じて、前記比較元画像と前記比較先画像との表示される領域の被検眼における深さ方向の長さが同じになるように、前記比較元画像と前記比較先画像とを前記表示部に並べて表示させる請求項1乃至7のいずれか1項に記載の情報処理装置。 The display control means, in response to a user instruction to select at least two of a plurality of tomographic images including the first tomographic image and the second tomographic image as a comparison source image and a comparison destination image, Displaying the comparison source image and the comparison destination image side by side on the display unit so that the lengths of the regions in which the comparison source image and the comparison destination image are displayed are the same in the depth direction of the subject's eye. Item 8. The information processing apparatus according to any one of Items 1 to 7. 前記表示制御手段は、前記第1の断層画像と前記部分画像とのうち少なくとも1つをライブ画像として前記表示部に表示させる請求項1乃至8のいずれか1項に記載の情報処理装置。 The information processing apparatus according to any one of claims 1 to 8, wherein the display control means displays at least one of the first tomographic image and the partial image as a live image on the display unit. 前記表示制御手段は、前記被検眼の正面画像をライブ画像として前記表示部にさらに表示させる請求項9に記載の情報処理装置。 10. The information processing apparatus according to claim 9, wherein the display control means further displays a front image of the subject's eye as a live image on the display unit. 前記被検眼の断層画像として、前記被検眼の眼底の断層画像を取得する請求項1乃至10のいずれか1項に記載の情報処理装置。 The information processing apparatus according to any one of claims 1 to 10, wherein a tomographic image of the fundus of the eye to be inspected is acquired as the tomographic image of the eye to be inspected. 請求項1乃至11のいずれか1項に記載の情報処理装置と、前記干渉光を検出する検出手段を備える眼科検査装置とが、通信可能に接続された眼科システム。 An ophthalmologic system in which the information processing apparatus according to any one of claims 1 to 11 and an ophthalmologic examination apparatus comprising a detection means for detecting the interference light are communicably connected. 測定光が照射された被検眼からの戻り光と参照光とを合波して得た干渉光を用いて前記被検眼の断層画像を取得する眼科検査装置であって、
前記被検眼の断層画像を取得する画角として、第1の画角と前記第1の画角よりも狭い第2の画角とを含む複数の画角のうちいずれかが選択された場合に、前記選択された画角で前記被検眼において前記測定光を走査する走査手段を制御する制御手段と、
前記第1の画角が選択された場合、前記第1の画角で取得された第1の断層画像を表示領域に表示させ、前記第2の画角が選択された場合、前記第2の画角で取得された第2の断層画像に含まれる部分画像であって前記第2の断層画像よりも被検眼における深さ方向の長さが短い部分画像を、前記表示領域に合わせるように表示させる表示制御手段と、
を備える眼科検査装置。
An ophthalmologic examination apparatus for acquiring a tomographic image of an eye to be examined using interference light obtained by combining reference light and return light from an eye to be examined irradiated with measurement light,
when one of a plurality of angles of view including a first angle of view and a second angle of view narrower than the first angle of view is selected as the angle of view for acquiring the tomographic image of the eye to be inspected; , a control means for controlling a scanning means for scanning the measurement light in the eye to be inspected at the selected angle of view;
When the first angle of view is selected, a first tomographic image acquired at the first angle of view is displayed in the display area, and when the second angle of view is selected, the second tomographic image is displayed. A partial image included in the second tomographic image acquired at the angle of view and having a shorter length in the depth direction of the eye to be inspected than the second tomographic image is displayed so as to match the display area. a display control means for
An ophthalmic examination device comprising:
前記第1の画角で前記第1の断層画像を取得する際と、前記第2の画角で前記第2の断層画像を取得する際とにおいて、取得される断層画像の前記被検眼における深さ方向の長さを変更不可に構成された請求項13に記載の眼科検査装置。 When acquiring the first tomographic image with the first angle of view and when acquiring the second tomographic image with the second angle of view, the depth of the acquired tomographic image in the eye to be examined 14. The ophthalmologic examination apparatus according to claim 13, wherein the length in the longitudinal direction is unchangeable. 測定光が照射された被検眼からの戻り光と参照光とを合波して得た干渉光を用いて前記被検眼の断層画像を取得する眼科検査装置であって、
前記被検眼の第1の断層画像と前記第1の断層画像の被検眼における深さ方向の長さよりも深さ方向の長さが長い第2の断層画像とを含む複数の断層画像のうち少なくとも一つを選択するユーザの指示に応じて、前記選択された断層画像を取得する取得手段と、
前記第1の断層画像が選択された場合、前記第1の断層画像を表示領域に表示させ、前記第2の断層画像が選択された場合、前記第2の断層画像に含まれる部分画像であって前記第2の断層画像よりも被検眼における深さ方向の長さが短い部分画像を前記表示領域に合わせるように表示させる表示制御手段と、
を備える眼科検査装置。
An ophthalmologic examination apparatus for acquiring a tomographic image of an eye to be examined using interference light obtained by combining reference light and return light from an eye to be examined irradiated with measurement light,
at least of a plurality of tomographic images including a first tomographic image of the eye to be inspected and a second tomographic image having a longer length in the depth direction than the length of the first tomographic image in the eye to be inspected Acquisition means for acquiring the selected tomographic image in response to a user's instruction to select one;
When the first tomographic image is selected, the first tomographic image is displayed in a display area, and when the second tomographic image is selected, it is a partial image included in the second tomographic image. display control means for displaying a partial image having a length in the depth direction of the eye to be inspected that is shorter than the second tomographic image so as to match the display area;
An ophthalmic examination device comprising:
測定光が照射された被検眼からの戻り光と参照光とを合波して得た干渉光を用いて前記被検眼の断層画像を取得する眼科検査装置の制御方法であって、
前記被検眼の断層画像を取得する画角として、第1の画角と前記第1の画角よりも狭い第2の画角とを含む複数の画角のうちいずれかが選択された場合に、前記選択された画角で前記被検眼において前記測定光を走査する走査手段を制御する工程と、
前記第1の画角が選択された場合、前記第1の画角で取得された第1の断層画像を表示領域に表示させ、前記第2の画角が選択された場合、前記第2の画角で取得された第2の断層画像に含まれる部分画像であって前記第2の断層画像よりも被検眼における深さ方向の長さが短い部分画像を、前記表示領域に合わせるように表示させる工程と、
を含む眼科検査装置の制御方法。
A control method for an ophthalmologic examination apparatus for acquiring a tomographic image of an eye to be examined using interference light obtained by combining reference light and return light from an eye to be examined irradiated with measurement light, comprising:
when one of a plurality of angles of view including a first angle of view and a second angle of view narrower than the first angle of view is selected as the angle of view for acquiring the tomographic image of the eye to be inspected; a step of controlling scanning means for scanning the measurement light in the eye to be inspected at the selected angle of view;
When the first angle of view is selected, a first tomographic image acquired at the first angle of view is displayed in the display area, and when the second angle of view is selected, the second tomographic image is displayed. A partial image included in the second tomographic image acquired at the angle of view and having a shorter length in the depth direction of the eye to be inspected than the second tomographic image is displayed so as to match the display area. and
A control method for an ophthalmic examination apparatus comprising:
測定光が照射された被検眼からの戻り光と参照光とを合波して得た干渉光を用いて前記被検眼の断層画像を取得する眼科検査装置の制御方法であって、
前記被検眼の第1の断層画像と前記第1の断層画像の被検眼における深さ方向の長さよりも深さ方向の長さが長い第2の断層画像とを含む複数の断層画像のうち少なくとも一つを選択するユーザの指示に応じて、前記選択された断層画像を取得する工程と、
前記第1の断層画像が選択された場合、前記第1の断層画像を表示領域に表示させ、前記第2の断層画像が選択された場合、前記第2の断層画像に含まれる部分画像であって前記第2の断層画像よりも被検眼における深さ方向の長さが短い部分画像を前記表示領域に合わせるように表示させる工程と、
を含む眼科検査装置の制御方法。
A control method for an ophthalmologic examination apparatus for acquiring a tomographic image of an eye to be examined using interference light obtained by combining reference light and return light from an eye to be examined irradiated with measurement light, comprising:
at least of a plurality of tomographic images including a first tomographic image of the eye to be inspected and a second tomographic image having a longer length in the depth direction than the length of the first tomographic image in the eye to be inspected Acquiring the selected tomographic image in response to a user's instruction to select one;
When the first tomographic image is selected, the first tomographic image is displayed in a display area, and when the second tomographic image is selected, it is a partial image included in the second tomographic image. displaying a partial image having a length in the depth direction of the eye to be inspected that is shorter than the second tomographic image so as to match the display area;
A control method for an ophthalmic examination apparatus comprising:
分光器を介して取得される干渉光を用いるSD-OCTによって取得される第1の断層画像と、波長掃引光源によって測定光が照射された被検眼からの戻り光と参照光とを合波して得た干渉光を用いて前記被検眼の断層画像を取得するSS-OCTによって取得される第2の断層画像とのうち少なくとも1つを選択するユーザの指示に応じて、前記選択された断層画像を取得する工程と、
前記第1の断層画像が選択された場合、前記第1の断層画像を表示領域に表示させ、前記第2の断層画像が選択された場合、前記第2の断層画像に含まれる部分画像であって前記第2の断層画像よりも前記被検眼における深さ方向の長さが短い部分画像を前記表示領域に合わせるように表示させる工程と、
を含む情報処理装置の制御方法。
A first tomographic image obtained by SD-OCT using interfering light obtained through a spectroscope, and the return light from the subject's eye irradiated with the measurement light by the wavelength swept light source and the reference light are combined. A second tomographic image acquired by SS-OCT that acquires a tomographic image of the eye to be inspected using the coherent light obtained by obtaining an image;
When the first tomographic image is selected, the first tomographic image is displayed in a display area, and when the second tomographic image is selected, it is a partial image included in the second tomographic image. displaying a partial image having a length in the depth direction of the eye to be inspected that is shorter than the second tomographic image so as to match the display area;
A control method for an information processing device including
請求項16乃至18のいずれか1項に記載の制御方法をコンピュータに実行させるプログラム。 A program that causes a computer to execute the control method according to any one of claims 16 to 18.
JP2021133354A 2021-08-18 2021-08-18 Information processing device and ophthalmologic examination device Pending JP2023027961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021133354A JP2023027961A (en) 2021-08-18 2021-08-18 Information processing device and ophthalmologic examination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021133354A JP2023027961A (en) 2021-08-18 2021-08-18 Information processing device and ophthalmologic examination device

Publications (1)

Publication Number Publication Date
JP2023027961A true JP2023027961A (en) 2023-03-03

Family

ID=85331831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021133354A Pending JP2023027961A (en) 2021-08-18 2021-08-18 Information processing device and ophthalmologic examination device

Country Status (1)

Country Link
JP (1) JP2023027961A (en)

Similar Documents

Publication Publication Date Title
US7980697B2 (en) Fundus oculi observation device and ophthalmic image display device
US7641338B2 (en) Fundus observation device
US7370966B2 (en) Opthalmologic apparatus
EP1842483B1 (en) A fundus observation device with movable fixation target
US7905596B2 (en) Fundus observation device, an ophthalmologic image processing unit, an ophthalmologic image processing program, and an ophthalmologic image processing method
US7784942B2 (en) Fundus oculi observation device, a fundus oculi image display device and a fundus oculi image display method
EP1961374B1 (en) Fundus oculi observation device and fundus oculi image processing device
JP4890878B2 (en) Fundus observation device
JP5367047B2 (en) Fundus observation device
JP2014140491A (en) Ophthalmology imaging apparatus
JP2017006179A (en) OCT signal processing apparatus, OCT signal processing program, and OCT apparatus
JP2018019771A (en) Optical coherence tomography device and optical coherence tomography control program
JP2018201749A (en) Controller, tomographic system, control method, and program
JP6976778B2 (en) Information processing equipment, information processing methods and programs
JP6788397B2 (en) Image processing device, control method of image processing device, and program
JP2023027961A (en) Information processing device and ophthalmologic examination device
JP7204345B2 (en) Image processing device, image processing method and program
JP2013027442A (en) Fundus imaging apparatus, fundus analyzing method and fundus analyzing program
JP2018000687A (en) Image processing device, image processing method, and program
JP2019170468A (en) Ophthalmologic apparatus and control method of ophthalmologic apparatus
JP7387343B2 (en) Image processing device, image processing program
JP7086708B2 (en) Image processing equipment, image processing methods and programs
JP2024052404A (en) OCT device and OCT system

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20231213