JP2023026979A - Hydrotalcite compound and photoactive catalyst - Google Patents

Hydrotalcite compound and photoactive catalyst Download PDF

Info

Publication number
JP2023026979A
JP2023026979A JP2021132462A JP2021132462A JP2023026979A JP 2023026979 A JP2023026979 A JP 2023026979A JP 2021132462 A JP2021132462 A JP 2021132462A JP 2021132462 A JP2021132462 A JP 2021132462A JP 2023026979 A JP2023026979 A JP 2023026979A
Authority
JP
Japan
Prior art keywords
powder
type
hydrotalcite compound
anion
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021132462A
Other languages
Japanese (ja)
Other versions
JP7416441B2 (en
Inventor
善之 横川
Yoshiyuki Yokokawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University Public Corporation Osaka
Original Assignee
University Public Corporation Osaka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University Public Corporation Osaka filed Critical University Public Corporation Osaka
Priority to JP2021132462A priority Critical patent/JP7416441B2/en
Publication of JP2023026979A publication Critical patent/JP2023026979A/en
Application granted granted Critical
Publication of JP7416441B2 publication Critical patent/JP7416441B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a hydrotalcite compound that absorbs ultraviolet and infrared rays and exhibits photocatalytic activity, and a photocatalytic activator containing the hydrotalcite compound.SOLUTION: Provided is a hydrotalcite compound represented by the general formula (1): [Zn1-xAl2-x(OH)][An-x/n H2O] (1) (in the formula, An- denotes an anion that is a carbonate ion, a fluorine ion or a chloride ion, x is 0.2 to 0.4, and n is the valence of the anion).SELECTED DRAWING: None

Description

本発明は、ハイドロタルサイト化合物及び光活性触媒に関する。 The present invention relates to hydrotalcite compounds and photoactive catalysts.

従来、様々な用途でハイドロタルサイト化合物が使用されている。 Conventionally, hydrotalcite compounds have been used in various applications.

ハイドロタルサイト化合物は、アニオン交換機能を有する層状複水酸化物であり、例えば、一般式(1):
[M 2+ 1-x 3+ (OH)][(An-x/n・mHO] (1)
[式中、Mは2価金属を示す。Mは3価金属を示す。0<x<1を示す。An-は陰イオンを示す。nは1又は2を示す。mは1以上の整数を示す。]
で表される組成を有しており、層状複水酸化物(Layered Double Hydrocxide(LDH))
とも称される。
The hydrotalcite compound is a layered double hydroxide having an anion exchange function, and is represented by general formula (1):
[M 1 2+ 1−x M 2 3+ x (OH) 2 ] [(A n− ) x/n ·mH 2 O] (1)
[In the formula, M 1 represents a divalent metal. M2 denotes a trivalent metal. 0<x<1. A n- indicates an anion. n represents 1 or 2; m represents an integer of 1 or more. ]
It has a composition represented by Layered Double Hydroxide (LDH)
Also called

上記ハイドロタルサイトは、紫外線吸収剤としても利用されており、例えば、特許文献1には、紫外線を吸収する化合物がLDHの層間に取り込まれた複合体及びそれを含有する外用剤が開示されている。 The hydrotalcite is also used as an ultraviolet absorber. For example, Patent Document 1 discloses a complex in which a compound that absorbs ultraviolet light is incorporated between the layers of LDH and an external preparation containing the same. there is

しかしながら、ハイドロタルサイトには、更に様々な用途に用いることができる性能が要求されている。例えば、紫外線だけでなく赤外線も吸収することができるハイドロタルサイトは、保温効果が要求される防災用テント、農業用のビニールハウス等に用いられる樹脂シートに含まれる添加剤として有用である。 However, hydrotalcite is required to have performance that allows it to be used in various applications. For example, hydrotalcite, which can absorb not only ultraviolet rays but also infrared rays, is useful as an additive contained in resin sheets used in disaster prevention tents, agricultural vinyl houses, and the like, which require heat retention.

また、材料設計を行う上で、紫外・赤外線吸収性能以外にも更なる付加価値を示し、幅広い用途で利用できるハイドロタルサイトが求められている。本発明者等は、鋭意検討の結果、特定の金属及びアニオンを含む構成のハイドロタルサイトによれば、紫外線及び赤外線を吸収し、且つ、光触媒活性を示すことを見出した。そして、このようなハイドロタルサイトは、保温効果が要求される防災用テント、農業用のビニールハウス等の用途に加え、光触媒活性を示すことによる耐候性塗料、塗料、樹脂フィラー、マウスガードフィラー等の様々な用途に利用することができることを見出し、本発明に到達したものである。 Moreover, in material design, there is a demand for hydrotalcite that exhibits further added value in addition to ultraviolet/infrared absorption performance and can be used in a wide range of applications. As a result of intensive studies, the present inventors have found that hydrotalcite having a structure containing specific metals and anions absorbs ultraviolet rays and infrared rays and exhibits photocatalytic activity. In addition to applications such as disaster prevention tents and agricultural vinyl houses that require heat retention, hydrotalcite is used for weather-resistant paints, paints, resin fillers, mouth guard fillers, etc. by exhibiting photocatalytic activity. The inventors have found that it can be used for various purposes, and arrived at the present invention.

特開2002-167570号公報JP-A-2002-167570

本発明は、上記の事情に鑑みてなされたものであり、紫外線及び赤外線を吸収し、且つ、光触媒活性を示すハイドロタルサイト化合物、及び、当該ハイドロタルサイト化合物を含有する光触媒活性剤を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a hydrotalcite compound that absorbs ultraviolet rays and infrared rays and exhibits photocatalytic activity, and a photocatalytic activator containing the hydrotalcite compound. The purpose is to

本発明者は、上記目的を達成するために鋭意研究を重ねた結果、特定の金属及びアニオンを含有するハイドロタルサイト化合物、及び、特定の金属及びアニオンを含むハイドロタルサイト化合物を含有する光触媒活性剤によれば、上記目的を達成できることを見出し、本発明を完成するに至った。 As a result of intensive research to achieve the above object, the present inventors have discovered a hydrotalcite compound containing a specific metal and an anion, and a photocatalytic activity containing a hydrotalcite compound containing a specific metal and an anion. The present inventors have found that the above object can be achieved by using the agent, and have completed the present invention.

即ち、本発明は、下記のハイドロタルサイト化合物及び光触媒活性剤に関する。
1.下記一般式(1)
[Zn1-xAl2-x(OH)][An- x/n・HO] (1)
(式中An-は、炭酸イオン、フッ素イオン又は塩素イオンであるアニオンを示す。xは0.2~0.4、nはアニオンの価数を示す。)
で表されるハイドロタルサイト化合物。
2.前記An-は、フッ素イオン又は塩素イオンであるアニオンを示す、項1に記載のハイドロタルサイト化合物。
3.前記xが0.25~0.35である、項1又は2に記載のハイドロタルサイト化合物。
4.下記一般式(1)
[M 1-x 2-x(OH)][An- x/n・HO] (2)
(式中、MはZn又はCu、MはAl又はFeを示す。An-は炭酸イオン、フッ素イオン又は塩素イオンであるアニオンを示す。xは0.2~0.4、nはアニオンの価数を示す。)
で表されるハイドロタルサイト化合物を含有する、光触媒活性剤。
5.前記An-は、フッ素イオン又は塩素イオンであるアニオンを示す、項4に記載の光触媒活性剤。
6.前記xが0.25~0.35である、項4又は5に記載の光触媒活性剤。
7.前記光触媒活性剤を100質量%として、前記ハイドロタルサイト化合物の含有量が90.0~99.9質量%である、項4~6のいずれか1項に記載の光触媒活性剤。
That is, the present invention relates to the following hydrotalcite compound and photocatalyst activator.
1. General formula (1) below
[Zn 1-x Al 2-x (OH)] [A n- x/n H 2 O] (1)
(In the formula, A n- represents an anion that is a carbonate ion, a fluorine ion or a chloride ion, x is 0.2 to 0.4, and n represents the valence of the anion.)
A hydrotalcite compound represented by
2. Item 2. The hydrotalcite compound according to item 1, wherein the A n- represents an anion that is a fluorine ion or a chloride ion.
3. Item 3. The hydrotalcite compound according to Item 1 or 2, wherein x is 0.25 to 0.35.
4. General formula (1) below
[M 1 1-x M 2 2-x (OH)] [A n- x/n H 2 O] (2)
(In the formula, M 1 represents Zn or Cu, M 2 represents Al or Fe, A n- represents an anion that is carbonate ion, fluorine ion or chloride ion, x is 0.2 to 0.4, n is Indicates the valence of the anion.)
A photocatalyst activator containing a hydrotalcite compound represented by.
5. Item 5. The photocatalyst activator according to Item 4, wherein the A n- represents an anion that is a fluorine ion or a chloride ion.
6. Item 6. The photocatalyst activator according to Item 4 or 5, wherein x is 0.25 to 0.35.
7. Item 7. The photocatalyst activator according to any one of Items 4 to 6, wherein the content of the hydrotalcite compound is 90.0 to 99.9% by mass based on 100% by mass of the photocatalyst activator.

本発明のハイドロタルサイト化合物は、紫外線及び赤外線を吸収し、且つ、光触媒活性を示すことができる。また、本発明の光触媒活性剤は、紫外線及び赤外線を吸収し、且つ、光触媒活性を示すことができる。 The hydrotalcite compound of the present invention can absorb ultraviolet rays and infrared rays and exhibit photocatalytic activity. In addition, the photocatalytic activator of the present invention can absorb ultraviolet rays and infrared rays and exhibit photocatalytic activity.

実施例1における炭酸型Zn-Al(粉末A(CO3 2-型))LDHの合成フローを示す図である。1 is a diagram showing a synthesis flow of carbonate-type Zn-Al (powder A (CO 3 2- type)) LDH in Example 1. FIG. 比較例1における硫酸型Zn-Al(粉末B(SO4 2-型))LDHの合成フローを示す図である。1 is a diagram showing a synthesis flow of sulfate-type Zn—Al (powder B (SO 4 2- type)) LDH in Comparative Example 1. FIG. 比較例2における硝酸型Zn-Al(粉末C(NO3 -型))LDHの合成フローを示す図である。2 is a diagram showing a synthesis flow of nitrate-type Zn—Al (powder C (NO 3 -type )) LDH in Comparative Example 2. FIG. 実施例2における塩素型Zn-Al(粉末D(Cl-型))LDHの合成フローを示す図である。2 is a diagram showing a synthesis flow of chlorine-type Zn—Al (powder D (Cl 3 -type)) LDH in Example 2. FIG. 実施例3における塩素型Zn-Al(粉末E(Cl-型))LDHの合成フローを示す図である。2 is a diagram showing a synthesis flow of chlorine-type Zn—Al (powder E (Cl type)) LDH in Example 3. FIG. 実施例4におけるフッ素型Zn-Al(粉末F(F-型) 、実施例5におけるフッ素型Zn-Al(粉末G(F-型))LDHの合成フローを示す図である。FIG. 2 is a diagram showing a synthesis flow of fluorine-type Zn-Al (powder F (F type) 2 in Example 4 and fluorine-type Zn-Al (powder G (F type)) LDH in Example 5. FIG. 実施例1の粉末A(CO3 2-型)の粉末X線回折図である。1 is a powder X-ray diffraction pattern of powder A (CO 3 2- type) of Example 1. FIG. 比較例1の粉末B(SO4 2-型)の粉末X線回折図である。2 is a powder X-ray diffraction pattern of powder B (SO 4 2- type) of Comparative Example 1. FIG. 比較例2の粉末C(NO3 -型)の粉末X線回折図である。3 is a powder X-ray diffraction pattern of powder C (NO 3 type) of Comparative Example 2. FIG. 実施例2の粉末D(Cl-型)、及び、実施例3の粉末E(Cl-型)のX線回折図である。FIG. 2 is an X-ray diffraction diagram of powder D (Cl − type) of Example 2 and powder E (Cl type) of Example 3. FIG. 実施例3の粉末E(Cl-型)、実施例4の粉末F(F-型)、実施例5の粉末G(F-型)の粉末X線回折図である。FIG. 2 is a powder X-ray diffraction pattern of powder E (Cl type) of Example 3, powder F (F type) of Example 4, and powder G (F type) of Example 5; 実施例1の粉末A(CO3 2-型)、比較例1の粉末B(SO4 2-型)、比較例2の粉末C(NO3 -型)、実施例3の粉末E(Cl-型)、及び実施例5の粉末G(F-型)の、紫外可視近赤外分光法により測定した反射スペクトルを示す図である。Powder A of Example 1 (CO 3 2- type), Powder B of Comparative Example 1 (SO 4 2- type), Powder C of Comparative Example 2 (NO 3 -type ), Powder E of Example 3 (Cl - 2 shows the reflectance spectra of the powder G of Example 5 (F 2 -form), measured by UV-visible-near-infrared spectroscopy. FIG. 波長254nmの紫外線を照射して測定した分解活性指数R[nmol/L/min]を示す図である。FIG. 4 is a diagram showing the decomposition activity index R [nmol/L/min] measured by irradiating ultraviolet rays with a wavelength of 254 nm. 波長365nmの紫外線を照射して測定した分解活性指数R[nmol/L/min]を示す図である。FIG. 4 is a diagram showing the decomposition activity index R [nmol/L/min] measured by irradiating ultraviolet rays with a wavelength of 365 nm.

本明細書において、「含有」は、「含む(comprise)」、「実質的にのみからなる(consist essentially of)」、及び「のみからなる(consist of)」のいずれも包含する概念である。また、本明細書において、数値範囲を「A~B」で示す場合、A以上B以下を意味する。 As used herein, "contain" is a concept that includes all of "comprise," "consist essentially of," and "consist of." Further, in this specification, when a numerical range is indicated by "A to B", it means from A to B.

1.ハイドロタルサイト化合物
本発明のハイドロタルサイト化合物は、下記一般式(1)
[Zn1-xAl2-x(OH)][An- x/n・HO] (1)
(式中Aは、炭酸イオン、フッ素イオン又は塩素イオンであるアニオンを示す。xは0.2~0.4、nはアニオンの価数を示す。)
で表されるハイドロタルサイト化合物である。本発明のハイドロタルサイト化合物は、金属イオンとして亜鉛イオン及びアルミニウムイオンを含有し、且つ、アニオンとして炭酸イオン、フッ素イオン又は塩素イオンを含有するので、これらのイオンの組み合わせにより形成されていることにより、紫外線及び赤外線を吸収するとともに、光触媒活性も示すことができる。本発明のハイドロタルサイト化合物は、上記性能を兼ね備えることで、上記性能が要求される様々な用途に有用に用いることができる。
1. Hydrotalcite Compound The hydrotalcite compound of the present invention has the following general formula (1)
[Zn 1-x Al 2-x (OH)] [A n- x/n H 2 O] (1)
(In the formula, A represents an anion that is a carbonate ion, a fluorine ion or a chloride ion, x is 0.2 to 0.4, and n represents the valence of the anion.)
It is a hydrotalcite compound represented by The hydrotalcite compound of the present invention contains zinc ions and aluminum ions as metal ions, and carbonate ions, fluorine ions or chloride ions as anions. , can absorb ultraviolet and infrared rays, and can also exhibit photocatalytic activity. The hydrotalcite compound of the present invention can be usefully used in various applications requiring the above performances by having the above performances.

ハイドロタルサイト化合物は、層間のアニオン交換によりインターカレーションを生じる。アニオン交換とは、例えば、アニオンを含む溶液にハイドロタルサイト化合物を浸すことにより、ハイドロタルサイトナノ化合物自らが有するアニオンを放出し、溶液中のアニオンを自身へ取り込む現象である。また、ハイドロタルサイト化合物を加熱処理することによりアニオンを脱離させることができる。 A hydrotalcite compound produces intercalation by anion exchange between layers. Anion exchange is a phenomenon in which, for example, by immersing a hydrotalcite compound in a solution containing an anion, the anion of the hydrotalcite nanocompound itself is released and the anion in the solution is taken into itself. Moreover, the anion can be eliminated by heat-treating the hydrotalcite compound.

本発明のハイドロタルサイト化合物は、Zn1-xAl2-x(OH)で表され正電荷を帯びた八面体層からなるホスト層と、正電荷を補償する陰イオンと層間水とからなるAn- x/n・HOで表されるゲスト層と、が交互に積層したハイドロタルサイト構造を有していることが好ましい。 The hydrotalcite compound of the present invention comprises a host layer composed of positively charged octahedral layers represented by Zn 1-x Al 2-x (OH), anions compensating for the positive charge, and interlayer water. It preferably has a hydrotalcite structure in which guest layers represented by A n− x/n ·H 2 O are alternately laminated.

上記一般式(1)において、xは0.2~0.4である。xが上記範囲外であると、ハイドロタルサイト化合物の紫外線及び赤外線の吸収性が低下し、且つ、光触媒活性が十分でない。上記xは0.25~0.35が好ましい。 In the above general formula (1), x is 0.2 to 0.4. If x is outside the above range, the hydrotalcite compound will have reduced ultraviolet and infrared absorption and insufficient photocatalytic activity. The above x is preferably 0.25 to 0.35.

本発明のハイドロタルサイト化合物において、ゲスト層の陰イオン(アニオン)An-は、炭酸イオン(CO 2-)、フッ素イオン(F)又は塩素イオン(Cl)である。これらの中でも、本発明のハイドロタルサイト化合物がより優れた紫外線及び赤外線を吸収し、且つ、より優れた光触媒活性を示すことができる点で、フッ素イオン又は塩素イオンが好ましい。 In the hydrotalcite compound of the present invention, the guest layer anions (anions) A n− are carbonate ions (CO 3 2− ), fluorine ions (F ) or chloride ions (Cl ). Among these, fluorine ions and chloride ions are preferable because the hydrotalcite compound of the present invention can absorb more excellent ultraviolet rays and infrared rays and can exhibit more excellent photocatalytic activity.

上記ゲスト層の陰イオン(アニオン)An-において、nはアニオンの価数を示す。本発明のハイドロタルサイト化合物がより優れた紫外線及び赤外線を吸収し、且つ、より優れた光触媒活性を示すことができる点で、nは、1又は2が好ましく、1がより好ましい。 In the anion (anion) A n- of the guest layer, n indicates the valence of the anion. n is preferably 1 or 2, more preferably 1, in that the hydrotalcite compound of the present invention can absorb superior ultraviolet rays and infrared rays and exhibit superior photocatalytic activity.

上記アニオンは、1種単独で用いてもよいし、2種以上を混合して用いてもよい。 The above anions may be used singly or in combination of two or more.

本発明のハイドロタルサイト化合物は、例えば、沈殿剤として炭酸ナトリウムを用いる場合には、アニオンAn-として炭酸イオンCO 2-を残存させることができる。この際、ハイドロタルサイト化合物は下記一般式(1-2):
[Zn1-xAl2-x(OH)][(An-・(CO 2-・HO] (1-2)
[式中、xは0.2~0.4の数を示し、x=yn+2zである。An-はアニオンを示す。nはアニオンの価数を示す。mは1以上の整数(例えば1~10の整数)を示す。]
で表される組成を有し、ゲスト層は(An-・(CO 2-・HOとすることができる。この際、炭酸イオン以外の陰イオンを含まない場合、つまり、yが0の場合は、ゲスト層は(CO 2-x/2・HOとすることができる。
In the hydrotalcite compound of the present invention, for example, when sodium carbonate is used as the precipitant, the carbonate ion CO 3 2- can remain as the anion A n- . At this time, the hydrotalcite compound has the following general formula (1-2):
[Zn 1-x Al 2-x (OH)] [(A n- ) y .(CO 3 2- ) z.H 2 O] (1-2)
[In the formula, x represents a number from 0.2 to 0.4, and x=yn+2z. A n- represents an anion. n indicates the valence of the anion. m represents an integer of 1 or more (for example, an integer of 1 to 10). ]
and the guest layer may be (A n− ) y ·(CO 3 2− ) z ·H 2 O. At this time, when no anions other than carbonate ions are included, that is, when y is 0, the guest layer can be (CO 3 2− ) x/2 ·H 2 O.

2.光触媒活性剤
(ハイドロタルサイト化合物)
本発明の光触媒活性剤は、下記一般式(2)
[M 1-x 2-x(OH)][An- x/n・HO] (2)
(式中、MはZn又はCu、MはAl又はFeを示す。An-は炭酸イオン、フッ素イオン又は塩素イオンであるアニオンを示す。xは0.2~0.4、nはアニオンの価数を示す。)
で表されるハイドロタルサイト化合物を含有する、光触媒活性剤である。
2. Photocatalyst activator (hydrotalcite compound)
The photocatalytic activator of the present invention has the following general formula (2)
[M 1 1-x M 2 2-x (OH)] [A n- x/n H 2 O] (2)
(In the formula, M 1 represents Zn or Cu, M 2 represents Al or Fe, A n- represents an anion that is carbonate ion, fluorine ion or chloride ion, x is 0.2 to 0.4, n is Indicates the valence of the anion.)
A photocatalyst activator containing a hydrotalcite compound represented by

上記一般式(2)中、 MはZn又はCuを示す。これらの中でも、本発明の光触媒活性剤がより優れた紫外線及び赤外線を吸収し、且つ、より優れた光触媒活性を示すことができる点で、Znが好ましい。 In general formula (2) above, M 1 represents Zn or Cu. Among these, Zn is preferable because the photocatalytic activator of the present invention can absorb more excellent ultraviolet rays and infrared rays and can exhibit more excellent photocatalytic activity.

上記Mは、Zn又はCuのいずれかを単独で用いてもよいし、Zn及びCuを混合して用いてもよい。 M1 may be Zn or Cu alone, or may be a mixture of Zn and Cu.

上記一般式(2)中、 MはAl又はFeを示す。これらの中でも、本発明の光触媒活性剤がより優れた紫外線及び赤外線を吸収し、且つ、より優れた光触媒活性を示すことができる点で、Alが好ましい。 In the above general formula (2), M2 represents Al or Fe. Among these, Al is preferable because the photocatalytic active agent of the present invention can absorb more excellent ultraviolet rays and infrared rays and can exhibit more excellent photocatalytic activity.

上記Mは、Al又はFeのいずれかを単独で用いてもよいし、Al及びFeを混合して用いてもよい。 The above M2 may be Al or Fe alone, or may be a mixture of Al and Fe.

本発明の光触媒活性剤が含有するハイドロタルサイト化合物において、上記M及びM以外のx及びnについては上記ハイドロタルサイト化合物で説明したx及びnと同じであり、An-についても上記ハイドロタルサイト化合物で用いるアニオンと同一のアニオンを用いることができる。 In the hydrotalcite compound contained in the photocatalyst activator of the present invention, x and n other than M 1 and M 2 are the same as x and n described for the hydrotalcite compound, and A n- is also described above. The same anions as those used in the hydrotalcite compound can be used.

本発明の光触媒活性剤中のハイドロタルサイト化合物の含有量は多いほどよいが、光触媒活性剤を10質量%として、70.0質量%以上が好ましく、80.0質量%以上がより好ましく、90.0質量%以上が更に好ましく、99.9質量%以上が特に好ましく、100.0質量%が最も好ましい。ハイドロタルサイト化合物の含有量の下限が上記範囲であると、本発明の光触媒活性剤がより優れた光触媒活性を示すことができる。 The content of the hydrotalcite compound in the photocatalyst activator of the present invention is preferably as high as possible. 0% by mass or more is more preferable, 99.9% by mass or more is particularly preferable, and 100.0% by mass is most preferable. When the lower limit of the content of the hydrotalcite compound is within the above range, the photocatalytic activator of the present invention can exhibit more excellent photocatalytic activity.

(他の添加剤)
本発明の光触媒活性剤は、上記ハイドロタルサイト化合物の他に、光触媒活性剤に一般的に用いられる他の添加剤を含有していてもよい。
(other additives)
The photocatalyst activator of the present invention may contain other additives generally used for photocatalyst activators in addition to the hydrotalcite compound.

3.ハイドロタルサイト化合物、及び、光触媒活性剤の製造方法
本発明のハイドロタルサイト化合物、及び、光触媒活性剤の製造方法としては特に限定されず、例えば、共沈法、イオン交換法等の公知のLDHの製造方法により製造することができる。アニオンが炭酸イオン、又は塩素イオンである場合は、共沈法により製造し、アニオンがフッ素イオンである場合はイオン交換法により製造すればよい。
3. Method for producing hydrotalcite compound and photocatalyst activator The method for producing the hydrotalcite compound and photocatalyst activator of the present invention is not particularly limited. It can be manufactured by the manufacturing method of When the anion is a carbonate ion or a chloride ion, it may be produced by a coprecipitation method, and when the anion is a fluorine ion, it may be produced by an ion exchange method.

共沈法としては、例えば、pHが7.0~12、より好ましくは8.5~10に維持されるように、アニオン源を含有する水溶液に、2種の金属の金属塩を含む水溶液と、pH調整剤とを徐々に加えて反応させ、得られた生成物をろ過、洗浄、乾燥および解砕する方法が挙げられる。 As a coprecipitation method, for example, an aqueous solution containing an anion source is mixed with an aqueous solution containing metal salts of two kinds of metals so that the pH is maintained at 7.0 to 12, more preferably 8.5 to 10. , and a pH adjuster are gradually added to react, and the resulting product is filtered, washed, dried and pulverized.

イオン交換法としては、例えば、上記共沈法により製造したハイドロタルサイト化合物の粉末をフッ化ナトリウム水溶液に添加し、得られた生成物をろ過、洗浄、乾燥および解砕する方法が挙げられる。製造原料、条件などは、所望のハイドロタルサイト化合物により適宜選択、設定すればよい。 Examples of the ion exchange method include a method of adding the powder of the hydrotalcite compound produced by the above coprecipitation method to an aqueous sodium fluoride solution, filtering, washing, drying and pulverizing the resulting product. Raw materials for production, conditions, etc. may be appropriately selected and set depending on the desired hydrotalcite compound.

上記共沈法に用いられる金属塩としては、例えば、硝酸亜鉛、硝酸アルミニウム、塩化亜鉛、塩化アルミニウム等が挙げられる。これらの金属塩は、水和物を用いてもよい。上記共沈法では、所望のハイドロタルサイト化合物及び光触媒活性剤を形成する金属を考慮して、これらの金属塩から2種の金属の金属塩を適宜選択して用いればよい。 Examples of metal salts used in the coprecipitation method include zinc nitrate, aluminum nitrate, zinc chloride, and aluminum chloride. Hydrates of these metal salts may be used. In the above coprecipitation method, metal salts of two metals may be appropriately selected from these metal salts in consideration of the metals forming the desired hydrotalcite compound and photocatalyst activator.

上記金属塩は、1種単独で用いてもよいし、2種以上を混合して用いてもよい。 The above metal salts may be used singly or in combination of two or more.

上記共沈法に用いられるアニオン源としては、例えば、炭酸水素ナトリウム、硫酸ナトリウム、塩化ナトリウム、フッ化ナトリウム等が挙げられる。上記共沈法では、所望のハイドロタルサイト化合物及び光触媒活性剤を形成するアニオンを考慮して、これらのアニオン源から適宜選択して用いればよい。 Examples of the anion source used in the coprecipitation method include sodium hydrogen carbonate, sodium sulfate, sodium chloride, sodium fluoride and the like. In the above coprecipitation method, the anions forming the desired hydrotalcite compound and photocatalyst activator may be taken into consideration, and these anion sources may be appropriately selected and used.

上記アニオン源は、1種単独で用いてもよいし、2種以上を混合して用いてもよい。 The above anion sources may be used singly or in combination of two or more.

2種の金属の金属塩を含む水溶液と、アニオン源を含有する水溶液とは、混合して攪拌することで本発明のハイドロタルサイト化合物及び光触媒活性剤を共沈させやすくするため、アルカリ性水溶液とすることが好ましく、必要に応じてpH調整剤を添加することが好ましい。pH調整剤としては、具体的には、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム等の塩基が挙げられる。これらの塩基は、1種単独で用いてもよく、2種以上を混合して用いてもよい。また、これら塩基は、水溶液であってもよい。 An aqueous solution containing a metal salt of two kinds of metals and an aqueous solution containing an anion source are mixed and stirred to facilitate coprecipitation of the hydrotalcite compound and the photocatalytic activator of the present invention. It is preferable to add a pH adjuster as necessary. Specific examples of pH adjusters include bases such as sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium carbonate, potassium carbonate, and lithium carbonate. These bases may be used singly or in combination of two or more. Also, these bases may be aqueous solutions.

pH調整剤の使用量は、特に制限されず、亜鉛塩及びアルミニウム塩を含む水溶液と、界面活性剤を含む水溶液とを混合する際のpHが、上記のように7.0~12、より好ましくは8.5~10に維持されるように、適宜調整されることが好ましい。 The amount of the pH adjuster used is not particularly limited, and the pH when the aqueous solution containing the zinc salt and the aluminum salt and the aqueous solution containing the surfactant are mixed is preferably 7.0 to 12, as described above. is preferably adjusted appropriately so that is maintained at 8.5-10.

上記製造方法では、反応温度は特に限定されず、必要に応じて、水熱合成を行うための所定の温度、例えば、20~60℃、特に30~50℃とすればよい。 In the above production method, the reaction temperature is not particularly limited, and may be set to a predetermined temperature for hydrothermal synthesis, for example, 20 to 60°C, particularly 30 to 50°C, if necessary.

続いて、上記所定の温度に保持した状態で撹拌し、本発明のハイドロタルサイト化合物、及び、光触媒活性剤を得ることができる。撹拌速度及び時間は、適宜設定することができるが、通常は500~1500rpmにおいて、6~48時間行うことが好ましい。 Subsequently, it is possible to obtain the hydrotalcite compound and the photocatalyst activator of the present invention by stirring while maintaining the predetermined temperature. The stirring speed and time can be appropriately set, but it is usually preferable to conduct the stirring at 500 to 1500 rpm for 6 to 48 hours.

この後、必要に応じて、常法に従い、遠心分離、吸引ろ過、乾燥等を施し、固体の本発明のハイドロタルサイト化合物、及び、光触媒活性剤を得ることもできる。この後、分級したり、解砕したりすること等により所定の粒度に調製したりすることもできる。また、スラリー状にしたり、バインダ等を添加し粒状にしたり、等各種形態に調製することができる。 Thereafter, if necessary, centrifugation, suction filtration, drying, etc. can be performed according to conventional methods to obtain a solid hydrotalcite compound of the present invention and a photocatalytic activator. After that, the powder can be classified or pulverized to obtain a predetermined particle size. Moreover, it can be prepared in various forms, such as making it into slurry form, adding a binder etc. and making it into granules.

以下、本発明について実施例の形式で詳細に説明する。以下の実施例は、本発明の用途を何ら限定するものではない。
実施例1:炭酸型Zn-Al(粉末A(CO 3 2- 型))LDHの合成
炭酸型Zn-Al LDH [Zn1-xAlx(OH)2][An- x/n・mH2O] (An-=CO3 2-,x=0.33)を共沈法により以下の手順で合成した。合成フロー図1に示す。具体的には、500mLビーカーに超純水300mLと炭酸ナトリウム(NA2CO3 MW 105.99 和光純薬工業 特級)5.0875g(0.048mol)を加え、0.16M炭酸ナトリウム水溶液を調製した。次いで、300mLビーカーに超純水100mLと、硝酸亜鉛六水和物(Zn(NO3)2・6H2O MW297.47キシダ化学 特級)5.9494g(0.02 mol) と、硝酸アルミニウム九水和物(Al(NO3)3・6H2O MW375.13 和光純薬工業 特級)3.7513g (0.01 mol)とを追加し、硝酸塩混合溶液を調製した。更に、別のビーカーに超純水100mLと水酸化ナトリウム(NaOH MW40 キシダ化学 特級)8g(0.2mol)を加え、2M水酸化ナトリウム水溶液を調製した。
Hereinafter, the present invention will be described in detail in the form of examples. The following examples do not in any way limit the application of the present invention.
Example 1: Synthesis of carbonate-type Zn-Al (powder A (CO 3 2- type)) LDH
Carbonate-type Zn-Al LDH [Zn 1-x Al x (OH) 2 ][A n- x/n mH 2 O] (A n- =CO 3 2- , x=0.33) was coprecipitated as follows: synthesized by the procedure of The synthetic flow is shown in FIG. Specifically, 300 mL of ultrapure water and 5.0875 g (0.048 mol) of sodium carbonate (NA 2 CO 3 MW 105.99, Wako Pure Chemical Industries special grade) were added to a 500 mL beaker to prepare a 0.16 M sodium carbonate aqueous solution. Next, 100 mL of ultrapure water, 5.9494 g (0.02 mol) of zinc nitrate hexahydrate (Zn(NO 3 ) 2 6H 2 O MW297.47 Kishida Chemical special grade), and aluminum nitrate nonahydrate ( 3.7513 g (0.01 mol) of Al(NO 3 ) 3 ·6H 2 O MW375.13 Wako Pure Chemical Industries special grade) was added to prepare a nitrate mixed solution. Further, 100 mL of ultrapure water and 8 g (0.2 mol) of sodium hydroxide (NaOH MW40, Kishida Chemical special grade) were added to another beaker to prepare a 2 M sodium hydroxide aqueous solution.

別途に0.16M炭酸ナトリウム水溶液をホットスターラー(アズワン REXIM RSH-1DN)と攪拌子とを用いて、室温 1000rpmで撹拌しながら、pHを10.5付近で保つように硝酸塩混合溶液100mLと2M水酸化ナトリウム水溶液とをパスツールピペットにより少量ずつ加えた。pHの測定には、pHメーター(堀場製作所 pH METER D-51)を用いた。それぞれの溶液を投入後、さらに室温で1000rpm 24h撹拌し、熟成させた。熟成後の溶液をブフナー漏斗(アズワン SU-60)、ろ紙(アズワン 60Φm/m No5-C)、アスピレータ(EYELA東京理化器械 A-3S)を用いて吸引によりろ別を行った。残渣をプログラム定温乾燥機(アズワン DRYING OVEN DO-300PC)にて18h 80℃で乾燥させ、乾燥後の生成物をめのう乳鉢で解砕した。以上により、粉末A(CO3 2-型)を調製した。 Separately, using a hot stirrer (AS ONE REXIM RSH-1DN) and a stirrer, 0.16M sodium carbonate aqueous solution was stirred at room temperature 1000 rpm, and 100 mL of nitrate mixed solution and 2M sodium hydroxide aqueous solution were added so as to keep the pH around 10.5. was added in small portions with a Pasteur pipette. A pH meter (Horiba pH METER D-51) was used to measure pH. After each solution was added, the mixture was further stirred at room temperature at 1000 rpm for 24 hours for aging. The aged solution was filtered by suction using a Buchner funnel (AS ONE SU-60), filter paper (AS ONE 60Φm/m No5-C), and an aspirator (EYELA Tokyo Rika Kikai A-3S). The residue was dried at 80°C for 18 hours with a programmed constant temperature dryer (AS ONE DRYING OVEN DO-300PC), and the dried product was pulverized with an agate mortar. Powder A (CO 3 2- type) was prepared as described above.

比較例1:硫酸型Zn-Al(粉末B(SO 4 2- 型))LDHの合成
硫酸型Zn-Al LDH [Zn1-xAlx(OH)2][An- x/n・mH2O] (An-= SO4 2-,x=0.33)を共沈法により以下の手順で合成した。合成フロー図2に示す。具体的には、500mLビーカーに超純水300 mLと硫酸ナトリウム(Na2SO4 MW 142.04 キシダ化学 1級)6.8179g(0.048mol)を加え、0.16M硫酸ナトリウム水溶液を調製した。次いで、300mLビーカーに超純水100mLと硝酸亜鉛六水和物5.9494g(0.02mol)と硝酸アルミニウム九水和物3.7513g(0.01mol)と を追加し、硝酸塩混合溶液を調製した。更に、別のビーカーに超純水100mLと水酸化ナトリウム8g(0.2mol)を加え、2M水酸化ナトリウム水溶液を調製した。
Comparative Example 1: Synthesis of sulfate-type Zn-Al (powder B (SO42 - type )) LDH Sulfate-type Zn-Al LDH [Zn1 -xAlx ( OH) 2 ][A n- x/n mH 2 O] (A n- = SO 4 2- , x=0.33) was synthesized by the coprecipitation method as follows. The synthetic flow is shown in FIG. Specifically, 300 mL of ultrapure water and 6.8179 g (0.048 mol) of sodium sulfate (Na 2 SO 4 MW 142.04 Kishida Chemical 1st grade) were added to a 500 mL beaker to prepare a 0.16 M sodium sulfate aqueous solution. Next, 100 mL of ultrapure water, 5.9494 g (0.02 mol) of zinc nitrate hexahydrate, and 3.7513 g (0.01 mol) of aluminum nitrate nonahydrate were added to a 300 mL beaker to prepare a nitrate mixed solution. Furthermore, 100 mL of ultrapure water and 8 g (0.2 mol) of sodium hydroxide were added to another beaker to prepare a 2 M sodium hydroxide aqueous solution.

別途に0.16M硫酸ナトリウム水溶液をホットスターラーと攪拌子とを用いて、60℃、1000rpmで撹拌しながら、pHを10.5付近で保つように硝酸塩混合溶液100mLと2M水酸化ナトリウム水溶液を少量ずつ交互に加えた。この溶液を、60℃、1000rpmで24h撹拌し、熟成させた。ろ別後の残渣を18h 80℃で乾燥させ、乾燥後の生成物をめのう乳鉢で解砕した。以上により、粉末B(SO4 2-型)を調製した。 Separately, while stirring 0.16M sodium sulfate aqueous solution at 60°C and 1000rpm using a hot stirrer and stirrer, alternately add 100mL of nitrate mixed solution and 2M sodium hydroxide aqueous solution little by little so as to keep the pH around 10.5. added. The solution was stirred at 60° C. and 1000 rpm for 24 h and aged. The residue after filtration was dried at 80° C. for 18 hours, and the dried product was pulverized in an agate mortar. As described above, powder B (SO 4 2- type) was prepared.

比較例2:硝酸型Zn-Al(粉末C(NO 3 - 型))LDHの合成
硝酸型Zn-Al LDH [Zn1-xAlx(OH)2][An- x/n・mH2O] (An-= NO3 -,x=0.33)を共沈法により以下の手順で合成した。合成フロー図3に示す。具体的には、4つ口セパラブルカバーを有する容量300mLのセパラブル丸型フラスコに超純水200mLを入れ、ホットスターラー、攪拌子、オイルバスを用いて、95℃ 600rpmで攪拌した。4つの口は、ゴム栓付きピペットで高純度窒素ボンベからのチューブにつないだ窒素導入管、塩化カルシウム管を付けた共通摺合冷却管、試料投入口、pHメーターの電極差込口とした。試料投入口とpH電極差込口とを共通摺合栓で覆った。セパラブルカバー、フラスコ、ガラス栓の接着面にはシリコーングリース(信越化学工業,高温潤滑用)を塗布し密着させた。次いで、高純度窒素ガス(ネリキガス、99.999%以上)を40 分間バブリングした。次いで、300mLビーカーに超純水100mLと硝酸亜鉛六水和物5.9494g(0.02mol)と硝酸アルミニウム九水和物3.7513g(0.01mol)を追加し、硝酸塩混合溶液を調製した。更に、別のビーカーに超純水100mLと水酸化ナトリウム4g(0.1mol)を加え、1M水酸化ナトリウム水溶液を調製した。バブリングを続けながら、硝酸塩混合溶液と1M水酸化ナトリウム溶液を少しずつ加え、pHを9.34に調整した。調整後、試料投入口、pHメーター差込口にそれぞれ共通摺合栓及びシリコン栓で蓋をした。50分後、窒素導入口及び共通摺合冷却管を共通摺合栓と交換した。さらに15時間攪拌を継続し、熟成させた。ろ別後の残渣を20h 80℃で乾燥させ、乾燥後の生成物をめのう乳鉢で解砕した。以上により、粉末C(NO3 -型)を調製した。
Comparative Example 2: Synthesis of nitrate - type Zn - Al (powder C(NO3 - type )) LDH O] (A n- = NO 3 - , x=0.33) was synthesized by the coprecipitation method as follows. The synthetic flow is shown in FIG. Specifically, 200 mL of ultrapure water was placed in a 300 mL separable round flask with a four-necked separable cover, and stirred at 95° C. and 600 rpm using a hot stirrer, stirrer, and oil bath. The four ports were a nitrogen introduction tube connected to a tube from a high-purity nitrogen cylinder with a pipette with a rubber stopper, a common cooling tube with a calcium chloride tube, a sample input port, and a pH meter electrode insertion port. The sample inlet and the pH electrode inlet were covered with a common sliding plug. Silicone grease (Shin-Etsu Chemical Co., Ltd., for high-temperature lubrication) was applied to the adhesive surfaces of the separable cover, the flask, and the glass stopper to adhere them. Then, high-purity nitrogen gas (nerikigas, 99.999% or more) was bubbled for 40 minutes. Next, 100 mL of ultrapure water, 5.9494 g (0.02 mol) of zinc nitrate hexahydrate, and 3.7513 g (0.01 mol) of aluminum nitrate nonahydrate were added to a 300 mL beaker to prepare a nitrate mixed solution. Furthermore, 100 mL of ultrapure water and 4 g (0.1 mol) of sodium hydroxide were added to another beaker to prepare a 1 M sodium hydroxide aqueous solution. While continuing bubbling, the nitrate mixed solution and 1M sodium hydroxide solution were added little by little to adjust the pH to 9.34. After adjustment, the sample inlet and the pH meter inlet were covered with a common sliding stopper and a silicon stopper, respectively. After 50 minutes, the nitrogen inlet and common mating cooling pipe were replaced with common mating plugs. Stirring was continued for an additional 15 hours for aging. The residue after filtration was dried at 80° C. for 20 hours, and the dried product was pulverized in an agate mortar. Powder C (NO 3 type) was prepared as described above.

実施例2:塩素型Zn-Al(粉末D(Cl - 型))LDHの合成
塩素型Zn-Al LDH [Zn1-xAlx(OH)2][An- x/n・mH2O] (An-=Cl-,x=0.25)を共沈法により以下の手順で合成した。合成フロー図4に示す。具体的には、500mLビーカーに超純水300 mLと塩化ナトリウム(NaCl MW58.44 キシダ化学 特級)8.766g(0.15mol)を加え、0.5M塩化ナトリウム水溶液を調製した。次いで、300mLビーカーに超純水100mLと硝酸亜鉛六水和物8.9241g(0.03mol)と硝酸アルミニウム九水和物3.7513 (0.01mol)gを追加し、硝酸塩混合溶液を調製した。更に、別のビーカーに超純水100mLと水酸化ナトリウム(キシダ化学 特級 分子量40)8g(0.2mol)を加え、2M水酸化ナトリウム水溶液を調製した。
Example 2: Synthesis of chlorine-type Zn-Al (powder D ( Cl - type ) ) LDH ] (A n- =Cl - , x=0.25) was synthesized by coprecipitation in the following procedure. The synthetic flow is shown in FIG. Specifically, 300 mL of ultrapure water and 8.766 g (0.15 mol) of sodium chloride (NaCl MW58.44 Kishida Chemical special grade) were added to a 500 mL beaker to prepare a 0.5 M sodium chloride aqueous solution. Next, 100 mL of ultrapure water, 8.9241 g (0.03 mol) of zinc nitrate hexahydrate, and 3.7513 (0.01 mol) g of aluminum nitrate nonahydrate were added to a 300 mL beaker to prepare a nitrate mixed solution. Further, 100 mL of ultrapure water and 8 g (0.2 mol) of sodium hydroxide (Kishida Chemical special grade, molecular weight 40) were added to another beaker to prepare a 2 M sodium hydroxide aqueous solution.

別途に0.5M塩化ナトリウム水溶液をホットスターラーと攪拌子とを用いて、40℃ 1000rpmで撹拌しながら、pHを10.0付近で保つように硝酸塩混合溶液100mLと2M水酸化ナトリウム水溶液を少量ずつ交互に加えた。この溶液を、40℃ 1000rpmで24h撹拌し、熟成させた。ろ別後の残渣を18h 80℃で乾燥させ、乾燥後の生成物をめのう乳鉢で解砕した。以上により、粉末D(Cl-型)を調製した。 Separately, while stirring 0.5M sodium chloride aqueous solution with a hot stirrer and stirrer at 40°C and 1000rpm, add 100mL of nitrate mixed solution and 2M sodium hydroxide aqueous solution little by little so as to keep the pH around 10.0. rice field. The solution was stirred at 1000 rpm at 40° C. for 24 h and aged. The residue after filtration was dried at 80° C. for 18 hours, and the dried product was pulverized in an agate mortar. As described above, powder D (Cl - type) was prepared.

実施例3:塩素型Zn-Al(粉末E(Cl - 型))LDHの合成
塩素型Zn-Al LDH [Zn1-xAlx(OH)2][An- x/n・mH2O] (An-=Cl-,x=0.25)を共沈法により以下の手順で合成した。合成フロー図5に示す。具体的には、500mLビーカーに超純水300mLと塩化ナトリウム(NaCl MW58.44 キシダ化学 特級)8.766g(0.15mol)を加え、0.5M塩化ナトリウム水溶液を調製した。次いで、300mLビーカーに超純水100mLと塩化亜鉛(ZnCl2 MW136.32 和光純薬工業 特級)4.09g(0.03mol)と塩化アルミニウム六水和物(AlCl3・6H2O MW241.43、和光純薬工業 特級)2.414g(0.01mol)を追加し、塩化塩混合溶液を調製した。更に、別のビーカーに超純水100mLと水酸化ナトリウム(キシダ化学 特級 分子量40)8g(0.2mol)を加え、2M水酸化ナトリウム水溶液を調製した。
Example 3: Synthesis of chlorine-type Zn-Al (powder E ( Cl - type ) ) LDH ] (A n- =Cl - , x=0.25) was synthesized by coprecipitation in the following procedure. The synthetic flow is shown in FIG. Specifically, 300 mL of ultrapure water and 8.766 g (0.15 mol) of sodium chloride (NaCl MW58.44 Kishida Chemical special grade) were added to a 500 mL beaker to prepare a 0.5 M sodium chloride aqueous solution. Next, 100 mL of ultrapure water, 4.09 g (0.03 mol) of zinc chloride (ZnCl 2 MW136.32, special grade of Wako Pure Chemical Industries, Ltd.) and aluminum chloride hexahydrate (AlCl 3 6H2O MW241.43, Wako Pure Chemical Industries, Ltd.) were added to a 300 mL beaker. Special grade) 2.414 g (0.01 mol) was added to prepare a chloride mixed solution. Further, 100 mL of ultrapure water and 8 g (0.2 mol) of sodium hydroxide (Kishida Chemical special grade, molecular weight 40) were added to another beaker to prepare a 2 M sodium hydroxide aqueous solution.

別途に0.5M塩化ナトリウム水溶液をホットスターラーと攪拌子とを用いて、40℃ 1000 rpmで撹拌しながら、pHを10.0付近で保つように塩化塩混合溶液100mLと2M水酸化ナトリウム水溶液を少量ずつ交互に加えた。この溶液を、40℃ 1000rpmで24h撹拌し、熟成させた。ろ別後の残渣を18h 80℃で乾燥させ、乾燥後の生成物をめのう乳鉢で解砕した。以上により、粉末E(Cl-型)を調製した。 Separately, while stirring 0.5M sodium chloride aqueous solution with a hot stirrer and stirrer at 40°C and 1000 rpm, 100 mL of chloride mixed solution and 2M sodium hydroxide aqueous solution are alternately added little by little so as to keep the pH around 10.0. Added to The solution was stirred at 1000 rpm at 40° C. for 24 h and aged. The residue after filtration was dried at 80° C. for 18 hours, and the dried product was pulverized in an agate mortar. As described above, powder E (Cl - type) was prepared.

実施例4:フッ素型Zn-Al(粉末F(F - 型) LDHの合成
フッ素型Zn-Al LDH [Zn1-xAlx(OH)2][An- x/n・mH2O] (An-= F-、x=0.25)をイオン交換法により以下の手順で合成した。合成フロー図6に示す。具体的には、500mLビーカーに超純水300mLとフッ化ナトリウム1.2595g(0.03mol)を加え、0.1Mフッ化ナトリウム水溶液を調製した。
Example 4: Synthesis of fluorine-type Zn-Al (powder F (F -type ) LDH Fluorine-type Zn-Al LDH [Zn1 -xAlx (OH) 2 ][A n- x /n · mH2O ] ( An- = F- , x = 0.25) was synthesized by the ion exchange method according to the following procedure, which is shown in Figure 6. Specifically, 300 mL of ultrapure water and 1.2595 g of sodium fluoride ( 0.03 mol) was added to prepare a 0.1 M sodium fluoride aqueous solution.

次いで、実施例3で得られた粉末E 1gを0.1Mフッ化ナトリウム溶液に投下した。0.1Mフッ化ナトリウム溶液のpHは6.7程度であったが、粉末Eを1g加えることでpHは7.6程度になった。次いで、ホットスターラーと撹拌子を用いて室温 500rpmで24h攪拌し、ろ別後の残渣を18h 80℃で乾燥させ、乾燥後の生成物をめのう乳鉢で解砕した。以上により、粉末F(F-型)を調製した。 1 g of powder E obtained in Example 3 was then dropped into a 0.1 M sodium fluoride solution. The pH of the 0.1 M sodium fluoride solution was about 6.7, but adding 1 g of powder E changed the pH to about 7.6. Then, using a hot stirrer and stirrer, the mixture was stirred at room temperature of 500 rpm for 24 hours, the residue after filtration was dried at 80° C. for 18 hours, and the dried product was pulverized with an agate mortar. As described above, powder F (F 3 -type ) was prepared.

実施例5:フッ素型Zn-Al(粉末G(F - 型))LDHの合成
フッ素型Zn-Al LDH [Zn1-xAlx(OH)2][An- x/n・mH2O] (An-= F-、x=0.25)をイオン交換法により以下の手順で合成した。合成フロー図6に示す。具体的には、500mLビーカーに超純水300mLとフッ化ナトリウム1.2595g(0.03mol)を加え、0.1Mフッ化ナトリウム水溶液を調製した。
Example 5: Synthesis of fluorine-type Zn-Al ( powder G ( F -type ) ) LDH ] (A n− = F , x=0.25) was synthesized by the ion exchange method in the following procedure. The synthetic flow is shown in FIG. Specifically, 300 mL of ultrapure water and 1.2595 g (0.03 mol) of sodium fluoride were added to a 500 mL beaker to prepare a 0.1 M sodium fluoride aqueous solution.

次いで、実施例3で得られた粉末E 1gを0.1Mフッ化ナトリウム水溶液に加えた後、2M水酸化ナトリウム水溶液を微量滴下し、pHを10に保って20℃ 500rpmで24h攪拌した。ろ別後の残渣を18h 80℃で乾燥させ、乾燥後の生成物をめのう乳鉢で解砕した。以上により、粉末G(F-型)を調製した。 Next, 1 g of the powder E obtained in Example 3 was added to a 0.1 M sodium fluoride aqueous solution, and then a small amount of a 2 M sodium hydroxide aqueous solution was added dropwise. The residue after filtration was dried at 80° C. for 18 hours, and the dried product was pulverized in an agate mortar. As described above, powder G (F 3 -type ) was prepared.

試験例1:XRDによる結晶相の同定
得られた生成物について、粉末X線回折法(XRD)により結晶相の同定を行った。測定はX線回折装置(RINT2200、リガク(株))で、ターゲットはCo、モノクロメータを使用し、分析ソフト(JADE6、リガク(株))で結晶相の同定を行った。測定条件は、スキャン範囲5~80°、サンプリング幅0.02°、スキャンスピード1.0°/min、印加電圧40kV、印加電流20mA、発光スリット1°、散乱スリット1°、受光スリット0.3mmとした。
Test Example 1: Identification of crystal phase by XRD The crystal phase of the obtained product was identified by powder X-ray diffractometry (XRD). The measurement was performed with an X-ray diffractometer (RINT2200, Rigaku Corporation), the target was Co, a monochromator was used, and the crystal phase was identified with analysis software (JADE6, Rigaku Corporation). The measurement conditions were as follows: scanning range 5 to 80°, sampling width 0.02°, scanning speed 1.0°/min, applied voltage 40 kV, applied current 20 mA, emission slit 1°, scattering slit 1°, receiving slit 0.3 mm. and

図7に実施例1の粉末Aの粉末X線回折図を示す。図7(a)は粉末A(CO3 2-型) の回折ピークを示し、図7(b)は亜鉛アルミニウムカーボネートヒドロキシドハイドレートの回折ピーク(ICDD#48-1025)を示す。(a)と(b)とを対比すると、ピークの回折角と強度はほとんど一致しており、亜鉛アルミニウムカーボネートヒドロキシドハイドレートの単一相が得られたと考えられる。また、ピークは比較的シャープであり、結晶性は比較的高いと考えられる。 FIG. 7 shows a powder X-ray diffraction pattern of powder A of Example 1. As shown in FIG. FIG. 7(a) shows the diffraction peaks of powder A (CO 3 2- type), and FIG. 7(b) shows the diffraction peaks of zinc aluminum carbonate hydroxide hydrate (ICDD#48-1025). Comparing (a) and (b), the diffraction angles and intensities of the peaks are almost the same, suggesting that a single phase of zinc aluminum carbonate hydroxide hydrate was obtained. Moreover, the peak is relatively sharp, and the crystallinity is considered to be relatively high.

図8に比較例1の粉末Bの粉末X線回折図を示す。図8(a)は粉末B(SO4 2-型)の回折ピークを示す。また、比較のため、図8(b)に粉末A(CO3 2-型)、図8(c)に亜鉛アルミニウムカーボネートヒドロキシドハイドレートの回折ピーク(ICDD#48-1025)を示す。(a)粉末B(SO4 2-型)の回折ピークと、(b)A(CO3 2-型)の回折ピークとを比較すると、(a)粉末B(SO4 2-型)の回折ピークでは(003)と(006)の間にピークがありが副生成物の可能性が示唆されている。また、最強ピークである(003)が大きく低角にシフトしていて,やや左右非対称である。また、面間隔d003 = 11.1[Å]であり、粉末A(CO3 2-型)の回折ピークより大きい。硫酸根(SO4 2-)と炭酸根(CO3 2-型)の大きさから、層間の炭酸根が硫酸根で置き換わっている可能性が示唆されているといえる。 FIG. 8 shows a powder X-ray diffraction pattern of powder B of Comparative Example 1. As shown in FIG. FIG. 8(a) shows the diffraction peaks of powder B (SO 4 2- type). For comparison, FIG. 8(b) shows the diffraction peak of powder A (CO 3 2− type), and FIG. 8(c) shows the diffraction peak of zinc aluminum carbonate hydroxide hydrate (ICDD#48-1025). Comparing the diffraction peaks of (a) powder B (SO 4 2- type) and (b) A (CO 3 2- type), the diffraction peaks of (a) powder B (SO 4 2- type) There is a peak between (003) and (006), suggesting the possibility of a by-product. In addition, the strongest peak (003) shifts to a large lower angle and is slightly asymmetrical. Moreover, the interplanar spacing d 003 = 11.1 [Å], which is larger than the diffraction peak of powder A (CO 3 2- type). The sizes of sulfate groups (SO 4 2- ) and carbonate groups (CO 3 2- type) suggest the possibility that sulfate groups replace interlayer carbonate groups.

図9に比較例2の粉末C(NO3 -型)の粉末X線回折図を示す。図9の比較例2の粉末C(NO3 -型)の回折ピークは、図7(a)の粉末A(CO3 2-型) の回折ピークとやや類似するが、ピークはブロードとなっており、周期構造のばらつきを示唆している。また、左右非対称であるが、最強ピークを (003)面とすれば、面間隔d003=8.806[Å]であり、粉末A(CO3 2-型)のd003より大きく,炭酸根(CO3 2-型)と硝酸根(NO3-)のサイズから,層間が硝酸根で一部置換されていることが示唆されているといえる。 FIG. 9 shows a powder X-ray diffraction pattern of powder C (NO 3 type) of Comparative Example 2. As shown in FIG. The diffraction peak of powder C (NO 3 type) of Comparative Example 2 in FIG. 9 is somewhat similar to the diffraction peak of powder A (CO 3 2− type) in FIG. 7(a), but the peak is broad. , suggesting variations in the periodic structure. In addition, although it is left-right asymmetric, if the strongest peak is the (003) plane, the interplanar spacing d 003 =8.806 [Å], which is larger than d 003 of powder A (CO 3 2- type), and the carbonate group (CO 3 2- type) and the size of nitrate groups (NO 3- ) suggest that the interlayer is partially substituted with nitrate groups.

図10に実施例2の粉末B及び実施例3の粉末Eの粉末X線回折図を示す。図10(a)は粉末D(Cl-型) の回折ピークを示し、図10(b)は粉末E(Cl-型) の回折ピークを示す。また、比較のため、図10(c)にZnOの回折ピークを示す。図10(a)から、粉末Dでは35°前後に小さなピークが見られるが、ZnOとは合致せず、未洗浄の塩化物であると考えられる。最強ピークの角度は、13.08°であった。 FIG. 10 shows powder X-ray diffractograms of powder B of Example 2 and powder E of Example 3. FIG. FIG. 10(a) shows the diffraction peaks of powder D ( Cl.sup.- type), and FIG. 10(b) shows the diffraction peaks of powder E ( Cl.sup.- type). For comparison, FIG. 10(c) shows diffraction peaks of ZnO. From FIG. 10(a), powder D shows a small peak around 35°, which does not match ZnO and is considered to be unwashed chloride. The angle of the strongest peak was 13.08°.

図11に実施例3の粉末E(Cl-型)、実施例4の粉末F(F-型)、実施例5の粉末G(F-型)の粉末X線回折図を示す。図11(a)は粉末E(Cl-型) の回折ピーク、図11(b)は粉末F(F-型) の回折ピーク、図11(c)は粉末G(F-型)の粉末X線回折ピークである。 FIG. 11 shows powder X-ray diffraction patterns of the powder E (Cl type) of Example 3, the powder F (F type) of Example 4, and the powder G (F type) of Example 5. FIG. 11(a) is the diffraction peak of powder E (Cl type), FIG. 11(b) is the diffraction peak of powder F (F type), and FIG. 11(c) is the powder X of powder G (F type). line diffraction peaks.

以上より、(003)の最強ピーク位置からブラッグの回折条件により求めた各試料の面間隔を下記の表1に示す。(003)の面間隔は層間の距離に比例し、導入したアニオンによって面間隔が変わるのは、少なくとも一部が置換したことを示唆しているといえる。 Table 1 below shows the interplanar spacing of each sample obtained from the position of the strongest peak of (003) according to Bragg's diffraction conditions. The interplanar spacing of (003) is proportional to the distance between the layers, and the fact that the interplanar spacing changes with the introduced anion suggests that at least a portion of the interplanar spacing is substituted.

Figure 2023026979000001
Figure 2023026979000001

試験例2:紫外可視近赤外分光法による反射スペクトルの測定
得られた生成物について、紫外可視近赤外分光法(Ultraviolet-Visible-Near Infrared absorption spectroscopy:UV-Vis-NIR)により反射スペクトルを測定した。紫外可視近赤外分光法とは、波長ごとに分けた光を測定試料に照射し、試料に反射・透過した光の強度を測定することで、試料の吸光度や透過率を求める方法である。吸光度測定により、試料中の目的成分の定性・定量分析や試料の波長特性の評価ができる。また、透過率測定では、試料中の成分に特有の透過特性を評価できる。
Test Example 2: Measurement of Reflection Spectrum by Ultraviolet-Visible-Near Infrared Spectroscopy The reflection spectrum of the obtained product was measured by Ultraviolet-Visible-Near Infrared Absorption Spectroscopy (UV-Vis-NIR). It was measured. Ultraviolet-visible-near-infrared spectroscopy is a method of determining the absorbance and transmittance of a sample by irradiating the sample with light divided by wavelength and measuring the intensity of the light reflected and transmitted by the sample. Absorbance measurement enables qualitative and quantitative analysis of the target component in the sample and evaluation of the wavelength characteristics of the sample. Transmittance measurements can also evaluate the characteristic transmission properties of the components in the sample.

具体的には、紫外可視近赤外分光光度計(島津製作所 SolidSpec-3700)を用いて反射スペクトルを測定した。標準白色板スペクトラロンを用いてバックグラウンドを測定した後、試料ホルダーに試料を充填して測定した。測定条件は、測定範囲240nm-2500nm、スキャンスピード高速、サンプリングピッチ1.0の測定条件とした。 Specifically, the reflection spectrum was measured using an ultraviolet-visible-near-infrared spectrophotometer (Shimadzu Corporation SolidSpec-3700). After measuring the background using a standard white plate Spectralon, the sample was filled in the sample holder and measured. The measurement conditions were a measurement range of 240 nm to 2500 nm, a high scan speed, and a sampling pitch of 1.0.

図12に、実施例1の粉末A(CO3 2-型)、比較例1の粉末B(SO4 2-型)、比較例2の粉末C(NO3 -型)、実施例3の粉末E(Cl-型)、及び実施例5の粉末G(F-型)の、紫外可視近赤外分光法により測定した反射スペクトルを示す。 FIG. 12 shows powder A of Example 1 (CO 3 2- type), powder B of Comparative Example 1 (SO 4 2- type), powder C of Comparative Example 2 (NO 3 -type ), and powder of Example 3. Reflection spectra of E (Cl 2 -form) and powder G (F 3 -form) of Example 5 measured by UV-Vis-NIR spectroscopy are shown.

図12の結果から、全ての粉末において近赤外領域である1450nm、1930nm付近に吸収が確認されたが、実施例1の粉末A(CO3 2-型)、比較例2の粉末C(NO3 -型)、実施例3の粉末E(Cl-型)、及び実施例5の粉末G(F-型)では、紫外領域(300nm付近)においても吸収が見られることが分かった。特に、実施例3の粉末E(Cl-型)、及び実施例5の粉末G(F-型) では、紫外領域(300nm付近)において優れた吸収を示すことが分かった。 From the results of FIG. 12, absorption was confirmed in the near- infrared region of 1450 nm and 1930 nm for all the powders. 3 - type), the powder E (Cl - type) of Example 3, and the powder G (F - type) of Example 5 showed absorption in the ultraviolet region (around 300 nm). In particular, the powder E (Cl - type) of Example 3 and the powder G (F - type) of Example 5 were found to exhibit excellent absorption in the ultraviolet region (around 300 nm).

試験例3:湿式分解性能試験
粉末の光触媒活性を評価するため、湿式分解性能試験を行った。測定方法はJIS R 1703-2を参照した。
Test Example 3: Wet decomposition performance test In order to evaluate the photocatalytic activity of the powder, a wet decomposition performance test was conducted. Refer to JIS R 1703-2 for the measurement method.

具体的には、超純水1Lに、メチレンブルー粉末(C16H18ClN3S・3H2O MW373.90 キシダ化学特級)0.0075g(0.02mmol)を溶解し、0.02mmol/Lメチレンブルー試験液を調製した。当該メチレンブルー試験液30mLを10mLメスシリンダーで精秤してガラス製シャーレに入れ、合成したLDH粉末0.1gを浸漬し、試験サンプルを調製した。紫外線ランプ(アズワン Handy UV Lamp SLUV-6 9W)を用いて、波長254nm 又は365nmの紫外線を20min照射した。照射後、直ちにメチレンブルー試験液をピペットで吸い上げて標準石英セル(アズワン CUVENT 10mm)に採取し、紫外可視光光度計(日本分光 V-550型)を用いて試験液の吸光スペクトルを測定した。測定条件は、下記表2に記載の測定条件とした。 Specifically, 0.0075 g (0.02 mmol) of methylene blue powder (C 16 H 18 ClN 3 S 3H 2 O MW373.90 Kishida Chemical special grade) is dissolved in 1 L of ultrapure water, and 0.02 mmol/L methylene blue test solution is added. prepared. 30 mL of the methylene blue test solution was precisely weighed with a 10 mL graduated cylinder, placed in a glass petri dish, and 0.1 g of synthesized LDH powder was immersed therein to prepare a test sample. An ultraviolet lamp (AS ONE Handy UV Lamp SLUV-6 9W) was used to irradiate ultraviolet rays with a wavelength of 254 nm or 365 nm for 20 minutes. Immediately after irradiation, the methylene blue test solution was sucked up with a pipette and collected in a standard quartz cell (AS ONE CUVENT 10 mm), and the absorption spectrum of the test solution was measured using a UV-visible photometer (JASCO V-550). The measurement conditions were the measurement conditions described in Table 2 below.

Figure 2023026979000002
Figure 2023026979000002

吸光スペクトルの測定後、測定に使用した液を速やかにシャーレに戻し、再び紫外線を20min照射した。この手順を照射時間の合計が3hになるまで9回繰り返した。 After the absorption spectrum was measured, the liquid used for the measurement was quickly returned to the petri dish and irradiated again with ultraviolet rays for 20 minutes. This procedure was repeated nine times until the total irradiation time was 3 hours.

一般に吸光度は濃度に比例する(Beerの法則)ことから、換算係数を用いて吸光度から濃度を算出した。先ず、吸光度Abs(0)を用いて下記式(1)より換算係数Kを求めた。

Figure 2023026979000003
Since the absorbance is generally proportional to the concentration (Beer's law), the concentration was calculated from the absorbance using a conversion factor. First, using the absorbance Abs(0), the conversion factor K was obtained from the following formula (1).
Figure 2023026979000003

次いで、換算係数Kを用いて下記式(2)より吸光度Abs(t)をt [min]後のメチレンブルー試験液濃度C(t)[μM]に換算した。

Figure 2023026979000004
Then, using the conversion factor K, the absorbance Abs(t) was converted to the methylene blue test solution concentration C(t) [μM] after t [min] from the following formula (2).
Figure 2023026979000004

縦軸に濃度C(t)[μM]、横軸に紫外線照射時間t[min]をとり、それぞれ粉末ごとのデータ9点(t=20、40、60、80、100、120、140、160、180) をプロットした。試験片ごとにプロットした点を最小二乗法で直線近似し、傾きの絶対値の1/1000を求めて、分解活性指数R[nmol/L/min]とした。 Concentration C(t) [μM] is plotted on the vertical axis and UV irradiation time t [min] is plotted on the horizontal axis. , 180) were plotted. The points plotted for each test piece were linearly approximated by the method of least squares, and 1/1000 of the absolute value of the slope was determined as the decomposition activity index R [nmol/L/min].

図13に、波長254nmの紫外線を照射して測定した分解活性指数R[nmol/L/min]を示す。図13において、LDH粉末は、実施例1の粉末A(CO3 2-型)、比較例1の粉末B(SO4 2-型)、比較例2の粉末C(NO3 -型)、実施例3の粉末E(Cl-型)、及び実施例5の粉末G(F-型)を用いた。図13の結果から、254nmの短波長紫外線を照射した場合、炭酸型、塩素型、フッ素型では、光触媒活性の指標を示す分解活性指数が大きくなっており、光触媒活性の目安である5を超える値を示すことが分かった。特に、塩素型、フッ素型では、触媒活性の目安である5を大幅に超える値を示すことが分かった。 FIG. 13 shows the decomposition activity index R [nmol/L/min] measured by irradiating ultraviolet rays with a wavelength of 254 nm. In FIG. 13, LDH powders are powder A of Example 1 (CO 3 2- type), powder B of Comparative Example 1 (SO 4 2- type), powder C of Comparative Example 2 (NO 3 -type ), Powder E of Example 3 (Cl -form ) and powder G of Example 5 (F -form ) were used. From the results of FIG. 13, when irradiated with short wavelength ultraviolet rays of 254 nm, the decomposition activity index, which indicates the index of photocatalytic activity, is large in the carbonic acid type, chlorine type, and fluorine type, exceeding 5, which is a measure of photocatalytic activity. found to show value. In particular, it was found that chlorine-type and fluorine-type catalysts exhibit values significantly exceeding 5, which is a measure of catalytic activity.

図14に、波長365nmの紫外線を照射して測定した分解活性指数R[nmol/L/min]を示す。図14において、LDH粉末は、実施例1の粉末A(CO3 2-型)、比較例1の粉末B(SO4 2-型)、比較例2の粉末C(NO3 -型)、実施例3の粉末E(Cl-型)、及び実施例5の粉末G(F-型)を用いた。図14の結果から、365nmのの紫外線を照射した場合でも、254nmの短波長紫外線を照射した場合と同様に、炭酸型、塩素型、フッ素型では、光触媒活性の指標を示す分解活性指数が大きくなっており、光触媒活性の目安である5を超える値を示すことが分かった。特に、塩素型、フッ素型では、触媒活性の目安である5を大幅に超える値を示すことが分かった。 FIG. 14 shows the decomposition activity index R [nmol/L/min] measured by irradiating ultraviolet rays with a wavelength of 365 nm. In FIG. 14, LDH powders are powder A of Example 1 (CO 3 2- type), powder B of Comparative Example 1 (SO 4 2- type), powder C of Comparative Example 2 (NO 3 -type ), Powder E of Example 3 (Cl -form ) and powder G of Example 5 (F -form ) were used. From the results of FIG. 14, even when irradiated with ultraviolet rays of 365 nm, as in the case of irradiation with short wavelength ultraviolet rays of 254 nm, the decomposition activity index, which indicates the index of photocatalytic activity, is large in the carbonate type, chlorine type, and fluorine type. It was found that the value exceeds 5, which is a standard for photocatalytic activity. In particular, it was found that chlorine-type and fluorine-type catalysts exhibit values significantly exceeding 5, which is a measure of catalytic activity.

Claims (7)

下記一般式(1)
[Zn1-xAl2-x(OH)][An- x/n・HO] (1)
(式中An-は、炭酸イオン、フッ素イオン又は塩素イオンであるアニオンを示す。xは0.2~0.4、nはアニオンの価数を示す。)
で表されるハイドロタルサイト化合物。
General formula (1) below
[Zn 1-x Al 2-x (OH)] [A n- x/n H 2 O] (1)
(In the formula, A n- represents an anion that is a carbonate ion, a fluorine ion or a chloride ion, x is 0.2 to 0.4, and n represents the valence of the anion.)
A hydrotalcite compound represented by
前記An-は、フッ素イオン又は塩素イオンであるアニオンを示す、請求項1に記載のハイドロタルサイト化合物。 2. The hydrotalcite compound according to claim 1, wherein A n- represents an anion which is a fluorine ion or a chloride ion. 前記xが0.25~0.35である、請求項1又は2に記載のハイドロタルサイト化合物。 The hydrotalcite compound according to claim 1 or 2, wherein x is 0.25 to 0.35. 下記一般式(1)
[M 1-x 2-x(OH)][An- x/n・HO] (2)
(式中、MはZn又はCu、MはAl又はFeを示す。An-は炭酸イオン、フッ素イオン又は塩素イオンであるアニオンを示す。xは0.2~0.4、nはアニオンの価数を示す。)
で表されるハイドロタルサイト化合物を含有する、光触媒活性剤。
General formula (1) below
[M 1 1-x M 2 2-x (OH)] [A n- x/n H 2 O] (2)
(In the formula, M 1 represents Zn or Cu, M 2 represents Al or Fe, A n- represents an anion that is carbonate ion, fluorine ion or chloride ion, x is 0.2 to 0.4, n is Indicates the valence of the anion.)
A photocatalyst activator containing a hydrotalcite compound represented by.
前記An-は、フッ素イオン又は塩素イオンであるアニオンを示す、請求項4に記載の光触媒活性剤。 5. The photocatalytic activator according to claim 4, wherein A n- represents an anion that is a fluorine ion or a chloride ion. 前記xが0.25~0.35である、請求項4又は5に記載の光触媒活性剤。 The photocatalyst activator according to claim 4 or 5, wherein x is 0.25 to 0.35. 前記光触媒活性剤を100質量%として、前記ハイドロタルサイト化合物の含有量が90.0~99.9質量%である、請求項4~6のいずれか1項に記載の光触媒活性剤。
The photocatalyst activator according to any one of claims 4 to 6, wherein the content of the hydrotalcite compound is 90.0 to 99.9% by mass based on 100% by mass of the photocatalyst activator.
JP2021132462A 2021-08-16 2021-08-16 Hydrotalcite compounds and photoactive catalysts Active JP7416441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021132462A JP7416441B2 (en) 2021-08-16 2021-08-16 Hydrotalcite compounds and photoactive catalysts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021132462A JP7416441B2 (en) 2021-08-16 2021-08-16 Hydrotalcite compounds and photoactive catalysts

Publications (2)

Publication Number Publication Date
JP2023026979A true JP2023026979A (en) 2023-03-01
JP7416441B2 JP7416441B2 (en) 2024-01-17

Family

ID=85327273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021132462A Active JP7416441B2 (en) 2021-08-16 2021-08-16 Hydrotalcite compounds and photoactive catalysts

Country Status (1)

Country Link
JP (1) JP7416441B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072488A2 (en) * 2007-12-05 2009-06-11 National Institute For Materials Science Process for producing anion exchange layered double hydroxide
WO2012165766A2 (en) * 2011-05-30 2012-12-06 백산철강(주) Low-refraction hollow composite, method for manufacturing same, and coating liquid comprising same
CN103623829A (en) * 2013-09-10 2014-03-12 湖州师范学院 Iron oxide yellow/ zinc-aluminum hydrotalcite derivative photocatalyst and preparation method thereof
JP2018183586A (en) * 2017-04-21 2018-11-22 日本製紙株式会社 Wiper sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072488A2 (en) * 2007-12-05 2009-06-11 National Institute For Materials Science Process for producing anion exchange layered double hydroxide
WO2012165766A2 (en) * 2011-05-30 2012-12-06 백산철강(주) Low-refraction hollow composite, method for manufacturing same, and coating liquid comprising same
CN103623829A (en) * 2013-09-10 2014-03-12 湖州师范学院 Iron oxide yellow/ zinc-aluminum hydrotalcite derivative photocatalyst and preparation method thereof
JP2018183586A (en) * 2017-04-21 2018-11-22 日本製紙株式会社 Wiper sheet

Also Published As

Publication number Publication date
JP7416441B2 (en) 2024-01-17

Similar Documents

Publication Publication Date Title
Cornu et al. ZnAl 2 O 4 as a potential sensor: variation of luminescence with thermal history
US3796792A (en) Composite metal hydroxides
Kakuta et al. Shape effects of goethite particles on their photocatalytic activity in the decomposition of acetaldehyde
CN101302031A (en) Magnesium, aluminum and rare earth three-element hydrotalcite, preparation and use thereof
Grzmil et al. Preparation and characterization of single-modified TiO2 for pigmentary applications
Wang et al. Physicochemical properties and photocatalytic H 2 evolution activity of Rh-doped La 2 Ti 2 O 7 prepared by molten salt synthesis
Rojas et al. Layered Ni (II)-Zn (II) hydroxyacetates. Anion exchange and thermal decomposition of the hydroxysalts obtained
JP2019073435A (en) Metal-containing cha type zeolite and method for producing the same
Krivtsov et al. Exceptional thermal stability of undoped anatase TiO 2 photocatalysts prepared by a solvent-exchange method
Enhessari et al. Synthesis and physicochemical properties of CuMn
Mekkey et al. Photocatalytic degradation of rhodamine B in the visible region using nanostructured CoAl2− xLaxO4 (x= 0, 0.01, 0.03, 0.07, and 0.09) series: Photocatalytic activity and DFT calculations
JP7416441B2 (en) Hydrotalcite compounds and photoactive catalysts
Tsuzuki et al. Photocatalytic activity of manganese-doped ZnO nanocrystalline powders
JP4088751B2 (en) Li-Al layered double hydroxide composite particle powder and method for producing the same
JP2016513618A (en) Co-substituted pyrochlore pigments and related structures.
Koroleva Synthesis of spinel-based ceramic pigments from hydroxycarbonates
KR20120083989A (en) Manganese-chromium layered double hydroxide, preparing method of the same, and photocatalyst containing the same
Ching et al. Synthesis of a new hollandite-type manganese oxide with framework and interstitial Cr (III)
AU2020359055A1 (en) Titanium oxide particles, dispersion of titanium oxide particles, and method for producing dispersion of titanium oxide particles
Milenova et al. Ozone decomposition on ZnO catalysts obtained from different precursors
US6835320B1 (en) Zinc-modified composite polybasic salt, process for producing the same, and use
KR102108378B1 (en) Method for producing porous titanium oxide fine particle and porous fine titanium oxide fine particles
JP6647676B2 (en) Strontium ion adsorbent and method for producing the same
Smalenskaite et al. Sol-Gel Synthesis and Characterization of Non-Substituted and Europium-Substituted Layered Double Hydroxides Mg3/Al1-xEux
Xu et al. Photocatalytic Activity of La-Containing Mixed-Metal Oxides Derived from Layered Double Hydroxides to Degrade Methylene Blue in the Presence of H2O2

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230112

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230112

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231222

R150 Certificate of patent or registration of utility model

Ref document number: 7416441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150