JP2023021039A - 大規模燃料電池システム及びこのシステムを設置する方法 - Google Patents

大規模燃料電池システム及びこのシステムを設置する方法 Download PDF

Info

Publication number
JP2023021039A
JP2023021039A JP2022120076A JP2022120076A JP2023021039A JP 2023021039 A JP2023021039 A JP 2023021039A JP 2022120076 A JP2022120076 A JP 2022120076A JP 2022120076 A JP2022120076 A JP 2022120076A JP 2023021039 A JP2023021039 A JP 2023021039A
Authority
JP
Japan
Prior art keywords
fuel cell
modules
power
module
row
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022120076A
Other languages
English (en)
Inventor
ラガヴァン,シュリハリ
Raghavan Srihari
トレヴィサン,デビッド
Trevisan David
リーチ,リチャード
Leitch Richard
ゴメス,アルマンド
Gomez Armando
エルス,アーロン
Ells Aaron
マーラー,ジェシカ
Mahler Jessica
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bloom Energy Corp
Original Assignee
Bloom Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bloom Energy Corp filed Critical Bloom Energy Corp
Publication of JP2023021039A publication Critical patent/JP2023021039A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/249Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04291Arrangements for managing water in solid electrolyte fuel cell systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0675Removal of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/2475Enclosures, casings or containers of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • H01M8/2485Arrangements for sealing external manifolds; Arrangements for mounting external manifolds around a stack
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/10Arrangements incorporating converting means for enabling loads to be operated at will from different kinds of power supplies, e.g. from ac or dc
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/10Fuel cells in stationary systems, e.g. emergency power source in plant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

【課題】大規模燃料電池システムを設置する方法に関するものである。【解決手段】モジュール式燃料電池サブシステム(12)が、複数の列を備え、各列は、複数の燃料電池パワーモジュール(12)と、燃料電池パワーモジュール(12)に電気接続される電力調整モジュール(18)とを備える。単一のガス/水分配モジュール(WDM)が、燃料電池パワーモジュール(12)の複数の列に流体接続され、単一の小型配電モジュール(MPDS)が、モジュールの各列において電力調整モジュール(18)のそれぞれに電気接続される。モジュールの各列は、複数の燃料電池パワーモジュール(12)の電力調整モジュール(18)とは反対の側部に配置された燃料処理モジュールを更に備える。燃料及び水接続部は、列の燃料処理モジュールを含む側部から各列に進入し、電気接続部は、列の電力調整モジュール(18)を含む側部から各列に進入する。【選択図】図19C

Description

[関連出願]
本出願は、2021年7月30日に出願された米国仮出願第63/227,836号、2022年1月20日に出願された米国仮出願第63/301,399号、及び2022年2月7日に出願された米国仮出願第63/307,309号に対する優先権の利益を主張する。これらの出願の全教示は参照により本明細書に援用する。
本開示は、包括的には、燃料電池システムに関し、具体的には、大規模燃料電池システム及びこのシステムを設置する方法に関する。
迅速で安価な設置は、燃料電池システムの普及を増大させる一助となり得る。概して配管及び電線用のトレンチ掘りを必要とする現場打ち式カスタム設計のコンクリートパッドの設置コストは、法外なものになり得る。コンクリート打ち及びトレンチには、概して1つ以上の建築許可及び建築検査官の審査が必要となることから、設置時間も大抵の現場において問題となる。
さらに、固定の燃料電池システムは、不動産のコストが結構高い又は利用可能な空間が限られている場所(例えば、ローディングドック、隘路、又は建物の間の空間等)に設置されることがある。燃料電池システムの設置は、利用可能な空間の利用率が高くあるべきである。ドア等を介してシステムにアクセスするために相当な量の離れた空間が必要となる場合、不動産の設置コストは大幅に増大する。
現場に設置される燃料電池システムの数が増える場合、概して生じる問題の1つは、(1つのユニット又は他方のユニットの保守を可能にするために、)これらのシステム間に離れた空間が必要となることである。燃料電池システムの顧客が使用する可能性の観点から、システム間の空間は失われる。
幾つかの燃料電池システムの設計の場合、これらの問題は、単体システム設計の全体キャパシティを増大させることによって解決される。しかしながら、これにより、必要となるコンクリートパッドのサイズ及び重量が増大することから、新たな課題が生まれる。したがって、この戦略はシステムの設置時間を増大させる傾向がある。さらに、システムの最小サイズが増大するにつれて、設計の耐障害性が低減する。
燃料電池システムの燃料電池スタック又はコラムは、通常、ホットボックス(すなわち、断熱コンテナ)内に配置される。既設の大規模燃料電池システムのホットボックスは、キャビネット、ハウジング又はエンクロージャー内に収容される。キャビネット、エンクロージャー、及びハウジングという用語は、本明細書において区別なく使用される。通常、キャビネットは金属製である。金属には、引っかき傷、凹み及び腐食が生じやすい自動車用又は産業用粉末塗料が塗られる。これらのキャビネットの大半は、現在の産業HVAC機器キャビネットと同様である。
1つの実施形態において、モジュール式燃料電池サブシステムは、複数の燃料電池パワーモジュールと、前記燃料電池パワーモジュールに電気接続されるDC/ACインバーターを含む電力調整モジュールとを各列が備えるモジュールの複数の列と、燃料電池パワーモジュールの複数の列に流体接続される単一のガス/水分配モジュールと、前記モジュールの複数の列の各列内における前記電力調整モジュールに電気接続される単一の小型配電モジュールとを備える。
1つの実施形態において、燃料電池システムは、複数の前記モジュール式燃料電池サブシステムと、前記複数のモジュール式燃料電池サブシステムに電気接続されるシステム配電ユニットと、前記複数のモジュール式燃料電池サブシステムを、ユーティリティ燃料管、ユーティリティ水管及び前記システム配電ユニットに接続する、配管及びワイヤを収容する複数のプレキャストコンクリートトレンチとを備える。
別の実施形態において、燃料電池パワーモジュールは、気泡コンクリートの土台と、前記土台の上に配置されるとともに、前記土台よりも小さい面積を有する非気泡コンクリートパッドと、前記コンクリートの土台上に配置され、少なくとも1つの燃料電池スタックを含む燃料電池パワーモジュールとを備える。1つの実施形態において、前記燃料電池パワーモジュールを配電ユニットに接続するワイヤを収容するプレキャストコンクリートトレンチが提供される。
別の実施形態において、燃料電池システムモジュールの複数の列と、電気接続部と、少なくとも1つの配管接続部とを備え、前記燃料電池システムモジュールの複数の列は、各列が、複数の燃料電池パワーモジュールと、前記パワーモジュールに電気接続されるDC/ACインバーターを含む電力調整モジュールと、前記パワーモジュールに流体接続される燃料の事前処理を行う構成要素を含む燃料処理モジュールとを備え、前記電力調整モジュールは、前記複数の燃料電池モジュールの第1の側部に配置され、前記燃料処理モジュールは、前記燃料電池システムモジュールの複数の列の各列において前記複数の燃料電池モジュールの前記第1の側部とは反対側の第2の側部に配置され、前記電気接続部は、それぞれの前記列の前記第1の側部に配置された各列の前記電力調整モジュールに対して設置され、前記配管接続部は、それぞれの前記列の前記第2の側部に配置された各列の前記燃料処理モジュールに対して設置されている。
図1は、本開示の様々な実施形態に係るモジュール式燃料電池システムの斜視図である。 図2は、本開示の様々な実施形態に係るモジュール式燃料電池システムの平面図である。 図3Aは、図2の燃料電池システムのパッドの上面図である。 図3Bは、図2の燃料電池システムのパッドの斜視図である。 図3Cは、図2の燃料電池システムのパッドの斜視図である。 図3Dは、図2の燃料電池システムのパッドの修正版の斜視図である。 図4Aは、本開示の様々な実施形態に係るモジュール式燃料電池システムの斜視図である。 図4Bは、図4Aのシステムの平面図である。 図4Cは、図4Aの燃料電池システムのパッドの概略図である。 図5Aは、本開示の様々な実施形態に係るモジュール式燃料電池システムの平面図である。 図5Bは、図5Aの燃料電池システムのパッドの概略図である。 図5Cは、本開示の様々な実施形態に係るモジュール式燃料電池システムの平面図である。 図5Dは、図5Cの燃料電池システムのパッドの概略図である。 図6Aは、本開示の様々な実施形態に係るモジュール式燃料電池システムの平面図である。 図6Bは、図6Aの燃料電池システムのパッドの概略図である。 図7Aは、本開示の様々な実施形態に係るモジュール式燃料電池システムの平面図である。 図7Bは、図7Aの燃料電池システムのパッドの概略図である。 図8は、本開示の様々な実施形態に係るモジュール式パッドセクションの斜視図である。 図9Aは、本開示の様々な実施形態に係るモジュール式パッドの斜視図である。 図9Bは、本開示の様々な実施形態に係るモジュール式パッドの斜視図である。 図10は、本開示の様々な実施形態に係るモジュール式パッドの斜視図である。 図11は、本開示の様々な実施形態に係るモジュール式パッドを示す図である。 図12は、本開示の様々な実施形態に係るモジュール式パッドを示す図である。 図13Aは、本開示の様々な実施形態に係るパッドの斜視図である。 図13Bは、本開示の様々な実施形態に係るパッドの斜視図である。 図14は、本開示の様々な実施形態に係る燃料電池システムのモジュール式パッドの斜視図である。 図15は、本開示の様々な実施形態に係る燃料電池システムのモジュール式パッドの斜視図である。 図16は、本開示の様々な実施形態に係る燃料電池システムのモジュール式パッドの斜視図である。 図17は、本開示の様々な実施形態に係る燃料電池システムのパッドセクションの斜視図である。 図18Aは、燃料電池システムの支持フレームの斜視図である。 図18Bは、図18Aの支持フレーム上のモジュールを示す図である。 図19Aは、本開示の実施形態に係る、プレキャストコンクリートトレンチが配管及び配線で埋められる前の大規模燃料電池システムの上面図である。 図19Bは、本開示の実施形態に係る、プレキャストコンクリートトレンチが配管及び配線で埋められた後の大規模燃料電池システムの上面図である。 図19Cは、図19Aの大規模燃料電池システムの斜視図である。 図19Dは、図19Aの大規模燃料電池システムの斜視図である。 図19Eは、図19Cのガス/水分配モジュールの構成要素の概略側面図である。 図19Fは、図19Dの大規模燃料電池システムのモジュールのパッドの側面断面図である。 図19Gは、図19Aのシステムの機能概略図である。 図19Hは、図19A及び図19Gのシステムの構成要素の斜視図である。 図19Iは、図19A及び図19Gのシステムの構成要素の斜視図である。 図19Jは、集中型の脱硫器を備える燃料処理モジュールの図である。 図19Kは、図19Aの大規模燃料電池システムのブロックの上面図である。 図19Lは、本開示の代替的な実施形態に係る大規模燃料電池システムの上面図である。 図20Aは、図19A~図19Fの大規模燃料電池システムを設置する方法におけるステップの斜視図である。 図20Bは、図19A~図19Fの大規模燃料電池システムを設置する方法におけるステップの斜視図である。 図20Cは、図19A~図19Fの大規模燃料電池システムを設置する方法におけるステップの斜視図である。 図20Dは、図19A~図19Fの大規模燃料電池システムを設置する方法におけるステップの斜視図である。 図20Eは、図19A~図19Fの大規模燃料電池システムを設置する方法におけるステップの斜視図である。 図20Fは、図19A~図19Fの大規模燃料電池システムを設置する方法におけるステップの斜視図である。 図20Gは、図19A~図19Fの大規模燃料電池システムを設置する方法におけるステップの斜視図である。 図20Hは、図19A~図19Fの大規模燃料電池システムを設置する方法におけるステップの斜視図である。 図20Iは、図19A~図19Fの大規模燃料電池システムを設置する方法におけるステップの斜視図である。 図20Jは、図19A~図19Fの大規模燃料電池システムを設置する方法におけるステップの斜視図である。 図21は、一実施形態に係るサブシステムの概略上面図である。 図22Aは、図21のサブシステムの電気構成要素の概略回路図である。 図22Bは、図21のサブシステムの電気構成要素の概略回路図である。 図23は、本開示の一実施形態に係る電気構成要素の概略回路図である。 図24は、本開示の実施形態のシステムの設置時に使用することができるコンクリート縁石及びレースウェイの写真である。 図25Aは、本開示の実施形態のシステムの設置時に使用することができるコンクリート縁石及びレースウェイの写真である。 図25Bは、本開示の実施形態のシステムの設置時に使用することができるコンクリート縁石及びレースウェイの写真である。 図26Aは、本開示の別の実施形態に係る大規模燃料電池システムの上面図である。 図26Bは、図26Aの燃料電池システムのブロックの上面図である。 図26Cは、本開示の一実施形態に係る、燃料及び水用の導管及び電気配線を示す、図26Aの燃料電池システムのブロックの代替的な構成の上面図である。 図26Dは、パワーモジュールの列の第1の端部におけるガス導管及び水導管の側方進入及びパワーモジュールの列の第2の端部における電気配線の側方進入を示す、図26Aの燃料電池システムのブロックの斜視図である。 図26Eは、本開示の様々な実施形態に係る燃料電池電力システムのブロックの、パワーモジュールの列と集中型の(centralized)システム配電ユニットとの間に延在する電気配線を収容するコンクリートトレンチの斜視図である。 図27Aは、図26A~図26Eに示すような燃料電池電力システムのブロックのコンクリートパッド及びプレキャストコンクリートトレンチの斜視図である。 図27Bは、本開示の様々な実施形態に係る電気接続部を収容するプレキャストコンクリートトレンチの斜視図である。 図27Cは、図27Bのプレキャストコンクリートトレンチの上面図である。 図28Aは、本開示の様々な実施形態に係る燃料電池システムモジュールを支持するコンクリートパッドの部分透視斜視図である。 図28Bは、図28Aのコンクリートパッドの部分透視上面図である。 図28Cは、本開示の様々な実施形態に係るコンクリートパッドの上面に取り付けられるオーバーレイ構造を含む図28Aのコンクリートパッドの上面図である。 図28Dは、本開示の様々な実施形態に係るシステム配電ユニットの構成要素を支持するコンクリートパッドの上面図である。 図29Aは、本開示の様々な実施形態に係る燃料電池システムモジュールのキャビネットの側面に隣接して配置されたサービス再配置モジュールの斜視図である。 図29Bは、本開示の様々な実施形態に係る燃料電池システムモジュールのキャビネットの側面に隣接して配置されたサービス再配置モジュールの斜視図である。
以上の一般的な記載及び以下の詳細な記載はいずれも、例示的かつ説明的なものに過ぎず、特許請求の範囲に係る本発明を限定するものではないことが理解される。
図1を参照すると、一例示的な実施形態に係るモジュール式燃料電池システム10が示されている。モジュール式システム10は、2007年1月22日に出願された米国特許出願第11/656,006号及び2014年3月13日に出願された米国特許出願第14/208,190号に記載のモジュール及び構成要素を含むことができ、これらの特許出願は、全体を参照により本明細書に援用する。燃料電池システム10のモジュール式設計は、柔軟なシステム設置及び動作を提供する。モジュールは、単一の設計セットで、発電設備容量の拡縮、確実な発電、柔軟な燃料処理、並びに電力出力電圧及び周波数の柔軟性を可能にする。モジュール式設計により、非常に高い可用性及び信頼性を有する「常時稼働」のユニットがもたらされる。また、この設計により、規模拡大の簡単な手段が提供され、顧客の設備の具体的な要件が満たされる。モジュール式設計により、顧客によって及び/又は地理的領域によって異なり得る入手可能な燃料、並びに必要な電圧及び周波数の利用が可能にもなる。
モジュール式燃料電池システム10は、少なくとも1つの(好ましくは2つ以上又は複数の)パワーモジュール12と、1つ以上の燃料処理モジュール16と、1つ以上の電力調整(すなわち、電気出力)モジュール18とが配設されるハウジング14を備える。実施形態において、電力調整モジュール18は、直流電流(DC)を送達するように構成される。代替の実施形態において、電力調整モジュール18は、交流電流(AC)を送達するように構成される。これらの実施形態において、電力調整モジュール18は、インバーター等、DCをACに変換する機構を含む。例えば、システム10は、任意の所望の数のモジュール、例えば、2個~30個のパワーモジュール、例えば3個~12個のパワーモジュール、例えば6個~12個のモジュールを備えることができる。
図1のシステム10は、パッド20上に6つのパワーモジュール12(横並びにスタックされる6つのモジュールの1つの列)と、1つの燃料処理モジュール16と、1つの電力調整モジュール18とを備える。ハウジング14は、各モジュール12、16、18を収容するキャビネットを含むことができる。代替的には、より詳細に後述するように、モジュール16及びモジュール18は単一のキャビネット内に配設してもよい。パワーモジュール12の1つの列が示されているが、システムは2つ以上の列のモジュール12を備えてもよい。例えば、システム10は、背中合わせに/端から端まで配置される2つの列のパワーモジュール18を備えてもよい。
各パワーモジュール12は、1つ以上のホットボックス13を収容するように構成される。各ホットボックスは、燃料電池の1つ以上のスタック又はコラム(明確にするために図示せず)、例えば、導電性相互接続プレートによって分離されるセラミック酸化物電解質を有する固体酸化物燃料電池の1つ以上のスタック又はコラムを含む。PEM、溶融炭酸塩、リン酸等の他の燃料電池タイプを使用してもよい。
燃料電池スタックは、外部的に及び/又は内部的にマニホールドされた(manifolded)スタックを含むことができる。例えば、スタックは、燃料電池層及び/又は燃料電池の間の相互接続プレートにおける開口を貫通する燃料及び空気上昇管を有し、燃料及び空気用に内部的にマニホールドされていてもよい。
代替的には、燃料電池スタックは、燃料用に内部的にマニホールドされ、空気用に外部的にマニホールドされていてもよく、参照によりその全体が本明細書に組み込まれる米国特許第7,713,649号に記載のように、燃料入口及び排気上昇管のみが、燃料電池層及び/又は燃料電池の間の相互接続プレートにおける開口を貫通していてもよい。燃料電池は、交差流構成(空気及び燃料が、各燃料電池内の電解質の対向する側において互いに対して略垂直に流れる)を有することもできるし、向流並列構成(空気及び燃料が、各燃料電池内の電解質の対向する側において、互いに対して略平行だが対向する方向に流れる)を有することもできるし、並行流並列構成(空気及び燃料が、各燃料電池内の電解質の対向する側において、同じ方向に互いに対して略平行に流れる)を有することもできる。
モジュール式燃料電池システム10は、少なくとも1つの燃料処理モジュール16も含む。燃料処理モジュール16は、吸着床(例えば、脱硫器及び/又は他の不純物吸着床)等の燃料の事前処理を行う構成要素を含む。燃料処理モジュール16は、特定のタイプの燃料を処理するように設計することができる。例えば、システムは、ディーゼル燃料処理モジュール、天然ガス燃料処理モジュール、及びエタノール燃料処理モジュールを含むことができ、これらのモジュールは、同じキャビネット内又は異なるキャビネット内に設けることができる。特定の燃料用に誂えられる異なる床組成を各モジュール内に設けることができる。処理モジュール(複数の場合もある)16は、管路から供給される天然ガス、圧縮天然ガス、メタン、プロパン、液体石油ガス、ガソリン、ディーゼル、家庭暖房用石油、灯油、JP-5、JP-8、航空燃料、水素、アンモニア、エタノール、メタノール、合成ガス、バイオガス、バイオディーゼル及び他の適切な炭化水素又は水素含有燃料から選択される燃料のうちの少なくとも1つを処理するように構成されていてもよい。望ましい場合、燃料処理モジュール16は改質器17を含むことができる。代替的には、改質器17を燃料電池スタック(複数の場合もある)に熱的に統合することが望ましい場合、別個の改質器17がそれぞれのパワーモジュール12内の各ホットボックス13内に配置されてもよい。さらに、内部改質燃料電池が使用される場合、外部改質器17を完全に省くことができる。
電力調整モジュール18は、燃料電池スタックが生成したDC電力をAC電力に変換する構成要素(例えば、全体を参照により本明細書に援用する米国特許第7,705,490号に記載のDC/DCコンバーター及びDC/ACコンバーター)、グリッドに対するAC電力出力用の電気コネクタ、電気的過渡現象を管理する回路、システムコントローラー(例えば、コンピューター又は専用制御論理装置若しくは回路)を含む。電力調整モジュール18は、燃料電池モジュールからのDC電力を異なるAC電圧及び周波数に変換するように設計することができる。208V、60Hz;480V、60Hz;415V、50Hz並びに他の一般的な電圧及び周波数用の設計を提供するように設計してもよい。
燃料処理モジュール16及び電力調整モジュール18は、ハウジング14の1つのキャビネット内に収容してもよい。単一の入力/出力キャビネットが設けられる場合、モジュール16及び18は、キャビネット内で鉛直に(例えば、電力調整モジュール18の構成要素を燃料処理モジュール16の脱硫器キャニスター/床の上方に)又は横並びに配置してもよい。
図1の1つの例示的な実施形態に示すように、1つのキャビネットが6つのパワーモジュール12の1つの列のために設けられ、パワーモジュール12は、入力/出力モジュールの1つの側部に横並びで直線状に配置される。モジュールの列は、例えば、システムが電力を供給する建物に隣接して(例えば、モジュールのキャビネットの背面が建物の壁に面している状態で)位置決めすることができる。パワーモジュール12の1つの列が示されているが、システムは2つ以上の列のモジュール12を備えてもよい。例えば、上記で述べたように、システムは、背中合わせにスタックされる2つの列のパワーモジュールを備えてもよい。
パワーモジュール12の直線状の配列(linear array)は容易に拡縮される。例えば、より多数の又は少数のパワーモジュール12を、燃料電池システム10によってサービス提供される建物又は他の施設の電力需要に応じて設けてもよい。パワーモジュール12及び入力/出力モジュールは、他の比率で設けてもよい。例えば、他の例示的な実施形態において、より多数の又は少数のパワーモジュール12を入力/出力モジュール16/18に隣接して設けてもよい。さらに、2つ以上の入力/出力モジュール16/18によって(例えば、別個の燃料処理モジュール16及び電力調整モジュール18キャビネットを用いて)サポート機能をサービス提供することができる。加えて、好ましい実施形態において、入力/出力モジュール16/18が、パワーモジュール12の列の端部にあるが、パワーモジュール12の列の中央に位置してもよい。
モジュール式燃料電池システム10は、システム10の構成要素の点検を容易にするように構成することができる。定期的に又は頻繁に保守点検される構成要素(消耗部品等)は全て、単一のモジュール内に置いて、サービスマンが必要とする時間が削減されるようにしてもよい。
例えば、天然ガスを燃料とするシステム用のパージガス(任意選択)及び脱硫器材料を、単一のモジュール(例えば、燃料処理モジュール16又は併合した入力/出力モジュール16/18キャビネット)内に置くことができる。これは、定期的なメンテナンスに際してアクセスされる唯一のモジュールキャビネットとなる。そのため、各モジュール12、16、及び18は、他のモジュールキャビネットを開くことなく、また、他のモジュールを点検、修理、又は取り外しを行うことなく、点検、修理又はシステムからの取り外しを行うことができる。
例えば、上述したように、システム10は複数のパワーモジュール12を備えることができる。少なくとも1つのパワーモジュール12がオフラインになる(すなわち、オフラインのモジュール12内のホットボックス13内のスタックによって電力が生成されない)とき、残りのパワーモジュール12、燃料処理モジュール16及び電力調整モジュール18(又は併合した入力/出力モジュール16/18)はオフラインにならない。さらに、燃料電池システム10は、各タイプのモジュール12、16、又は18を2つ以上含むことができる。特定のタイプの少なくとも1つのモジュールがオフラインになるとき、同じタイプの残りのモジュールはオフラインにならない。
そのため、複数のモジュールを備えるシステムにおいて、モジュール12、16、又は18のそれぞれは、システムにおける他のモジュールの動作を停止することなく、電気的に切断し、燃料電池システム10から取り外し、及び/又は点検若しくは修理することができ、燃料電池システムは発電を継続することが可能になる。1つのホットボックス13内の燃料電池の1つのスタックが故障した又は点検のためにオフラインになった場合、燃料電池システム10全体を止める必要はない。
図2は、本開示の様々な実施形態に係るモジュール式燃料電池システム200の平面図を示している。燃料電池システム200は、図1の燃料電池システム10と同様である。したがって、同様の要素には同様の参照符号を使用し、両者の間の差異のみを詳細に説明する。
図2を参照すると、システム200は、パッド210上に配設される、パワーモジュール12と、電力調整モジュール18と、燃料処理モジュール16とを備える。システム200は、モジュール12、16、18にアクセスするためのドア30を備えることができる。システム200は装飾ドア30Aを更に備えることができる。
パワーモジュール12は、背中合わせの構成で配設することができる。特に、パワーモジュール12は並列に配設してもよく、燃料処理モジュール16及び電力調整モジュールは列の端部に配設してもよい。したがって、システム200は、全体的に矩形の構成を有し、他のシステム、例えば図1のシステム10よりも長さが短いものであり得る。したがって、システム200は、空間長さが問題となる場所に配設することができる。例えば、システム200は、電力が提供される建物に隣接した駐車場に収まることができる。
システム200が3つのパワーモジュール12の2つの列を備えるものと図示されているが、本開示はいかなる特定の数のパワーモジュール12にも限定されない。例えば、システム200は、幾つかの実施形態において、2個~30個のパワーモジュール12、4個~12個のパワーモジュール12、又は6個~12個のパワーモジュール12を備えることができる。換言すれば、システム200は、任意の所望の数のパワーモジュール12を備えることができ、パワーモジュール12は背中合わせの構成で配設される。加えて、燃料処理モジュール16及び電力調整モジュール18の位置は逆転してもよく、及び/又はモジュール16、18をシステム200の片方の端部に配設してもよい。
図3Aは、パッド210の概略上面図を示している。図3Bは、パッド210の斜視図を示しており、図3Cは、縁部カバーを含むパッド210の斜視図を示している。
図3A~図3Cを参照すると、パッド210は土台212を備える。土台212は、コンクリート又は同様の材料から形成することができる。代替的には、土台212は、他の任意の適切な構造材料、例えば、鋼又は別の金属から作製することができ、単体としてプレキャストすることもできるし、部分的に注型することもできる。土台212は、土台材料をパターン型に注型し、注型された土台212を型から取り外し、その後、土台212を型の場所(例えば、土台製造施設内)から燃料電池システムの動作現場(すなわち、燃料電池システムが発電するように配置される場所)に輸送することによって作製してもよい。土台212は、単一部品として構成することもできるし、複数の接続セクションを含むこともできる。
土台212は、第1の貫通孔214及び第2の貫通孔216と、排水凹部218と、配線凹部220と、配管凹部222とを有することができる。土台212は、タイダウンポケット224と、タイダウンインサート226と、配管ブラケット228とを備えることもできる。
排水凹部218は、土台212の中央に沿ってモジュールの列の間に延在することができ、例えば、土台212上に収集された雨水又はデブリを収集するように構成することができる。タイダウンポケット224及びタイダウンインサート226は、対応するモジュールを土台212に固定するように構成することができる。配管凹部222は、土台212の周縁の周りに延在することができる。特に、配管凹部222は、土台212の3つ以上の縁部に沿って形成することができる。配線凹部220は、第1の貫通孔214から第2の貫通孔216に延在することができ、概ねU字形状とすることができる。
パッド210は、配管230と、配線232と、ブスバー234等のシステム電気接続部とを備えることもできる。特に、配線232は、配線凹部220内に配設することができ、モジュールのうちの1つ以上に接続することができる。例えば、配線232は、ブスバー234及びパワーモジュール12のそれぞれに接続することができる。ブスバー234は、電力調整モジュール18に接続することができる。電力調整モジュール18は、第2の貫通孔216を通して外部負荷に接続することができる。ブスバー234は、配線232が貫通孔216にわたって延在しないように、貫通孔216の縁部上に配設することができる。しかしながら、そのような場所がシステム要件を満たすのに必要である場合、ブスバー234は、配線232が貫通孔216にわたって延在しないように、貫通孔216の対向する両側に配設してもよい。
配管230は、配管凹部222内に配設することができる。配管230は、第1の貫通孔214を介して外部の水源及び/又は燃料源に接続してもよく、配管ブラケット228に取り付けてもよい。特に、配管230は、燃料処理モジュール16をパワーモジュール12に接続する燃料管230Aを含むことができる。配管230は、水をパワーモジュール12に供給するように構成される水管230Bも含むことができる。配管230は、配管ブラケット228からパワーモジュール12の間に延在するようにしてもよい。
図3Cに示すように、配管230は、縁部カバー236によって覆うことができる。特に、縁部カバー236は、配管凹部222を覆うように構成することができる。幾つかの実施形態において、縁部カバー236は、縁部カバー236を部品単位で取り外す及び/又は設置することができるように、複数のセグメントを含むことができる。
図3Dは、本開示の様々な実施形態に係るパッド211の斜視図を示している。パッド211は、パッド210の代わりの、図2の燃料電池システムのパッド210の代替版である。したがって、パッド210、211の間の差異のみを詳細に説明する。
図3Dを参照すると、パッド211は配線233を含むが、ブスバーを含まない。特に、配線233は、各パワーモジュール12を電力調整モジュール18に取り付けるように構成されるケーブルの形態とすることができ、システム電気接続部は、ケーブルアセンブリ入力部又は出力部237を含むことができる。
図4Aは、本開示の様々な実施形態に係るモジュール式燃料電池システムの斜視図を示している。図4Bは、システム400の平面図を示している。図4Cは、図4Aのパッド410の概略図を示している。燃料電池システム400は、図1の燃料電池システム10と同様の構成要素を備える。したがって、同様の要素には同様の参照符号を使用し、その間の差異のみを詳細に説明する。
図4A~図4Cを参照すると、システム400は、パッド410上に配設される、パワーモジュール12と、電力調整モジュール18と、燃料処理モジュール16とを備える。システム400は、モジュール12、16、18にアクセスするためのドア30を備えることができる。システム400は装飾ドア30Aを更に備えることができる。
パワーモジュール12は、直線状の配置で配設することができる。特に、パワーモジュール12は一列に配設してもよく、燃料処理モジュール16及び電力調整モジュール18は列の端部に配設してもよい。幾つかの実施形態によれば、燃料処理モジュール16及び電力調整モジュール18は、列の中央に配設することができる。したがって、システム400は、全体的に直線状の構成を有し、直線状の空間を有するが幅が限られている場所に収められるかもしれない。そのような場所の一例は、大規模小売店の裏であり得る。
システム400が6つのパワーモジュール12の列を備えるものと図示されているが、本開示はいかなる特定の数のパワーモジュール12にも限定されない。例えば、システム400は、幾つかの実施形態において、2個~30個のパワーモジュール12、4個~12個のパワーモジュール12、又は6個~12個のパワーモジュール12を備えることができる。換言すれば、システム500は、任意の所望の数のパワーモジュール12を備えることができ、モジュール12、16、18は直線状の構成で配設される。
パッド410は土台412を備える。土台412は、第1の貫通孔214及び第2の貫通孔216を有することができる。土台412は、図10に関して後述するように、配線凹部及び配管凹部も有することができる。土台412は、コンクリート又は同様の材料から形成することができる。代替的には、土台412は、他の任意の適切な構造材料、例えば、鋼又は別の金属から作製することができ、単体としてプレキャストすることもできるし、部分的に注型することもできる。土台412は、土台材料をパターン型に注型し、注型された土台412を型から取り外し、その後、土台412を型の場所(例えば、土台製造施設内)から燃料電池システムの場所(すなわち、燃料電池システムが発電するように位置する場所)に輸送することによって作製してもよい。
パッド410は、配管230(例えば、水管230A及び燃料管230B)と、配線232と、システムブスバー234とを備えることもできる。特に、配線232は、実質的に直線状の配線凹部内に配設することができ、モジュールのうちの1つ以上に接続することができる。例えば、配線232は、ブスバー234及びパワーモジュール12のそれぞれに接続することができる。ブスバー234は、電力調整モジュール18に接続することができる。電力調整モジュール18は、第2の貫通孔216を通して外部負荷に接続することができる。ブスバー234は、配線232が第2の貫通孔216にわたって延在しないように、第2の貫通孔216の縁部上に配設することができる。しかしながら、そのような場所がシステム要件を満たすのに必要である場合、ブスバー234は、配線232が第2の貫通孔216にわたって延在しないように、第2の貫通孔216の対向する両側に配設してもよい。
幾つかの実施形態によれば、配管230及び配線232は、モジュール12、16、18に接続することを容易にするために、ドア30に隣接して配設することができる。換言すれば、配管230及び配線232は、土台412の縁部に隣接して配設することができる。幾つかの実施形態によれば、配線232は、図3Dに示すものと同様にケーブルの形態とすることができ、ブスバー234を省くことができる。
図5Aは、本開示の様々な実施形態に係るモジュール式燃料電池システム500の平面図を示している。図5Bは、図5Aのパッド510の概略図を示している。燃料電池システム500は、燃料電池システム200と同様の構成要素を備える。したがって、同様の要素には同様の参照符号を使用し、その間の差異のみを詳細に説明する。
図5A及び図5Bを参照すると、システム500は、パッド510上に配設される、パワーモジュール12と、電力調整モジュール18と、燃料処理モジュール16とを備える。システム500は、モジュール12、16、18にアクセスするためのドア30を備えることができる。システム500は装飾ドア30Aを更に備えることができる。
パワーモジュール12は、L字形状の構成で配設することができる。特に、パワーモジュール12は、第1の列に配設してもよく、燃料処理モジュール16、電力調整モジュール18、及び追加のパワーモジュール12を、第1の列に実質的に直交する第2の列に配設してもよい。特に、モジュール16、18は、第2の列の遠位端部に配設することができる。したがって、システム500は、直線状の空間を有するが幅が限られている場所において動作するように構成してもよい。そのような場所の一例は、大型店舗の裏であり得る。
システム500が6つのパワーモジュール12の列を備えるものと図示されているが、本開示はいかなる特定の数のパワーモジュール12にも限定されない。例えば、システム500は、幾つかの実施形態において、2個~30個のパワーモジュール12、4個~12個のパワーモジュール12、又は6個~12個のパワーモジュール12を備えることができる。換言すれば、システム500は、任意の所望の数のパワーモジュール12を備えることができ、モジュール12、16、18は直交した配置で配設される。
パッド510は土台512を備える。土台512は、第1の貫通孔214及び第2の貫通孔216と、配線凹部と、配管凹部とを有することができる。土台512は、コンクリート又は同様の材料から形成することができる。土台512は、単体としてプレキャストすることもできるし、部分的に注型することもできる。例えば、土台512は、第1のセクション512A及び第2のセクション512Bを有することができ、両セクションは、プレキャストした後に動作場所で互いに隣接して配設することができる。セクション512Aとセクション512Bとの間の区切りは、点線Lによって示されている。第1の列のモジュールは、第1のセクション512A上に配設することができ、第2の列のモジュールは、第2のセクション512B上に配設することができる。
パッド510は、配管230(例えば、水配管230A及び燃料配管230B)と、配線232と、システムブスバー234とを備えることもできる。特に、配線232は、配線凹部内に配設することができ、モジュールのうちの1つ以上に接続することができる。例えば、配線232は、ブスバー234及びパワーモジュール12のそれぞれに接続することができる。ブスバー234は、電力調整モジュール18に接続することができる。電力調整モジュール18は、第2の貫通孔216を通して外部負荷に接続することができる。
幾つかの実施形態によれば、配管230及び配線232は、モジュール12、16、18に接続することを容易にするために、ドア30に隣接して配設することができる。換言すれば、配管230及び配線232は、土台512の縁部に隣接して配設することができる。幾つかの実施形態によれば、配線232は、図3Dに示すものと同様にケーブルの形態とすることができ、ブスバー234を省くことができる。
図5Cは、本開示の様々な実施形態に係るモジュール式燃料電池システム550の平面図を示している。図5Dは、図5Cのパッド560の概略図を示している。燃料電池システム550は、燃料電池システム500と同様の構成要素を備える。したがって、同様の要素には同様の参照符号を使用し、その間の差異のみを詳細に説明する。
図5C及び図5Dを参照すると、システム550は、パッド560上に配設される、パワーモジュール12と、電力調整モジュール18と、燃料処理モジュール16とを備える。パワーモジュール12は、第1の列に配設してもよく、燃料処理モジュール16及び電力調整モジュール18は、第1の列に概ね直交する第2の列に配設してもよい。したがって、システム550は、概ねL字形状であり得る。パッド560は、点線Lによって分離される第1のセクション560A及び第2のセクション560Bを有することができる。しかしながら、パッド560は、単一の材料片から形成することができる。第1の列のモジュールは、第1のセクション560A上に配設してもよく、第2の列のモジュールは、第2のセクション560B上に配設してもよい。
パッド560は、配管230(例えば、水配管230A及び燃料配管230B)と、配線232と、第1の貫通孔214と、第2の貫通孔216と、システムブスバー234とを備えることもできる。特に、配線232は、配線凹部内に配設することができ、モジュールのうちの1つ以上に接続することができる。例えば、配線232は、ブスバー234及びパワーモジュール12のそれぞれに接続することができる。ブスバー234は、電力調整モジュール18に接続することができる。電力調整モジュール18は、第2の貫通孔216を通して外部負荷に接続することができる。
幾つかの実施形態によれば、配管230及び配線232は、モジュール12、16、18に接続することを容易にするために、ドア30に隣接して配設することができる。換言すれば、配管230及び配線232は、パッド560の縁部に隣接して配設することができる。幾つかの実施形態によれば、配線232は、図3Dに示すものと同様にケーブルの形態とすることができ、ブスバー234を省くことができる。
図6Aは、本開示の様々な実施形態に係るモジュール式燃料電池システム600の平面図を示している。図6Bは、図6Aのパッド610の概略図を示している。燃料電池システム600は、燃料電池システム500と同様の構成要素を備える。したがって、同様の要素には同様の参照符号を使用し、その間の差異のみを詳細に説明する。
図6A及び図6Bを参照すると、システム600は、パッド610上に配設される、パワーモジュール12と、電力調整モジュール18と、燃料処理モジュール16とを備える。システム600は、モジュール12、16、18にアクセスするためのドア30を備えることができる。システム600は装飾ドア30Aを更に備えることができる。
パワーモジュール12は、L字形状の構成で配設することができる。特に、パワーモジュール12は、第1の列に配設してもよく、燃料処理モジュール16、電力調整モジュール18、及び追加のパワーモジュール12を、第1の列に実質的に直交する第2の列に配設してもよい。特に、モジュール16、18は、第2の列の遠位端部に配設することができる。
システム500とは対照的に、システム600は、第1の列と第2の列との間に配設されるダミーセクション630を有する。ダミーセクション630は、パッド610のモジュールを含まない部分であり得る。配管230及び配線232は、ダミーセクション630に通すことができ、パッド610の縁部に沿って延在していてもよい。
パッド610は、ダミーセクション630によって分離される第1のセクション612A及び第2のセクション612Bを有することができる。幾つかの実施形態において、ダミーセクション630は、パッド610の別個のセクションとすることもできるし、第1のセクション612A及び第2のセクション612Bのうちの一方の一部とすることもできる。幾つかの実施形態において、ダミーセクション630上に空のキャビネットを配設することができる。第1の列のモジュールは、第1のセクション612A上に配設することができ、第2の列のモジュールは、第2のセクション612B上に配設することができる。
図7Aは、本開示の様々な実施形態に係るモジュール式燃料電池システム700の平面図を示している。図7Bは、図7Aのパッド710の概略図を示している。燃料電池システム700は、燃料電池システム500と同様の構成要素を備える。したがって、同様の要素には同様の参照符号を使用し、その間の差異のみを詳細に説明する。
図7A及び図7Bを参照すると、システム700は、パッド710上に配設される、パワーモジュール12と、電力調整モジュール18と、燃料処理モジュール16とを備える。システム700は、モジュール12、16、18にアクセスするためのドア30を備えることができる。システム700は装飾ドア30Aを更に備えることができる。
パワーモジュール12は、段状の配置(stepped configuration)で配設することができる。特に、パワーモジュール12は、第1の列、第1の列に実質的に直交する第2の列、及び第2の列に実質的に直交する第3の列に配設することができる。燃料処理モジュール16及び電力調整モジュール18は、第3の列の遠位端部に配設することができる。しかしながら、燃料処理モジュール16及び電力調整モジュール18は、幾つかの実施形態によれば、第1の列又は第2の列に配設することができる。
システム700は、第1の列と第2の列との間にダミーセクション730を有する。ダミーセクション730は、パッド710のモジュールを含まない部分であり得る。幾つかの実施形態において、ダミーセクション730上に空のキャビネットを配設することができる。配管230及び配線232は、ダミーセクション730に通すことができ、パッド710の縁部に沿って延在していてもよい。
パッド710は、第1のセクション712Aと、第2のセクション712Bと、第3のセクション712Cとを有することができる。第1のセクション712A及び第2のセクション712Bは、線Lによって分離してもよい。第2のセクション712B及び第3のセクション712Cは、ダミーセクション730によって分離してもよい。幾つかの実施形態において、ダミーセクション730は、パッド710の別個のセグメントとすることもできるし、第2のセクション712B及び第3のセクション712Cのうちの一方の一部とすることもできる。第1の列のモジュールは、第1のセクション712A上に配設してもよく、第2の列のモジュールは、第2のセクション712B上に配設してもよく、第3の列のモジュールは、第3のセクション712B上に配設してもよい。パッド710は、第1のセクション712A及び第2のセクション712Bの配線232を接続するように構成される第2のシステムブスバー235も備えることができる。
図8は、本開示の様々な実施形態に係るモジュール式パッドセクション800の斜視図を示している。図8を参照すると、パッドセクション800は、上述のパッドのセクションのうちのいずれかとして使用することができる。パッドセクション800は矩形とすることができ、例えば、パッドセクション800は、実質的に平行な2つの長辺と、その間に延在する実質的に平行な2つの短辺とを有することができる。
パッドセクション800は、パッドセクション800の上面に形成されていてもよい、第1のボス802と、第2のボス804と、第3のボス806と、配管ブラケット828と、配線凹部820と、接続凹部822と、配管凹部824とを有することができる。第1のボス802は、第2のボス804と第3のボス806との間に配設することができる。第2のボス804は、第3のボス806よりも大きい表面積を有することができる。例えば、第2のボス804及び第3のボス806は、実質的に同じ幅を有することができるが、第2のボス804は第3のボス806よりも長いものとすることができる。第1のボス802は、第2のボス804又は第3のボス806よりも大きい表面積を有することができる。配線凹部820の第3のボス806と隣接する配管ブラケット828との間に配設される部分820Aを拡大してもよく、例えば、拡大部分820Aは、配線凹部820の残りの部分よりも幅が広いものとすることができる。幾つかの実施形態によれば、拡大部分820A内に貫通孔216を形成することができる。
配線凹部820は、ボス802、804、806と配管ブラケット828との間に配設することができる。ボス802、804、806は、上に配設されるモジュールを固定するように構成されるタイダウンポケット826を有することができる。配管ブラケット828は第1の列に配設することができ、ボス802、804、806は、第1の列に実質的に平行な第2の列に配設することができる。
配管凹部824は、パッドセクションを使用して構築されるパッドの形状に応じて、パッドセクション800の2つのみ又は3つの辺/縁部上に形成してもよい。例えば、配管凹部824は、パッドセクション800がL字形状又は直線状の構成を有する燃料電池システムにおいて使用される場合、パッドセクション800の長辺及び1つの短辺に沿って延在していてもよい。代替として、配管凹部824は、パッドセクション800が矩形の構成を有する燃料電池システムにおいて使用される場合、パッドセクション800の長辺及び2つの短辺に沿って延在していてもよい。
縁部カバー832を配管凹部822に配設してもよい。パッドセクション800は、プレキャストし、送達し、現場で1つ以上の他のパッドセクション800と組み付けてもよい。
図9A及び図9Bは、本開示の様々な実施形態に係るモジュール式パッド215の斜視図を示している。パッド215は、燃料電池システム200のパッド210として使用することができる。図9A及び図9Bを参照すると、パッド215は、互いに隣接して配設されるパッドセクション800のうちの2つを有する。特に、パッドセクション800は、互いに同一平面上に配設することができ、及び/又は互いに物理的に接続することができる。
特に、各パッドセクション800は、図9A及び図9Cに示すように、セクション800が組み付けられる場合、接続凹部822及び配管凹部824が、それぞれ互いに位置合わせされるように構成してもよい。換言すれば、パッドセクション800が互いに位置合わせされる場合、隣接するパッドセクション800の接続凹部822は連続した凹部を形成してもよく、2つの隣接するパッドセクション800の配管凹部824は連続した配管凹部を形成してもよい。加えて、パッドセクション800は、第2のボス804が第3のボス806と位置合わせされ(接触し)、第1のボス802が互いに位置合わせされる(接触する)ように、位置合わせされてもよい。換言すれば、第1のパッドセクション800の長辺は、第2のパッドセクション800の長辺と接触して(同一の第1のパッドセクションに対して180度回転)配設してもよい。配管及び/又は配線を通すことができるように、1つ以上の貫通孔216をパッドセクション800内に形成してもよい。特に、貫通孔216は、配線凹部820の拡大部分820A内に形成してもよい。
図10は、本開示の様々な実施形態に係るモジュール式パッド415の斜視図を示している。パッド415は、図4A及び図4Bの直線状パッド410の代わりとすることができる直線状パッドであり得る。図10を参照すると、パッド415は、共に長さ方向に位置合わせされた2つのパッドセクション800を有する。特に、一方のパッドセクション800の第3のボス806は、他方のパッドセクション800の第2のボス804に隣接して配設される。換言すれば、パッドセクション800のうちの一方の短辺は、他方のパッドセクション800の短辺と接触して配設してもよい。したがって、パッドセクション800の配線凹部820及び配管凹部824は、それぞれ互いに位置合わせして(連続して)整列されてもよい。特に、配線凹部820は、実質的に連続した直線状の配線凹部を形成するように位置合わせされてもよい。
図11は、本開示の様々な実施形態に係るモジュール式パッド615を示している。パッド615は、図6Bのパッド610の代わりとすることができる。
図11を参照すると、パッド615は、共に直交した状態で位置合わせされる2つのパッドセクション800を有する。特に、一方のパッドセクション800の第3のボス806は、他方のパッドセクション800の第1のボス802に隣接して配設される。したがって、配線凹部820は、接続凹部822のうちの1つによって接続してもよく、パッドセクション800の配管凹部824は、それぞれ互いに位置合わせ(連続)して整列してもよい。換言すれば、一方のパッドセクション800の短辺は、他方のパッドセクション800の長辺と接触して配設してもよい。
図7Bのパッド710等の段状パッドを形成することができるように、追加のパッドセクション800を上記のパッドセクション800のうちの一方と位置合わせしてもよい。換言すれば、各セクション712A、712B、712Cは、パッドセクション800のうちの1つを使用して形成することができる。
図12は、本開示の様々な実施形態に係るモジュール式パッド415Aを示している。パッド415Aは、図4A及び図4Bのパッド410の代わりとすることができる。
図12を参照すると、パッド415Aは、2つのモジュール式パッドセクション900を有する。パッドセクション900はパッドセクション800と同様であるため、その間の差異のみを詳細に説明する。
特に、パッドセクション900はそれぞれ、パッドセクション900の上面に、第1のボス802と、第1のボス804の対向する両側に配設される第2のボス808とを有する。第2のボス808は、同じサイズ及び形状を有していてもよい。したがって、パッドセクション800が、異なるサイズを有する第2のボス804及び第3のボス806を有することから、パッドセクション800には当てはまらないが、パッドセクション900は、幅方向に対称であり得る。パッドセクション900は、上述したように、パッドセクション415内でパッドセクション800と同様の様式で共に位置合わせしてもよい。
図13A及び図13Bは、本開示の様々な実施形態に係る燃料電池システムのパッド1000の斜視図を示している。
図13A及び図13Bを参照すると、パッド1000は、上記の燃料電池システムのいずれかに組み込むことができる。パッド1000は、土台1010と、セパレーター1012と、フレーム1014とを備える。土台1010は、上述したように、コンクリート又は同様の材料から形成することができる。特に、土台1010は、現場で打設することもできるし、1つ以上のセクションをプレキャストした後に現場で組み付けることもできる。
セパレーター1012は、土台1010の上面に配設することができ、板金又は他の同様の材料から形成することができる。セパレーター1012は、土台1010の対向する両側に配設されるレール1017と、レール1017上に配設されるスペーサー1016とを備えることができる。レール1017は、単一部品とすることもできるし、接続されるレールセクションを有することもできる。
フレーム1014は、任意の適切な方法を使用して、例えば、ボルト1018、クランプ等を使用することによって、スペーサー1016に取り付けることができる。フレーム1014は、パワーモジュール、燃料処理モジュール等のモジュールを収納するように構成される。スペーサー1012は、土台1010とフレーム1014とを分離して、間に空間を形成するように構成してもよい。
パッド1000は、土台1010上に配設される配管1020を備えることができる。配管1020は、土台1010内に形成される貫通孔1022から延在することができ、フレーム1014上に配設されるモジュールに水及び/又は燃料を供給するように構成することができる。パッド1000は、電力調整モジュールを収納するように構成されるフレーム1014Aを備えることができる。パッド1000は、パワーモジュールをフレーム1014A上に配設される電力調整モジュールに接続するように構成される配線(図示せず)も備えることができる。代替として、配線をフレーム1014内に形成される開口1015に通してもよい。
セパレーター1012は、フレーム1014を土台1010の上面から離隔するように構成される。したがって、配管1020は、土台1010の上面に直接配設してもよい。換言すれば、土台1010の上面は、実質的に平坦であり得る、例えば、配管1020及び/又は配線用の凹部を有する必要はない。
パッド1000の構成により、燃料電池システムモジュールの設置のための平坦な表面を有するために、土台1010に注型成形される特徴部に配管及び/又は配線を組み入れる必要がないという、従来のパッドを上回る利点が提供される。したがって、パッド1000は、土台1010が注型成形される特徴部を必要としないことから、より低コストで製造され得る。
図14は、本開示の様々な実施形態に係る燃料電池システムのパッド1400の斜視図である。図14を参照すると、パッド1400は、土台1410と、土台1410上に配設されるレプリケーター(replicator)1420とを備える。土台1410は、現場で打設することもできるし、プレキャストして現場に送達することもできる。土台1410は、コンクリート又は同様の材料から形成することができる。
レプリケーター1420は、土台1410に取り付けることができ、プラスチック又は他の非腐食性材料から形成することができる。レプリケーター1420は、上述した先行する実施形態の土台に成形される特徴部を再現することができる。例えば、レプリケーター1420は、配線及び/又は配管チャネル又は凹部が、レプリケーター1420の間の土台1410の平坦な上面に形成されるように、ボスを形成することができる。したがって、レプリケーター1420は、燃料電池システムのモジュール12、16、18を支持する隆起構造を作ることができ、一方で、配線及び配管は、レプリケーターの間のチャネル又は凹部内のコンクリートの土台1410の平坦な上面に形成される。レプリケーター1420は、土台1410に特徴部を穿孔するためのテンプレートとしても使用することができる。レプリケーター1420は、共に取り付け(例えば、スナップ留め)、及び/又は土台上面に成形する等、任意の適切な取り付け方法を使用して、土台1410に取り付けることができる。
幾つかの実施形態によれば、複数のパッド1400をパッドセクションとして互いに取り付けて、より大きいパッド1400を作ってもよい。例えば、パッド1400は、所定の位置にスナップ係止することができるパッド配管カバー上の「リビングヒンジ」を使用して接続することができる。換言すれば、パッド1400は、幾つかの実施形態によれば、パッドセクションとみなすことができる。
図15は、本開示の様々な実施形態に係る燃料電池システムのパッド1500の斜視図である。図15を参照すると、パッド1500は、パッドセクション1510と、テンションケーブル1520とを備える。1つのテンションケーブル1520が示されているが、複数のテンションケーブル1520を含めてもよい。テンションケーブル1520は、パッドセクション1510を接続するように構成される。特に、パッドセクション1520を共に付勢するために、くさび1530をテンションケーブル1520に配設してもよい。1つのくさび1530が示されているが、くさびを各テンションケーブル1520の対向する両側に配設してもよい。
パッドセクション1510は、位置合わせピン1512と位置合わせ穴1514とを更に有することができる。特に、位置合わせピン1512は、パッドセクション1520を互いに位置合わせするために、位置合わせ穴1514に挿入することができる。幾つかの実施形態によれば、パッドセクション1510の位置合わせを容易にするために、位置合わせピン1512は、ピラミッド形状とすることができ、位置合わせ穴1514は対応する形状を有することができる。
図16は、本開示の様々な実施形態に係る燃料電池システムのパッド1600の斜視図である。図16を参照すると、パッド1600は、共に接続されるパッドセクション1610を有する。特に、パッドセクション1610は、互いに噛み合い、間にピン1616が挿入されて共に係止される、第1のブラケット1612及び第2のブラケット1614を備える。パッドセクション1610は、配管及び/又は配線用の空間を提供することができる凹部又は切り欠き部1618を有していてもよい。配管及び/又は配線は、パッドセクション1610を通して、内部に形成された穴1620に入れられ得る。パッド1600の構成により、パッド1600は様々な形状及び/又はサイズを有することが可能になり得る。幾つかの実施形態において、パッドセクション1600は、比較的薄いコンクリートパッドに配設されてもよい。
図17は、様々な実施形態に係る燃料電池システムのパッドセクション1700を示している。図17を参照すると、パッドセクション1700は、その上面から延在するタイダウン1710を備える。タイダウン1710は、鍛造又は強化された金属から形成することができ、製造中又は製造後にパッドに挿入してもよい。タイダウン1710は、マッシュルーム形状とすることができ、見なくてもモジュールをパッドセクション1700に設置することを可能にし得る。したがって、タイダウン1710が自己誘導式であることから、タイダウン1710により、モジュールをパッドセクション1700により容易に取り付けることが可能になる。
図18Aは、様々な実施形態に係る燃料電池システムの支持フレーム1800を示している。支持フレームは、支持フレーム1800内の穴1816とクイックコネクト1818との間に延在していてもよい、水配管1810と、燃料配管1812と、電気配線1814とを含むことができる。
支持フレーム1800は、製造現場において、図18Bに示すように燃料電池システムのモジュール1820に取り付け、事前に配線を通し、その後、燃料電池システムが発電する現場に組み付けのために出荷してもよい。事前に取り付けられたフレーム1800は、図13Aに示すフレーム1014と同様であり得る。したがって、燃料電池システムの組み付けを簡素化することができる。
図19A及び図19Bは、別の実施形態の大規模燃料電池システムの上面図を示しており、それぞれ、プレキャストコンクリートトレンチに配管及び配線が埋設される前及び埋設された後を示している。図19C及び図19Dは、図19A及び図19Bの大規模燃料電池システムの斜視図である。図19Eは、図19Cのガス/水分配モジュールの構成要素の概略側面図である。図19Fは、図19Dの大規模燃料電池システムのモジュールのパッドの側面断面図である。図19Gは、システムの機能概略図である。後述する全てのモジュールは、他のモジュールとは別個のハウジング内に配置してもよい。本システムは、構成要素の数を削減し、構成要素の設置を簡素化し、したがって、システム全体のコストを削減する。
大規模燃料電池システムは、上述したパワーモジュール12(PM5と標示されている)の複数の列を含む。単一のガス/水分配モジュール(GDM)が、パワーモジュールの複数の列に流体接続される。例えば、単一のガス/水分配モジュールが、少なくとも6つのパワーモジュールの少なくとも2つの列のそれぞれ、例えば、それぞれ7つのパワーモジュールの4つの列のそれぞれに流体接続される。図19Eに示すように、単一のガス/水分配モジュールGDMは、上述した水及び燃料配管230とパワーモジュールとの間の接続部を含むことができる。接続部は、燃料及び水を中央配管230から各パワーモジュールに送る導管(例えば、管)並びに弁231F及び231Wを含むことができる。燃料及び水配管230は、「UG」と標示されている上述した燃料管230Aと、「UW」と標示されている上述した水管230Bとを含むことができる。ガス及び水配管230は、それぞれユーティリティガス管及びユーティリティ水管に接続することができる。吸着床(例えば、脱硫器及び/又は他の不純物吸着床)等、燃料の事前処理を行う構成要素を備える単一のシステムレベルの燃料処理モジュール16は、全てのガス管230Aに接続することができる。したがって、単一の脱硫器を使用して、燃料電池システム内の全てのGDMに供給される天然ガス燃料を脱硫してもよい。
任意選択で、1つ以上の水分配モジュール(WDM)をシステムに設けることができる。WDMは、水処理構成要素(例えば、水脱イオン化器)と、地方自治体の給水管及びシステム内の個々のモジュールに接続される配水管及び弁とを備えることができる。
パワーモジュール12の各列は、DC/ACインバーター及び他の電気構成要素を含み得る上述した単一の電力調整モジュール18(AC5と標示されている)に電気接続される。単一の小型配電モジュール(MPDS)が、「UE」と標示されている上述したワイヤ232を使用して、電力調整モジュール18のそれぞれに電気接続される。単一のMPDSが、例えば、少なくとも6つのパワーモジュール12の少なくとも2つの列のそれぞれに、例えば、7つのパワーモジュールの4つの列のそれぞれに、それぞれの電力調整モジュール18、例えば4つの電力調整モジュール18を通じて電気接続される。MPDSは、複数の電力調整モジュール18とシステム配電モジュールPDS-1又はPDS-2のうちの一方との間に、回路遮断器及び電気接続部を含むことができる。
1つ以上のテレメトリーモジュール(TC)もシステムに含めることができる。テレメトリーモジュールは、システムコントローラーと、システムが中央コントローラー及びシステムオペレーターと通信することを可能にする通信機器とを備えることができる。したがって、電力調整モジュール18内の4つのインバーター及びテレメトリーケーブルを単一のMPDSに接続してもよい。本システムは、GDM内の安全システムに給電し、テレメトリーイーサネットスイッチにも給電(4:1)するシステム配電ユニット(すなわち、中央給電ユニット)も備える。これにより、現場の土建業者が設置する電力導管及びテレメトリー導管の数が4つから1つに削減される。代替的には、単一の接続部がテレメトリーデータ転送に使用されるかもしれない。単一のCAT5ケーブルを、電力調整モジュール18とテレメトリーモジュールTCとの間のデータ通信用のワイヤレス送受信機ユニットに置き換えてもよい。これによりデータケーブルの設置がなくなる。
それぞれ同じGDM及び同じMPDSに流体及び電気接続される、パワーモジュールの複数の列とそれらの電力調整モジュールとのセットは、サブシステムと称される場合がある。燃料電池システムは、複数のサブシステム、例えば、2個~10個のサブシステムを含むことができる。図19A及び図19Bには4つのサブシステムを示す。
燃料電池システムは、ワイヤ232(すなわち「UE」)を使用して燃料電池システムの全てのサブシステムに電気接続されるシステム配電ユニットも備えることができる。システム配電ユニットは、少なくとも1つの配電モジュール、例えば、2つのモジュールPDS-1及びPDS-2と、少なくとも1つの変圧器、例えば、2つの変圧器(XFMR-1及びXFMR-2)と、切断スイッチギア(SWGR)とを備えることができる。変圧器XFMR-1及びXFMR-2は、ワイヤ232を使用して、PDS-1モジュール及びPDS-2モジュールにそれぞれ電気接続することができる。スイッチギアは、ワイヤ232を介して変圧器に電気接続される入力部と、電気負荷/グリッドに電気接続される出力部とを有する15kVスイッチギアを含むことができる。任意選択の無停電電力サブシステム(UPS)も含めてもよい。したがって、電力は、パワーモジュールからそれぞれのMPDS、PDS-1又はPDS-1、XFMR-1又はXFMR-2及びSWGRを通してグリッド及び/又は負荷に供給される。
図19Kは、図19Aに示すような燃料電池システムの1つのブロックを示している。1つのブロックは、8つの300kW(6+1)パワーモジュールと、8つの電力調整モジュール18(AC5)と、1つのTCと、2つのWDMと、1つの3000kVA変圧器と、2つのGDMと2つのMPDSとを備える。
図19Lは、代替の実施形態のシステムのレイアウトを示している。本システムは、8つのブロック(ブロックのうちの1つは、パワーモジュールの2つの追加の列を有するより大きいブロックである)を備える。本システムは、66個の300kW(6+1)パワーモジュールと、1個の集中型の(centralized)脱硫器モジュールシステムと、16個のGDMと、16個のWDMと、7個の3000kVA変圧器と、1つの4000kVA変圧器と、15個の2000アンペアMPDSと、2個の2500アンペア副MPDSと、8個のTCとを備える。図19Lのシステムは、モジュールのコンパクトなレイアウトを提供し、モジュールの間の電気接続部(例えば、銅ワイヤ)の長さを短縮する。これによりシステムのコストが削減される。
図19Gに示すように、集中型の脱硫器システム(例えば、脱硫器モジュール)1600は、パワーモジュールの各列内の独立した(別個の、separate)脱硫器と置き換えられる。集中型の脱硫器モジュール1600はGDMに流体接続され、GDMは、パワーモジュール12に流体接続され、パワーモジュール12に燃料を供給する。パワーモジュール12はMPDSに電気接続され、MPDSは、電気負荷(例えば、電力グリッド又はスタンドアローン負荷)1901に電気接続される。集中型の脱硫器システム(例えば、脱硫器モジュール)1600は、図19Hに示されている。集中型の脱硫器システム(例えば、脱硫器モジュール)1600は、硫黄吸着性材料(例えば、硫黄吸着性床)で充填される1つ以上の容器1602(例えば、コラム)を含む。GDMは図19Iに示されている。GDMは、燃料を4つの列のパワーモジュール(「スタンプ」と称される)に分配する。
図19Jは、集中型の脱硫器システム1600のフロー図を示している。システム1600は、燃料入口におけるフィルターと、パワーモジュールの各列(すなわち、「スタンプ」)に対する2つの並列の燃料流路(例えば、燃料ライン、すなわち燃料導管)とを備えることができる。さらに、各「スタンプ」に対する並列の燃料流路には、質量流量制御弁等の2つの制御弁1603の2つの組が位置することができる。圧力トランスデューサー(PRT)が、様々なラインに位置することができ、システム動作時にライン圧力を監視し、必要なアクションを行うために使用することができる。ガスサンプリングポート1604も主入口ラインに配置されてもよい。1つの実施形態において、本システムは、硫黄の破過を検出するために使用される独立した(別個の)硫黄破過検出ライン(separate sulfur breakthrough detection line)1606(点線のボックスで示す)も備える。検出ライン1606の出力は、安全通気口1608に流体接続されてもよい。硫黄検出センサー1609が、脱硫器システム1600から出力される燃料内の硫黄の存在を検出するために、検出ライン1606に配置されてもよい。
図19B~図19Dに示すように、配管230(例えば、燃料管230A及び水管230B)は、それぞれのユーティリティ(例えば、ガス管及び水管)から、プレキャストコンクリートトレンチ1902を通じて各サブシステム内のそれぞれのGDMに設けることができる。同様に、ワイヤ232は、同じプレキャストコンクリートトレンチ1902を通じて各MPDSとシステム配電ユニットとの間に設けることができる。プレキャストコンクリートトレンチ1902は、2つの鉛直側壁が水平底壁又は水平接続バーによって接続された「U字」形状を有していてもよい。水平底壁に開口を設けることができる。プレキャストコンクリートトレンチ1902は、グレードの下方に配置され、カバープレート、塵、砂利及び/又はアスファルトコンクリート舗装で覆われる。
図19D及び図19Fに示すように、システムの各モジュール、例えば、パワーモジュール12及び/又は電力調整モジュール18は、多層支持体に設置することができる。多層支持体は締坪1910上に形成される。支持体は、気泡コンクリート(コンクリートフォームとしても知られる)の土台1912、例えば、Confoam(商標)気泡コンクリートの土台を備える。従来の(非気泡)コンクリートパッド1914が土台1912上に配置される。コンクリートパッド1914は、土台1912よりも小さい面積を有する。金属鉄筋の骨組みを囲むU字形状で鋼製のメッシュ状の型枠1916、例えばNovoform(商標)等が、コンクリートパッド1914の側方に設けられる。土台1912は型枠1916の底部を支持する。コンクリートパッド1914の頂部は、基部1912の上に位置する砂利又はアスファルトコンクリート舗装1918を含み得る完成したグレードの上方1.5インチ~2インチに位置している。
図19A~図19C、図19K及び図19Lに示すように、燃料電池システムの各ブロックは、少なくとも1つの変圧器を備えることができる。少なくとも1つの変圧器は、パワーモジュール12の列から隔離しても(すなわち、物理的に分離しても)よく、パワーモジュール12、電力調整モジュール18、及び任意選択で、GDM、WDM、TCユニット、及びMPDSモジュールとは別個のパッド上に配置してもよい。少なくとも1つの変圧器は、システム配電モジュール(複数の場合もある)(PDS-1及びPDS-2)及び切断スイッチギア(SWGR)等、システム配電ユニットの他の構成要素を含む別個のパッド上に配置してもよい。ワイヤ232(すなわち、「UE」)は、プレキャストコンクリートトレンチ1902等のトレンチを通して、少なくとも1つの変圧器及び任意選択でシステム配電ユニットの他の構成要素を含む別個のパッドから、パワーモジュール12の列、電力調整モジュール18、及び任意選択で、GDM、WDM、TCユニット、及びMPDSモジュールを含むそれぞれのパッドに延在するようにしてもよい。様々な実施形態において、少なくとも1つの変圧器(例えば、図19A及び図19BにおけるXFMR-1及びXFMR-2、並びに図19K及び図19LにおけるXFMR)は、ブロックの中央の場所に配置してもよく、それにより、パワーモジュール12の列は、変圧器の少なくとも2つの対向する側部に配置されていてもよい(すなわち、パワーモジュール12の列は、変圧器の片側において変圧器と一列に整列されていない)。幾つかの実施形態において、少なくとも1つの変圧器は、ブロック内のパワーモジュール12の少なくとも2つの列の間に配置してもよい。
図19A及び図19Bに示す実施形態において、XFMR-1は、ブロックの第1の側部(すなわち、左側)に配置されたパワーモジュール12の全てを含む複数のパワーモジュール12に電気結合してもよく、XFMR-2は、ブロックの第2の側部(すなわち、右側)に配置されたパワーモジュール12の全てを含む複数のパワーモジュール12に電気結合してもよい。幾つかの実施形態において、第3の変圧器(すなわち、XFMR-3)も、ブロックの中央、例えば、第1の変圧器XFMR-1及び第2の変圧器XFMR-2を含む同じパッド上に配置してもよい。第1の変圧器XFMR-1及び第2の変圧器XFMR-2は、第1の変圧器XFMR-1及び第2の変圧器XFMR-2のいずれよりも高い電力定格を有していてもよい第3の変圧器XFMR-3に電力を供給するようにしてもよい。例えば、第1の変圧器XFMR-1及び第2の変圧器XFMR-2は、3000kVAの変圧器とすることができ、第3の変圧器XFMR-3は、5000kVAの変圧器とすることができる。第3の変圧器XFMR-3は、ブロック全体のための単一の電力出力を供給するようにしてもよい。
図19Lに示す実施形態において、各変圧器XFMRは、燃料電池システムのそれぞれのブロックにサービス提供してもよく、ワイヤを介して、グリッド及び/又は負荷に結合されてもよい共通スイッチギア(図19Lの左下に示す)に伝達され得る単一の電力出力を供給するようにしてもよい。
1つ以上の変圧器をブロックの中央の場所においてパワーモジュール12のそれぞれの列の間に設けることにより、ブロックごとに及び全体として燃料電池電力システム内に延ばす必要がある電気接続部(例えば、銅ワイヤ)の全長を大幅に短縮し得る。これにより、燃料電池システムのコストを大きく削減し得る。
図20A~図20Jは、図19A~図19Kの大規模燃料電池システムを設置する方法におけるステップの斜視図である。
図20A及び図20Gに示すように、トレンチを地面に形成し、次いで、掘削機等の重機を使用して締固め、フレームをトレンチ内に載置する。図20B及び図20Hに示すように、気泡コンクリートの土台1912をトレンチに充填する。気泡コンクリートは、管又はホースから土台1912に充填された後に固化される流動性充填材(例えば、Confoam充填材27等の発泡コンクリート)を含む。
図20C及び図20Iに示すように、U字形状で鋼製のメッシュ状の型枠1916及び鉄筋バーを土台1912の上に載置する。型枠1916は、金属メッシュを覆うポリマーシートを含むことができる。鉄筋は、図20Jに示すように、型枠の内側に位置する。次いで、コンクリートパッド1914を型枠1916の境界の内側に形成する。次いで、モジュールをコンクリートパッド1914上に載置する。
図20D及び図20Fに示すように、追加のトレンチを土台1912の外側に形成する。次いで、プレキャストコンクリートトレンチ1902を追加のトレンチ内に載置する。
次いで、図20Eに示すように、ガス管230A、水管230B及びワイヤ232をプレキャストコンクリートトレンチ1902内に載置し、それぞれのGDM並びにMPDS、PDS-1及びPDS-2等の電力構成要素に接続する。管及びワイヤは、異なる鉛直高さでプレキャストコンクリートトレンチ1902の内側に(例えば、クランプ1903及び/又は支持バーを使用して)取り付け又はクランプを行うことができる。次いで、プレキャストコンクリートトレンチ1902をカバープレート、塵、砂利及び/又はアスファルトコンクリート舗装で覆う。
図20A~図20Jに示す方法は、機械的振動を伴わずに100%の圧密を達成し、これにより、埋め戻し動作中に壁を支える必要がなくなる又は低減される。最終的に、容易に掘削可能であり、ショベルを用いて除去してもよく、糸鋸又は片手鋸を用いて切り取ってもよい。
図21は、図19A~図19Cに示すシステムの1つのサブシステムの概略図である。パワーモジュール12の各列は、「ES」と標示されている、Bloom Energy Corporationからの300kWのEnergy Server(商標)燃料電池発電機を含むことができる。したがって、サブシステムは、合計1200kWの電力となる300kWのESの4つの列を含む。4つのサブシステムを含むシステム全体は、4800kWの電力を送達することができる。1200kWのES構成は、設置プロセス中に共通結び付き(common tie-in)のために標準的な電力、通信、水及びガス相互接続部を全て中央セクションに収束する4×300kWのESから構成される。
図22A及び図22BにおけるMPDSは、2通りの設置近接性(install proximity)を利用する。第1に、このモジュールへの単一の電気的結び付きは、相互接続ケーブルを現場設置キットの一部として供給することによって、電力調整モジュール18に分配することができる。これにより、設置が導管及びトレンチの4つの組から1つに低減される。また、この構成により、1200kWシステムから削除される合計4つの遮断器及び4つのサージデバイスについて、各電力調整モジュール18内の出力回路遮断器及びサージデバイスの省略が可能になる。追加の有利な特徴として、MPDSモジュール内にWIFI送信器を載置すること及びその通信が別個のESに相互接続することが挙げられる。WIFIシステムは、設備全体にサービス提供してもよく、導管及びワイヤの4つの組の省略に繋げてもよく、これにより、設置コスト及び複雑度が削減される。したがって、別個のユニットをシステム内に集めることにより、システムおよび設置を低減することができる。主遮断器をシステム内に含めることにより、変圧器はパワーモジュールの列の近くに載置することが可能になり、設置コストが削減され、必要な電線が少なくなる。
図23は、別の実施形態に係る代替の電子部品モジュールを示している。図23における構成は、4つの別個のキャビネット(すなわち、ハウジング)を示しており、各キャビネットは専用の目的で完全に格納された状態である。第1のキャビネットは、4つのESを共通DCバスに並列化しながら、4つのESから個々のパワーモジュールを着地させるための場所である。このモジュールは、ブッシング(bussing)、ヒューズ保護及び内部ケーブル着地場所を含む。このモジュールは、50kW定格パワーモジュール及び75kW定格パワーモジュールの両方をサポートすることができ、DCバスを隣接する1200kWシステムに拡張するための任意選択の手段として、収集した出力DCの完全に定格の相互接続部を含むことができる。中央モジュール2及び3には、大きい許容電流DC入力及びAC出力を有するインバーターユニットのみが格納される。この実施形態は、より小型のインバーターユニットをなくし、集中型のシステム配電ユニット内での実施のために単一の単体インバーターを作製することによって、コストを更に削減することができる。最終モジュール4は更なるコスト節減をもたらす。このモジュールは、燃料電池パワーモジュールの起動及び安全機器を収容する。これにより、これらの品目の量を4つから1つに削減する。これは、システム用の収集した出力端末、及び外部導管進入用に設けられる唯一の場所として更に機能する。
1つの実施形態において、各サブシステムは、1200kW/1200kVA又は1420kVAインバーターを備える。サブシステムは、依然として、グリッドに接続されるインバーター内に個々の起動及び安全システムを保持する。これにより、単一の300kWのES(すなわち、パワーモジュール12の列)内の個々の安全停止が可能になる。GDMから到来する安全停止要求は、サブシステム内の4つ全てのESを停止する。これは結果として、回路遮断器が4つのグリッド並列インバーター内で除去される場合、生産コストが削減される。これらの遮断器が提供する保護は、統合システムPDS-1又はPDS-2に移動させてもよい。したがって、各サブシステムからの4つの冗長サージ保護デバイス及び安全システムは、集中型のシステム配電ユニット内に合併してもよい。
図24、図25A及び図25Bは、本開示の実施形態のシステムの設置中に使用することができるコンクリート縁石及びレースウェイの写真である。図24は、プレキャストコンクリートパッドの代わりに使用することができるコンクリート縁石を示している。これにより、サブシステムは、単一の電気的結び付き場所とともに1つのエリアに共同配置することが可能になる。縁石は、ワイヤ232及び配管230をグレードの下方ではなくグレード上に設置することができるように、モジュールの下に通路を提供する。これによりトレンチ掘削がなくなる。
さらに、図25A及び図25Bに示す事前に製造されたコンクリートケーブルレースウェイを使用することにより、掘削及び別個の導管の使用量を削減する又はなくすことができる。レースウェイは、図20D及び図20Jに関して上述したプレキャストコンクリートトレンチを含むことができる。これらのレースウェイは、グレード上に設置することができ、又は導管埋設に必要な土木工事を伴わずに簡単に掘削されたトレンチ内に設置することができる。最後に、固定ケーブルレースウェイ及び改善された現場設計により、実際の伝導体長さを事前決定することができ、ケーブルの伝線ごとの事前製造された伝導体組を1200kWサブシステムから中央の電気ギアに(すなわち、システム配電ユニットに)通すことが可能になる。これにより、品質が改善し、現場での廃棄及び労働時間が削減される。概して、構成要素の全高を低下するとともに索張りを簡素化しつつも保守性を依然として維持しながら、品質の改善、現場建設時間の削減、労働コスト(例えば、電気的及び配管)の削減によって設置が改善する。したがって、図24~図25Bに示す開放トレンチは、トレンチの締固め及びClass II/Engineered充填材による閉鎖を回避することによって、労働及び材料を大幅に節減する。Confoam充填材27(気泡コンクリート)等の自己充填スラリーが、サブグレード及びトレンチのClass II ABの代わりに設けられる。また、これにより、より良好な熱放散がもたらされ、RHOコンクリートがなくなり、保守及び維持が簡単になる。
図26Aは、本開示の更に別の実施形態に係る大規模燃料電池システムの上面図である。図26Bは、図26Aの燃料電池システムのブロック2603の上面図である。図26Cは、燃料導管230A、水導管230B、及び電気配線232を示す、図26Aの燃料電池システムのブロック2603の代替の構成の上面図である。図26Dは、パワーモジュール12の列の第1の端部に配置された燃料処理モジュール16内への燃料導管230A及び水導管230Bの側方からの進入並びにパワーモジュール12の列の第2の端部に配置された電力調整モジュール18内への電気配線232の側方からの進入を示す、図26Aの燃料電池システムのブロック2603の斜視図である。したがって、この実施形態においては、燃料処理モジュール16及び電力調整モジュール18が、パワーモジュール12の列の対向する両側に配置されている。図26Eは、燃料電池電力システムのブロック2603のための、パワーモジュール12の列と集中型のシステム配電ユニット2604との間に延在する電気配線232を収容するコンクリートトレンチ1902の斜視図である。図26A~図26Eに示す燃料電池電力システムは、電気配線の総量を含む構成要素の数を削減することができ、構成要素の設置を簡素化するため、システムの全体コストを削減することができる。
図26A~図26Eに示す大規模燃料電池システムは、図19A~図19Lを参照して上述したシステムと同様であり得る。特に、本システムは、図26Dに示すように、パッド2601a(例えば、コンクリートパッド)上に配置されるパワーモジュール12の複数の列(PM5と標示されている)を備えることができる。パワーモジュール12の各列は、DC/ACインバーター及び他の電気構成要素を備えていてもよい単一の上述した電力調整モジュール18(AC5と標示されている)に電気接続される。燃料処理モジュール16(FP5と標示されている)及び電力調整モジュール18は、パワーモジュール12とともに同じパッド2601a上に配置してもよい。本システムは、複数のブロック2603内に構成してもよく、各ブロック2603は、パワーモジュール12の複数の列(並びに関連する燃料処理モジュール16及び電力調整モジュール18)を備えていてもよい。パワーモジュール12の列は、それぞれのブロック2603の集中型のシステム配電ユニット2604の異なる側部に配置されている。システム配電ユニット2604は、少なくとも1つの変圧器、例えば、ブロック2603のそれぞれの側部のパワーモジュール12の複数の列にそれぞれ電気接続されていてもよい第1の変圧器XFMR-1及び第2の変圧器XFMR-2と、第1の変圧器XFMR-1及び第2の変圧器XFMR-2に電気接続され、ブロック2603の単一の電力出力を供給してもよい第3の変圧器XFMR-3とを備えることができる。各ブロック2603からの電力出力は、電気接続部(例えば、銅ワイヤ)を介して、システムをグリッド及び/又は負荷に結合し得る共通スイッチギア2605に供給してもよい。
上述したシステム配電モジュール(PDS)は、パワーモジュール12の列の複数の電力調整モジュール18に電気接続することができ、各ブロック2603内のシステム配電ユニット2604の変圧器(例えば、XFMR-1又はXFMR-2)にも電気接続することができる。例えば、各ブロック2603は、システム配電ユニット2604内に、上述したPDS-1及びPDS-2等の一対のシステム配電モジュールを備えることができ、配電モジュールのそれぞれは、ブロック2603のそれぞれの側部(例えば、左側及び右側)の電力調整モジュール18に電気接続することができ、第1の変圧器XFMR-1及び第2の変圧器XFMR-2のうちのそれぞれ一方に電力を供給してもよい。また、システムの各ブロック2603は、任意選択で、1つ以上の上述した水分配モジュール(WDM)と、1つ以上の上述したテレメトリーモジュール(TC)とを備えることができる。
図26Aに示すシステムは、それぞれ、パワーモジュール12の複数の列とシステム配電ユニット2604とを含む5つのブロック2603を備える。各列は、7つのパワーモジュール12を含み、図21を参照して上述したように、300kWのEnergy Server(商標)燃料電池発電機(ES)を形成してもよい。5つのブロック2603のうちの4つは、パワーモジュール12の14個の列を含み、4.2MWの電力を供給してもよい。第5のブロック2603(図26Aの右側に位置する)は、パワーモジュール12の13個の列を含む。したがって、システムは全体として20.7MWの電力を供給することができる。システムの様々な他の構成は、システムのブロック2603の数の変動、ブロック2603ごとのパワーモジュール12の列の数の変動、列ごとのパワーモジュール12の数の変動、並びにブロック2603及び各ブロック2603内のパワーモジュール12の列のレイアウト(複数の場合もある)の変動を含めて、本開示の範囲内であることが理解されよう。
図26A~図26Eに示すシステムは、図26A~図26Eのシステムが、集中型の脱硫器システムを備えなくてもよく、また、パワーモジュール12の列に流体接続される集中型のガス/水分配モジュール(GDM)も備えなくてもよい点において、図19A~図19Lを参照して上述したシステムとは異なり得る。むしろ、図26A~図26Eに示すシステムは、燃料の事前処理を行う構成要素、例えば吸着床(例えば、脱硫器及び/又は他の不純物吸着床)を含む、複数の上述した燃料処理モジュール16(FP5と標示されている)を備えることができる。パワーモジュール12の各列は、列内のパワーモジュール12のそれぞれに流体接続される燃料処理モジュール16を備えることができる。燃料処理モジュール16は、パワーモジュール12の列及び関連する電力調整モジュール18とともに同じパッド2601a上に配置してもよい。
図26A~図26Eを再び参照すると、様々な実施形態において、システムのパワーモジュール12の列のそれぞれの中に、燃料処理モジュール16(すなわち、FP5)を、パワーモジュール12の列の第1の側部に配置してもよく、電力調整モジュール18(すなわち、AC5)を、パワーモジュール12の列の第1の側部の反対側の第2の側部に配置してもよい。図26Bに示すように、燃料(「F」との標示で矢印によって示されている)及び水(「W」との標示で矢印によって示されている)は、列の1つの側部の導管230A及び230Bを介して燃料処理モジュール16に進入してもよく、電力調整モジュール18(「E」との標示で矢印によって示されている)に対する外部の電気接続部(例えば、ワイヤ232)は、列の反対側に配置してもよい。地下燃料導管(例えば、管)230A及び水導管(例えば、管)230Bは、燃料及び水をそれぞれ、図26C及び図26Dに示すように、各列内の燃料処理モジュール16に供給するようにしてもよい。少なくとも1つの水分配モジュール(WDM)を備える実施形態において、図26Cに示すように、地方自治体の給水管からの水を、初めに、処理のためWDMに供給してもよく、水導管230Bを介して処理水をWDMから各列内の燃料処理モジュール16に供給するようにしてもよい。上述したワイヤ232は、各列内の電力調整モジュール18をそれぞれのブロック2603の集中型のシステム配電ユニット2604に結合してもよい。幾つかの実施形態において、ワイヤ232は、図19B~19D並びに図20D及び図20Eを参照して上述したように、プレキャストコンクリートトレンチ1902内に配置してもよい。プレキャストコンクリートトレンチ1902は、それぞれの列の電力調整モジュール18から、燃料電池システムの各ブロック2603内の集中型のシステム配電ユニット2604へと延在することができる。代替的には、ワイヤ232は、図24、図25A及び図25Bに記載のように、コンクリート縁石又はレースウェイ内に配置してもよい。図26Dに示すような他の実施形態において、ワイヤ232は、任意選択で、セメント等の適切な材料で被覆することができる埋設された導管内に配置してもよい。
様々な実施形態において、パワーモジュール12の列の対向する両側において燃料処理モジュール16と電力調整モジュール18とを分離することにより、同じトレンチ内にユーティリティ接続部(すなわち、燃料導管230A及び水導管230B、配管接続部)及び電気接続部(例えば、銅ワイヤ)を含める必要がなくなり得る。ユーティリティ接続部及び電気接続部を同じトレンチ内に載置することにより、ユーティリティ接続部と電気接続部との間の十分な鉛直分離を維持するために、より深いトレンチ(例えば、3フィートよりも大きい、例えば最大5フィート深さ)が必要になり得る。したがって、燃料導管230A及び水導管230Bを電気接続部(例えば、ワイヤ232)とは別個のトレンチ内に載置することにより、トレンチを同程度に深くする必要がなく、掘削時間及びコストを節減することができる。
加えて、電気接続部は、各ブロック2603内の集中型のシステム配電ユニット2604に最も近い列の側部に進入してもよい。したがって、列の電力調整モジュール18を各ブロック2603の集中型の配電ユニット2604に接続するワイヤ232は、横断する距離がより短くなり得る。この結果として、銅配線を少なくし、電気接続部を収容するトレンチ(例えば、プレキャストコンクリートトトレンチ1902)の伝線をより短くすることができ、労働及び材料コストを大幅に節減することができる。さらに、図26Dに示す電気接続部(例えば、ワイヤ232)を収容するトレンチ1902は、積み重ねた電気接続部及びユーティリティ(例えば、ガス及び水)接続部ではなく、電気接続部のみを収容することから、図19B~図19D並びに図20D及び図20Eに示すトレンチ1902と比較して、比較的浅くなり得る。
図26B~図26Eを参照すると、様々な実施形態において、電気接続部(例えば、ワイヤ232)及びユーティリティ接続部(例えば、燃料導管230A及び水導管230B)は、例えば、図3A~図3D、図4C、図5B、図5D、図6B、図7B、図8、図9B、図16、図17、図18A、図19A~図19D、図19K及び図19Lを参照して上述した実施形態におけるように、列の下から進入するのではなく、列の側部からパワーモジュール12の列に進入することができる。様々な実施形態において、サービス再配置モジュール2606aは、パワーモジュール12の各列の端部において燃料処理モジュール16のキャビネットの外側面に配置してもよい。燃料導管230A及び水導管230Bは、サービス再配置モジュール2606aに下方から進入するように設置してもよく、燃料処理モジュール16のキャビネットに側部(側面)から(例えば、完成したグレードの上で)進入するように設置してもよい。追加のサービス再配置モジュール2606bは、パワーモジュール12の各列の反対側の端部において、電力調整モジュール18のキャビネットの外側面に配置してもよい。電気接続部(例えば、ワイヤ232)は、サービス再配置モジュール2606bに下方から(例えば、プレキャストコンクリートトレンチ1902から)進入するように設置してもよく、電力調整モジュール18のキャビネットに側部から(例えば、完成したグレードの上で)進入するように設置してもよい。様々な実施形態において、パワーモジュール12の列のそれぞれに対する電気接続部及びユーティリティ接続部(配管接続部)の側方からの進入を提供することにより、コンクリートパッド2601aにおける「切り欠き」(例えば、コンクリートパッドを貫通する通る上述した開口214及び216)の使用を回避することができる。これにより、パワーモジュール12の列が支持されるコンクリートパッド2601aの設計及び設置を簡素化することができ、また、コンクリートパッドの下に電気接続部及び/又はユーティリティ接続部を収容するトレンチを開口214及び216の場所(複数の場合もある)まで延在させる必要がなくなり得ることから、労働コストも削減することができる。
図27Aは、図26A~図26Eに示すような燃料電池電力システムのブロック2603のコンクリートパッド2601a、2601b及び2601c並びにプレキャストコンクリートトレンチ1902の斜視図である。図27Bは、電気接続部(すなわち、ワイヤ232)を収容するプレキャストコンクリートトレンチ1902の斜視図である。図27Cは、図27Bのプレキャストコンクリートトレンチ1902の上面図である。
図27Aを参照すると、その上にパワーモジュール12の列が配置されるコンクリートパッド2601a及び2601cは、それを通してユーティリティ接続部及び電気接続部がそれぞれの列に進入する、パッド2601a、2601cを貫通する内部の「切り欠き」又は内部開口を有しない概ね矩形のパッドとすることができる。むしろ、上述したように、ユーティリティ接続部(配管接続部)及び電気接続部は、列の対向する両側においてモジュールのキャビネットの側部を通すことができる。したがって、パッド2601a及び2601cは、パッドを貫通する内部開口(すなわち、全ての側部がパッド2601a、2601bによって包囲される開口)を含まなくてもよい。コンクリートパッド2601aは、パワーモジュール12の2つの列と、それぞれの列の両側に位置する関連する燃料処理モジュール16及び電力調整モジュール18とをそれぞれ支持するように配置してもよい。コンクリートパッド2601cは、パワーモジュール12の単一の列を、列の両側に位置する関連する燃料処理モジュール16及び電力調整モジュール18とともに支持するように配置してもよい。列のモジュールに対する及びその間の配管接続部及び電気接続部は、コンクリートパッド2601a及び2601cの上面の上を延在していてもよい。更に詳細に後述する様々な実施形態において、パッド2601a、2601cの上面に取り付けられる1つ以上のオーバーレイ構造により、パッド2601a及び2601cの上面と、パッド2601a、2601c上に支持される燃料電池システムのモジュール12、16、18の下面との間に空間又は分離を提供してもよい。配管接続部及び電気接続部は、パッド2601a、2601cの上面と、燃料電池システムのモジュール12、16、18の下面との間の空間内において延びるように配置してもよい。図13A及び図13B並びに図14を参照して上述した実施形態におけるように、土台1010の上面は、実質的に平坦であってもよく、例えば、配管及び/又は配線用の及び/又は燃料電池システムのモジュール12、16、18の設置用の凹部又は他の特徴部を含む必要がない。したがって、コンクリートパッド2601a及び2601cは、パッド2601a、2601bが注型成形された特徴部を必要としないことから、より低コストで製造することができる。代替的には、コンクリートパッド2601a及び2601cは、配管及び/又は配線用の及び/又は燃料電池システムのモジュール12、16、18の設置用の注型成形された特徴部を含んでいてもよい。
図27Aに示すブロック2603は、システム配電ユニット2604の様々な構成要素、例えば、上述した配電モジュール(PDS-1、PDS-2)及び変圧器(XFMR-1、XFMR-2、XFMR-3)が配置されてもよい別個のコンクリートパッド2601bも備えることができる。プレキャストコンクリートトレンチ1902は、コンクリートパッド2601bと、燃料電池システムのモジュール12、16、18を収容するコンクリートパッド2601a、2601bのそれぞれとの間に延在することができる。
様々な実施形態において、燃料電池システムのモジュール12、16、18及びシステム配電ユニット2604は、土台2607と、土台2607の上に配置されたコンクリートパッド2601a、2601b、2601cとを備える多層支持体の上で支持することができる。土台2607は、気泡コンクリート(コンクリートフォームとしても知られる)土台2607、例えば、締坪上に形成することができるConfoam(商標)気泡コンクリート土台であり得る。コンクリートパッド2601a、2601b及び2601cは、従来の(非気泡)コンクリートパッドであり得る。コンクリートパッド2601a、2601b及び2601cは、コンクリートパッド2601a、2601b及び2601cが配置された土台2607よりも小さい面積を有することができる。幾つかの実施形態において、土台2607は、コンクリートパッド2601a、2601b及び2601cよりも大きい厚さを有することができる。例えば、土台2607は、12インチよりも大きい、例えば18インチ~30インチ(例えば、約24インチ)の厚さを有することができる。コンクリートパッド2601a、2601b及び2601cは、12インチ未満、例えば6インチ~12インチ(例えば、約8インチ)の厚さを有することができる。幾つかの実施形態において、ワイヤ232を収容するプレキャストコンクリートトレンチ1902は、土台2607の一部の上に配置してもよい。
図28Aは、燃料電池システムのモジュール12、16、18を支持するコンクリートパッド2601aの部分透視斜視図である。図28Bは、図28Aのコンクリートパッド2601aの部分透視上面図である。図28Cは、コンクリートパッド2601aの上面に取り付けられるオーバーレイ構造2615を含む図28Aのコンクリートパッド2601aの上面図である。図28Dは、システム配電ユニット2604の構成要素を支持するコンクリートパッド2601aの上面図である。
図28A及び図28Bを参照すると、コンクリートパッド2601aは、単一の鉄筋2612強化層を伴って6インチ~10インチ、例えば8インチの厚さであり得る。幾つかの実施形態において、コンクリートパッド2601aは、オーバーレイ構造をコンクリートパッド2601aの上面に取り付けるために使用することができる複数の埋め込みストラット2613を備えることができる。他の実施形態において、アンカーボルト等の他の取り付け機構が、オーバーレイ構造をコンクリートパッド2601aの上面に取り付けるために、使用されてもよい。コンクリートパッド2601aは、コンクリートパッド上に配置された電力調整モジュール18との電気接続部(例えば、ワイヤ232)を収容するプレキャストコンクリートトレンチ1902の一部分に隣接し得る切り欠き部を、パッドの周縁側面に沿って有していてもよい。図28Cは、オーバーレイ構造2615がコンクリートパッド2601aの上面に取り付けられたコンクリートパッド2601aの上面図である。幾つかの実施形態において、オーバーレイ構造2615は、例えば上述したようなフレーム1014やセパレーター1012を備えていてもよい。図13A及び図13Bを参照して上述したように、フレーム1014は、パワーモジュール12、燃料処理モジュール16及び/又は電力調整モジュール18を受け入れるように構成されており、セパレーター1012は、フレーム1014をコンクリートパッド2601aの上面から分離するように構成されている。代替的には、又は加えて、オーバーレイ構造2615は、図14を参照して上述したように、パワーモジュール12、燃料処理モジュール16及び/又は電力調整モジュール18を支持する高架構造物(elevated structures)を形成することができる、上述したレプリケーター1420を備えることができる。他の適切なオーバーレイ構造2615も、本開示の想定される範囲内である。
図28Dを参照すると、システム配電ユニット2604の構成要素のためのコンクリートパッド2601bは、2つの鉄筋2612強化層を有することができる。コンクリートパッド2601bは、電気接続部(例えば、ワイヤ232)を収容するプレキャストコンクリートトレンチ1902の一部分をシステム配電ユニット2604に適応させるように、パッドの周縁側面に沿って複数の切り欠き部2614を有することができる。
図29A及び図29Bは、燃料電池システムモジュールのハウジング14のキャビネットの側面に隣接して配置されたサービス再配置モジュール2606の斜視図である。上述したように、サービス再配置モジュール2606は、ユーティリティ接続部及び/又は電気接続部を、燃料電池システムモジュール(例えば、燃料処理モジュール16及び/又は電力調整モジュール18)のハウジング14のキャビネット内に側方から進入させるように構成されていてもよい。サービス再配置モジュール2606は、取外し可能なカバー2621を有するハウジング2620を備えることができる。ユーティリティ接続部及び/又は電気接続部(例えば、ユーティリティ接続部の場合にはガス導管230A及び水導管230B、電気接続部の場合にはワイヤ232)は、導管(例えば、チューブ)2622を通して地盤面の下からハウジング2620に進入してもよい。ハウジング14のキャビネットの側面における1つ以上の開口2623により、ユーティリティ接続部及び/又は電気接続部は、ハウジング2620からキャビネットに進入することが可能になる。図29Aにおける実施形態は、サービス再配置モジュール2606のハウジング2620の内側に配置された複数のラグコネクタ2627を備える。ラグコネクタ2627は、第1の複数の地下ユーティリティ接続部及び/又は電気接続部を、ハウジング14のキャビネットの内部に対する第2の組の接続部に接続する。図29Bの実施形態は、地下ユーティリティ接続部及び/又は電気接続部がハウジング2620を通してハウジング14のキャビネットの内部に途切れずに延在する「プル」型サービス再配置モジュール2620を示している。
本開示の実施形態の燃料電池システムは、温室効果ガス排出を削減し、気候に対してポジティブな影響を及ぼすように設計される。
様々な例示的な実施形態に示すような燃料電池システムの配置は例示でしかない。本開示において幾つかの実施形態のみを詳細に記載したが、本明細書に記載の主題の新規の教示及び利点から実質的に逸脱することなく、多くの修正が可能である(例えば、様々な要素のサイズ、寸法、構造、形状及び比率における変動、パラメーターの値、取り付け配置、材料の使用、色、向き等)。
一体形成されるものとして示す幾つかの要素は、複数の部品又は要素から構築することができ、要素の配置は、反転させることも別様に変更することもでき、個別の要素の性質若しくは数又は配置を変える又は変更することができる。本開示の範囲から逸脱することなく、他の置換、修正、変更及び省略を、様々な例示的な実施形態の設計、動作条件及び配置に行うこともできる。任意の実施形態の任意の1つ以上の特徴は、1つ以上の他の実施形態の任意の1つ以上の他の特徴と任意の組み合わせで使用することができる。

Claims (20)

  1. 複数の燃料電池パワーモジュールと、前記燃料電池パワーモジュールに電気接続されるDC/ACインバーターを含む電力調整モジュールとを各列が備えるモジュールの複数の列と、
    燃料電池パワーモジュールの複数の列に流体接続される単一のガス/水分配モジュールと、
    前記モジュールの複数の列の各列内における前記電力調整モジュールに電気接続される単一の小型配電モジュールと、
    を備える、モジュール式燃料電池サブシステム。
  2. 前記モジュールの複数の列に流体接続される単一の脱硫器モジュールを更に備える、請求項1に記載のモジュール式燃料電池サブシステム。
  3. 独立した硫黄破過検出ラインを更に備える、請求項2に記載のモジュール式燃料電池サブシステム。
  4. 請求項1に記載の複数の前記モジュール式燃料電池サブシステムと、
    前記複数のモジュール式燃料電池サブシステムに電気接続されるシステム配電ユニットと、
    前記複数のモジュール式燃料電池サブシステムを、ユーティリティ燃料管、ユーティリティ水管及び前記システム配電ユニットに接続する、配管及びワイヤを収容する複数のプレキャストコンクリートトレンチと、
    を備える、燃料電池システム。
  5. 前記システム配電ユニットは、前記複数のモジュール式燃料電池サブシステムの少なくとも1つの小型配電モジュールに電気接続される少なくとも1つの変圧器を備え、前記複数のモジュール式燃料電池サブシステムは、前記少なくとも1つの変圧器の少なくとも2つの側部に配置される、請求項4に記載の燃料電池システム。
  6. 前記システム配電ユニットは、第1のモジュール式燃料電池サブシステムの第1の小型配電モジュールに電気接続される第1の変圧器と、第2のモジュール式燃料電池サブシステムの第2の小型配電モジュールに電気接続される第2の変圧器と、前記第1の変圧器及び前記第2の変圧器に電気接続され、前記燃料電池システムの電力出力を供給する第3の変圧器とを備え、前記第1の変圧器、前記第2の変圧器及び前記第3の変圧器は、それぞれ、前記燃料電池システムのモジュールの列の対の間に配置される、請求項5に記載の燃料電池システム。
  7. 気泡コンクリートの土台と、
    前記土台の上に配置されるとともに、前記土台よりも小さい面積を有する非気泡コンクリートパッドと、
    前記コンクリートの土台上に配置され、少なくとも1つの燃料電池スタックを含む燃料電池パワーモジュールと、
    を備える、燃料電池パワーモジュール。
  8. 前記燃料電池パワーモジュールを配電ユニットに接続するワイヤを収容するプレキャストコンクリートトレンチを更に備える、請求項7に記載の燃料電池パワーモジュール。
  9. 前記プレキャストコンクリートトレンチは、前記燃料電池パワーモジュールをユーティリティ燃料管及びユーティリティ水管に接続する配管を収容する、請求項8に記載の燃料電池パワーモジュール。
  10. 前記土台上に配置されるとともに、前記コンクリートパッドの側壁に接触するメッシュ状の型枠を更に備える、請求項9に記載の燃料電池パワーモジュール。
  11. 前記コンクリートパッドは、実質的に平坦な上面を有し、前記コンクリートパッドを貫通する内部開口を有さない、請求項7に記載の燃料電池パワーモジュール。
  12. 前記コンクリートパッドは、少なくとも1つの埋め込みストラットを備え、オーバーレイ構造が、前記少なくとも1つの埋め込みストラットを使用して前記コンクリートパッドの前記上面に取り付けられる、請求項11に記載の燃料電池パワーモジュール。
  13. 燃料電池システムモジュールの複数の列と、電気接続部と、少なくとも1つの配管接続部とを備え、
    前記燃料電池システムモジュールの複数の列は、各列が、複数の燃料電池パワーモジュールと、前記パワーモジュールに電気接続されるDC/ACインバーターを含む電力調整モジュールと、前記パワーモジュールに流体接続される燃料の事前処理を行う構成要素を含む燃料処理モジュールとを備え、
    前記電力調整モジュールは、前記複数の燃料電池モジュールの第1の側部に配置され、
    前記燃料処理モジュールは、前記燃料電池システムモジュールの複数の列の各列において前記複数の燃料電池モジュールの前記第1の側部とは反対側の第2の側部に配置され、
    前記電気接続部は、それぞれの前記列の前記第1の側部に配置された各列の前記電力調整モジュールに対して設置され、
    前記配管接続部は、それぞれの前記列の前記第2の側部に配置された各列の前記燃料処理モジュールに対して設置されている、燃料電池システム。
  14. 前記燃料電池システムモジュールは、複数のキャビネット内に配置され、各列に対する前記電気接続部及び前記少なくとも1つの配管接続部は、前記列の両側に位置するキャビネットの側面を通って進入するように設置されている、請求項13に記載の燃料電池システム。
  15. 第1のサービス再配置モジュールと、第2のサービス再配置モジュールとを更に備え、
    前記第1のサービス再配置モジュールは、各列において前記燃料処理モジュールを含む第1のキャビネットの側面に隣接して配置され、
    前記第1のサービス再配置モジュールは、燃料及び水用の配管接続部が、下方から前記第1のサービス再配置モジュールのハウジングに進入し、前記第1のキャビネットの前記側面の開口を通して前記ハウジングを出るように設置され、
    前記第2のサービス再配置モジュールは、各列において前記電力調整モジュールを含む第2のキャビネットの側面に隣接して配置され、
    前記第2のサービス再配置モジュールは、少なくとも1つの電気接続部が、下方から前記第2のサービス再配置モジュールのハウジングに進入し、前記第2のキャビネットの前記側面の開口を通して前記ハウジングを出るように設置されている、請求項14に記載の燃料電池システム。
  16. 前記燃料電池システムモジュールの列の前記第1の側部とシステム配電ユニットとの間に延在するプレキャストコンクリートトレンチを更に備え、前記プレキャストコンクリートトレンチは、各列の前記電力調整モジュールを前記システム配電ユニットに接続するワイヤを収容する、請求項13に記載の燃料電池システム。
  17. 前記システム配電ユニットは、少なくとも1つの変圧器を備え、前記燃料電池システムモジュールの複数の列は、前記少なくとも1つの変圧器の少なくとも2つの側部に配置され、前記電力調整モジュールは、前記システム配電ユニットに面した各列の端部に配置される、請求項16に記載の燃料電池システム。
  18. 前記システム配電ユニットは、燃料電池システムモジュールの列の第1の群に電気接続される第1の変圧器と、燃料電池システムモジュールの列の第2の群に電気接続される第2の変圧器と、前記第1の変圧器及び前記第2の変圧器に電気接続される第3の変圧器とを備える、請求項17に記載の燃料電池システム。
  19. 前記燃料電池システムモジュールの列は、1つ以上のパッド上に配置され、前記1つ以上のパッドは、それぞれの前記パッドを貫通する内部開口を有さない、請求項13に記載の燃料電池システム。
  20. 前記1つ以上のパッドのそれぞれは、12インチ未満の厚さを有する、請求項19に記載の燃料電池システム。
JP2022120076A 2021-07-30 2022-07-28 大規模燃料電池システム及びこのシステムを設置する方法 Pending JP2023021039A (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US202163227836P 2021-07-30 2021-07-30
US63/227,836 2021-07-30
US202263301399P 2022-01-20 2022-01-20
US63/301,399 2022-01-20
US202263307309P 2022-02-07 2022-02-07
US63/307,309 2022-02-07

Publications (1)

Publication Number Publication Date
JP2023021039A true JP2023021039A (ja) 2023-02-09

Family

ID=82781044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022120076A Pending JP2023021039A (ja) 2021-07-30 2022-07-28 大規模燃料電池システム及びこのシステムを設置する方法

Country Status (5)

Country Link
US (1) US11862832B2 (ja)
EP (1) EP4131527A2 (ja)
JP (1) JP2023021039A (ja)
KR (1) KR20230019048A (ja)
TW (1) TW202341559A (ja)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8182659B2 (en) * 2001-04-05 2012-05-22 Giner Electrochemical Systems, Llc Proton exchange membrane (PEM) electrochemical cell having an integral, electrically-conductive, resiliently compressible, porous pad
US7713649B2 (en) 2005-03-10 2010-05-11 Bloom Energy Corporation Fuel cell stack with internal fuel manifold configuration
EP1982364A4 (en) 2006-01-23 2010-07-07 Bloom Energy Corp MODULAR FUEL CELL SYSTEM
US7648784B2 (en) * 2006-03-09 2010-01-19 Delphi Technologies, Inc. Method and apparatus for controlling a fuel cell system having a variable number of parallel-connected modules
US7705490B2 (en) 2007-05-07 2010-04-27 Bloom Energy Corporation Integral stack columns
US8440362B2 (en) 2010-09-24 2013-05-14 Bloom Energy Corporation Fuel cell mechanical components
US9755263B2 (en) 2013-03-15 2017-09-05 Bloom Energy Corporation Fuel cell mechanical components
US10651496B2 (en) * 2015-03-06 2020-05-12 Bloom Energy Corporation Modular pad for a fuel cell system
US10320017B2 (en) 2015-10-06 2019-06-11 Bloom Energy Corporation Sorbent bed assembly and fuel cell system including same
US10333163B2 (en) 2016-05-16 2019-06-25 Bloom Energy Corporation Sorbent bed assembly, fuel cell system including same, and systems and devices for loading and transporting same
EP3780201A4 (en) * 2018-03-30 2021-12-15 Osaka Gas Co., Ltd. FUEL BATTERY SINGLE CELL UNIT, FUEL BATTERY MODULE AND FUEL BATTERY DEVICE
JP7167902B2 (ja) * 2019-11-11 2022-11-09 トヨタ自動車株式会社 燃料電池システム

Also Published As

Publication number Publication date
TW202341559A (zh) 2023-10-16
KR20230019048A (ko) 2023-02-07
US20230037162A1 (en) 2023-02-02
US11862832B2 (en) 2024-01-02
EP4131527A2 (en) 2023-02-08

Similar Documents

Publication Publication Date Title
US10651496B2 (en) Modular pad for a fuel cell system
US9945142B2 (en) Modular data center
US11159033B2 (en) Modular electric charging apparatus
US20120326653A1 (en) Convergent Energized IT Apparatus for Residential Use
CN114284628B (zh) 箱式储能电池系统
JP2023021039A (ja) 大規模燃料電池システム及びこのシステムを設置する方法
US20230399762A1 (en) Modular electrolyzer system
US20230282867A1 (en) Electrochemical system and method of installing same using a skid
CN106451300B (zh) 通用装配式gis空箱基础的电缆沟
TW202332109A (zh) 電化學系統和使用滑架安裝該系統的方法
US20240021859A1 (en) Integrated soec building block (sbb)
CN219690577U (zh) 一种用于环网柜的预制装配式基础
CN219622345U (zh) 一种用于改造旧变电站的预制舱系统
CN217335100U (zh) 一种电网配电系统
CN219261100U (zh) 一种户内gis室基础、gis设备基础与电缆隧道一体化结构
CN103166230B (zh) 一种实现电容器组和电抗器组快速互换的装置
CN113463954B (zh) 一种110kv城市变电站布置系统
CN219158571U (zh) 配电装置楼以及变电站
CN216672551U (zh) 一种变电站三维电缆沟及电缆支架敷设装置
CN117438936A (zh) 一种500kV预制舱式海上升压站及海上风电系统
Soni et al. Adoption of hybrid switchgear for improvement and up-gradation
CN116446448A (zh) 一种用于地下变电站的墙体结构
CN115663718A (zh) 一种新型电缆隧道
TO Keynotes
JP2002238112A (ja) キュービクル式受変電設備