JP2023020633A - Fluorescence measuring device - Google Patents

Fluorescence measuring device Download PDF

Info

Publication number
JP2023020633A
JP2023020633A JP2021126111A JP2021126111A JP2023020633A JP 2023020633 A JP2023020633 A JP 2023020633A JP 2021126111 A JP2021126111 A JP 2021126111A JP 2021126111 A JP2021126111 A JP 2021126111A JP 2023020633 A JP2023020633 A JP 2023020633A
Authority
JP
Japan
Prior art keywords
light
measurement
fluorescence
path
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021126111A
Other languages
Japanese (ja)
Inventor
倭斗 渡部
Yamato Watabe
裕介 ▲浜▼田
Yusuke Hamada
雅彦 大浦
Masahiko Oura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2021126111A priority Critical patent/JP2023020633A/en
Publication of JP2023020633A publication Critical patent/JP2023020633A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

To provide a fluorescence measuring device having a simple configuration.SOLUTION: A fluorescence measuring device measures concentration of a measurement object under measured water, and includes a measurement room for storing the measured water, a light projection path for projecting light in a first direction toward the measurement room, a measurement optical path for emitting light in a direction differing from the first direction from the measurement room, a transmission optical path for emitting light onto an extension line of the light projection path from the measurement room, a first light source for projecting first measurement light having a first wavelength for exciting the measurement object in the measurement room through the light projection path and generating fluorescence, a second light source for projecting second measurement light having a second wavelength that is identical or approximate to a wavelength of the fluorescence of the measurement object into the measurement room through the light projection path, a first light receiving element for receiving light emitted from the measurement optical path, a second light receiving element for receiving light emitted from the transmission optical path, and a light quantity adjustment mechanism for adjusting an amount of light projection from at least one of the first light source and the second light source to the measurement room.SELECTED DRAWING: Figure 1

Description

本発明は、蛍光測定装置に関する。 The present invention relates to a fluorometer.

水質を確認する方法として、被測定水に測定対象を励起して蛍光を生じさせる波長の測定光を投光し、測定光が直接入射しない位置に設けた受光素子により測定対象の蛍光を測定することで、測定対象の濃度を算出する方法が知られている。被測定水が測定対象以外に濁質などの光を散乱又は吸収する成分を含む場合、受光素子が受光する光量がこれらの成分の影響を受ける。このため、測定対象を励起しない波長の光を投光して透過光及び散乱光を測定し、これらの測定値に基づいて、蛍光の測定値に含まれ得る測定対象以外の成分による光の散乱及び吸収による誤差を補正する装置が提案されている(例えば、特許文献1参照)。 As a method for checking the water quality, measurement light with a wavelength that excites the measurement target to cause fluorescence is projected onto the water to be measured, and the fluorescence of the measurement target is measured by a light receiving element provided at a position where the measurement light does not directly enter. Therefore, a method of calculating the concentration of the object to be measured is known. If the water to be measured contains a component that scatters or absorbs light, such as turbidity, in addition to the object to be measured, the amount of light received by the light receiving element is affected by these components. For this reason, light with a wavelength that does not excite the measurement target is projected to measure transmitted light and scattered light, and based on these measured values, scattering of light by components other than the measurement target that can be included in the fluorescence measurement value and an apparatus for correcting errors due to absorption has been proposed (see, for example, Patent Document 1).

特許第6436266号公報Japanese Patent No. 6436266

特許文献1に記載の蛍光測定装置は、蛍光測定用光源及び散乱光測定用光源を被測定水に同軸に投光可能に配設し、この投光位置を基準に90°の角度位置に蛍光を検出する第1の検出器、180°の角度位置に透過光を検出する第2の検出器、270°の角度位置に散乱光を検出する第3の検出器を必要とし、構成が複雑である。 In the fluorescence measurement apparatus described in Patent Document 1, a light source for fluorescence measurement and a light source for scattered light measurement are coaxially arranged in water to be measured so as to be capable of projecting light, and fluorescence is measured at an angular position of 90° with respect to this light projection position. , a second detector for detecting transmitted light at an angular position of 180°, and a third detector for detecting scattered light at an angular position of 270°. be.

従って、本発明は、構成が簡単な蛍光測定装置を提供することを目的とする。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a fluorescence measurement apparatus with a simple configuration.

本発明の一態様に係る蛍光測定装置は、被測定水中の測定対象の濃度を測定する蛍光測定装置であって、前記被測定水を貯留する測定室と、前記測定室に第1方向に光を投光する投光路と、前記測定室から前記第1方向と異なる方向に光を出射する測定光路と、前記測定室から前記投光路の延長線上に光を出射する透過光路と、前記投光路を通して前記測定室に前記測定対象を励起して蛍光を生じさせる第1波長の第1測定光を投光する第1光源と、前記投光路を通して前記測定室に前記測定対象の前記蛍光の波長と同一又は近似する第2波長の第2測定光を投光する第2光源と、前記測定光路から出射する光を受光する第1受光素子と、前記透過光路から出射する光を受光する第2受光素子と、前記第1光源及び前記第2光源の少なくとも一方から前記測定室への投光量を調節する光量調節機構と、を備える。 A fluorescence measurement device according to an aspect of the present invention is a fluorescence measurement device that measures the concentration of a measurement target in water to be measured, comprising: a measurement chamber storing the water to be measured; a measurement optical path through which light is emitted from the measurement chamber in a direction different from the first direction; a transmission optical path through which light is emitted from the measurement chamber on an extension line of the projection path; and the projection path a first light source for projecting a first measurement light having a first wavelength that excites the measurement object to cause fluorescence into the measurement chamber through a first light source, and a wavelength of the fluorescence of the measurement object that is projected onto the measurement chamber through the light projection path; A second light source for projecting a second measurement light having the same or similar second wavelength, a first light receiving element for receiving light emitted from the measurement optical path, and a second light receiving element for receiving light emitted from the transmission optical path. and a light quantity adjusting mechanism for adjusting the quantity of light projected from at least one of the first light source and the second light source to the measurement chamber.

上述の蛍光測定装置において、前記光量調節機構は、前記第1光源及び前記第2光源の少なくとも一方の光路を制限する絞りを有してもよい。 In the fluorescence measurement device described above, the light amount adjustment mechanism may have a diaphragm that restricts the optical path of at least one of the first light source and the second light source.

上述の蛍光測定装置において、前記第1光源及び前記第2光源は同じ基板上に隣接して配設されてもよい。 In the fluorescence measurement device described above, the first light source and the second light source may be arranged adjacently on the same substrate.

上述の蛍光測定装置は、前記測定光路から出射する光から前記第1波長の成分を除去するフィルタをさらに備えてもよい。 The fluorescence measurement device described above may further include a filter that removes the first wavelength component from the light emitted from the measurement optical path.

上述の蛍光測定装置は、前記測定室に開閉可能な蓋部と、前記第1受光素子が所定閾値以上の光を検出している場合には前記蓋部が開放状態であると判断する開放判定部と、をさらに備えてもよい。 The above-described fluorescence measurement apparatus includes a lid portion that can be opened and closed in the measurement chamber, and an open determination that determines that the lid portion is in an open state when the first light receiving element detects light equal to or greater than a predetermined threshold. You may further comprise a part.

上述の蛍光測定装置は、前記測定室に開閉可能な蓋部と、前記第1測定光及び前記第2測定光を投光していないときに前記第1受光素子又は前記第2受光素子が光を検出している場合には前記蓋部が開放状態であると判断する開放判定部と、をさらに備えてもよい。 The above-described fluorescence measurement apparatus includes a cover portion that can be opened and closed in the measurement chamber, and the first light receiving element or the second light receiving element that emits light when the first measurement light and the second measurement light are not projected. and an open determination unit that determines that the lid is in the open state when the is detected.

本発明によれば、構成が簡単な蛍光測定装置を提供できる。 According to the present invention, it is possible to provide a fluorescence measurement device with a simple configuration.

本発明の一実施形態に係る蛍光測定装置の構成を示す模式図である。1 is a schematic diagram showing the configuration of a fluorescence measurement device according to an embodiment of the present invention; FIG. 図1の蛍光測定装置による濃度測定の手順を示すフローチャートである。2 is a flow chart showing a procedure of concentration measurement by the fluorometer of FIG. 1;

以下、本発明の実施形態について、図面を参照しながら説明する。図1は、本発明の一実施形態に係る蛍光測定装置1の構成を示す模式図である。なお、図示する蛍光測定装置1の各構成要素の形状は簡略化されており、各構成要素の寸法も見やすいよう調整されている。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram showing the configuration of a fluorescence measurement device 1 according to one embodiment of the present invention. The shape of each component of the illustrated fluorescence measurement apparatus 1 is simplified, and the dimensions of each component are adjusted so as to be easy to see.

蛍光測定装置1は、被測定水中の測定対象の濃度を測定する。蛍光測定装置1は、ハウジング10と、投光部20と、第1受光部30と、第2受光部40と、供給ライン50と、排出ライン60と、制御装置70と、を備える。 A fluorescence measurement device 1 measures the concentration of a measurement target in water to be measured. The fluorescence measurement device 1 includes a housing 10 , a light projecting section 20 , a first light receiving section 30 , a second light receiving section 40 , a supply line 50 , a discharge line 60 and a control device 70 .

ハウジング10は、遮光性を有する材料から形成される本体容器11と、遮光性を有する材料から形成され、本体容器11に着脱可能に取り付けられる蓋体12と、によって構成される。蓋体12は、一例として、本体容器11の開口部に形成される内ねじ111に螺合する外ねじ121を有するプラグ状に形成され得る。 The housing 10 includes a main container 11 made of a light-shielding material, and a lid 12 made of a light-shielding material and detachably attached to the main container 11 . As an example, the lid 12 may be formed in a plug shape having an outer thread 121 that screws into an inner thread 111 formed in the opening of the main container 11 .

ハウジング10は、被測定水を貯留する測定室13と、測定室13に第1方向に光を投光する投光路14と、測定室13から第1方向と異なる方向に光を出射する測定光路15と、測定室13から投光路14の延長線上に光を出射する透過光路16と、供給ライン50が接続される供給流路17と、排出ライン60が接続される排出流路18と、を有する。 The housing 10 includes a measurement chamber 13 for storing water to be measured, a light projection path 14 for projecting light into the measurement chamber 13 in a first direction, and a measurement light path for emitting light from the measurement chamber 13 in a direction different from the first direction. 15, a transmitted light path 16 for emitting light from the measurement chamber 13 onto an extension line of the light projection path 14, a supply channel 17 to which the supply line 50 is connected, and a discharge channel 18 to which the discharge line 60 is connected. have.

投光路14、測定光路15及び透過光路16は、測定室13から被測定水を流出させることなく、少なくとも後述する第1測定光及び第2測定光を透過するよう構成される。例として、投光路14、測定光路15及び透過光路16は、ハウジング10に測定室13に連通するよう形成される穴によって画定され、少なくとも測定室13側の端部が透光性を有する材料で封止される構成とされ得る。投光路14、測定光路15及び透過光路16は、光の入射方向及び出射方向を限定できるよう、小さい断面を有する真直ぐな穴によって形成されることが好ましい。 The projection light path 14 , the measurement light path 15 , and the transmission light path 16 are configured to transmit at least a first measurement light and a second measurement light, which will be described later, without causing water to be measured to flow out of the measurement chamber 13 . As an example, the projection light path 14, the measurement light path 15, and the transmission light path 16 are defined by holes formed in the housing 10 so as to communicate with the measurement chamber 13, and at least the ends on the measurement chamber 13 side are made of a material having translucency. It may be configured to be sealed. The projection light path 14, the measurement light path 15 and the transmission light path 16 are preferably formed by straight holes with a small cross-section so that the direction of incidence and the direction of emission of the light can be defined.

投光路14と透過光路16とは、測定室13の両側に同軸に形成される。測定光路15は、その軸が投光路14及び透過光路16の軸と交差するよう形成される。測定光路15の軸は、投光路14及び透過光路16の軸と直交することが好ましい。また、測定光路15の軸は、投光路14及び透過光路16の軸と測定室13の中心部で交差することが好ましい。さらに、投光路14、測定光路15及び透過光路16は、投光路14から測定光路15に至る光路の長さと投光路14から透過光路16に至る光路の長さとが等しくなるよう配設されることが好ましい。なお、図1では、全ての構成を示すために、投光路14、測定光路15及び透過光路16の軸が同一の鉛直面内に存在するよう図示されているが、現実的には投光路14、測定光路15及び透過光路16の軸が同一の水平面内に存在するよう配設されることが想定される。 The projected light path 14 and the transmitted light path 16 are coaxially formed on both sides of the measurement chamber 13 . The measurement beam path 15 is formed such that its axis intersects the axes of the projection beam path 14 and the transmission beam path 16 . The axis of the measurement light path 15 is preferably perpendicular to the axes of the projection light path 14 and the transmission light path 16 . Also, the axis of the measurement light path 15 preferably intersects the axes of the projection light path 14 and the transmission light path 16 at the center of the measurement chamber 13 . Further, the projection light path 14, the measurement light path 15 and the transmission light path 16 are arranged so that the length of the light path from the projection light path 14 to the measurement light path 15 and the length of the light path from the projection light path 14 to the transmission light path 16 are equal. is preferred. In FIG. 1, the projection light path 14, the measurement light path 15, and the transmission light path 16 are shown to exist in the same vertical plane in order to show the entire structure. , the axes of the measurement beam path 15 and the transmission beam path 16 are arranged to lie in the same horizontal plane.

測定室13は、本体容器11の内部空間として画定され、蓋体12によって形成される開閉可能な蓋部131を有する。蓋部131を開放することにより、測定室13の内部のクリーニング等のメンテナンスを可能にする。 The measurement chamber 13 is defined as an internal space of the main container 11 and has an openable and closable lid portion 131 formed by the lid body 12 . By opening the cover portion 131, maintenance such as cleaning of the inside of the measurement chamber 13 can be performed.

供給流路17は、測定室13の底部に開口するよう形成されることが好ましく、排出流路18は、測定室13の上部に開口するよう形成されることが好ましい。これにより、測定室13内の被測定水を効率よく入れ換えることができる。排出流路18は測定室13の上部から古い被測定水を排水系統にオーバーフローさせるよう形成される。 The supply channel 17 is preferably formed to open at the bottom of the measurement chamber 13 , and the discharge channel 18 is preferably formed to open at the top of the measurement chamber 13 . Thereby, the water to be measured in the measurement chamber 13 can be efficiently replaced. A discharge channel 18 is formed to allow old measured water to overflow from the upper part of the measurement chamber 13 into a drainage system.

投光部20は、投光路14を通して測定室13に被測定水中の測定対象を励起して蛍光を生じさせる第1波長の第1測定光(例えば、365nmの紫外光)を投光する第1光源21と、投光路14を通して測定室13に測定対象の蛍光の波長と同一又は近似する第2波長の第2測定光(例えば、420nmの紫色光)を投光する第2光源22と、第1光源21及び第2光源22が実装され、第1光源21及び第2光源22に必要に応じて電力を供給する投光回路基板23と、第1光源21及び第2光源22の少なくとも一方(図示する例では第2光源22)から測定室13への投光量を調節する光量調節機構24と、を有する。投光部20は、投光路14への外光の入射を防止する投光部カバー25を有することが好ましい。 The light projecting unit 20 projects a first measurement light having a first wavelength (for example, ultraviolet light of 365 nm) to the measurement chamber 13 through the light projecting path 14 to excite the measurement target in the water under measurement to generate fluorescence. a light source 21, a second light source 22 that projects a second measurement light having a second wavelength (for example, violet light of 420 nm) that is the same as or similar to the wavelength of the fluorescence to be measured into the measurement chamber 13 through the light projection path 14; 1 light source 21 and second light source 22 are mounted, and at least one of first light source 21 and second light source 22 ( In the illustrated example, it has a light amount adjusting mechanism 24 for adjusting the amount of light projected from the second light source 22 ) to the measurement chamber 13 . The light projecting section 20 preferably has a light projecting section cover 25 that prevents external light from entering the light projecting path 14 .

第1光源21及び第2光源22は、典型的には発光ダイオードによって構成される。発光ダイオードのように小さい素子からなる第1光源21及び第2光源22は、同じ投光回路基板23上に隣接して配設することができる。図1では第1光源21及び第2光源22を大きく図示するが、実際には、第1光源21及び第2光源22は同じ位置に存在するものと考えて差し支えない程度小さく、互いに接近して配置され得る。このように微小な第1光源21及び第2光源22を隣接して配置することにより、第1測定光の光軸と第2測定光の光軸とを実質的に合致させることができるので、第1測定光と第2測定光の入射方向の差によって生じ得る測定誤差を小さくできる。 The first light source 21 and the second light source 22 are typically composed of light emitting diodes. The first light source 21 and the second light source 22, which are small elements such as light emitting diodes, can be arranged adjacently on the same light projecting circuit board 23. FIG. Although the first light source 21 and the second light source 22 are shown enlarged in FIG. 1, the first light source 21 and the second light source 22 are actually small enough to be considered to exist at the same position, and are close to each other. can be placed. By arranging the minute first light source 21 and the second light source 22 adjacent to each other in this manner, the optical axis of the first measurement light and the optical axis of the second measurement light can be substantially aligned. It is possible to reduce the measurement error that may occur due to the difference in the incident directions of the first measurement light and the second measurement light.

投光回路基板23は、第1光源21及び第2光源22を投光路14を通して測定室13の中に測定光を投光できる位置に保持する機能を果たす。また、投光回路基板23は、制御装置70からの指令信号に従って、第1光源21又は第2光源22を選択的に発光させる駆動回路を有する。 The light projecting circuit board 23 has the function of holding the first light source 21 and the second light source 22 in a position where the measurement light can be projected into the measurement chamber 13 through the light projecting path 14 . Further, the light projecting circuit board 23 has a driving circuit that selectively causes the first light source 21 or the second light source 22 to emit light according to a command signal from the control device 70 .

光量調節機構24は、第1測定光の投光時に第1受光部30に入射する測定対象の蛍光の強度と第2測定光の投光時に被測定水の着色等に起因して第1受光部30に入射する散乱光の強度とがいずれも第1受光部30の測定可能範囲内に収まるよう、第1光源21及び第2光源22のいずれかの光量を制限する。光量調節機構24は、図示する例では第2測定光の光量を制限するよう配設されるが、例えば測定対象の種類、第1測定光及び第2測定光の波長、第1光源21及び第2光源22の仕様等によっては、第1測定光の光量を制限するよう配設されてもよく、第1測定光及び第2測定光の両方の光量を個別に制限するよう配設されてもよい。なお、測定対象の濃度の測定範囲及び想定される散乱度の範囲は任意に設定され得る。 The light amount adjustment mechanism 24 is configured to adjust the intensity of the fluorescence of the measurement target incident on the first light receiving unit 30 when the first measurement light is projected and the first light reception due to the coloring of the water to be measured when the second measurement light is projected. The amount of light from either the first light source 21 or the second light source 22 is limited so that the intensity of scattered light incident on the unit 30 is within the measurable range of the first light receiving unit 30 . In the illustrated example, the light amount adjustment mechanism 24 is arranged to limit the light amount of the second measurement light. Depending on the specifications of the two light sources 22, they may be arranged to limit the light intensity of the first measurement light, or may be arranged to individually limit the light intensity of both the first measurement light and the second measurement light. good. Note that the measurement range of the concentration of the measurement object and the range of the assumed scattering degree can be set arbitrarily.

光量調節機構24としては、投光回路基板23に形成される駆動回路に組み込まれ、第1光源21又は第2光源22に供給される電力を調整する回路等を使用してもよいが、より簡単な構成として、図示するように、光路の断面積を制限する絞りを用いることができる。光量調節機構24として絞りを用いることにより、構成が簡単でありながら、第1受光部30が受光する蛍光の強度と散乱光の強度とを容易に近づけることができる。 As the light amount adjusting mechanism 24, a circuit or the like that is incorporated in a driving circuit formed on the light projecting circuit board 23 and adjusts the power supplied to the first light source 21 or the second light source 22 may be used. As a simple arrangement, an aperture can be used to limit the cross-sectional area of the optical path, as shown. By using an aperture as the light amount adjusting mechanism 24, the intensity of the fluorescence received by the first light receiving section 30 and the intensity of the scattered light can be easily made close to each other while the structure is simple.

第1受光部30は、測定光路15から出射する光を受光してその強度に応じた電気信号を生成する第1受光素子31と、第1受光素子31が実装される第1検出回路基板32と、測定光路15から出射する光から第1波長の成分を除去するフィルタ33と、を有する。第1受光部30は、測定光路15への外光の入射を防止する第1受光部カバー34を有することが好ましい。 The first light receiving unit 30 includes a first light receiving element 31 that receives light emitted from the measurement optical path 15 and generates an electric signal corresponding to the intensity of the light, and a first detection circuit board 32 on which the first light receiving element 31 is mounted. and a filter 33 for removing the first wavelength component from the light emitted from the measurement optical path 15 . The first light receiving section 30 preferably has a first light receiving section cover 34 that prevents external light from entering the measurement optical path 15 .

第1受光素子31は、典型的にはフォトダイオードによって構成される。第1検出回路基板32は、第1受光素子31が出力する信号を増幅し、必要に応じてディジタル信号に変換することにより、制御装置70に入力される検出信号を出力する検出回路を有する。フィルタ33は、第1波長を含む波長域の光を遮断する一方、第2波長の近傍の波長域の光を透過する。これにより、第1受光素子31は、測定光路15から出射する第2波長の光の強度を検出する。つまり、フィルタ33を設けることによって、第1受光素子31は、測定室13に第1測定光が透光されているときに、着色による第1測定光の散乱光を受光せず、測定対象の蛍光の強度だけを検出できるので、蛍光の光量を正確に測定し、測定対象の濃度をより正確に算出することを可能にする。 The first light receiving element 31 is typically composed of a photodiode. The first detection circuit board 32 has a detection circuit that amplifies the signal output from the first light receiving element 31 and converts it into a digital signal if necessary, thereby outputting a detection signal that is input to the control device 70 . The filter 33 blocks light in a wavelength band including the first wavelength, while transmitting light in a wavelength band near the second wavelength. Thereby, the first light receiving element 31 detects the intensity of the light of the second wavelength emitted from the measurement optical path 15 . That is, by providing the filter 33, the first light-receiving element 31 does not receive the scattered light of the first measurement light due to coloring when the first measurement light is transmitted through the measurement chamber 13. Since only the intensity of fluorescence can be detected, it is possible to accurately measure the amount of fluorescence light and more accurately calculate the concentration of the object to be measured.

第2受光部40は、透過光路16を通して測定室13から出射する第1測定光及び第2測定光の光量を検出する。つまり、第2受光部40は、測定対象に吸収又は反射されることなく直進した第1測定光又は第2測定光の強度を検出する。第2受光部40は、透過光路16から出射する光を受光してその強度に応じた電気信号を生成する第2受光素子41と、第2受光素子41が実装される第2検出回路基板42と、を有する。第2受光部40は、透過光路16への外光の入射を防止する第2受光部カバー43を有することが好ましい。 The second light receiving section 40 detects the amounts of the first measurement light and the second measurement light emitted from the measurement chamber 13 through the transmission optical path 16 . That is, the second light receiving section 40 detects the intensity of the first measurement light or the second measurement light that has traveled straight without being absorbed or reflected by the object to be measured. The second light receiving section 40 includes a second light receiving element 41 that receives light emitted from the transmission optical path 16 and generates an electric signal corresponding to the intensity of the received light, and a second detection circuit board 42 on which the second light receiving element 41 is mounted. and have The second light receiving section 40 preferably has a second light receiving section cover 43 that prevents external light from entering the transmission optical path 16 .

第2受光素子41は、第1受光素子31と同様に、典型的にはフォトダイオードによって構成される。第2検出回路基板42は、第1検出回路基板32と同様に、第2受光素子41が出力する信号を増幅し、必要に応じてディジタル信号に変換することにより、制御装置70に入力される検出信号を出力する検出回路を有する。第2受光部40は、測定対象に吸収又は反射されることなく直進した第1測定光又は第2測定光の強度を検出する。 Like the first light receiving element 31, the second light receiving element 41 is typically composed of a photodiode. Similarly to the first detection circuit board 32, the second detection circuit board 42 amplifies the signal output from the second light receiving element 41, converts it into a digital signal as necessary, and inputs it to the control device 70. It has a detection circuit that outputs a detection signal. The second light receiving section 40 detects the intensity of the first measurement light or the second measurement light that has traveled straight without being absorbed or reflected by the object to be measured.

供給ライン50は、供給流路17から測定室13に新たに測定される被測定水を供給する。供給ライン50は、制御装置70によって制御され、被測定水の供給を遮断する開閉弁51を有する。 The supply line 50 supplies newly measured water to be measured from the supply channel 17 to the measurement chamber 13 . The supply line 50 has an on-off valve 51 that is controlled by the control device 70 and shuts off the supply of the water to be measured.

排出ライン60は、測定室13から測定済みの被測定水を排出する。具体的には、排出ライン60は、供給ライン50から新たな被測定水を供給したときに、被測定水をオーバーフローさせるよう、排出流路18から下方に延びる。 A discharge line 60 discharges the measured water from the measurement chamber 13 . Specifically, the discharge line 60 extends downward from the discharge channel 18 so as to cause the water to be measured to overflow when new water to be measured is supplied from the supply line 50 .

制御装置70は、投光部20及び供給ライン50を制御し、第1受光素子31及び第2受光素子41が受光した光の強度から、被測定水中の測定対象の濃度を算出する。制御装置70は、例えばメモリ、CPU、入出力インターフェイス等を有するコンピュータ装置に適切なプログラムを実行させることにより実現できる。 The control device 70 controls the light projecting section 20 and the supply line 50 and calculates the concentration of the measurement target in the water under measurement from the intensity of the light received by the first light receiving element 31 and the second light receiving element 41 . The control device 70 can be implemented, for example, by causing a computer device having a memory, a CPU, an input/output interface, etc. to execute an appropriate program.

制御装置70は、測定制御部71と、濃度算出部72と、常時開放判定部73と、休止時開放判定部74と、を備える。なお、測定制御部71、濃度算出部72、常時開放判定部73及び休止時開放判定部74は、制御装置70の機能を類別したものであって、物理的構成及びプログラム構成において明確に区別できるものでなくてもよい。 The control device 70 includes a measurement control section 71 , a concentration calculation section 72 , a normal open determination section 73 , and a pause open determination section 74 . The measurement control unit 71, the concentration calculation unit 72, the normal open determination unit 73, and the idle open determination unit 74 are classified functions of the control device 70, and can be clearly distinguished in terms of physical configuration and program configuration. It doesn't have to be something.

測定制御部71は、投光部20の第1光源21及び第2光源22に順番に測定光を投光させ、濃度算出部72に第1受光部30及び第2受光部40の検出値に基づいて被測定水における測定対象の濃度を算出させる。また、測定制御部71は、投光部20による測定光の投光及び濃度算出部72による測定対象の濃度算出を行う前に、所定時間だけ開閉弁51を開放することにより、測定室13の中の被測定水を入れ換える。さらに、測定制御部71は、常時開放判定部73及び休止時開放判定部74の少なくともいずれかが測定室13の蓋部131が開放状態であると判断している間は、開閉弁51の開放を禁止する。 The measurement control unit 71 causes the first light source 21 and the second light source 22 of the light projecting unit 20 to sequentially project measurement light, and causes the concentration calculation unit 72 to calculate the detection values of the first light receiving unit 30 and the second light receiving unit 40. Based on this, the concentration of the object to be measured in the water to be measured is calculated. In addition, the measurement control unit 71 opens the on-off valve 51 for a predetermined period of time before the measurement light is projected by the light projecting unit 20 and the concentration of the measurement target is calculated by the concentration calculating unit 72, so that the measurement chamber 13 is Replace the water to be measured inside. Further, the measurement control unit 71 keeps the on-off valve 51 open while at least one of the always open determination unit 73 and the idle open determination unit 74 determines that the cover 131 of the measurement chamber 13 is open. prohibited.

基本的な考え方として、第1光源21から第1測定光を投光したときの第1受光素子31が受光する第2波長の光は、被測定水中の測定対象の蛍光によるものであるため、第1測定光の投光時の第1受光素子31の受光強度から被測定水中の測定対象の濃度が算出できる。しかしながら、投光路14から測定光路15に至るまでの被測定水中の光路において第1測定光及び測定対象の蛍光が測定対象及び着色等によって吸光されることにより、第1受光素子31の受光強度が正確に測定対象の濃度と対応しなくなり得る。このため、濃度算出部72は、第1測定光の投光時の第2受光素子41の受光強度、第2測定光の投光時の第1受光素子31の受光強度及び第2受光素子41の受光強度に基づいて、吸光及び散乱による受光強度の誤差を補正して正確な測定対象の濃度を算出する。 The basic idea is that the light of the second wavelength received by the first light receiving element 31 when the first light source 21 projects the first measurement light is due to the fluorescence of the measurement target in the water to be measured. The concentration of the object to be measured in the water to be measured can be calculated from the received light intensity of the first light receiving element 31 when the first measurement light is projected. However, in the optical path from the projection light path 14 to the measurement optical path 15 in the water to be measured, the first measurement light and the fluorescence of the measurement target are absorbed by the measurement target and coloring, etc., and the received light intensity of the first light receiving element 31 decreases. It may not correspond exactly to the concentration to be measured. For this reason, the concentration calculator 72 calculates the light receiving intensity of the second light receiving element 41 when the first measurement light is projected, the light receiving intensity of the first light receiving element 31 when the second measurement light is projected, and the light receiving intensity of the second light receiving element 41 when the second measurement light is projected. Based on the intensity of received light, an error in the intensity of received light due to absorption and scattering is corrected to calculate an accurate concentration of the object to be measured.

図2に、制御装置70によって制御される蛍光測定装置1における測定対象の濃度測定の手順を示す。濃度測定は、第1波長測定工程(ステップS1)、第2波長測定工程(ステップS2)、基準濃度算出工程(ステップS3)、第1波長吸光度算出工程(ステップS4)、第2波長吸光度算出工程(ステップS5)、吸光度補正工程(ステップS6)、散乱度算出工程(ステップS7)、及び散乱度補正工程(ステップS8)を備える。 FIG. 2 shows a procedure for measuring the concentration of the measurement target in the fluorescence measurement apparatus 1 controlled by the control device 70. As shown in FIG. Concentration measurement includes a first wavelength measurement step (step S1), a second wavelength measurement step (step S2), a reference concentration calculation step (step S3), a first wavelength absorbance calculation step (step S4), and a second wavelength absorbance calculation step. (Step S5), an absorbance correction step (Step S6), a scattering degree calculation step (Step S7), and a scattering degree correction step (Step S8).

ステップS1の第1波長測定工程では、第1光源21から第1波長の第1測定光を投光し、第1受光素子31及び第2受光素子41の受光強度を測定する。 In the first wavelength measurement step of step S1, the first light source 21 projects the first measurement light of the first wavelength, and the received light intensities of the first light receiving element 31 and the second light receiving element 41 are measured.

ステップS2の第2波長測定工程では、第2光源22から第2波長の第2測定光を投光し、第1受光素子31及び第2受光素子41の受光強度を測定する。 In the second wavelength measurement process of step S2, the second light source 22 emits the second measurement light of the second wavelength, and the received light intensities of the first light receiving element 31 and the second light receiving element 41 are measured.

ステップS3の基準濃度算出工程では、第1波長測定工程で測定した第1受光素子31の受光強度に基づいて、着色等の光の吸収がないものと仮定した測定対象の濃度である基準濃度を算出する。具体的には、基準濃度は、第1波長測定工程で測定した第1受光素子31の受光強度に比例する値として算出することができる。ここで算出される基準濃度は、着色等の影響に起因する誤差を含む値となる。 In the reference density calculation process of step S3, the reference density, which is the density of the measurement object assuming that there is no absorption of light such as coloring, is calculated based on the received light intensity of the first light receiving element 31 measured in the first wavelength measurement process. calculate. Specifically, the reference concentration can be calculated as a value proportional to the received light intensity of the first light receiving element 31 measured in the first wavelength measurement step. The reference density calculated here is a value that includes an error caused by the influence of coloring or the like.

ステップS4の第1波長吸光度算出工程では、第1波長測定工程で測定した第2受光素子41の受光強度に基づいて、被測定水の第1波長の吸光度である第1吸光度を算出する。具体的には、予め測定室13に純水を貯留した状態で測定される第2受光素子41の受光強度(ブランク)に対する第1波長測定工程で測定した第2受光素子41の受光強度の比率から、被測定水の第1吸光度を算出できる。なお、ここで算出される第1吸光度は、厳密に正確な光の吸収度合いを示すものではなく光の散乱による誤差を含み得る。 In the first wavelength absorbance calculation step of step S4, the first absorbance, which is the absorbance of the water to be measured at the first wavelength, is calculated based on the received light intensity of the second light receiving element 41 measured in the first wavelength measurement step. Specifically, the ratio of the light receiving intensity of the second light receiving element 41 measured in the first wavelength measurement step to the light receiving intensity (blank) of the second light receiving element 41 measured with pure water stored in the measurement chamber 13 in advance. , the first absorbance of the water to be measured can be calculated. Note that the first absorbance calculated here does not indicate a strictly accurate degree of light absorption, and may include an error due to light scattering.

ステップS5の第2波長吸光度算出工程では、第2波長測定工程で測定した第2受光素子41の受光強度に基づいて、第1波長測定工程と同様の手法により被測定水の第2波長の吸光度である第2吸光度を算出する。この第2吸光度も、光の散乱による誤差を含み得る。 In the second wavelength absorbance calculation step of step S5, based on the received light intensity of the second light receiving element 41 measured in the second wavelength measurement step, the absorbance of the water to be measured at the second wavelength is calculated by the same method as in the first wavelength measurement step. A second absorbance is calculated. This second absorbance may also contain errors due to light scattering.

ステップS6の吸光度補正工程では、基準濃度算出工程で算出した基準濃度を、第1波長吸光度算出工程で算出した第1吸光度及び第2波長吸光度算出工程で算出した第2吸光度によって補正する。第1波長測定工程における第1受光素子31の受光強度の光の吸収による低下は、投光路14から測定室13の中心部(投光路14の軸と測定光路15の軸との交点)までの光路での被測定水による第1測定光の吸光と、測定室13の中心部から測定光路15までの光路での被測定水による蛍光の吸光と、に分けて考えられる。 In the absorbance correction step of step S6, the reference concentration calculated in the reference concentration calculation step is corrected by the first absorbance calculated in the first wavelength absorbance calculation step and the second absorbance calculated in the second wavelength absorbance calculation step. The decrease in the received light intensity of the first light-receiving element 31 in the first wavelength measurement step due to light absorption is from the projection light path 14 to the center of the measurement chamber 13 (the intersection of the axis of the light projection path 14 and the axis of the measurement light path 15). Absorption of the first measurement light by the water to be measured on the optical path and absorption of fluorescence by the water to be measured on the optical path from the center of the measurement chamber 13 to the measurement optical path 15 can be considered separately.

このため、投光路14から測定室13の中心部までの光路における第1測定光の吸光は第1吸光度に基づいて補正することができ、測定室13の中心部から測定光路15までの光路における蛍光の吸光は、第2吸光度に基づいて補正することができる。計算を容易にするために、投光路14から測定室13の中心部までの光路長、測定室13の中心部から透過光路16までの光路長、及び測定室13の中心部から測定光路15までの光路長が等しいことが好ましい。 Therefore, the absorption of the first measurement light in the optical path from the projection light path 14 to the center of the measurement chamber 13 can be corrected based on the first absorbance, and the light absorption in the optical path from the center of the measurement chamber 13 to the measurement light path 15 Fluorescence absorbance can be corrected based on the second absorbance. For ease of calculation, the optical path length from the projection path 14 to the center of the measuring chamber 13, the optical path length from the center of the measuring chamber 13 to the transmitted optical path 16, and the optical path length from the center of the measuring chamber 13 to the measuring optical path 15 are preferably equal in optical path length.

ステップS7の散乱度算出工程では、第2波長測定工程で測定した第1受光素子31の受光強度に基づいて、測定室13の中心部以外の領域で励起された蛍光が被測定水における光の散乱により第1受光素子31に到達することにより生じる第1受光素子31の受光強度のオフセットを示す散乱度を算出する。 In the scattering degree calculation step of step S7, the fluorescence excited in the region other than the central portion of the measurement chamber 13 is based on the intensity of light received by the first light receiving element 31 measured in the second wavelength measurement step. A degree of scattering indicating an offset of the received light intensity of the first light receiving element 31 caused by reaching the first light receiving element 31 due to scattering is calculated.

ステップS8の散乱度補正工程では、散乱度算出工程で算出した散乱度に基づいて、吸光度補正工程で基準濃度を補正した値をさらに補正する。これによって、被測定水中の測定対象の濃度の正確な値を算出できる。 In the scattering degree correcting step of step S8, the value obtained by correcting the reference concentration in the absorbance correcting step is further corrected based on the scattering degree calculated in the scattering degree calculating step. As a result, an accurate concentration value of the measurement object in the water to be measured can be calculated.

常時開放判定部73は、第1受光素子31が所定の閾値以上の光を検出している場合には測定室13の蓋部131が開放状態であると判断する。つまり、常時開放判定部73は、第1光源21及び第2光源22が発し得る光量の最大値において第1受光素子31が受光し得る光量の最大値として想定される閾値を超えると判断する基準値として予め設定される閾値以上の光を第1受光素子31が検出する場合には、蓋体12が取り外されており、外光が測定室13及び測定光路15を通して第1受光素子31に入射していると判断する。 The normally open determination section 73 determines that the cover section 131 of the measurement chamber 13 is in the open state when the first light receiving element 31 detects light equal to or greater than a predetermined threshold. That is, the normally open determination unit 73 determines that the maximum amount of light that can be emitted by the first light source 21 and the second light source 22 exceeds the threshold assumed as the maximum amount of light that can be received by the first light receiving element 31. When the first light-receiving element 31 detects light equal to or greater than a preset threshold value, the lid 12 is removed and external light enters the first light-receiving element 31 through the measurement chamber 13 and the measurement optical path 15. judge that it is.

休止時開放判定部74は、投光部20により測定光(第1測定光及び第2測定光)を投光していないときに第1受光部30又は第2受光部40が光を検出している場合、つまり第1受光素子31及び第2受光素子41の少なくとも一方が受光している場合には、測定室13の蓋部131が開放状態であると判断する。 When the light projecting unit 20 is not projecting the measurement light (the first measurement light and the second measurement light), the rest open determination unit 74 detects light from the first light receiving unit 30 or the second light receiving unit 40 . If so, that is, if at least one of the first light-receiving element 31 and the second light-receiving element 41 is receiving light, it is determined that the cover 131 of the measurement chamber 13 is open.

以上のように、被測定水を貯留する測定室13と、測定室13に第1方向に光を投光する投光路14と、測定室13から第1方向と異なる方向に光を出射する測定光路15と、測定室13から投光路14の延長線上に光を出射する透過光路16と、投光路14を通して測定室13に測定対象を励起して蛍光を生じさせる第1波長の第1測定光を投光する第1光源21と、投光路14を通して測定室13に測定対象の蛍光の波長と同一又は近似する第2波長の第2測定光を投光する第2光源22と、測定光路15から出射する光を受光する第1受光素子31と、透過光路16から出射する光を受光する第2受光素子41と、を備える蛍光測定装置1は、被測定水中での光の吸収及び拡散を考慮して、比較的正確に測定対象の濃度を測定できる。 As described above, the measurement chamber 13 storing the water to be measured, the light projection path 14 projecting light into the measurement chamber 13 in the first direction, and the measurement chamber 13 emitting light in a direction different from the first direction. an optical path 15, a transmission optical path 16 for emitting light from the measurement chamber 13 onto an extension of the light projection path 14, and a first measurement light of a first wavelength that excites the object to be measured into the measurement chamber 13 through the light projection path 14 to generate fluorescence. , a second light source 22 that projects a second measurement light having a second wavelength that is the same as or similar to the wavelength of the fluorescence to be measured into the measurement chamber 13 through the light projection path 14, and a measurement light path 15 The fluorescence measurement device 1 includes a first light receiving element 31 that receives light emitted from the transmission light path 16 and a second light receiving element 41 that receives light emitted from the transmission optical path 16. In consideration of this, the concentration of the object to be measured can be measured relatively accurately.

また、蛍光測定装置1は、第1光源21及び第2光源22の少なくとも一方から測定室13への投光量を調節する光量調節機構24を備えるため、第1測定光の投光時の測定対象の蛍光の強度と第2測定光の投光時の着色等による散乱光の強度とを第1受光素子31の測定可能範囲内に収めることができる。このため、蛍光測定装置1は、同じ第1受光素子31によって蛍光の強度と散乱光の強度を測定することができるので、受光素子の数が少なく、構成が簡単である。また、蛍光測定装置1は、蛍光の強度と散乱光の強度を同一の光路で測定するため、装置の部分的な汚れ等による測定誤差が発生しにくい。 In addition, since the fluorescence measurement apparatus 1 includes a light amount adjustment mechanism 24 that adjusts the amount of light projected from at least one of the first light source 21 and the second light source 22 to the measurement chamber 13, the measurement target when the first measurement light is projected. , and the intensity of scattered light due to coloring or the like during projection of the second measurement light can be kept within the measurable range of the first light receiving element 31 . Therefore, the fluorescence measurement apparatus 1 can measure the intensity of fluorescence and the intensity of scattered light using the same first light receiving element 31, so the number of light receiving elements is small and the configuration is simple. In addition, since the fluorescence measurement device 1 measures the intensity of fluorescence and the intensity of scattered light in the same optical path, measurement errors due to partial dirt or the like on the device are less likely to occur.

また、蛍光測定装置1は、測定室13の蓋部131の開放を検知する常時開放判定部73及び休止時開放判定部74を備えるため、蛍光測定装置1は、蓋部131を開放している状態で供給ライン50から測定室13に新たに被測定水が供給され、開放されている蓋部131から被測定水が外部に噴出するトラブルを防止できる。 In addition, since the fluorescence measurement apparatus 1 includes the always open determination unit 73 and the idle open determination unit 74 that detect opening of the lid 131 of the measurement chamber 13, the fluorescence measurement apparatus 1 keeps the lid 131 open. In this state, the water to be measured is newly supplied to the measurement chamber 13 from the supply line 50, and the trouble of the water to be measured spouting out from the open lid portion 131 can be prevented.

また、蛍光測定装置1は、測定光を投光する前に所定時間だけ開閉弁51を開放し、開閉弁51を閉鎖した状態で測定光を投光して濃度を測定するので、開閉弁51が開放される時間が短く、開閉弁51が開放されているときに誤って蓋部131が開放されるリスクを低減できる。 In addition, the fluorescence measurement apparatus 1 opens the on-off valve 51 for a predetermined period of time before emitting the measurement light, and measures the concentration by emitting the measurement light with the on-off valve 51 closed. is open for a short time, and the risk of opening the cover 131 by mistake while the on-off valve 51 is open can be reduced.

また、蛍光測定装置1は、第1検出回路基板32及び第2検出回路基板42に受光部30,40の検出信号を増幅する増幅回路を設けることで、測定光の強度を小さく設定して相対的に外光の検出感度を向上できるので、蓋部131の開放をより確実に検知できる。 In addition, the fluorescence measurement apparatus 1 is provided with amplification circuits for amplifying the detection signals of the light receiving sections 30 and 40 on the first detection circuit board 32 and the second detection circuit board 42, thereby setting the intensity of the measurement light to be small. Since the detection sensitivity of external light can be substantially improved, the opening of the lid portion 131 can be detected more reliably.

以上、本発明の蛍光測定装置の好ましい各実施形態につき説明したが、本発明は、上述の実施形態に制限されるものではなく、適宜変更が可能である。 Although preferred embodiments of the fluorescence measurement apparatus of the present invention have been described above, the present invention is not limited to the above-described embodiments, and can be modified as appropriate.

例として、基準濃度、第1吸光度、第2吸光度及び散乱度の少なくともいずれかを算出することなく、受光強度の検出値を代入して測定対象の濃度を直接算出する計算式を用いてもよい。 As an example, a calculation formula may be used in which the concentration of the measurement target is directly calculated by substituting the detected value of the received light intensity without calculating at least one of the reference concentration, the first absorbance, the second absorbance and the scattering degree. .

また、第2波長の光を遮断せず、第1波長の光だけを遮断するフィルタを設けることが難しい場合等、第1測定部にフィルタを設けず、第2測定光による測定値から算出される第2波長の散乱度と第1波長における散乱度が同程度であるものとして補正を行ってもよい。 In addition, when it is difficult to provide a filter that blocks only the light of the first wavelength without blocking the light of the second wavelength, the filter is not provided in the first measurement unit, and the value calculated from the measurement value of the second measurement light is used. The correction may be performed assuming that the degree of scattering at the second wavelength and the degree of scattering at the first wavelength are approximately the same.

1 蛍光測定装置
10 ハウジング
11 本体容器
111 内ねじ
12 蓋体
121 外ねじ
13 測定室
131 蓋部
14 投光路
15 測定光路
16 透過光路
17 供給流路
18 排出流路
20 投光部
21 第1光源
22 第2光源
23 投光回路基板
24 光量調節機構
25 透光部カバー
30 第1受光部
31 第1受光素子
32 第1検出回路基板
33 フィルタ
34 第1受光部カバー
40 第2受光部
41 第2受光素子
42 第2検出回路基板
43 第2受光部カバー
50 供給ライン
51 開閉弁
60 排出ライン
70 制御装置
71 測定制御部
72 濃度算出部
73 常時開放判定部
74 休止時開放判定部
1 fluorescence measurement device 10 housing 11 main container 111 inner screw 12 lid 121 outer screw 13 measurement chamber 131 lid 14 light projection path 15 measurement light path 16 transmission light path 17 supply channel 18 discharge channel 20 light projection part 21 first light source 22 Second light source 23 Light emitting circuit board 24 Light amount adjusting mechanism 25 Translucent part cover 30 First light receiving part 31 First light receiving element 32 First detection circuit board 33 Filter 34 First light receiving part cover 40 Second light receiving part 41 Second light receiving Element 42 Second detection circuit board 43 Second light receiving unit cover 50 Supply line 51 On-off valve 60 Discharge line 70 Control device 71 Measurement control unit 72 Concentration calculation unit 73 Always open determination unit 74 Open determination unit at rest

Claims (6)

被測定水中の測定対象の濃度を測定する蛍光測定装置であって、
前記被測定水を貯留する測定室と、
前記測定室に第1方向に光を投光する投光路と、
前記測定室から前記第1方向と異なる方向に光を出射する測定光路と、
前記測定室から前記投光路の延長線上に光を出射する透過光路と、
前記投光路を通して前記測定室に前記測定対象を励起して蛍光を生じさせる第1波長の第1測定光を投光する第1光源と、
前記投光路を通して前記測定室に前記測定対象の前記蛍光の波長と同一又は近似する第2波長の第2測定光を投光する第2光源と、
前記測定光路から出射する光を受光する第1受光素子と、
前記透過光路から出射する光を受光する第2受光素子と、
前記第1光源及び前記第2光源の少なくとも一方から前記測定室への投光量を調節する光量調節機構と、
を備える、蛍光測定装置。
A fluorescence measuring device for measuring the concentration of a measurement target in water to be measured,
a measurement chamber for storing the water to be measured;
a light projection path for projecting light into the measurement chamber in a first direction;
a measurement optical path that emits light from the measurement chamber in a direction different from the first direction;
a transmitted light path for emitting light from the measurement chamber onto an extension line of the light projection path;
a first light source that projects a first measurement light having a first wavelength that excites the object to be measured and causes fluorescence to be emitted into the measurement chamber through the light projection path;
a second light source that projects a second measurement light having a second wavelength that is the same as or similar to the wavelength of the fluorescence of the measurement target into the measurement chamber through the light projection path;
a first light receiving element that receives light emitted from the measurement optical path;
a second light receiving element that receives light emitted from the transmission optical path;
a light amount adjusting mechanism that adjusts the amount of light projected from at least one of the first light source and the second light source to the measurement chamber;
A fluorometer.
前記光量調節機構は、前記第1光源及び前記第2光源の少なくとも一方の光路を制限する絞りを有する、請求項1に記載の蛍光測定装置。 2. The fluorescence measuring apparatus according to claim 1, wherein said light quantity adjusting mechanism has a diaphragm that restricts an optical path of at least one of said first light source and said second light source. 前記第1光源及び前記第2光源は同じ基板上に隣接して配設される、請求項1又は2に記載の蛍光測定装置。 3. The fluorescence measurement device according to claim 1, wherein said first light source and said second light source are arranged adjacently on the same substrate. 前記測定光路から出射する光から前記第1波長の成分を除去するフィルタをさらに備える、請求項1又は2に記載の蛍光測定装置。 3. The fluorescence measurement apparatus according to claim 1, further comprising a filter that removes the first wavelength component from the light emitted from the measurement optical path. 前記第1受光素子が所定の閾値以上の光を検出している場合には前記測定室が開放状態であると判断する常時開放判定部をさらに備える、請求項1から4のいずれかに記載の蛍光測定装置。 5. The apparatus according to any one of claims 1 to 4, further comprising a constantly open determination unit that determines that the measurement chamber is open when the first light receiving element detects light equal to or greater than a predetermined threshold. Fluorometer. 前記第1測定光及び前記第2測定光を投光していないときに前記第1受光素子又は前記第2受光素子が光を検出している場合には前記測定室が開放状態であると判断する休止時開放判定部をさらに備える、請求項1から5のいずれかに記載の蛍光測定装置。 If the first light-receiving element or the second light-receiving element detects light when the first measurement light and the second measurement light are not projected, it is determined that the measurement chamber is open. 6. The fluorescence measurement device according to claim 1, further comprising a rest-time open determination unit.
JP2021126111A 2021-07-30 2021-07-30 Fluorescence measuring device Pending JP2023020633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021126111A JP2023020633A (en) 2021-07-30 2021-07-30 Fluorescence measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021126111A JP2023020633A (en) 2021-07-30 2021-07-30 Fluorescence measuring device

Publications (1)

Publication Number Publication Date
JP2023020633A true JP2023020633A (en) 2023-02-09

Family

ID=85159337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021126111A Pending JP2023020633A (en) 2021-07-30 2021-07-30 Fluorescence measuring device

Country Status (1)

Country Link
JP (1) JP2023020633A (en)

Similar Documents

Publication Publication Date Title
US8085401B2 (en) Ozone concentration sensor
JP3306079B2 (en) Optical analyzer and calibration method thereof
JP2003501622A (en) Gas sensor mechanism
KR20080058181A (en) Oil mist detector
CA2611876C (en) Uv transmittance measuring device
JP2008513770A (en) Examination of eggs for the presence of blood
JPH0347450B2 (en)
KR20040080607A (en) Tubidity measuring device and its measuring method
KR101960226B1 (en) Apparatus for measuring black carbon
US20180284014A1 (en) Functional water concentration sensor
JP2023020633A (en) Fluorescence measuring device
US20100208239A1 (en) Chlorine dioxide sensor
US10962476B2 (en) Turbidity sensor and method for measuring turbidity
KR100781968B1 (en) Variable light-path gas density sensor
JP2007113987A (en) Calibration method of orthogonal scattering turbidity meter and calibration container used therein
WO2022024407A1 (en) Gas concentration detection device
US20230288332A1 (en) Optical measurement device and water quality analysis system
JP2023020634A (en) Optical water quality measuring device
JP2009145125A (en) Gas sample chamber and concentration measuring instrument equipped with the same
JP2005121490A (en) Flame detector equipped with automatic test function
JP7113604B2 (en) Absorbance measuring device and absorbance measuring method
US9869626B2 (en) Particle size distribution measuring apparatus and particle size distribution measuring method
JP2010066209A (en) Concentration measuring device
JP3245144U (en) Gas concentration measuring device
US11686671B2 (en) Concentration measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240415