JP2009145125A - Gas sample chamber and concentration measuring instrument equipped with the same - Google Patents

Gas sample chamber and concentration measuring instrument equipped with the same Download PDF

Info

Publication number
JP2009145125A
JP2009145125A JP2007321134A JP2007321134A JP2009145125A JP 2009145125 A JP2009145125 A JP 2009145125A JP 2007321134 A JP2007321134 A JP 2007321134A JP 2007321134 A JP2007321134 A JP 2007321134A JP 2009145125 A JP2009145125 A JP 2009145125A
Authority
JP
Japan
Prior art keywords
light
sample chamber
gas sample
light source
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2007321134A
Other languages
Japanese (ja)
Inventor
Yoshiro Miyazaki
芳郎 宮崎
Junya Tanigawa
純也 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2007321134A priority Critical patent/JP2009145125A/en
Publication of JP2009145125A publication Critical patent/JP2009145125A/en
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas sample chamber capable of rapidly measuring the concentration of the gas to be measured in an atmosphere and capable of preventing penetrated foreign matter from becoming the measuring obstruction of the concentration of the gas to be measured, and to provide a concentration measuring instrument equipped with the chamber. <P>SOLUTION: The concentration measuring instrument 1 is equipped with the gas sample chamber 2 and microcomputer. The gas sample chamber 2 is equipped with a measuring cell 6, a light source 7 and a light-receiving unit 8. An atmosphere movement permitting part 9, equipped with a plurality of through-holes 10, is provided in the measuring cell 6. The through-holes 10 are provided to the outer wall 6a, positioned at the upper part and the outer wall 6a positioned at the lower part to be opposed to each other in a vertical direction. The light source 7 emits infrared rays of the measuring cell 6, and the light-receiving unit 8 is equipped with a plurality of light-receiving devices 12 and condensing members 13. The light-receiving devices 12 receive the infrared rays from the light source 7 and the condensing members 13 condense infrared rays to the light-receiving devices 12. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えば、二酸化炭素、水蒸気、一酸化炭素などの所定の気体の濃度を測定する濃度測定装置に用いられる気体サンプル室及びこの気体サンプル室を備えた濃度測定装置に関する。   The present invention relates to a gas sample chamber used for a concentration measuring device that measures the concentration of a predetermined gas such as carbon dioxide, water vapor, carbon monoxide, and the like, and a concentration measuring device including the gas sample chamber.

例えば、二酸化炭素、水蒸気、一酸化炭素などの所定の気体の濃度を測定する濃度測定装置には、従来から種々の気体サンプル室が用いられてきた。従来の気体サンプル室は、内部が密閉された筒状の本体部と、本体部の一端部に設けられた光源と、本体部の他端部に設けられた受光器と、前記本体部内に外部の雰囲気を強制的に供給する気体供給部と、を備えている。   For example, various gas sample chambers have conventionally been used for concentration measuring devices that measure the concentration of a predetermined gas such as carbon dioxide, water vapor, or carbon monoxide. A conventional gas sample chamber has a cylindrical main body with a sealed interior, a light source provided at one end of the main body, a light receiver provided at the other end of the main body, and an external device within the main body. And a gas supply unit for forcibly supplying the atmosphere.

本体部の内面は、鏡面に形成されている。光源は、例えば、赤外線を放射する。受光器は、赤外線センサと、前記赤外線センサと光源との間に配置されて所定の波長の赤外線のみを透過するフィルタとを備えている。フィルタを透過する赤外線の波長は、測定対象の気体の濃度により定められる。たとえば、測定対象の気体の濃度が0ppmから数千ppmの範囲内であれば、フィルタを透過する赤外線の波長は、最も減衰し易い赤外線波長を選択するなどして、測定対象の気体の濃度に応じて適切に選択される。気体供給部は、ポンプと配管などを備えており、本体部内に雰囲気を強制的に供給し、該本体部内の気体を強制的に排出する。   The inner surface of the main body is formed as a mirror surface. The light source emits infrared rays, for example. The light receiver includes an infrared sensor and a filter that is disposed between the infrared sensor and the light source and transmits only infrared rays having a predetermined wavelength. The wavelength of infrared rays that pass through the filter is determined by the concentration of the gas to be measured. For example, if the concentration of the gas to be measured is within the range of 0 ppm to several thousand ppm, the infrared wavelength that passes through the filter is set to the concentration of the gas to be measured by selecting the infrared wavelength that is most easily attenuated. Appropriately selected accordingly. The gas supply unit includes a pump, piping, and the like, forcibly supplies an atmosphere into the main body, and forcibly discharges the gas in the main body.

前述した従来の気体サンプル室即ち濃度測定装置は、気体供給部が雰囲気を強制的に本体部内に供給し、フィルタを介して赤外線センサが受光した光源からの赤外線の強さを測定することで、前記雰囲気中の前述した測定対象の気体の濃度を測定する。   In the conventional gas sample chamber, that is, the concentration measuring device described above, the gas supply unit forcibly supplies the atmosphere into the main body unit, and measures the intensity of infrared rays from the light source received by the infrared sensor through the filter. The concentration of the measurement target gas in the atmosphere is measured.

しかしながら、前述した従来の気体サンプル室は、本体部内に強制的に雰囲気を供給する気体供給部を備えているので、装置自体が大型化する傾向であるとともに、気体供給部内に粉塵などの異物が蓄積されると、雰囲気を本体部内にスムーズに供給できなくなり、雰囲気中の測定対象の気体の濃度を正確に測定することが困難となる。   However, since the conventional gas sample chamber described above includes a gas supply unit that forcibly supplies an atmosphere into the main body, the apparatus itself tends to be large and foreign substances such as dust are present in the gas supply unit. If accumulated, the atmosphere cannot be smoothly supplied into the main body, and it becomes difficult to accurately measure the concentration of the gas to be measured in the atmosphere.

この種の問題を解決するために、例えば、特許文献1に示された気体サンプル室が提案されている。特許文献1に示された気体サンプル室は、内部が密閉された筒状の本体部としての中空チューブと、中空チューブの一端部に設けられた光源と、中空チューブの他端部に設けられた受光器とを備えている。   In order to solve this type of problem, for example, a gas sample chamber disclosed in Patent Document 1 has been proposed. The gas sample chamber shown in Patent Document 1 is provided in a hollow tube as a cylindrical main body with the inside sealed, a light source provided at one end of the hollow tube, and the other end of the hollow tube. And a light receiver.

中空チューブは、その内面が鏡面状に形成されており、その外壁に複数の開口部を設けている。また、中空チューブは、前述した開口部を塞いだ半透膜シートが取り付けられている。この半透膜シートは、所定の寸法よりも小さな気体浮遊粒子が通過して中空チューブ内外を移動することを許容し、所定の寸法よりも大きな気体浮遊粒子が通過することを規制して中空チューブ内外を移動することを規制する。このように、半透膜シートを設けることで、特許文献1に示された気体サンプル室は、気体供給部を設けることなく、中空チューブに雰囲気を出入り自在としている。
特許第3606866号
The inner surface of the hollow tube is formed in a mirror shape, and a plurality of openings are provided on the outer wall. Moreover, the semipermeable membrane sheet which closed the opening part mentioned above is attached to the hollow tube. This semipermeable membrane sheet allows a gas floating particle smaller than a predetermined dimension to pass and move inside and outside the hollow tube, and restricts the passage of gas floating particles larger than a predetermined dimension to the hollow tube. Restrict movement inside and outside. Thus, by providing the semipermeable membrane sheet, the gas sample chamber shown in Patent Document 1 allows the atmosphere to freely enter and exit the hollow tube without providing a gas supply unit.
Japanese Patent No. 3606866

しかしながら、前述した特許文献1に示された気体サンプル室は、中空チューブに取り付けられた半透膜シートが粉塵やごみ(気体浮遊粒子)によって目詰まりしやすく、速やかに雰囲気を中空チューブ内に導くことが困難となる傾向であった。このため、特許文献1に示された気体サンプル室は、雰囲気中の測定対象の気体の濃度を速やかに測定することが困難となる傾向であった。   However, in the gas sample chamber shown in Patent Document 1 described above, the semipermeable membrane sheet attached to the hollow tube is easily clogged with dust or dust (gas suspended particles), and the atmosphere is quickly guided into the hollow tube. It was a tendency to become difficult. For this reason, the gas sample chamber shown in Patent Document 1 tends to be difficult to quickly measure the concentration of the gas to be measured in the atmosphere.

このため、雰囲気中の測定対象の気体の濃度を速やかに測定することを可能とするために、前記開口部を塞ぐ半透膜シートを設けないことが考えられるが、この場合、中空チューブ内に異物が侵入しやすく、当該異物が測定対象の気体の濃度の測定に妨げになることが考えられる。   For this reason, in order to make it possible to quickly measure the concentration of the gas to be measured in the atmosphere, it is conceivable not to provide a semipermeable membrane sheet that closes the opening, but in this case, in the hollow tube It is conceivable that foreign matters are likely to enter, and the foreign matters interfere with the measurement of the concentration of the gas to be measured.

したがって、本発明の目的は、雰囲気中の測定対象の気体の濃度を速やかに測定することを可能とするとともに、侵入した異物が測定対象の気体の濃度の測定に妨げになることを防止できる気体サンプル室及びこの気体サンプル室を備えた濃度測定装置を提供することにある。   Therefore, an object of the present invention is to enable the measurement of the concentration of the gas to be measured in the atmosphere quickly and to prevent the intruding foreign matter from interfering with the measurement of the concentration of the gas to be measured. An object of the present invention is to provide a sample chamber and a concentration measuring device including the gas sample chamber.

前記課題を解決し目的を達成するために、請求項1に記載の本発明の気体サンプル室は、光源からの光を受光器に導く気体サンプル室において、筒状に形成された本体部と、前記本体部の一端部に配置された前記光源と、前記本体部の他端部に配置されかつ前記光源からの光を受光する前記受光器と、雰囲気を前記本体部の内外に移動自在とする雰囲気移動許容部と、を備え、前記雰囲気移動許容部は、前記本体部の上部に位置する外壁と下部に位置する外壁との双方に設けられて、互いに鉛直方向に相対する位置に設けられた貫通孔を備えていることを特徴としている。   In order to solve the problems and achieve the object, the gas sample chamber of the present invention according to claim 1 is a gas sample chamber that guides light from a light source to a light receiver. The light source disposed at one end of the main body, the light receiver disposed at the other end of the main body and receiving light from the light source, and the atmosphere can be moved in and out of the main body. An atmosphere movement allowance portion, and the atmosphere movement allowance portion is provided on both an outer wall located at an upper portion of the main body portion and an outer wall located at a lower portion, and provided at positions facing each other in the vertical direction. It is characterized by having a through hole.

請求項2に記載の本発明の気体サンプル室は、請求項1に記載の気体サンプル室において、前記光源から出射された光を平行光にするリフレクタを備えたことを特徴としている。   A gas sample chamber according to a second aspect of the present invention is the gas sample chamber according to the first aspect, further comprising a reflector that converts the light emitted from the light source into parallel light.

請求項3に記載の本発明の気体サンプル室は、請求項1又は請求項2に記載の気体サンプル室において、前記受光器は、前記光を受光するセンサと、前記センサと前記光源との間に配置されかつ予め定められた波長の光のみを透過する透過部材とを備え、前記透過部材と前記光源との間に配置されかつ前記光を前記透過部材に集光する集光部材を更に備えたことを特徴としている。   A gas sample chamber according to a third aspect of the present invention is the gas sample chamber according to the first or second aspect, wherein the light receiver includes a sensor that receives the light, and the sensor and the light source. A transmission member that transmits only light of a predetermined wavelength, and further includes a light collection member that is disposed between the transmission member and the light source and condenses the light on the transmission member. It is characterized by that.

請求項4に記載の本発明の気体サンプル室は、請求項3に記載の気体サンプル室において、前記受光器を複数備え、これら複数の受光器の前記透過部材が透過する光の波長が互いに異なることを特徴としている。   The gas sample chamber according to a fourth aspect of the present invention is the gas sample chamber according to the third aspect, wherein the gas sample chamber includes a plurality of the light receivers, and the wavelengths of light transmitted through the transmission members of the plurality of light receivers are different from each other. It is characterized by that.

請求項5に記載の本発明の濃度測定装置は、一端部に光源を設けかつ他端部に前記光源からの光を受光する受光器を設けた気体サンプル室と、前記受光器が受光した前記光源からの光の強さに基づいて、前記気体サンプル室内の予め定められた気体の濃度を算出する濃度算出部と、を備えた濃度測定装置において、前記気体サンプル室として、請求項1乃至請求項4のうちいずれか一項に記載の気体サンプル室を備えたことを特徴としている。   The concentration measuring apparatus of the present invention according to claim 5 is a gas sample chamber provided with a light source at one end and a light receiver for receiving light from the light source at the other end, and the light received by the light receiver. A concentration measurement device comprising: a concentration calculation unit that calculates a predetermined gas concentration in the gas sample chamber based on the intensity of light from a light source. The gas sample chamber according to any one of Items 4 is provided.

請求項1に記載された本発明によれば、雰囲気移動許容部が、本体部の外壁を貫通した貫通孔を備えているので、この貫通孔が目詰まりせずに、本体部に雰囲気を出し入れ自在にできる。   According to the first aspect of the present invention, since the atmosphere movement allowing portion includes the through hole penetrating the outer wall of the main body portion, the atmosphere is taken in and out of the main body portion without clogging the through hole. You can do it freely.

また、貫通孔が本体部の上部と下部との双方に設けられて、これらの貫通孔が鉛直方向に相対する位置に設けられているので、本体部内に侵入した異物を、下部に設けられた孔を通して、速やかに本体部外に導くことができる。   Moreover, since the through holes are provided in both the upper part and the lower part of the main body part, and these through holes are provided in positions opposed to each other in the vertical direction, foreign matter that has entered the main body part is provided in the lower part. It can be quickly guided out of the main body through the hole.

請求項2に記載された本発明によれば、リフレクタを備えているので、光源からの光を本体部の内面で反射させなくても、受光器に導くことができる。   According to the second aspect of the present invention, since the reflector is provided, the light from the light source can be guided to the light receiver without being reflected by the inner surface of the main body.

請求項3に記載された本発明によれば、集光部材を備えているので、光源からの光が貫通孔を通して本体部外に漏れても、本体部の外壁で反射された光を受光器に導くことができ、十分な強さの光を透過部材即ちセンサに導くことができる。   According to the third aspect of the present invention, since the light collecting member is provided, even if the light from the light source leaks out of the main body through the through hole, the light reflected by the outer wall of the main body is received by the light receiver. And a sufficiently strong light can be guided to the transmission member or sensor.

請求項4に記載された本発明によれば、透過部材が透過する波長の異なる受光器を複数備えているので、複数の種類の気体の濃度を測定するために用いることができる。   According to the fourth aspect of the present invention, since a plurality of light receivers having different wavelengths transmitted by the transmission member are provided, it can be used to measure the concentrations of a plurality of types of gases.

請求項5に記載された本発明によれば、前述した気体サンプル室を備えているので、気体サンプル室の本体部に雰囲気を出し入れ自在となる。   According to the fifth aspect of the present invention, since the gas sample chamber described above is provided, the atmosphere can be taken into and out of the main body of the gas sample chamber.

以上説明したように請求項1に記載の本発明は、雰囲気移動許容部が本体部に雰囲気を出し入れ自在とするので、雰囲気が速やかに本体部内に導かれて、当該雰囲気中の測定対象の気体の濃度を速やかに測定することが可能となる。   As described above, according to the first aspect of the present invention, since the atmosphere movement allowing portion allows the atmosphere to be taken in and out of the main body, the atmosphere is promptly introduced into the main body and the gas to be measured in the atmosphere is measured. It becomes possible to measure the density | concentration of swiftly.

また、本体部内に侵入した異物を速やかに本体部外に導くことができるため、貫通孔が異物によってふさがれて、雰囲気が出入りしにくくなることを防止できるとともに、本体部内に侵入した異物が光源からの光を遮ることを防止できる。したがって、雰囲気中の測定対象の気体の濃度を速やかでかつ確実に測定することを可能とできる。   In addition, since the foreign matter that has entered the main body can be quickly guided out of the main body, it is possible to prevent the through hole from being blocked by the foreign matter and making it difficult for the atmosphere to enter and exit, and the foreign matter that has entered the main body can be used as a light source. Can prevent light from being blocked. Therefore, it is possible to quickly and reliably measure the concentration of the gas to be measured in the atmosphere.

請求項2に記載の本発明は、光源からの光を本体部の内面で反射させなくても、受光器に導くことができるので、本体部の外壁を貫通した貫通孔を設けても、受光器に導くことができて、雰囲気中の測定対象の気体の濃度を確実に測定することが可能となる。   According to the second aspect of the present invention, since the light from the light source can be guided to the light receiver without being reflected by the inner surface of the main body, even if a through-hole penetrating the outer wall of the main body is provided, the light can be received. The concentration of the gas to be measured in the atmosphere can be reliably measured.

請求項3に記載の本発明は、光源からの光が貫通孔を通して本体部外に漏れても、十分な強さの光を透過部材即ちセンサに導くことができるので、貫通孔を設けても、雰囲気中の測定対象の気体の濃度を確実に測定することができる。   According to the third aspect of the present invention, even if light from the light source leaks out of the main body through the through hole, sufficient intensity of light can be guided to the transmission member, that is, the sensor. The concentration of the gas to be measured in the atmosphere can be reliably measured.

請求項4に記載の本発明は、複数の種類の気体の濃度を測定するために用いることができる。   The present invention according to claim 4 can be used to measure the concentrations of a plurality of types of gases.

請求項5に記載の本発明は、前述した気体サンプル室を備えているので、雰囲気中の測定対象の気体の濃度を速やかに測定することを可能とできる。   Since the gas sample chamber described above is provided, the present invention according to claim 5 can quickly measure the concentration of the gas to be measured in the atmosphere.

以下、本発明の一実施形態に係る濃度測定装置を、図1乃至図6を参照して説明する。   Hereinafter, a concentration measuring apparatus according to an embodiment of the present invention will be described with reference to FIGS. 1 to 6.

濃度測定装置1は、図2に示すように、濃度の測定対象の気体を含んだ雰囲気が充填される気体サンプル室2と、制御回路部3と、受光回路部4と、濃度算出部としてのマイクロコンピュータ(以下、μcomと記載する)5と、を備えている。   As shown in FIG. 2, the concentration measuring apparatus 1 includes a gas sample chamber 2 filled with an atmosphere containing a gas whose concentration is to be measured, a control circuit unit 3, a light receiving circuit unit 4, and a concentration calculating unit. And a microcomputer 5 (hereinafter referred to as μcom).

気体サンプル室2は、図1に示すように、本体部としての測定セル6と、光源7と、受光ユニット8とを備えている。測定セル6は、筒状に形成されている。図示例では、測定セル6は、四角筒状に形成されている。測定セル6には、雰囲気移動許容部9が設けられている。即ち、気体サンプル室2は、雰囲気移動許容部9を備えている。   As shown in FIG. 1, the gas sample chamber 2 includes a measurement cell 6 as a main body, a light source 7, and a light receiving unit 8. The measurement cell 6 is formed in a cylindrical shape. In the illustrated example, the measurement cell 6 is formed in a square cylinder shape. The measurement cell 6 is provided with an atmosphere movement allowing portion 9. In other words, the gas sample chamber 2 includes an atmosphere movement allowance unit 9.

雰囲気移動許容部9は、複数の貫通孔10を備えている。貫通孔10は、測定セル6の外壁6aを貫通して、気体サンプル室2の内外を連通している。貫通孔10は、気体サンプル室2の上部に位置する外壁6aと、下部に位置する外壁6aとの双方に設けられている。各々の外壁6aでは、貫通孔10は、複数(図示例では、4つ)設けられている。Kこれらの貫通孔10は、光源7から受光ユニット8に向かう光の光軸に沿って等間隔に並べられている。気体サンプル室2の上部に位置する外壁6aに設けられた貫通孔10と、下部に位置する外壁6aに設けられた貫通孔10とは、鉛直方向に相対する位置に設けられている。各貫通孔10は、内径Rが等しい丸形に形成されている。なお、本発明では、貫通孔10の内径Rは、2mm程度に形成されるのが望ましく、複数の貫通孔10のうち最も受光ユニット6寄りの貫通孔10と受光ユニット6との間隔dが8mm程度となる位置に設けられるのが望ましい。貫通孔10は、雰囲気中の粉塵などの気体浮遊粒子よりも遥かに大きく形成されて、その内側を雰囲気が通ることを許容して、測定セル6即ち気体サンプル室2の内外を、雰囲気を移動自在としている。さらに、貫通孔10は、上部に位置する外壁6aに設けられた貫通孔10を通して気体サンプル室2内に侵入した異物を、速やかに下部に位置する外壁6aに設けられた貫通孔10を通して気体サンプル室2外に排出する。   The atmosphere movement allowing portion 9 includes a plurality of through holes 10. The through hole 10 penetrates the outer wall 6 a of the measurement cell 6 and communicates the inside and outside of the gas sample chamber 2. The through hole 10 is provided in both the outer wall 6a located in the upper part of the gas sample chamber 2 and the outer wall 6a located in the lower part. In each outer wall 6a, a plurality of through holes 10 (four in the illustrated example) are provided. K These through holes 10 are arranged at equal intervals along the optical axis of the light from the light source 7 toward the light receiving unit 8. The through hole 10 provided in the outer wall 6a located in the upper part of the gas sample chamber 2 and the through hole 10 provided in the outer wall 6a located in the lower part are provided in positions facing each other in the vertical direction. Each through hole 10 is formed in a round shape having the same inner diameter R. In the present invention, it is desirable that the inner diameter R of the through hole 10 is about 2 mm, and the distance d between the through hole 10 closest to the light receiving unit 6 and the light receiving unit 6 among the plurality of through holes 10 is 8 mm. It is desirable to be provided at a position where the degree is reached. The through-hole 10 is formed to be much larger than gas suspended particles such as dust in the atmosphere, and allows the atmosphere to pass through the inside, and moves the atmosphere inside and outside the measurement cell 6, that is, the gas sample chamber 2. It is free. Furthermore, the through-hole 10 allows the foreign material that has entered the gas sample chamber 2 through the through-hole 10 provided in the outer wall 6a located in the upper part to quickly pass through the through-hole 10 provided in the outer wall 6a located in the lower part to obtain the gas sample Drain outside the chamber 2.

本発明でいう、雰囲気移動許容部9は、雰囲気中の粉塵などの気体浮遊粒子よりも遥かに大きい貫通孔10を設け、かつ、この貫通孔10をフィルタなどで塞ぐことなく開放して、雰囲気を測定セル6の内外に移動自在とするものである。即ち、本発明の雰囲気移動許容部9は、送風機やポンプなどを設けることなく、測定セル6内に雰囲気を速やかに導いて、当該測定セル6内の気体を速やかに雰囲気と等しくするものである。   In the present invention, the atmosphere movement allowing portion 9 is provided with a through hole 10 that is much larger than gas suspended particles such as dust in the atmosphere, and is opened without closing the through hole 10 with a filter or the like. Can be moved in and out of the measuring cell 6. That is, the atmosphere movement permitting portion 9 of the present invention quickly introduces the atmosphere into the measurement cell 6 without providing a blower or a pump, and quickly makes the gas in the measurement cell 6 equal to the atmosphere. .

光源7は、測定セル6内でかつ当該測定セル6の一端部に設けられている。光源7は、電圧が印加されることで、光としての赤外線を測定セル6の他端部に向かって放射する。光源として、例えば黒体炉、電球等が用いられる。また、光源7には、リフレクタ30が取り付けられている。すなわち、濃度測定装置1は、リフレクタ30を備えている。リフレクタ7は、光源7から出射された光を反射して、受光ユニット8に向かう平行光にする。   The light source 7 is provided in the measurement cell 6 and at one end of the measurement cell 6. The light source 7 emits infrared light as light toward the other end of the measurement cell 6 by applying a voltage. As the light source, for example, a black body furnace or a light bulb is used. A reflector 30 is attached to the light source 7. That is, the concentration measuring apparatus 1 includes a reflector 30. The reflector 7 reflects the light emitted from the light source 7 into parallel light directed to the light receiving unit 8.

受光ユニット8は、図3及び図4に示すように、ユニット本体11と、複数の受光器12と、集光部材13と、を備えている。ユニット本体11即ち受光ユニット8は、測定セル6内でかつ当該測定セル6の他端部に設けられている。ユニット本体11は、箱状に形成されている。   As shown in FIGS. 3 and 4, the light receiving unit 8 includes a unit main body 11, a plurality of light receivers 12, and a light collecting member 13. The unit main body 11, that is, the light receiving unit 8 is provided in the measurement cell 6 and at the other end of the measurement cell 6. The unit main body 11 is formed in a box shape.

受光器12は、図示例では、四つ設けられている。受光器12は、それぞれ、センサとしての赤外線センサ14と、透過部材15とを備えている。赤外線センサ14は、ユニット本体11に取り付けられている。複数の受光器12の赤外線センサ14は、同一平面上に配置されている。赤外線センサ14は、光源7が発しかつ透過部材15を透過した赤外線を受光し、この赤外線の熱を電気エネルギーに変換する。赤外線センサ14は、赤外線の熱を電気エネルギーに変換して、センサ出力としてμcom5に出力する。赤外線センサ14として、例えば、焦電型、サーモパイル型のものが用いられる。   In the illustrated example, four light receivers 12 are provided. Each of the light receivers 12 includes an infrared sensor 14 as a sensor and a transmission member 15. The infrared sensor 14 is attached to the unit main body 11. The infrared sensors 14 of the plurality of light receivers 12 are arranged on the same plane. The infrared sensor 14 receives infrared rays emitted from the light source 7 and transmitted through the transmission member 15 and converts the heat of the infrared rays into electric energy. The infrared sensor 14 converts infrared heat into electrical energy, and outputs it to the μcom 5 as a sensor output. As the infrared sensor 14, for example, a pyroelectric type or a thermopile type is used.

透過部材15は、ユニット本体11に取り付けられて、赤外線センサ14と光源7との間に配置されている。複数の受光器12の透過部材15は、同一平面上に配置されている。透過部材15は、それぞれ、光源7からの赤外線のうち予め定められた波長の赤外線のみを透過して、当該透過した波長の赤外線を赤外線センサ14まで導く。複数の受光器12の透過部材15は、互いに透過する赤外線の波長が異なる。   The transmission member 15 is attached to the unit body 11 and is disposed between the infrared sensor 14 and the light source 7. The transmission members 15 of the plurality of light receivers 12 are arranged on the same plane. Each of the transmissive members 15 transmits only infrared rays having a predetermined wavelength out of infrared rays from the light source 7 and guides the infrared rays having the transmitted wavelengths to the infrared sensor 14. The transmission members 15 of the plurality of light receivers 12 have different wavelengths of infrared rays that pass through each other.

透過部材15は、その透過する赤外線の波長は、濃度測定装置1が濃度の測定対象とする気体に応じて定められる。図示例では、測定対象の気体の測定の濃度範囲が0ppmから数千ppmの範囲内の低濃度の検出を可能としたものであり、透過部材15の透過する赤外線の波長は、濃度の測定対象の気体に対する透過率が小さな赤外線の波長にされる。なお、受光器12は、二酸化炭素以外にも水蒸気、一酸化炭素を測定対象の気体とする。図示例では、例えば、一つの受光器12は、基準として用いられ、その透過部材15が大気中で全く減衰しない波長が1.5μm又は4.0μmの赤外線のみを透過する。図示例では、例えば、他の一つの受光器12は、二酸化炭素の濃度を測定するために用いられ、その透過部材15が前述した二酸化炭素中で減衰しやすい波長が4.27μmの赤外線のみを透過する。図示例では、例えば、更に他の受光器12は、水蒸気の濃度を測定するために用いられ、その透過部材15が前述した水蒸気中で減衰しやすい波長が1.9μmの赤外線のみを透過する。図示例では、例えば、更に別の受光器12は、一酸化炭素の濃度を測定するために用いられ、その透過部材15が前述した一酸化炭素中で減衰しやすい波長が4.64μmの赤外線のみを透過する。   The wavelength of infrared rays that pass through the transmissive member 15 is determined according to the gas that the concentration measuring device 1 is to measure the concentration of. In the illustrated example, it is possible to detect a low concentration within the measurement concentration range of the gas to be measured within the range of 0 ppm to several thousand ppm, and the wavelength of the infrared ray transmitted through the transmission member 15 is the concentration measurement target. The transmittance of the gas to the gas is set to a small infrared wavelength. The light receiver 12 uses water vapor and carbon monoxide as the measurement target gas in addition to carbon dioxide. In the illustrated example, for example, one light receiver 12 is used as a reference, and the transmitting member 15 transmits only infrared rays having a wavelength of 1.5 μm or 4.0 μm that does not attenuate at all in the atmosphere. In the illustrated example, for example, another one of the light receivers 12 is used for measuring the concentration of carbon dioxide, and the transmission member 15 only receives infrared rays having a wavelength of 4.27 μm that is easily attenuated in carbon dioxide. To Penetrate. In the illustrated example, for example, still another light receiver 12 is used for measuring the concentration of water vapor, and the transmission member 15 transmits only infrared light having a wavelength of 1.9 μm that is easily attenuated in the water vapor. In the illustrated example, for example, another light receiver 12 is used to measure the concentration of carbon monoxide, and only the infrared ray whose wavelength is easily attenuated in the above-described carbon monoxide by the transmitting member 15 is 4.64 μm. Transparent.

なお、図6は、二酸化炭素に対する赤外線の透過率を示しており、図6中の横軸は赤外線の波長(μm)を示し、図6中の縦軸は赤外線の透過率(%)を示している。図6によれば、波長が4.27μmの赤外線の二酸化炭素中の透過率が、略零であることが示されており、波長が4.27μmの赤外線は、二酸化炭素中を殆ど透過しない(殆ど吸収されてしまう)ことが示されている。   6 shows the infrared transmittance for carbon dioxide, the horizontal axis in FIG. 6 indicates the wavelength of infrared rays (μm), and the vertical axis in FIG. 6 indicates the infrared transmittance (%). ing. FIG. 6 shows that the transmittance of infrared rays having a wavelength of 4.27 μm in carbon dioxide is substantially zero, and infrared rays having a wavelength of 4.27 μm hardly pass through carbon dioxide ( It is almost absorbed).

集光部材13は、例えば300度などの所定の角度の範囲の赤外線を集光して、透過部材15つまり赤外線センサ4に集中させる。すると、光源7から直接入射する赤外線以外にも、測定セル6の外壁6aの内面で反射す赤外線も赤外線センサ5に集めることができるので、赤外線の受光効率を良くすることができる。なお、集光部材13として、フレーネルレンズ等を用いることができる。   The condensing member 13 condenses infrared rays in a range of a predetermined angle such as 300 degrees and concentrates it on the transmissive member 15, that is, the infrared sensor 4. Then, in addition to the infrared rays directly incident from the light source 7, infrared rays reflected by the inner surface of the outer wall 6a of the measurement cell 6 can be collected in the infrared sensor 5, so that the infrared light receiving efficiency can be improved. Note that a Fresnel lens or the like can be used as the light collecting member 13.

制御回路部3は、図2に示すように、発振器16、クロック分周回路17、定電圧回路18などを備えており、μcom5の命令とおりに、所定の周波数で光源7を点滅させる。   As shown in FIG. 2, the control circuit unit 3 includes an oscillator 16, a clock frequency dividing circuit 17, a constant voltage circuit 18, and the like, and blinks the light source 7 at a predetermined frequency according to a command of μcom5.

受光回路部4は、図5に示すように、複数のアンプ19と、切り換え器20と、A/D変換器21とを備えている、アンプ19は、それぞれ、受光器12と1対1に対応して設けられている。アンプ19は、対応する受光器12の赤外線センサ14からの信号を増幅して、切り換え器20を介してA/D変換器21に向かって出力する。A/D変換器21は、赤外線センサ14からの信号をデジタル信号に変換して、μcom5に向かって出力する。   As shown in FIG. 5, the light receiving circuit unit 4 includes a plurality of amplifiers 19, a switcher 20, and an A / D converter 21. The amplifiers 19 are in one-to-one correspondence with the light receivers 12. Correspondingly provided. The amplifier 19 amplifies the signal from the infrared sensor 14 of the corresponding light receiver 12 and outputs it to the A / D converter 21 via the switcher 20. The A / D converter 21 converts the signal from the infrared sensor 14 into a digital signal and outputs it to the μcom 5.

μcom5は、制御回路部3及び受光回路部4と接続して、これらの動作を制御することで、濃度測定装置1全体の動作をつかさどる。μcom5は、予め定められたプログラムに従って動作するコンピュータである。このμcom5は、周知のように、予め定めたプログラムに従って各種の処理や制御などを行う中央演算処理装置(CPU)、CPUのためのプログラム等を格納した読み出し専用のメモリであるROM、各種のデータを格納するとともにCPUの処理作業に必要なエリアを有する読み出し書き込み自在のメモリであるRAM等を有して構成している。   The μcom 5 is connected to the control circuit unit 3 and the light receiving circuit unit 4 and controls these operations, thereby controlling the operation of the concentration measuring apparatus 1 as a whole. μcom5 is a computer that operates according to a predetermined program. As is well known, this μcom 5 is a central processing unit (CPU) that performs various processes and controls in accordance with a predetermined program, a ROM that is a read-only memory storing a program for the CPU, and various data. And a RAM that is a readable / writable memory having an area necessary for processing operations of the CPU.

また、μcom5には、濃度測定装置1自体がオフ状態の間も記憶内容の保持が可能な電気的消去/書き換え可能な読み出し専用のメモリが接続している。そして、このメモリには、濃度の算出に必要な後述する吸光係数、測定距離、濃度変換係数等の各種情報を記憶するとともに、算出した濃度を外部から読出可能に時系列的に記憶する。   In addition, the μcom 5 is connected to an electrically erasable / rewritable read-only memory capable of holding stored contents even when the concentration measuring apparatus 1 itself is in an OFF state. The memory stores various information such as an extinction coefficient, measurement distance, and concentration conversion coefficient, which will be described later, necessary for calculating the concentration, and stores the calculated concentration in a time series so that it can be read from the outside.

前述した構成の濃度測定装置1は、雰囲気移動許容部9の複数の貫通孔10によって、雰囲気が測定セル6の内外を移動自在となって、この測定セル6即ち気体サンプル室2内の気体を雰囲気と等しくする。そして、濃度測定装置1は、光源7を点滅させて、この光源7からの赤外線を各受光器12の赤外線センサ14で受光する。そして、濃度測定装置1のμcom5は、赤外線センサ14に受光した赤外線の強さなどに基づいて、予め定められた気体の雰囲気中の濃度を測定する。具体的には、濃度測定装置1のμcom5は、基準として用いられる受光器12の赤外線センサ14で受光した赤外線の強さと、二酸化炭素、水蒸気及び一酸化炭素を測定するための受光器12の赤外線センサ14で受光した赤外線の強さとを比較して、測定対象の二酸化炭素、水蒸気及び一酸化炭素の濃度を測定する。このように、濃度測定装置1の気体サンプル室2は、光源7からの赤外線を受光器12に導くように形成されている。   In the concentration measuring apparatus 1 having the above-described configuration, the atmosphere can freely move in and out of the measurement cell 6 by the plurality of through holes 10 of the atmosphere movement permitting portion 9, and the gas in the measurement cell 6, that is, the gas sample chamber 2 is transferred. Make it equal to the atmosphere. Then, the concentration measuring apparatus 1 blinks the light source 7 and receives the infrared light from the light source 7 by the infrared sensor 14 of each light receiver 12. The μcom 5 of the concentration measuring apparatus 1 measures the concentration in a predetermined gas atmosphere based on the intensity of infrared rays received by the infrared sensor 14. Specifically, the μcom 5 of the concentration measuring apparatus 1 determines the intensity of infrared light received by the infrared sensor 14 of the light receiver 12 used as a reference, and the infrared light of the light receiver 12 for measuring carbon dioxide, water vapor, and carbon monoxide. The concentration of carbon dioxide, water vapor, and carbon monoxide to be measured is measured by comparing the intensity of infrared rays received by the sensor 14. As described above, the gas sample chamber 2 of the concentration measuring apparatus 1 is formed so as to guide the infrared rays from the light source 7 to the light receiver 12.

本実施形態によれば、雰囲気移動許容部9が、測定セル6の外壁6aを貫通しかつフィルタなどで塞がれずに開放された貫通孔10を備えているので、この貫通孔10が目詰まりせずに、測定セル6に雰囲気を出し入れ自在となる。このため、雰囲気が速やかに測定セル6内に導かれて、当該雰囲気中の測定対象の気体の濃度を速やかに測定することが可能となる。   According to the present embodiment, the atmosphere movement allowing portion 9 includes the through hole 10 that penetrates the outer wall 6a of the measurement cell 6 and is opened without being blocked by a filter or the like, and thus the through hole 10 is clogged. Therefore, the atmosphere can be taken into and out of the measuring cell 6 without any change. For this reason, the atmosphere is promptly introduced into the measurement cell 6 and the concentration of the gas to be measured in the atmosphere can be measured quickly.

また、貫通孔10が測定セル6の上部と下部との双方に設けられて鉛直方向に相対しているので、測定セル6内に侵入した異物を、下部の外壁6aに設けられた貫通孔10を通して、速やかに測定セル6外に導くことができる。このため、貫通孔10が異物によってふさがれて、雰囲気が出入りしにくくなることを防止できるとともに、測定セル6内に侵入した異物が光源7からの光を遮ることを防止できる。したがって、雰囲気中の測定対象の気体の濃度を速やかでかつ確実に測定することを可能とできる。   Moreover, since the through-hole 10 is provided in both the upper part and the lower part of the measurement cell 6 and is opposed to the vertical direction, the foreign matter that has entered the measurement cell 6 is introduced into the through-hole 10 provided in the lower outer wall 6a. Through, it is possible to quickly lead out of the measuring cell 6. For this reason, it is possible to prevent the through hole 10 from being blocked by the foreign matter, making it difficult for the atmosphere to enter and exit, and to prevent the foreign matter that has entered the measurement cell 6 from blocking the light from the light source 7. Therefore, it is possible to quickly and reliably measure the concentration of the gas to be measured in the atmosphere.

さらに、リフレクタ30を備えているので、光源7からの光を測定セル6の内面で反射させなくても、受光器12に導くことができる。したがって、測定セル6の外壁6aを貫通した貫通孔10を設けても、受光器12に光を導くことができて、雰囲気中の測定対象の気体の濃度を確実に測定することが可能となる。   Furthermore, since the reflector 30 is provided, the light from the light source 7 can be guided to the light receiver 12 without being reflected by the inner surface of the measurement cell 6. Therefore, even if the through hole 10 penetrating the outer wall 6a of the measurement cell 6 is provided, light can be guided to the light receiver 12, and the concentration of the gas to be measured in the atmosphere can be reliably measured. .

集光部材13を備えているので、光源7からの光としての赤外線が貫通孔10を通して測定セル6外に漏れても、外壁6aの内面で反射された赤外線を受光器12に導くことができ、十分な強さの赤外線を透過部材15即ち赤外線センサ14に導くことができる。このため、貫通孔10を設けても、雰囲気中の測定対象の気体の濃度を確実に測定することができる。   Since the light collecting member 13 is provided, the infrared light reflected from the inner surface of the outer wall 6 a can be guided to the light receiver 12 even if infrared light as light from the light source 7 leaks out of the measurement cell 6 through the through hole 10. , A sufficiently strong infrared ray can be guided to the transmission member 15, that is, the infrared sensor 14. For this reason, even if the through hole 10 is provided, the concentration of the gas to be measured in the atmosphere can be reliably measured.

互いに透過部材15が透過する赤外線の波長の異なる受光器12を複数備えているので、複数の種類の気体の濃度を測定するために用いることができる。   Since a plurality of light receivers 12 having different infrared wavelengths transmitted by the transmissive member 15 are provided, they can be used to measure the concentrations of a plurality of types of gases.

前述した実施形態では、光としての赤外線を用いている。しかしながら、本発明では、赤外線以外の種々の光を用いても良い。また、前述した実施形態では、測定対象の気体の濃度が低濃度である場合の透過部材15の透過する赤外線の波長を示しているが、本発明では、測定対象の気体が低濃度から高濃度(0ppmから数%)の範囲内にある場合には、測定セル6の長さを変更したり、透過部材15が測定対象の気体中での赤外線の吸収量が少ない波長の赤外線のみを透過するようにしても良い。   In the embodiment described above, infrared rays are used as light. However, in the present invention, various light other than infrared light may be used. Further, in the above-described embodiment, the wavelength of the infrared ray transmitted through the transmission member 15 when the concentration of the measurement target gas is low is shown. However, in the present invention, the measurement target gas has a low concentration to a high concentration. When it is within the range of (0 ppm to several percent), the length of the measurement cell 6 is changed, or the transmitting member 15 transmits only infrared light having a wavelength with a small amount of infrared absorption in the measurement target gas. You may do it.

さらに、実施形態では、濃度測定装置1が二酸化炭素、水蒸気、一酸化炭素の濃度を測定している。しかしながら、本発明では、濃度測定装置1がNOx、SOx、H2S、O3、CH4、NOなどの二酸化炭素、水蒸気、一酸化炭素以外の種々の気体の濃度を測定しても良い。また、本発明では、測定セル6は、四角筒状以外の種々の筒状に形成されても良い。 Furthermore, in the embodiment, the concentration measuring device 1 measures the concentrations of carbon dioxide, water vapor, and carbon monoxide. However, in the present invention, even if the concentration measuring apparatus 1 measures the concentrations of various gases other than carbon dioxide such as NO x , SO x , H 2 S, O 3 , CH 4 , NO, water vapor, and carbon monoxide. good. In the present invention, the measurement cell 6 may be formed in various cylindrical shapes other than the rectangular cylindrical shape.

なお、前述した実施形態は本発明の代表的な形態を示したに過ぎず、本発明は、実施形態に限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。   In addition, embodiment mentioned above only showed the typical form of this invention, and this invention is not limited to embodiment. That is, various modifications can be made without departing from the scope of the present invention.

本発明の一実施形態にかかる濃度測定装置の気体サンプル室の構成を模式的に示す斜視図である。It is a perspective view showing typically composition of a gas sample room of a concentration measuring device concerning one embodiment of the present invention. 図1に示された濃度測定装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the density | concentration measuring apparatus shown by FIG. 図1に示された気体サンプル室の受光ユニットの正面を模式的に示す説明図である。It is explanatory drawing which shows typically the front of the light-receiving unit of the gas sample chamber shown by FIG. 図3中のIV−IV線の断面を模式的に示す説明図である。It is explanatory drawing which shows typically the cross section of the IV-IV line | wire in FIG. 図2に示された濃度測定装置の受光回路の構成を示す説明図である。It is explanatory drawing which shows the structure of the light-receiving circuit of the density | concentration measuring apparatus shown by FIG. 二酸化炭素の吸収スペクトラムを示したグラフである。3 is a graph showing an absorption spectrum of carbon dioxide.

符号の説明Explanation of symbols

1 濃度測定装置
2 気体サンプル室
5 マイクロコンピュータ(濃度算出部)
6 測定セル
7 光源
9 雰囲気移動許容部
10 貫通孔
12 受光器
13 集光部材
14 赤外線センサ
15 透過部材
30 リフレクタ
1 Concentration measuring device 2 Gas sample chamber 5 Microcomputer (concentration calculator)
6 Measurement Cell 7 Light Source 9 Atmosphere Movement Allowable Part 10 Through-hole 12 Light Receiver 13 Condensing Member 14 Infrared Sensor 15 Transmitting Member 30 Reflector

Claims (5)

光源からの光を受光器に導く気体サンプル室において、
筒状に形成された本体部と、
前記本体部の一端部に配置された前記光源と、
前記本体部の他端部に配置されかつ前記光源からの光を受光する前記受光器と、
雰囲気を前記本体部の内外に移動自在とする雰囲気移動許容部と、
を備え、
前記雰囲気移動許容部は、前記本体部の上部に位置する外壁と下部に位置する外壁との双方に設けられて、互いに鉛直方向に相対する位置に設けられた貫通孔を備えていることを特徴とする気体サンプル室。
In the gas sample chamber that guides the light from the light source to the receiver,
A main body formed in a cylindrical shape;
The light source disposed at one end of the main body;
The light receiver disposed at the other end of the main body and receiving light from the light source;
An atmosphere movement allowing portion for allowing the atmosphere to move in and out of the main body portion;
With
The atmosphere movement allowing portion is provided on both an outer wall located at an upper portion of the main body portion and an outer wall located at a lower portion, and includes a through hole provided at a position facing each other in a vertical direction. Gas sample chamber.
前記光源から出射された光を平行光にするリフレクタを備えたことを特徴とする請求項1記載の気体サンプル室。   The gas sample chamber according to claim 1, further comprising a reflector that converts the light emitted from the light source into parallel light. 前記受光器は、前記光を受光するセンサと、前記センサと前記光源との間に配置されかつ予め定められた波長の光のみを透過する透過部材とを備え、
前記透過部材と前記光源との間に配置されかつ前記光を前記透過部材に集光する集光部材を更に備えたことを特徴とする請求項1又は請求項2記載の気体サンプル室。
The light receiver includes a sensor that receives the light, and a transmission member that is disposed between the sensor and the light source and transmits only light having a predetermined wavelength.
The gas sample chamber according to claim 1, further comprising a condensing member that is disposed between the transmissive member and the light source and condenses the light on the transmissive member.
前記受光器を複数備え、これら複数の受光器の前記透過部材が透過する光の波長が互いに異なることを特徴とする請求項3記載の気体サンプル室。   The gas sample chamber according to claim 3, wherein a plurality of the light receivers are provided, and wavelengths of light transmitted through the transmission members of the plurality of light receivers are different from each other. 一端部に光源を設けかつ他端部に前記光源からの光を受光する受光器を設けた気体サンプル室と、
前記受光器が受光した前記光源からの光の強さに基づいて、前記気体サンプル室内の予め定められた気体の濃度を算出する濃度算出部と、を備えた濃度測定装置において、
前記気体サンプル室として、請求項1乃至請求項4のうちいずれか一項に記載の気体サンプル室を備えたことを特徴とする濃度測定装置。
A gas sample chamber provided with a light source at one end and a light receiver for receiving light from the light source at the other end;
In a concentration measuring device comprising: a concentration calculating unit that calculates a predetermined gas concentration in the gas sample chamber based on the intensity of light from the light source received by the light receiver;
A concentration measuring apparatus comprising the gas sample chamber according to any one of claims 1 to 4 as the gas sample chamber.
JP2007321134A 2007-12-12 2007-12-12 Gas sample chamber and concentration measuring instrument equipped with the same Abandoned JP2009145125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007321134A JP2009145125A (en) 2007-12-12 2007-12-12 Gas sample chamber and concentration measuring instrument equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007321134A JP2009145125A (en) 2007-12-12 2007-12-12 Gas sample chamber and concentration measuring instrument equipped with the same

Publications (1)

Publication Number Publication Date
JP2009145125A true JP2009145125A (en) 2009-07-02

Family

ID=40915892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007321134A Abandoned JP2009145125A (en) 2007-12-12 2007-12-12 Gas sample chamber and concentration measuring instrument equipped with the same

Country Status (1)

Country Link
JP (1) JP2009145125A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101865824A (en) * 2010-06-04 2010-10-20 中国科学院南海海洋研究所 Watertight anti-pressure storehouse body for measuring ocean-atmosphere carbon dioxide flux
EP2309250A1 (en) * 2009-08-05 2011-04-13 Dräger Safety AG & Co. KGaA Infra-red optical gas-measuring device
CN105531579A (en) * 2013-07-02 2016-04-27 激光和医药技术柏林有限责任公司 Method for determining the concentration of a substance in a deformable container
CN114018853A (en) * 2021-11-24 2022-02-08 青岛崂应海纳光电环保集团有限公司 Photometer gas chamber and gas analysis module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06221919A (en) * 1993-01-23 1994-08-12 Horiba Ltd Branching/condensing element for multielement pyroelectric detector
JPH07198609A (en) * 1993-12-30 1995-08-01 Horiba Ltd Infrared analyser
JPH09269293A (en) * 1996-04-01 1997-10-14 Nisshin Koki Kk Particulate detector
JPH10132739A (en) * 1996-10-28 1998-05-22 Kanagawa Pref Gov Concentration analyzer
JP2004138499A (en) * 2002-10-17 2004-05-13 Yazaki Corp Gas concentration detection sensor
JP2007192638A (en) * 2006-01-18 2007-08-02 New Cosmos Electric Corp Gas sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06221919A (en) * 1993-01-23 1994-08-12 Horiba Ltd Branching/condensing element for multielement pyroelectric detector
JPH07198609A (en) * 1993-12-30 1995-08-01 Horiba Ltd Infrared analyser
JPH09269293A (en) * 1996-04-01 1997-10-14 Nisshin Koki Kk Particulate detector
JPH10132739A (en) * 1996-10-28 1998-05-22 Kanagawa Pref Gov Concentration analyzer
JP2004138499A (en) * 2002-10-17 2004-05-13 Yazaki Corp Gas concentration detection sensor
JP2007192638A (en) * 2006-01-18 2007-08-02 New Cosmos Electric Corp Gas sensor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2309250A1 (en) * 2009-08-05 2011-04-13 Dräger Safety AG & Co. KGaA Infra-red optical gas-measuring device
US8399839B2 (en) 2009-08-05 2013-03-19 Dräger Safety AG & Co. KGaA Infrared optical gas-measuring device
CN101865824A (en) * 2010-06-04 2010-10-20 中国科学院南海海洋研究所 Watertight anti-pressure storehouse body for measuring ocean-atmosphere carbon dioxide flux
CN101865824B (en) * 2010-06-04 2012-12-26 中国科学院南海海洋研究所 Watertight anti-pressure storehouse body for measuring ocean-atmosphere carbon dioxide flux
CN105531579A (en) * 2013-07-02 2016-04-27 激光和医药技术柏林有限责任公司 Method for determining the concentration of a substance in a deformable container
CN114018853A (en) * 2021-11-24 2022-02-08 青岛崂应海纳光电环保集团有限公司 Photometer gas chamber and gas analysis module
CN114018853B (en) * 2021-11-24 2024-03-26 青岛崂应海纳光电环保集团有限公司 Photometer air chamber and gas analysis module

Similar Documents

Publication Publication Date Title
US7659980B1 (en) Nephelometric turbidity sensor device
JPH07505712A (en) Multichannel gas sample chamber
CN105358964B (en) CLA Chemilumineceut Analyzer and liquid depth sensor
KR20080058181A (en) Oil mist detector
JP2009145125A (en) Gas sample chamber and concentration measuring instrument equipped with the same
JP2007071794A (en) Particle detector
JP2012215567A (en) Non-extractive gas analyzer
KR101753873B1 (en) Infrared light scattering sompensation non-distributed type smoke sensing device
KR100697057B1 (en) NDIR type gas measuring apparatus
CN107923848B (en) Gas concentration detection device
KR101960226B1 (en) Apparatus for measuring black carbon
US8077316B2 (en) Chlorine dioxide sensor
JP5175654B2 (en) Gas sample chamber and concentration measuring apparatus including the gas sample chamber
JP5026940B2 (en) Gas sample chamber and concentration measuring apparatus provided with the gas sample chamber
JP6523840B2 (en) Gas component detector
JP2008225539A (en) Smoke sensor
JPH09269293A (en) Particulate detector
JP2007309755A (en) Photoelectric smoke sensor
CN205449796U (en) Dust sensor
JP5161012B2 (en) Concentration measuring device
JP2009128111A (en) Light receiving unit and concentration measuring apparatus
JP2008292321A (en) Gas concentration measuring instrument
EP1967842A2 (en) Method and device for measuring the concentration of exhaust gases of a boiler
KR101812783B1 (en) Apparatus for measuring black carbon
JP5562539B2 (en) Concentration measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20120724