JP2023020403A - Heat transfer calculation method for molded object, heat transfer calculation device for molded object, molded object manufacturing method, molded object manufacturing device and program - Google Patents

Heat transfer calculation method for molded object, heat transfer calculation device for molded object, molded object manufacturing method, molded object manufacturing device and program Download PDF

Info

Publication number
JP2023020403A
JP2023020403A JP2021125749A JP2021125749A JP2023020403A JP 2023020403 A JP2023020403 A JP 2023020403A JP 2021125749 A JP2021125749 A JP 2021125749A JP 2021125749 A JP2021125749 A JP 2021125749A JP 2023020403 A JP2023020403 A JP 2023020403A
Authority
JP
Japan
Prior art keywords
calculation
temperature
heat
heat transfer
heat source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021125749A
Other languages
Japanese (ja)
Inventor
諭史 近口
Satoshi Chikaguchi
碩 黄
Shuo Huang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2021125749A priority Critical patent/JP2023020403A/en
Publication of JP2023020403A publication Critical patent/JP2023020403A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

To execute a heat transfer calculation at a high speed by maintaining required calculation accuracy while suppressing an increase in a calculation load.SOLUTION: A heat transfer calculation method for a molded object includes the steps of: acquiring an analysis shape model obtained by dividing the shape of a molded object into a plurality of elements; acquiring a molding condition including information of a heat input from a heat source, a bead formation trajectory and a bead physical property from a molding plan; selecting an element included in a temperature calculation area centering on the position of the heat source in which a weld bead is formed among a plurality of elements of the analysis shape model as a calculation object element of a heat transfer calculation; calculating a temperature distribution of the temperature calculation area due to heat balance at which heat from the heat source is transferred to the calculation object element on the basis of the molding condition; and moving the position of the heat source in the analysis shape model along the bead formation trajectory, repeating the selection of the calculation object element included in the temperature calculation area centering on a movement destination position of the heat source and the calculation of the temperature distribution of the temperature calculation area, and acquiring a temperature history in the middle of molding the molded object.SELECTED DRAWING: Figure 5

Description

本発明は、造形物の伝熱計算方法、造形物の伝熱計算装置、造形物の製造方法、造形物の製造装置及びプログラムに関する。 The present invention relates to a modeled article heat transfer calculation method, a modeled article heat transfer calculation apparatus, a modeled article manufacturing method, a modeled article manufacturing apparatus, and a program.

アーク溶接等の溶接技術によって形成される溶着ビードを積層して、所望の形状の造形物を作製する積層造形方法が知られている(例えば、特許文献1)。
特許文献1には、溶接プロセス途中の温度と形状変化とを熱流体解析することで、適切な造形条件を設定することが記載されている。この熱流体解析は、熱源(アーク)を移動させながら基板上に溶着ビードを形成する際の、温度の時間変化を求めている。また、この解析では、固定した基板上で熱源を移動させて溶着ビードを形成するラグランジュ標記での座標系ではなく、熱源を固定して基板を相対的に移動させて溶着ビードを形成するオイラー表記の座標系が用いられる。そして、オイラー表記の座標系の定常解における温度の空間変化を、固定した基板上で熱源を移動させて溶融ビードを形成する際の温度の時間変化に換算している。
2. Description of the Related Art There is known a layered manufacturing method for manufacturing a modeled object having a desired shape by stacking weld beads formed by a welding technique such as arc welding (for example, Patent Document 1).
Patent Literature 1 describes setting appropriate forming conditions by thermal fluid analysis of temperature and shape changes during the welding process. This thermofluid analysis seeks the change in temperature over time when a weld bead is formed on a substrate while a heat source (arc) is moved. In addition, in this analysis, instead of the coordinate system in Lagrange notation, in which the heat source is moved on a fixed substrate to form a welding bead, the Eulerian notation, in which the heat source is fixed and the substrates are moved relatively to form the welding bead, is used. coordinate system is used. Then, the spatial change in temperature in the stationary solution of the Euler coordinate system is converted into the temporal change in temperature when the heat source is moved on the fixed substrate to form a molten bead.

また、特許文献1での熱流体解析においては、モデル全体の要素サイズと、アーク発生位置(ワイヤ供給位置)における細メッシュ領域の要素サイズとの急激な変化による計算不安定性を回避するため、双方の間に中間の要素サイズの領域を設けている。 In addition, in the thermal fluid analysis in Patent Document 1, both A region of intermediate element size is provided between .

特開2020-44541号公報JP 2020-44541 A

上記のようなコンピュータを用いて熱収支を計算する伝熱計算においては、計算に用いる形状モデルを複数の要素に分割してマトリクス計算を行っている。しかし、積層造形する造形物の形状が複雑化、大型化するに従って、形状モデルを分割した要素数は増加する。また、計算精度を向上させるためには、より細かく要素分割することが求められる。このような要素数の増加によって計算負担が増大し、計算時間が長くなったり、高い演算性能を有するコンピュータが必要になったりする等の問題が生じてしまう。 In the heat transfer calculation for calculating the heat balance using a computer as described above, the geometric model used for the calculation is divided into a plurality of elements and matrix calculation is performed. However, as the shape of the object to be layered and manufactured becomes more complicated and larger, the number of elements into which the shape model is divided increases. Further, in order to improve the calculation accuracy, it is required to divide the elements more finely. Such an increase in the number of elements causes problems such as an increase in calculation load, a longer calculation time, and a need for a computer with high arithmetic performance.

そこで本発明は、演算負担の増加を抑制しつつ必要な計算精度を維持して、伝熱計算を高速に実施できる、造形物の伝熱計算方法、造形物の伝熱計算装置、造形物の製造方法、造形物の製造装置及びプログラムを提供することを目的とする。 Accordingly, the present invention provides a heat transfer calculation method for a shaped object, a heat transfer calculation apparatus for a shaped object, a shaped object heat transfer calculation apparatus, and a shaped object heat transfer calculation method that can perform heat transfer calculation at high speed while suppressing an increase in computational load while maintaining necessary calculation accuracy. An object of the present invention is to provide a manufacturing method, a model manufacturing apparatus, and a program.

本発明は下記の構成からなる。
(1) 予め設定された造形計画に基づいて溶着ビードを積層して造形物を造形する際の、前記溶着ビードを形成する熱源から前記造形物への伝熱を計算する造形物の伝熱計算方法であって、
前記造形物の形状を複数の要素に分割した解析形状モデルを求める工程と、
前記造形計画から前記溶着ビードを形成する熱源からの入熱、前記溶着ビードのビード形成軌道及びビード物性の情報を含む造形条件を取得する工程と、
前記解析形状モデルの複数の要素のうち、前記溶着ビードが形成される前記熱源の位置を中心とした温度計算領域に含まれる要素を、伝熱計算の計算対象要素に選定する工程と、
前記造形条件に基づく前記熱源からの熱が前記計算対象要素に伝熱される熱収支による、前記温度計算領域の温度分布を求める工程と、
前記解析形状モデルにおける前記熱源の位置を前記ビード形成軌道に沿って移動させ、前記熱源の移動先位置を中心とした前記温度計算領域に含まれる前記計算対象要素の選定、及び当該温度計算領域の前記温度分布の計算を繰り返して、前記造形物の造形途中の温度履歴を求める工程と、
を有する、
造形物の伝熱計算方法。
(2) (1)に記載の造形物の伝熱計算方法を用いて決定した前記造形計画に基づいて前記造形物を製造する造形物の製造方法。
(3) 予め設定された造形計画に基づいて溶着ビードを積層して造形物を造形する際の、前記溶着ビードを形成する熱源から前記造形物への伝熱を計算する造形物の伝熱計算装置であって、
前記造形物の形状を複数の要素に分割した解析形状モデルを求めるモデル生成部と、
前記造形計画から前記溶着ビードを形成する熱源からの入熱、前記溶着ビードのビード形成軌道及びビード物性の情報を含む造形条件を取得する造形条件取得部と、
前記解析形状モデルの複数の要素のうち、前記溶着ビードが形成される前記熱源の位置を中心とした温度計算領域に含まれる要素を、伝熱計算の計算対象要素に選定する対象要素選定部と、
前記造形条件に基づく前記熱源からの熱が前記計算対象要素に伝熱される熱収支による、前記温度計算領域の温度分布を求める温度分布算出部と、
前記解析形状モデルにおける前記熱源の位置を前記ビード形成軌道に沿って移動させ、前記熱源の移動先位置を中心とした前記温度計算領域に含まれる前記計算対象要素の選定、及び当該温度計算領域の前記温度分布の計算を繰り返して、前記造形物の造形途中の温度履歴を求める温度履歴算出部と、
を備える、
造形物の伝熱計算装置。
(4) (3)に記載の造形物の伝熱計算装置を用いて決定した前記造形計画に基づいて前記造形物を製造する造形物の製造装置。
(5) 予め設定された造形計画に基づいて溶着ビードを積層して造形物を造形する際の、前記溶着ビードを形成する熱源から前記造形物への伝熱を計算する造形物の伝熱計算方法の手順をコンピュータに実行させるプログラムであって、
コンピュータに、
前記造形物の形状を複数の要素に分割した解析形状モデルを求める機能と、
前記造形計画から前記溶着ビードを形成する熱源からの入熱、前記溶着ビードのビード形成軌道及びビード物性の情報を含む造形条件を取得する機能と、
前記解析形状モデルの複数の要素のうち、前記溶着ビードが形成される前記熱源の位置を中心とした温度計算領域に含まれる要素を、伝熱計算の計算対象要素に選定する機能と、
前記造形条件に基づく前記熱源からの熱が前記計算対象要素に伝熱される熱収支による、前記温度計算領域の温度分布を求める機能と、
前記解析形状モデルにおける前記熱源の位置を前記ビード形成軌道に沿って移動させ、前記熱源の移動先位置を中心とした前記温度計算領域に含まれる前記計算対象要素の選定、及び当該温度計算領域の前記温度分布の計算を繰り返して、前記造形物の造形途中の温度履歴を求める機能と、
を実現させるためのプログラム。
The present invention consists of the following configurations.
(1) Heat transfer calculation of a modeled object for calculating the heat transfer from the heat source forming the weld bead to the modeled object when the modeled object is modeled by laminating welding beads based on a preset modeling plan. a method,
obtaining an analytical shape model in which the shape of the object is divided into a plurality of elements;
a step of obtaining molding conditions including information on heat input from a heat source for forming the welding bead, bead formation trajectory of the welding bead, and bead physical properties from the molding plan;
a step of selecting, from among the plurality of elements of the analytical shape model, elements included in a temperature calculation region centered on the position of the heat source where the welding bead is formed, as calculation target elements for heat transfer calculation;
obtaining a temperature distribution in the temperature calculation area based on a heat balance in which heat from the heat source is transferred to the calculation target element based on the modeling conditions;
Move the position of the heat source in the analytical shape model along the bead formation trajectory, select the calculation target element included in the temperature calculation area centered on the movement destination position of the heat source, and select the temperature calculation area a step of repeating the calculation of the temperature distribution to obtain a temperature history during the modeling of the modeled object;
having
Heat transfer calculation method for molded objects.
(2) A method for manufacturing a shaped article, wherein the shaped article is manufactured based on the shaping plan determined by using the heat transfer calculation method for the shaped article according to (1).
(3) Calculation of heat transfer of a modeled object to calculate the heat transfer from the heat source forming the weld bead to the modeled object when the modeled object is modeled by laminating the welding beads based on a preset modeling plan. a device,
a model generation unit that obtains an analysis shape model in which the shape of the object is divided into a plurality of elements;
a molding condition acquisition unit that acquires molding conditions including heat input from a heat source for forming the welding bead, bead formation trajectory of the welding bead, and bead physical properties from the molding plan;
a target element selection unit that selects, from among the plurality of elements of the analytical shape model, elements included in a temperature calculation region centering on the position of the heat source where the welding bead is formed, as calculation target elements for heat transfer calculation; ,
a temperature distribution calculation unit that obtains a temperature distribution in the temperature calculation area based on a heat balance in which heat from the heat source is transferred to the calculation target element based on the modeling conditions;
Move the position of the heat source in the analytical shape model along the bead formation trajectory, select the calculation target element included in the temperature calculation area centered on the movement destination position of the heat source, and select the temperature calculation area a temperature history calculation unit that repeats the calculation of the temperature distribution to obtain a temperature history during the molding of the modeled object;
comprising
Heat transfer calculation device for molded objects.
(4) A model manufacturing apparatus for manufacturing the model based on the model plan determined using the model heat transfer calculation device according to (3).
(5) Calculating the heat transfer of a modeled object for calculating the heat transfer from the heat source forming the weld bead to the modeled object when the modeled object is modeled by laminating welding beads based on a preset modeling plan. A program that causes a computer to perform the steps of the method,
to the computer,
A function to obtain an analysis shape model in which the shape of the object is divided into a plurality of elements;
A function of acquiring molding conditions including heat input from a heat source for forming the welding bead, bead formation trajectory of the welding bead, and bead physical properties from the molding plan;
A function of selecting, from among the plurality of elements of the analytical shape model, elements included in a temperature calculation region centered on the position of the heat source where the welding bead is formed, as calculation target elements for heat transfer calculation;
a function of determining the temperature distribution in the temperature calculation area based on the heat balance in which the heat from the heat source is transferred to the calculation target element based on the modeling conditions;
Move the position of the heat source in the analytical shape model along the bead formation trajectory, select the calculation target element included in the temperature calculation area centered on the movement destination position of the heat source, and select the temperature calculation area a function of repeating the calculation of the temperature distribution to obtain a temperature history during the molding of the modeled object;
program to make it happen.

本発明によれば、演算負担の増加を抑制しつつ必要な計算精度を維持して、伝熱計算を高速に実施できる。 According to the present invention, the heat transfer calculation can be performed at high speed while suppressing an increase in computational load and maintaining necessary calculation accuracy.

図1は、造形物を製造する積層造形装置の全体構成図である。FIG. 1 is an overall configuration diagram of a layered manufacturing apparatus that manufactures a modeled object. 図2は、造形途中の溶着ビードの温度解析機能を有する制御部の機能ブロック図である。FIG. 2 is a functional block diagram of a control section having a function of analyzing the temperature of a welding bead during molding. 図3は、溶着ビードを形成する様子を模式的に示す説明図である。FIG. 3 is an explanatory view schematically showing how a welding bead is formed. 図4は、ベースプレートと、溶着ビードを積層して形成される造形物とを多数の要素に分割した様子を模式的に示す造形物の一部断面図である。FIG. 4 is a partial cross-sectional view of a molded article schematically showing how a base plate and a molded article formed by laminating welding beads are divided into a large number of elements. 図5は、溶着ビードと解析形状モデルの計算領域との関係を示す説明図である。FIG. 5 is an explanatory diagram showing the relationship between the welding bead and the calculation area of the analytical shape model. 図6は、解析形状モデルの複数の要素のうち、温度計算領域に設定された計算対象要素を示す説明図であって、(A)は解析形状モデルを溶接方向から見た模式的な部分正面図であり、(B)は、溶接方向に直交する方向から見た模式的な部分側面図である。FIG. 6 is an explanatory view showing calculation target elements set in the temperature calculation region among a plurality of elements of the analytical shape model, and (A) is a schematic partial front view of the analytical shape model viewed from the welding direction. It is a figure and (B) is a typical partial side view seen from the direction orthogonal to a welding direction. 図7は、温度計算領域を設定するための各要素の伝熱による温度分布を示す模式図である。FIG. 7 is a schematic diagram showing temperature distribution due to heat transfer of each element for setting the temperature calculation region. 図8は、温度計算領域の形状を(A)~(C)に模式的に示す説明図である。8A to 8C are explanatory diagrams schematically showing the shape of the temperature calculation area. 図9は、伝熱計算の手順を段階的に示すフローチャートである。FIG. 9 is a flow chart showing the procedure of heat transfer calculation step by step. 図10は、入熱位置の付近の解析形状モデルの要素の一部を、溶接方向に直交する方向から見た模式的な説明図である。FIG. 10 is a schematic explanatory view of part of the elements of the analytical shape model near the heat input position, viewed from a direction perpendicular to the welding direction. 図11は、熱源位置を移動させる様子を(A),(B)に示す説明図である。11A and 11B are explanatory diagrams showing how the heat source position is moved. 図12は、入熱位置の付近の解析形状モデルの要素の一部を、溶接方向に直交する方向から見た模式的な図であって、計算対象要素と温度計算領域以外の要素との境界を、伝熱を生じる伝熱条件に適用した場合の説明図である。FIG. 12 is a schematic diagram of part of the elements of the analytical shape model near the heat input position viewed from a direction orthogonal to the welding direction, and shows the boundary between the calculation target element and the element outside the temperature calculation region. is applied to heat transfer conditions that cause heat transfer. 図13は、図12に示す解析形状モデルの温度計算領域についての熱収支を模式的に示す説明図である。13 is an explanatory diagram schematically showing the heat balance for the temperature calculation region of the analytical shape model shown in FIG. 12. FIG. 図14は、造形物を形成する各ビード形成パスに対して、各種条件で行った伝熱計算により、基準温度に到達するまでの冷却時間を求めた結果を模式的に示すグラフである。FIG. 14 is a graph schematically showing the results of obtaining the cooling time required for reaching the reference temperature by heat transfer calculations performed under various conditions for each bead forming pass for forming a modeled object. 図15は、解析形状モデルの計算途中の温度分布を濃淡で示した伝熱計算の結果を示す説明図である。FIG. 15 is an explanatory diagram showing the result of heat transfer calculation, in which the temperature distribution during the calculation of the analytical shape model is shown in shading. 図16は、温度計算領域内の各計算対象要素の温度分布を濃淡で示した伝熱計算の結果を示す斜視図である。FIG. 16 is a perspective view showing the result of heat transfer calculation, in which the temperature distribution of each calculation target element within the temperature calculation region is indicated by shading.

以下、本発明の実施形態について、図面を参照して詳細に説明する。
本実施形態においては、予め設定された造形計画に基づいて溶着ビードを積層して造形物を造形する際の、造形物が受ける熱量を計算する。この熱量は、溶着ビードを形成する熱源から造形物への伝熱によるもので、以下に詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
In the present embodiment, the amount of heat received by the modeled object when the modeled object is modeled by laminating welding beads based on a preset modeling plan is calculated. This amount of heat is due to heat transfer from the heat source forming the welding bead to the model, which will be described in detail below.

まず、溶着ビードを積層して造形物を造形する積層造形装置について説明する。
(積層造形装置の構成)
図1は、造形物を製造する積層造形装置の全体構成図である。
積層造形装置100は、造形部11と、造形部11を制御する制御部13とを備える。
造形部11は、先端軸に溶接トーチ15を有する溶接ロボット17と、溶接ロボット17を駆動するロボット駆動部21と、溶接トーチ15へ溶加材(溶接ワイヤ)Mを供給する溶加材供給部23と、溶接電流及び溶接電圧を供給する溶接電源部25と、を備える。
First, a layered modeling apparatus that laminates welding beads to form a modeled object will be described.
(Configuration of additive manufacturing apparatus)
FIG. 1 is an overall configuration diagram of a layered manufacturing apparatus that manufactures a modeled object.
The layered manufacturing apparatus 100 includes a modeling unit 11 and a control unit 13 that controls the modeling unit 11 .
The modeling unit 11 includes a welding robot 17 having a welding torch 15 on its tip axis, a robot driving unit 21 that drives the welding robot 17, and a filler material supply unit that supplies a filler material (welding wire) M to the welding torch 15. 23 and a welding power source 25 that supplies welding current and welding voltage.

(造形部)
溶接ロボット17は、多関節ロボットであり、ロボットアームの先端軸に取り付けた溶接トーチ15の先端には溶加材Mが支持される。溶接トーチ15の位置や姿勢は、ロボット駆動部21からの指令により、ロボットアームの自由度の範囲で3次元的に任意に設定可能になっている。図示はしないが、ロボットアームの先端軸には、溶接トーチ15をウィービング動作させるウィービング機構が設けられていてもよい。
(modeling department)
Welding robot 17 is an articulated robot, and filler material M is supported at the tip of welding torch 15 attached to the tip shaft of the robot arm. The position and posture of the welding torch 15 can be arbitrarily three-dimensionally set within the range of degrees of freedom of the robot arm according to commands from the robot driving section 21 . Although not shown, a weaving mechanism for weaving the welding torch 15 may be provided on the tip shaft of the robot arm.

溶接トーチ15は、不図示のシールドノズルを有し、シールドノズルからシールドガスが供給されるガスメタルアーク溶接用のトーチである。アーク溶接法としては、被覆アーク溶接や炭酸ガスアーク溶接等の消耗電極式、TIG溶接やプラズマアーク溶接等の非消耗電極式のいずれであってもよく、作製する積層造形物に応じて適宜選定される。 The welding torch 15 is a gas metal arc welding torch that has a shield nozzle (not shown) and is supplied with a shield gas from the shield nozzle. The arc welding method may be a consumable electrode type such as coated arc welding or carbon dioxide gas arc welding, or a non-consumable electrode type such as TIG welding or plasma arc welding. be.

例えば、消耗電極式の場合、シールドノズルの内部にはコンタクトチップが配置され、溶接電流が給電される溶加材Mがコンタクトチップに保持される。溶接トーチ15は、溶加材Mを保持しつつ、シールドガス雰囲気で溶加材Mの先端からアークを発生する。 For example, in the case of the consumable electrode type, a contact tip is arranged inside the shield nozzle, and the contact tip holds the filler material M to which the welding current is supplied. The welding torch 15 holds the filler material M and generates an arc from the tip of the filler material M in a shield gas atmosphere.

溶加材供給部23は、溶加材Mが巻回されたリール27を備える。溶加材Mは、溶加材供給部23からロボットアーム等に取り付けられた繰り出し機構(不図示)に送られ、必要に応じて繰り出し機構により正逆送給されながら溶接トーチ15へ送給される。 The filler material supply unit 23 includes a reel 27 around which the filler material M is wound. The filler material M is sent from the filler material supply unit 23 to a feeding mechanism (not shown) attached to a robot arm or the like, and fed to the welding torch 15 while being forwarded and reversed by the feeding mechanism as necessary. be.

溶加材Mとしては、あらゆる市販の溶接ワイヤを用いることができる。例えば、軟鋼,高張力鋼及び低温用鋼用のマグ溶接及びミグ溶接ソリッドワイヤ(JIS Z 3312)、軟鋼,高張力鋼及び低温用鋼用アーク溶接フラックス入りワイヤ(JIS Z 3313)等で規定される溶接ワイヤが利用可能である。さらに、アルミニウム、アルミニウム合金、ニッケル、ニッケル基合金等の溶加材Mを、求められる特性に応じて使用できる。 As filler material M, any commercially available welding wire can be used. For example, MAG welding and MIG welding solid wires for mild steel, high-strength steel and low-temperature steel (JIS Z 3312), arc welding flux-cored wires for mild steel, high-strength steel and low-temperature steel (JIS Z 3313), etc. welding wire is available. Additionally, filler metals M such as aluminum, aluminum alloys, nickel, nickel-based alloys, etc. can be used depending on the desired properties.

ロボット駆動部21は、溶接ロボット17を駆動して溶接トーチ15を移動させる。また、溶接トーチ15の移動とともに、連続供給される溶加材Mが、溶接電源部25からの溶接電流及び溶接電圧によって溶融する。 The robot drive unit 21 drives the welding robot 17 to move the welding torch 15 . As the welding torch 15 moves, the continuously supplied filler material M is melted by the welding current and welding voltage from the welding power source 25 .

つまり、溶接ロボット17は、アークを発生させつつワイヤ状の溶加材Mを溶融及び凝固させる溶接トーチ15をアーム先端に保持し、溶接トーチ15を移動させながら、溶接トーチ15に連続送給される溶加材Mをアークにより溶融及び凝固させ、母材であるベースプレート29上に溶加材Mの溶融凝固体である溶着ビードBを形成する。 That is, the welding robot 17 holds the welding torch 15 for melting and solidifying the wire-like filler material M while generating an arc at the tip of the arm, and continuously feeds the welding torch 15 while moving the welding torch 15 . The filler material M is melted and solidified by an arc, and a weld bead B, which is a melted and solidified body of the filler material M, is formed on the base plate 29 which is a base material.

(制御部)
制御部13は、図示は省略するが、入出力部と、記憶部と、演算部とを含んで構成されるコンピュータ装置である。
入出力部には、溶接ロボット17、溶接電源部25及び溶加材供給部23等が接続される。記憶部には、後述する駆動プログラムを含む各種の情報が記憶される。記憶部は、ROM,RAM等のメモリ、ハードディスク、SSD(Solid State Drive)等のドライブ装置、CD、DVD、各種メモリーカード等の記憶媒体に例示されるストレージからなり、各種情報の入出力が可能となっている。制御部13には、作製しようとする造形物に応じた造形プログラムが、ネットワーク等の通信線、又は各種の記憶媒体等を介して入力される。この造形プログラムは、溶着ビードBを形成するビード形成軌道及び溶接条件を定めた造形計画に基づいて作成され、多数の命令コードにより構成される。
(control part)
Although not shown, the control unit 13 is a computer device including an input/output unit, a storage unit, and a calculation unit.
The input/output unit is connected to the welding robot 17, the welding power supply unit 25, the filler material supply unit 23, and the like. The storage unit stores various information including a driving program, which will be described later. The storage unit consists of memories such as ROM and RAM, drive devices such as hard disks and SSDs (Solid State Drives), and storage exemplified by storage media such as CDs, DVDs, and various memory cards, and is capable of inputting and outputting various types of information. It has become. A modeling program corresponding to a modeled object to be manufactured is input to the control unit 13 via a communication line such as a network or various storage media. This modeling program is created based on a modeling plan that defines a bead forming trajectory for forming the welding bead B and welding conditions, and is composed of a large number of instruction codes.

制御部13は、記憶部に記憶された造形プログラムを実行して、溶接ロボット17、溶加材供給部23及び溶接電源部25等を駆動し、造形プログラムに応じた溶着ビードBを形成する。つまり、制御部13は、ロボット駆動部21により溶接ロボット17を駆動させて、造形プログラムに設定された溶接トーチ15の軌道(溶接軌道)に沿って溶接トーチ15を移動させるとともに、設定された溶接条件に応じて溶加材供給部23及び溶接電源部25を駆動して、溶接トーチ15の先端の溶加材Mをアークによって溶融、凝固させる。このように、造形プログラムに基づいて溶着ビードBを順次に積層することで、所望の3次元形状の造形物Wが造形される。 The control unit 13 executes the modeling program stored in the storage unit, drives the welding robot 17, the filler material supply unit 23, the welding power supply unit 25, etc., and forms the welding bead B according to the modeling program. That is, the control unit 13 drives the welding robot 17 by the robot driving unit 21 to move the welding torch 15 along the trajectory (welding trajectory) of the welding torch 15 set in the modeling program, and to move the set welding trajectory. The filler material supply unit 23 and the welding power supply unit 25 are driven according to the conditions, and the filler material M at the tip of the welding torch 15 is melted and solidified by the arc. In this way, by sequentially laminating the welding beads B based on the modeling program, the desired three-dimensional modeled object W is modeled.

造形プログラムは、制御部13又は他のコンピュータ装置により作成される。具体的には、制御部13は、取得した3次元形状データに応じて造形形状を決定し、その造形形状を溶着ビードBで形成するための積層計画を作成する。溶着ビードBを形成する条件には、溶接トーチ15を移動させる溶接パス(トーチの軌道)を決定する造形計画を作成すること、アークを加熱源として溶着ビードBを形成する際の、溶接電流、アーク電圧、溶接速度、溶加材の供給速度、トーチ角、冷却時間、シールドガスの組成や流量等の溶接条件を設定すること、が含まれる。 A modeling program is created by the control unit 13 or another computer device. Specifically, the control unit 13 determines a modeled shape according to the acquired three-dimensional shape data, and creates a stacking plan for forming the modeled shape with the welding beads B. FIG. The conditions for forming the welding bead B include creating a molding plan that determines the welding path (trajectory of the torch) for moving the welding torch 15, welding current when forming the welding bead B using an arc as a heat source, Setting welding conditions such as arc voltage, welding speed, feed rate of filler metal, torch angle, cooling time, composition and flow rate of shielding gas.

更に具体的には、制御部13は、3次元形状データから造形物Wの造形形状を決定し、この造形形状を垂直方向に複数のビード層に分割し、各ビード層に対応して、それぞれ溶接トーチ15を移動させるビード形成パスを含む軌道を求める。ビード形成パス及び軌道は、所定のアルゴリズムに基づく演算等により決定される。ビード形成パスの情報としては、例えば、溶接トーチ15を移動させる経路の空間座標、経路の半径、経路長等の経路の情報や、形成する溶着ビードBのビード幅やビード高さ等のビード情報等が含まれる。ビード層の高さは、溶接条件により設定される溶着ビードBの高さに応じて決定される。 More specifically, the control unit 13 determines the modeled shape of the modeled object W from the three-dimensional shape data, vertically divides the modeled shape into a plurality of bead layers, A trajectory containing the bead forming path along which the welding torch 15 is moved is determined. The bead forming path and trajectory are determined by computation based on a predetermined algorithm. The bead forming path information includes, for example, path information such as the spatial coordinates of the path along which the welding torch 15 is moved, path radius, and path length, and bead information such as the bead width and bead height of the welding bead B to be formed. etc. are included. The height of the bead layer is determined according to the height of the weld bead B set according to the welding conditions.

制御部13は、上記した造形プログラムを実行して造形物Wを造形する機能と、造形プログラムを生成する機能との他に、作成された造形プログラムに基づいて造形処理を模擬的に再現して、造形途中の造形物の温度履歴、温度分布等を解析する機能を備えていてもよい。この温度解析機能は、制御部13が有していてもよいが、制御部13にネットワーク又は通信回線等を介して接続される他のコンピュータ装置に含まれる制御部(不図示)が有する構成であってもよい。 In addition to the function of executing the above-described modeling program to model the object W and the function of generating the modeling program, the control unit 13 simulates the modeling process based on the created modeling program. It may also have a function of analyzing the temperature history, temperature distribution, etc. of the modeled object during the modelling. This temperature analysis function may be possessed by the control unit 13, but may be provided by a control unit (not shown) included in another computer device connected to the control unit 13 via a network, a communication line, or the like. There may be.

図2は、造形途中の溶着ビードの温度解析機能を有する制御部13の機能ブロック図である。
制御部13(他の制御部の場合も同様)は、それぞれ詳細を後述する、モデル生成部31と、造形条件取得部33と、対象要素選定部35と、温度分布算出部37と、温度履歴算出部39と、を備える。制御部13が備える上記した各構成は、入力された造形物の情報に基づいて、伝熱計算を行った解析結果を不図示のモニタに出力したり、解析データを出力したりして、解析結果を操作者に伝える。操作者は、出力された解析結果に応じて造形プログラムを必要に応じて修正する。
FIG. 2 is a functional block diagram of the control unit 13 having a function of analyzing the temperature of the welding bead during molding.
The control unit 13 (the same applies to other control units) includes a model generation unit 31, a molding condition acquisition unit 33, a target element selection unit 35, a temperature distribution calculation unit 37, and a temperature history, which will be described later in detail. and a calculator 39 . Each of the above-described components provided in the control unit 13 outputs the analysis result of heat transfer calculation to a monitor (not shown) based on the input information of the modeled object, outputs the analysis data, and performs analysis. Communicate the results to the operator. The operator modifies the modeling program as necessary according to the output analysis result.

図3は、溶着ビードBを形成する様子を模式的に示す説明図である。
溶接トーチ15を溶接方向WDに移動させながら、溶接トーチ15から突出した溶加材Mの先端にアークを発生させる。発生したアークは溶加材Mを溶融させ、ベースプレート29上に溶接方向WDに沿った溶着ビードBを形成させる。ここで、溶着ビードBを形成する際の、アークによる入熱部周囲の熱分布を求めるための解析形状モデルMDを設定する。この解析形状モデルMDは、ベースプレート29及びベースプレート29上で造形物となる溶着ビードBの全体形状をモデル形状とし、このモデル形状を多数の要素に分割することで設定される。
FIG. 3 is an explanatory view schematically showing how the welding bead B is formed.
An arc is generated at the tip of the filler material M projecting from the welding torch 15 while moving the welding torch 15 in the welding direction WD. The generated arc melts the filler metal M to form a weld bead B on the base plate 29 along the welding direction WD. Here, an analysis shape model MD for obtaining the heat distribution around the heat input portion due to the arc when forming the welding bead B is set. This analysis shape model MD is set by taking the overall shape of the base plate 29 and the welding bead B, which is a modeled object on the base plate 29, as a model shape and dividing this model shape into a large number of elements.

図4は、ベースプレート29と、溶着ビードBを積層して形成される造形物Wとを多数の要素に分割した様子を模式的に示す造形物の一部断面図である。
解析形状モデルMDは、ベースプレート29と造形物Wとの外形状を、例えば多数の直方体の要素Emに分割して構成される。つまり、複数の要素Emの集合体がベースプレート29と造形物Wの伝熱計算に用いる形状モデルとなる。
FIG. 4 is a partial cross-sectional view of the modeled article schematically showing how the base plate 29 and the modeled article W formed by stacking the welding beads B are divided into a number of elements.
The analytic shape model MD is configured by dividing the outer shape of the base plate 29 and the modeled object W into, for example, a large number of rectangular parallelepiped elements Em. That is, an aggregate of a plurality of elements Em becomes a shape model used for heat transfer calculation between the base plate 29 and the modeled object W. FIG.

図5は、溶着ビードBと解析形状モデルMDの計算領域との関係を示す説明図である。
本実施形態においては、解析形状モデルMDの形状の全体を計算に用いるのではなく、形状の一部のみを計算に用いる手法を採用する。本明細書では、解析形状モデルMDのうち、計算に用いる領域を「計算領域」という。
FIG. 5 is an explanatory diagram showing the relationship between the welding bead B and the calculation area of the analytical geometric model MD.
In this embodiment, instead of using the entire shape of the analytical geometric model MD for calculation, a method of using only a part of the shape for calculation is adopted. In this specification, the area used for calculation in the analytical geometric model MD is called "calculation area".

温度計算領域CAの外縁は、ここでは図5に示すように溶着ビードBを形成する入熱位置(アーク位置)Pを円の中心とする半径rの円柱体の軸方向両端に、半径rの半球体がそれぞれ接続された形状に設定する。温度計算領域CAの軸方向長さLmは、形成される溶着ビードBの長手方向の長さLbに、半径rの2倍値を加えた長さ(Lm=Lb+2r)となる。この仮想立体の温度計算領域CA内に配置される複数の要素が、伝熱計算の計算対象要素となる。 Here, as shown in FIG. 5, the outer edge of the temperature calculation area CA is located at both axial ends of a cylindrical body having a radius r centered at the heat input position (arc position) PQ that forms the welding bead B. are connected to each other. The axial length Lm of the temperature calculation area CA is the length obtained by adding twice the radius r to the longitudinal length Lb of the welding bead B to be formed (Lm=Lb+2r). A plurality of elements arranged in the temperature calculation area CA of this virtual solid are the calculation target elements of the heat transfer calculation.

図6は、解析形状モデルMDの要素のうち、温度計算領域CAに設定された計算対処要素を示す説明図であって、(A)は解析形状モデルMDを溶接方向WDから見た模式的な部分正面図であり、(B)は、溶接方向WDに直交する方向から見た模式的な部分側面図である。 FIG. 6 is an explanatory view showing calculation handling elements set in the temperature calculation area CA among the elements of the analysis shape model MD, and (A) is a schematic view of the analysis shape model MD viewed from the welding direction WD It is a partial front view, and (B) is a schematic partial side view seen from a direction orthogonal to the welding direction WD.

図6の(A)には、入熱位置Pを中心とした温度計算領域CAに含まれる要素Emのうち、溶着ビードBを含む金属部分を計算対象要素Emcとして示している。温度計算領域CA内の要素のうち計算対象要素Emc以外の要素は、中空(空気)の部分である。この中空部分の要素については、伝熱計算を簡略化するため、計算対象要素Emcとの間を断熱の境界条件にして、計算から実質的に除外する。又は計算対象要素Emcとの間に所定の放熱が存在するように計算してもよい。 FIG. 6A shows the metal portion including the welding bead B among the elements Em included in the temperature calculation area CA centered on the heat input position PQ as the calculation target element Emc. Elements other than the calculation target element Emc among the elements in the temperature calculation area CA are hollow (air) portions. In order to simplify the heat transfer calculation, this element in the hollow portion is substantially excluded from the calculation by setting the boundary condition between it and the calculation target element Emc as adiabatic. Alternatively, calculation may be made so that a predetermined heat release exists between the calculation target element Emc.

ここで示す計算対象要素Emcは、解析形状モデルMDを正面視した場合に、半円形に近い領域内に配置される。 The calculation target element Emc shown here is arranged in an area close to a semicircle when the analytical geometric model MD is viewed from the front.

また、温度計算領域CAの形状は、図6の(B)に示すように、溶接方向WDに沿って延びている。温度計算領域CAの長手方向(溶接方向WD)の先端部と後端部は、半径rの半球形状となっている。 Further, the shape of the temperature calculation area CA extends along the welding direction WD as shown in FIG. 6B. A front end portion and a rear end portion of the temperature calculation area CA in the longitudinal direction (welding direction WD) have a hemispherical shape with a radius r.

上記した温度計算領域CAの半径rと軸方向距離Lmは、予め定めた規定値に設定することもできるが、入熱による影響範囲に応じて設定してもよい。つまり、温度計算領域CAの半径rについては、半径rの値が大きいほど計算する要素数が増えるので温度の計算精度は向上するが、計算時間が増加する。一方、半径rの値が小さいほど計算する要素数が減るので計算時間を短縮できるが、計算精度が減少する。軸方向距離Lmについても同様である。そこで、半径r、軸方向距離Lmについては、溶接ビードのアーク位置(入熱位置)を中心とする温度分布に応じて決定してもよい。 The radius r and the axial distance Lm of the temperature calculation area CA can be set to predetermined values, but they may also be set according to the range affected by heat input. That is, with respect to the radius r of the temperature calculation area CA, the larger the value of the radius r, the more elements to be calculated, so the temperature calculation accuracy improves, but the calculation time increases. On the other hand, the smaller the value of the radius r, the smaller the number of elements to be calculated, so the calculation time can be shortened, but the calculation accuracy is reduced. The same applies to the axial distance Lm. Therefore, the radius r and the axial distance Lm may be determined according to the temperature distribution centered on the arc position (heat input position) of the weld bead.

図7は、温度計算領域CAを設定するための各要素の伝熱による温度分布を示す模式図である。
例えば、図6の(A)に示す温度計算領域CAの半径r、及び図6の(B)に示す計算領域の軸方向長さLmは、図7に示す各要素の温度分布に応じて設定される。即ち、最大温度Taとその温度分布に応じて温度計算に大きな影響を及ぼさないと考えられる下限温度Tb以上の範囲の長さに設定する。
FIG. 7 is a schematic diagram showing temperature distribution due to heat transfer of each element for setting the temperature calculation area CA.
For example, the radius r of the temperature calculation area CA shown in FIG. 6A and the axial length Lm of the calculation area shown in FIG. 6B are set according to the temperature distribution of each element shown in FIG. be done. That is, the length of the range above the lower limit temperature Tb is set according to the maximum temperature Ta and its temperature distribution so that the temperature calculation is not greatly affected.

その他にも、予め要素試験等から取得した温度分布の情報に基づいて、温度分布の傾きが所定の閾値となる位置から入熱位置までの距離を半径rの値としてもよい。また、軸方向長さLmについてもこの半径rと同様にしてサイズを決定してもよい。
更に、予め複数種類の半径rの値を設定しておき、造形物全体の1~2割まで造形が進行したときの造形物の温度履歴の結果を比較して、蓄熱温度の収束が良好となる値を選定してもよい、
Alternatively, the radius r may be the distance from the position where the slope of the temperature distribution reaches a predetermined threshold value to the heat input position based on temperature distribution information acquired in advance from an element test or the like. Also, the size of the axial length Lm may be determined in the same manner as the radius r.
Furthermore, by setting multiple types of values for the radius r in advance and comparing the results of the temperature history of the model when the model progresses to 10 to 20% of the entire model, it is found that the heat storage temperature converges well. You may choose a value of

上記した温度計算領域CAの形状は、溶着ビードのビード形成軌道(パスPSともいう)に応じて変化する。
図8は、温度計算領域CAの形状を(A)~(C)に模式的に示す説明図である。
図8の(A)はパスPSが湾曲している場合の温度計算領域CAを示している。この場合の温度計算領域CAは、軸方向に沿って湾曲しており、半径rの断面円形となる領域と、軸方向両端の半径rの半球状の領域とを有している。
The shape of the temperature calculation area CA described above changes according to the bead formation trajectory (also referred to as path PS) of the welding bead.
8A to 8C are explanatory diagrams schematically showing the shape of the temperature calculation area CA.
FIG. 8A shows the temperature calculation area CA when the path PS is curved. The temperature calculation area CA in this case is curved along the axial direction, and has a circular cross-sectional area with a radius r and semispherical areas with a radius r at both ends in the axial direction.

図8の(B)に示す温度計算領域CAは、軸方向両端の半球状の領域に代えて、軸方向に沿った全領域で半径rの断面円形となる略円筒形状としている。また、図8の(C)に示す温度計算領域CAは、パスPSが屈曲する場合の形状を示しており、この場合も全領域で図8の(B)と同様に軸方向に沿った全領域で半径rの断面円形となる形状としている。このように、温度計算領域CAの形状は、パスPSに沿って適宜に変更される。 The temperature calculation area CA shown in FIG. 8B has a substantially cylindrical shape having a circular cross section with a radius r over the entire area along the axial direction instead of the hemispherical areas at both ends in the axial direction. Also, the temperature calculation area CA shown in FIG. 8C shows the shape when the path PS is bent. The region has a circular cross-sectional shape with a radius r. Thus, the shape of the temperature calculation area CA is appropriately changed along the path PS.

次に、上記した解析形状モデルMDを用いた伝熱計算の具体的な手順を、図2も参照しながら説明する。
図9は、伝熱計算の手順を段階的に示すフローチャートである。
まず、制御部13のモデル生成部31は、例えば、造形しようとする造形物のCADデータである3次元形状データを取得し、前述した解析形状モデルMDを生成する(S1)。
Next, a specific procedure for heat transfer calculation using the above-described analytical geometric model MD will be described with reference to FIG. 2 as well.
FIG. 9 is a flow chart showing the procedure of heat transfer calculation step by step.
First, the model generation unit 31 of the control unit 13 acquires, for example, three-dimensional shape data, which is CAD data of a modeled object to be modeled, and generates the aforementioned analytical shape model MD (S1).

次に、造形条件取得部33は、造形しようとする造形物の造形手順及び造形条件を定めた造形計画(造形プログラム)を参照して、溶着ビードを形成する熱源からの入熱(溶接電流、溶接電圧、溶接速度、溶加材供給速度等)、溶着ビードのビード形成軌道及びビード物性(熱伝導率、温度等)の情報を含む、温度解析に際して必要となる造形条件を取得する(S2)。 Next, the modeling condition acquisition unit 33 refers to a modeling plan (modeling program) that defines the modeling procedure and modeling conditions of the modeled object to be modeled, and heat input from the heat source that forms the welding bead (welding current, Welding voltage, welding speed, filler material supply speed, etc.), bead formation trajectory of the welding bead, and bead physical properties (thermal conductivity, temperature, etc.), including information on forming conditions necessary for temperature analysis (S2) .

次に、対象要素選定部35は、解析形状モデルMDの要素のうち、溶着ビードが形成される熱源の位置を中心とした複数の要素を、伝熱計算の計算対象要素に選定する。また、選定された伝熱計算の計算対象要素と、他の要素との境界条件を設定する(S3)。 Next, the target element selection unit 35 selects a plurality of elements centering on the position of the heat source where the welding bead is formed among the elements of the analytical geometric model MD as calculation target elements for the heat transfer calculation. In addition, boundary conditions between the selected element to be calculated for heat transfer calculation and other elements are set (S3).

図10は、入熱位置Pの付近の解析形状モデルMDの要素の一部を、溶接方向WDに直交する方向から見た模式的な説明図である。
ここでは、アークによる溶着ビードの形成し始めの状態を想定して、入熱位置Pを中心とした断面円形の温度計算領域CAに含まれる要素を、伝熱計算の計算対象要素Emcとする(図10にハッチング部分で示す要素)。また、計算対象要素Emcと、温度計算領域CA以外の他の要素Emとの境界を境界線BDLで示している。
FIG. 10 is a schematic explanatory view of part of the elements of the analytical geometric model MD near the heat input position PQ , viewed from a direction orthogonal to the welding direction WD.
Here, assuming a state where a welding bead starts to be formed by an arc, elements included in a temperature calculation area CA having a circular cross section centered on the heat input position PQ are assumed to be calculation target elements Emc for heat transfer calculation. (Elements indicated by hatching in FIG. 10). A boundary line BDL indicates the boundary between the calculation target element Emc and other elements Em other than the temperature calculation area CA.

各要素の形状及びサイズは、造形物のサイズ、伝熱計算の目標精度に応じて適宜に設定される。ここでは、計算対象要素Emcと他の要素Emとの境界に、双方の熱収支のない断熱条件を適用する。 The shape and size of each element are appropriately set according to the size of the modeled object and the target accuracy of heat transfer calculation. Here, an adiabatic condition with no heat balance is applied to the boundary between the calculation target element Emc and another element Em.

次に、熱源の位置となる入熱位置Pを中心に3次元伝熱計算を行う(S4)。つまり、造形物の造形条件に基づいて、熱源からの入熱が計算対象要素Emcに伝熱されるが、この熱収支による温度計算領域CAの温度分布を求める。この伝熱計算に、以下の3次元伝熱基本式である式(1)を用いて計算してもよい。 Next, three-dimensional heat transfer calculation is performed centering on the heat input position PQ, which is the position of the heat source (S4). In other words, the heat input from the heat source is transferred to the calculation target element Emc based on the modeling conditions of the modeled object, and the temperature distribution of the temperature calculation area CA is determined based on this heat balance. For this heat transfer calculation, the following three-dimensional heat transfer basic formula (1) may be used.

Figure 2023020403000002
Figure 2023020403000002

式(1)は、いわゆる陽解法FEM(Finite Element Method)による伝熱解析の基本式である。式(1)の各パラメータは以下のとおりである。
H:エンタルピ
C:節点体積の逆数
K:熱伝導マトリックス
F:熱流束
Q:体積発熱
Formula (1) is a basic formula for heat transfer analysis by a so-called explicit FEM (Finite Element Method). Each parameter of Formula (1) is as follows.
H: enthalpy C: reciprocal of nodal volume K: heat conduction matrix F: heat flux Q: volumetric heat generation

溶着ビード形成時の入熱量は、体積発熱又は熱流束のパラメータに入力する。これによれば、エンタルピを未知数とすることにより、潜熱放出等の非線形現象を精度よく計算できる。 The amount of heat input during weld bead formation is entered as a parameter for volumetric heat generation or heat flux. According to this, nonlinear phenomena such as latent heat release can be calculated with high accuracy by using the enthalpy as an unknown quantity.

そして、熱源位置となる入熱位置P及び温度計算領域CAを溶接速度V、ビード形成軌跡(パス)に従って移動させ、熱源を起点とする伝熱計算を逐次更新させる(S5)。
図11は、熱源位置を移動させる様子を(A),(B)に示す説明図である。
図11の(A)においては、解析形状モデルMDの一端側で熱源となるアークが発生したとして、前述した入熱位置Pを中心とする温度計算領域CAを設定する。そして、この状態で伝熱計算を行い、温度計算領域CA内の温度分布を求める。
Then, the heat input position PQ , which is the heat source position, and the temperature calculation area CA are moved according to the welding speed V and the bead formation locus (path), and the heat transfer calculation starting from the heat source is sequentially updated (S5).
11A and 11B are explanatory diagrams showing how the heat source position is moved.
In FIG. 11A, assuming that an arc as a heat source is generated at one end of the analytical geometric model MD, a temperature calculation area CA centered on the heat input position PQ is set. Then, heat transfer calculation is performed in this state to obtain the temperature distribution in the temperature calculation area CA.

次に、溶接トーチの移動によりアーク発生位置が移動したとして、入熱位置Pを溶接方向WDに沿って移動させる。図11の(B)においては、入熱位置Pが移動して、これに伴って温度計算領域CAも移動している。ただし、温度計算領域CAの形状は、入熱位置Pが高温になって熱影響範囲が広がることから、軸方向長さが延長された形状となる。入熱位置Pのそれぞれの移動先で、温度計算領域CAの温度分布を求める。このように、造形開始から造形終了までの計算結果を更新することで、造形物全体の温度分布、及び温度履歴を求めることができる。 Next, assuming that the movement of the welding torch causes the arc generation position to move, the heat input position PQ is moved along the welding direction WD. In FIG. 11B, the heat input position PQ has moved, and the temperature calculation area CA has moved accordingly. However, the shape of the temperature calculation area CA is such that the length in the axial direction is extended because the heat input position PQ becomes high in temperature and the heat-affected range expands. The temperature distribution of the temperature calculation area CA is obtained at each destination of the heat input position PQ . In this way, by updating the calculation results from the start of modeling to the end of modeling, it is possible to obtain the temperature distribution and temperature history of the entire model.

この伝熱計算によれば、温度計算領域CAが熱源から所定の範囲内に限定されるため、解析形状モデルの全体を一度に計算する場合と比較して計算負担を軽減できる。よって、伝熱計算に必要とされる計算時間を大幅に短縮できる。また、ビード形成軌道に沿った柱状体(上記した円柱のほか、角柱等であってもよい)により溶着ビードの形状を模擬することで、ビード断面の形状を精緻に再現する場合と比較して、要素の生成を単純化でき、計算の高速化に寄与できる。 According to this heat transfer calculation, since the temperature calculation area CA is limited within a predetermined range from the heat source, the calculation load can be reduced compared to the case of calculating the entire analysis shape model at once. Therefore, the calculation time required for heat transfer calculation can be greatly reduced. In addition, by simulating the shape of the welding bead with a columnar body (which may be a prism in addition to the cylinder described above) along the bead formation trajectory, compared to the case of precisely reproducing the shape of the bead cross section. , can simplify the generation of elements and contribute to speeding up calculations.

温度計算領域CAの形状、大きさは、要素試験結果があれば、その情報を参照して適切に設定できる。また、要素試験結果がない場合でも、半径r、軸方向距離Lm等のパラメータを、適切な精度を保ちつつ計算を高速化できるように簡単に調整できる。 If there is an element test result, the shape and size of the temperature calculation area CA can be appropriately set by referring to the information. Also, even if there are no element test results, parameters such as the radius r and the axial distance Lm can be easily adjusted so as to speed up the calculation while maintaining appropriate accuracy.

上記では、計算対象要素Emcと他の要素Emとの境界条件を断熱条件とした例であるが、境界条件はこれに限らない。
図12は、入熱位置Pの付近の解析形状モデルMDの要素の一部を、溶接方向WDに直交する方向から見た模式的な図であって、計算対象要素と温度計算領域CA以外の要素との境界を、伝熱を生じる伝熱条件に適用した場合の説明図である。
In the above example, the boundary condition between the calculation target element Emc and the other element Em is an adiabatic condition, but the boundary condition is not limited to this.
FIG. 12 is a schematic diagram of part of the elements of the analysis shape model MD near the heat input position PQ , viewed from a direction orthogonal to the welding direction WD, and is other than the calculation target element and the temperature calculation area CA. FIG. 11 is an explanatory diagram of a case where a boundary with an element of is applied to a heat transfer condition that causes heat transfer.

温度計算領域CAの内部と外部との間の境界条件として、熱伝達、熱伝導等の伝熱を生じる伝熱条件で設定してもよい。その場合、温度計算領域CA以外の要素を巨大な1要素(格子)とみなして、その外部巨大要素41との伝熱による熱収支を計算してもよい。こうすることで、計算量の増大を抑えつつ蓄熱と放熱とを再現した計算が行える。また、温度計算領域CAを狭めた場合に、前述した断熱条件では過剰に蓄熱が発生する問題を解消できる。 As a boundary condition between the inside and the outside of the temperature calculation area CA, a heat transfer condition that causes heat transfer such as heat transfer or heat conduction may be set. In that case, the elements outside the temperature calculation area CA may be regarded as one giant element (lattice), and the heat balance due to heat transfer with the external giant element 41 may be calculated. By doing so, it is possible to perform calculation that reproduces heat storage and heat release while suppressing an increase in the amount of calculation. Moreover, when the temperature calculation area CA is narrowed, the problem of excessive heat accumulation under the above-described adiabatic condition can be resolved.

図12に例示する解析形状モデルMDにおいては、温度計算領域CAの境界線BDLには、計算対象要素Emc~Emc11が接面している。
図13は、図12に示す解析形状モデルMDの温度計算領域CAについての熱収支を模式的に示す説明図である。
ここで、外部巨大要素41との境界(境界線BDL)における熱収支を計算する。外部巨大要素41との境界における外向き法線方向の熱流束qは、式(2)で求められる。
In the analytical shape model MD illustrated in FIG. 12, calculation target elements Emc 1 to Emc 11 are in contact with the boundary line BDL of the temperature calculation area CA.
FIG. 13 is an explanatory diagram schematically showing the heat balance of the temperature calculation area CA of the analytical geometric model MD shown in FIG.
Here, the heat balance at the boundary (boundary line BDL) with the external giant element 41 is calculated. The heat flux q i in the outward normal direction at the boundary with the external giant element 41 is obtained by Equation (2).

Figure 2023020403000003
Figure 2023020403000003

ただし、
elem:外部巨大要素の体積
k:外部巨大要素との境界での熱伝導率
elem:外部巨大要素の温度
:外部巨大要素と接する計算対象要素Emcの温度
i:計算対象要素Emcの番号
なお、αはフィッティングパラメータであり、任意の値を採用できる。
however,
V elem : Volume of the external giant element k: Thermal conductivity at the boundary with the external giant element T elem : Temperature of the external giant element T i : Temperature of the calculation target element Emc i in contact with the external giant element i: Calculation target element Emc number α is a fitting parameter, and any value can be adopted.

そして、外部巨大要素との境界における熱収支の計算(Telemの計算)は、次のとおりである。 Then, the calculation of the heat balance (T elem calculation) at the boundary with the external giant element is as follows.

Figure 2023020403000004
Figure 2023020403000004

ここで、
ΔHelem:外部巨大要素のエンタルピ変化量
elem:外部巨大要素の体積
Δt:時間刻み幅
k:外部巨大要素との計算対象要素との境界での熱伝導率
h:外部巨大要素と外空気との間の熱伝導率
Tpelem:前時刻の外部巨大要素の温度
Tp:前時刻の外部巨大要素と接する計算対象要素Emcの温度
inf:周囲温度
:外部巨大要素と接する計算対象要素Emcが外部巨大要素と接する面の面積
out:外部巨大要素が物体外部と接する面の面積
n:外部巨大要素と接する計算対象要素Emcの数
ΔQdelete:熱源の移動により温度計算領域CAから外れる計算対象要素が有する熱量
ΔQentory:熱源の移動により再度温度計算領域CAに入る要素が有する熱量
here,
ΔH elem : Enthalpy change of external giant element V elem : Volume of external giant element Δt : Time step size k : Thermal conductivity at boundary between external giant element and calculation target element h : External giant element and outside air Tpelem : Temperature of the external giant element at the previous time Tp i : Temperature of the calculation target element Emc i in contact with the external giant element at the previous time T inf : Ambient temperature A i : Calculation target in contact with the external giant element Area of surface where element Emc i contacts external giant element A out : Area of surface where external giant element contacts the outside of the object n: Number of calculation target elements Emc in contact with external giant element ΔQ delete : Temperature calculation area CA due to movement of heat source Quantity of heat possessed by elements to be calculated that deviate from ΔQ entry : Heat quantity possessed by elements re-entering the temperature calculation area CA due to movement of the heat source

上記の境界条件を伝熱条件とした場合には、断熱条件の場合と比較して計算量が増加するが、温度計算領域CA以外の要素を1つの外部巨大要素として扱うため、計算負担の軽減が図れる。また、計算領域外を外部巨大要素として捉えたうえで熱収支を計算することで、蓄熱や放熱を高精度に再現した計算が行える。これにより、短い計算時間で、信頼性の高い伝熱計算が可能となる。 When the above boundary conditions are used as heat transfer conditions, the amount of calculation increases compared to the case of adiabatic conditions. can be achieved. In addition, by treating the outside of the calculation area as an external giant element and calculating the heat balance, it is possible to perform calculations that reproduce heat storage and heat dissipation with high accuracy. This enables highly reliable heat transfer calculation in a short calculation time.

<伝熱計算の例>
ここで、上記の境界条件を断熱条件とした場合と、伝熱条件とした場合と、温度計算領域を設定せずに全領域で計算した場合とで、伝熱計算を実施した結果を比較した。
用いた解析形状モデルと計算条件は、次のとおりである。
パス数:1275
パス間の冷却温度:降温させて300℃になるまで保持
計算要素タイプ:ヘキサ型要素
要素数:135000個
全接点数:143055個
<Example of heat transfer calculation>
Here, the results of heat transfer calculations were compared for the case where the above boundary conditions were adiabatic conditions, the case where heat transfer conditions were used, and the case where calculation was performed in all regions without setting the temperature calculation region. .
The analysis shape model and calculation conditions used are as follows.
Number of passes: 1275
Cooling temperature between passes: Lower temperature and hold until 300°C Computational element type: Hexa-shaped element Number of elements: 135000 Total number of contacts: 143055

図14は、造形物を形成する各ビード形成パスに対して、各種条件で行った伝熱計算により、基準温度に到達するまでの冷却時間を求めた結果を模式的に示すグラフである。
温度計算領域を設定せずに造形物の形状の全領域で計算した結果は、計算時間に長い時間を要したが精度の高い計算結果が得られている。そこで、この全領域で計算した結果を基準にして各条件の結果を比較する。
FIG. 14 is a graph schematically showing the results of obtaining the cooling time required for reaching the reference temperature by heat transfer calculations performed under various conditions for each bead forming pass for forming a modeled object.
Calculation results for the entire area of the shape of the modeled object without setting a temperature calculation area required a long calculation time, but a highly accurate calculation result was obtained. Therefore, the results of each condition are compared based on the results calculated for the entire region.

境界条件を断熱条件(断熱モデル)にして、温度計算領域に分割して計算した場合、温度計算領域の半径rを20mmとした場合は、全領域で計算した結果と比較して著しく長い冷却時間となっており、冷却状況を再現できていないことがわかる。 When the boundary conditions are adiabatic conditions (adiabatic model) and the calculation is divided into temperature calculation regions, and the radius r of the temperature calculation region is 20 mm, the cooling time is significantly longer than the result calculated for the entire region. , and it can be seen that the cooling condition cannot be reproduced.

また、温度計算領域を拡大して半径rを60mmとすると、全領域で計算した結果に近い結果が得られ、全領域で計算した場合と同程度の冷却状況を再現できている。 Further, when the temperature calculation area is expanded to have a radius r of 60 mm, a result close to the result calculated in the entire area is obtained, and the same degree of cooling condition as in the case of calculation in the entire area can be reproduced.

一方、境界条件を伝熱条件(伝熱モデル)にして、半径rが20mmの温度計算領域に分割して計算した場合には、断熱モデルで半径rを60mmとして計算した場合よりも更に全領域で計算した場合に近くなった。この場合には、全領域で計算した場合と殆ど変わらない冷却状況を再現できている。 On the other hand, when the boundary conditions are heat transfer conditions (heat transfer model) and the calculation is performed by dividing the temperature calculation region with a radius r of 20 mm, the total region It is close when calculated with In this case, it is possible to reproduce a cooling condition that is almost the same as the case where the calculation is performed for the entire area.

なお、本計算例での計算時間(計算開始から10000秒経過するまでの時間)は、全領域計算する場合では551秒であったところ、温度計算領域を分割した伝熱モデルでは431秒であった。ただし、計算時間は計算対象によって大きく変化し、計算格子数が増加するほど両者の差は大きくなる傾向が認められた。本計算例では、時間の経過とともに計算対象要素の数が増加して、計算開始後の10000秒経過時点での格子数は、約20000個であった。 In this calculation example, the calculation time (the time from the start of the calculation until 10000 seconds have passed) was 551 seconds in the case of calculating the entire region, but it was 431 seconds in the heat transfer model with the temperature calculation region divided. rice field. However, the calculation time varies greatly depending on the calculation target, and the difference between the two tends to increase as the number of computational grids increases. In this calculation example, the number of elements to be calculated increased with the passage of time, and the number of grids was approximately 20,000 at 10,000 seconds after the start of calculation.

図15は、解析形状モデルの計算途中の温度分布を濃淡で示した伝熱計算の結果を示す説明図である。図16は、温度計算領域内の各計算対象要素の温度分布を濃淡で示した伝熱計算の結果を示す斜視図である。
図15,図16から、入熱位置からの熱が周囲の要素に伝熱された様子が再現されていることがわかる。
FIG. 15 is an explanatory diagram showing the result of heat transfer calculation, in which the temperature distribution during the calculation of the analytical shape model is shown in shading. FIG. 16 is a perspective view showing the result of heat transfer calculation, in which the temperature distribution of each calculation target element within the temperature calculation region is indicated by shading.
It can be seen from FIGS. 15 and 16 that the state in which the heat from the heat input position is transferred to the surrounding elements is reproduced.

本発明は上記の実施形態に限定されるものではなく、実施形態の各構成を相互に組み合わせること、及び明細書の記載、並びに周知の技術に基づいて、当業者が変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。 The present invention is not limited to the above-described embodiments, and it is also possible for those skilled in the art to combine each configuration of the embodiments with each other, modify and apply based on the description of the specification and well-known technology. It is intended by the invention and falls within the scope for which protection is sought.

以上の通り、本明細書には次の事項が開示されている。
(1) 予め設定された造形計画に基づいて溶着ビードを積層して造形物を造形する際の、前記溶着ビードを形成する熱源から前記造形物への伝熱を計算する造形物の伝熱計算方法であって、
前記造形物の形状を複数の要素に分割した解析形状モデルを求める工程と、
前記造形計画から前記溶着ビードを形成する熱源からの入熱、前記溶着ビードのビード形成軌道及びビード物性の情報を含む造形条件を取得する工程と、
前記解析形状モデルの複数の要素のうち、前記溶着ビードが形成される前記熱源の位置を中心とした温度計算領域に含まれる要素を、伝熱計算の計算対象要素に選定する工程と、
前記造形条件に基づく前記熱源からの熱が前記計算対象要素に伝熱される熱収支による、前記温度計算領域の温度分布を求める工程と、
前記解析形状モデルにおける前記熱源の位置を前記ビード形成軌道に沿って移動させ、前記熱源の移動先位置を中心とした前記温度計算領域に含まれる前記計算対象要素の選定、及び当該温度計算領域の前記温度分布の計算を繰り返して、前記造形物の造形途中の温度履歴を求める工程と、
を有する、
造形物の伝熱計算方法。
この造形物の伝熱計算方法によれば、温度計算領域が熱源から所定の範囲内に限定されるため、解析形状モデルの全体を一度に計算する場合と比較して計算負担を軽減できる。よって、伝熱計算に必要とされる計算時間を大幅に短縮できる。
As described above, this specification discloses the following matters.
(1) Heat transfer calculation of a modeled object for calculating the heat transfer from the heat source forming the weld bead to the modeled object when the modeled object is modeled by laminating welding beads based on a preset modeling plan. a method,
obtaining an analytical shape model in which the shape of the object is divided into a plurality of elements;
a step of obtaining molding conditions including information on heat input from a heat source for forming the welding bead, bead formation trajectory of the welding bead, and bead physical properties from the molding plan;
a step of selecting, from among the plurality of elements of the analytical shape model, elements included in a temperature calculation region centered on the position of the heat source where the welding bead is formed, as calculation target elements for heat transfer calculation;
obtaining a temperature distribution in the temperature calculation area based on a heat balance in which heat from the heat source is transferred to the calculation target element based on the modeling conditions;
Move the position of the heat source in the analytical shape model along the bead formation trajectory, select the calculation target element included in the temperature calculation area centered on the movement destination position of the heat source, and select the temperature calculation area a step of repeating the calculation of the temperature distribution to obtain a temperature history during the modeling of the modeled object;
having
Heat transfer calculation method for molded objects.
According to this modeled object heat transfer calculation method, the temperature calculation area is limited to within a predetermined range from the heat source, so the calculation load can be reduced compared to the case where the entire analysis shape model is calculated at once. Therefore, the calculation time required for heat transfer calculation can be greatly reduced.

(2) 前記温度計算領域の大きさを、前記要素が前記熱源から受ける熱量、又は前記要素の前記熱源までの距離に対する温度の変化量のうち少なくとも一方に応じて設定する、(1)に記載の造形物の伝熱計算方法。
この造形物の伝熱計算方法によれば、要素が受ける熱量又は温度の変化量に応じて温度計算領域の大きさが設定されるため、必要な計算精度が効率よく得られるようになる。
(2) The size of the temperature calculation area is set according to at least one of the amount of heat received by the element from the heat source and the amount of change in temperature with respect to the distance of the element to the heat source. heat transfer calculation method of the shaped object.
According to this modeled object heat transfer calculation method, the size of the temperature calculation region is set according to the amount of heat received by the element or the amount of change in temperature, so that the necessary calculation accuracy can be obtained efficiently.

(3) 前記温度計算領域には、前記熱源から受ける熱量が周囲より大きい前記要素、又は前記熱源までの距離に対する温度の変化量が周囲より大きい前記要素が含まれる、(2)に記載の造形物の伝熱計算方法。
この造形物の伝熱計算方法によれば、温度に殆ど影響を及ぼさない領域の計算を省くことができる。
(3) The modeling according to (2), wherein the temperature calculation area includes the element receiving more heat from the heat source than its surroundings, or the element receiving a greater amount of temperature change with respect to the distance to the heat source than its surroundings. How to calculate the heat transfer of objects.
According to this modeled object heat transfer calculation method, it is possible to omit the calculation of a region that has little effect on the temperature.

(4) 前記温度計算領域は、前記ビード形成軌道に沿って延び、前記熱源の位置を中心軸とする軸直交断面が円形の仮想立体内に含まれる前記計算対象要素からなる領域である、(1)~(3)のいずれか1つに記載の造形物の伝熱計算方法。
この造形物の伝熱計算方法によれば、軸直交断面が円形の仮想立体内の計算対象要素を限定的に用いることで、効率よく伝熱計算を行える。
(4) The temperature calculation area extends along the bead formation trajectory and is an area composed of the calculation target elements included in a virtual solid having a circular cross section perpendicular to the axis with the position of the heat source as the central axis, ( 1) A heat transfer calculation method for a model according to any one of (3).
According to this modeled object heat transfer calculation method, the heat transfer calculation can be efficiently performed by limiting the use of the calculation target elements in the virtual solid whose axis-orthogonal cross section is circular.

(5) 前記仮想立体の半径又は軸方向長さの少なくとも一方のサイズを変更した場合に、変更後のサイズで計算される前記温度分布と、変更前のサイズで計算される前記温度分布との温度差が、予め定めた閾値より小さくなる範囲で前記サイズを大きく設定する、(4)に記載の造形物の伝熱計算方法。
この造形物の伝熱計算方法によれば、実際に計算された温度分布によりサイズを決定するため、仮想立体のサイズをより適正に設定できる。
(5) When the size of at least one of the radius and the axial length of the virtual solid is changed, the difference between the temperature distribution calculated with the size after the change and the temperature distribution calculated with the size before the change. The heat transfer calculation method for a model according to (4), wherein the size is set large within a range in which the temperature difference is smaller than a predetermined threshold value.
According to this modeled object heat transfer calculation method, the size of the virtual solid can be set more appropriately because the size is determined based on the actually calculated temperature distribution.

(6) 前記温度分布を計算する工程は、前記温度計算領域の内側と外側との間における熱の境界条件を、伝熱が生じない断熱条件で計算する、(1)~(5)のいずれか1つに記載の造形物の伝熱計算方法。
この造形物の伝熱計算方法によれば、断熱条件で計算することで計算負担が低減され、伝熱計算の計算時間を短縮できる。
(6) In the step of calculating the temperature distribution, any of (1) to (5), wherein a thermal boundary condition between the inside and the outside of the temperature calculation area is calculated under an adiabatic condition in which heat transfer does not occur. 3. A heat transfer calculation method for a model according to claim 1.
According to this heat transfer calculation method for a modeled object, the calculation load is reduced by calculating under adiabatic conditions, and the calculation time for heat transfer calculation can be shortened.

(7) 前記温度分布を計算する工程は、前記温度計算領域の内側と外側との間における熱の境界条件を、伝熱が生じる伝熱条件で計算する、(1)~(5)のいずれか1つに記載の造形物の伝熱計算方法。
この造形物の伝熱計算方法によれば、伝熱条件で計算することで高精度な伝熱計算が行え、より正確な温度分布、温度履歴が求められる。
(7) In the step of calculating the temperature distribution, any one of (1) to (5), wherein a thermal boundary condition between the inside and the outside of the temperature calculation area is calculated under heat transfer conditions that cause heat transfer. 3. A heat transfer calculation method for a model according to claim 1.
According to this heat transfer calculation method for a model, highly accurate heat transfer calculation can be performed by performing calculation under heat transfer conditions, and more accurate temperature distribution and temperature history can be obtained.

(8) 前記温度分布を計算する工程は、
前記温度計算領域の外側に配置される複数の前記要素を、単一の外側要素とみなし、
前記温度計算領域の内側と外側との間における熱収支を、前記温度計算領域の内側に配置される複数の前記要素と前記単一の外側要素との間で求める、(7)に記載の造形物の伝熱計算方法。
この造形物の伝熱計算方法によれば、伝熱現象による影響を簡易的に反映させることができる。その結果、断熱条件で必要とする温度計算領域よりも計算要素数が少なくて済むので、計算要素数を節約した分だけ計算時間を短縮できる。
(8) the step of calculating the temperature distribution,
Considering the plurality of elements arranged outside the temperature calculation area as a single outer element,
The molding according to (7), wherein a heat balance between inside and outside of the temperature calculation region is determined between the plurality of elements arranged inside the temperature calculation region and the single outer element. How to calculate the heat transfer of objects.
According to this modeled object heat transfer calculation method, it is possible to easily reflect the influence of the heat transfer phenomenon. As a result, the number of calculation elements is smaller than the temperature calculation area required for the adiabatic conditions, so the calculation time can be shortened by the number of calculation elements saved.

(9) (1)~(8)のいずれか1つに記載の造形物の伝熱計算方法を用いて決定した前記造形計画に基づいて前記造形物を製造する造形物の製造方法。
この造形物の製造方法によれば、伝熱特性を考慮した造形計画を作成でき、より高品位な造形物を製造できる。
(9) A method for manufacturing a shaped article, wherein the shaped article is manufactured based on the shaping plan determined by using the heat transfer calculation method for the shaped article according to any one of (1) to (8).
According to this method of manufacturing a modeled object, it is possible to create a modeling plan that takes heat transfer characteristics into account, and to manufacture a higher-quality modeled object.

(10) 予め設定された造形計画に基づいて溶着ビードを積層して造形物を造形する際の、前記溶着ビードを形成する熱源から前記造形物への伝熱を計算する造形物の伝熱計算装置であって、
前記造形物の形状を複数の要素に分割した解析形状モデルを求めるモデル生成部と、
前記造形計画から前記溶着ビードを形成する熱源からの入熱、前記溶着ビードのビード形成軌道及びビード物性の情報を含む造形条件を取得する造形条件取得部と、
前記解析形状モデルの複数の要素のうち、前記溶着ビードが形成される前記熱源の位置を中心とした温度計算領域に含まれる要素を、伝熱計算の計算対象要素に選定する対象要素選定部と、
前記造形条件に基づく前記熱源からの熱が前記計算対象要素に伝熱される熱収支による、前記温度計算領域の温度分布を求める温度分布算出部と、
前記解析形状モデルにおける前記熱源の位置を前記ビード形成軌道に沿って移動させ、前記熱源の移動先位置を中心とした前記温度計算領域に含まれる前記計算対象要素の選定、及び当該温度計算領域の前記温度分布の計算を繰り返して、前記造形物の造形途中の温度履歴を求める温度履歴算出部と、
を備える、
造形物の伝熱計算装置。
この造形物の伝熱計算装置によれば、温度計算領域が熱源から所定の範囲内に限定されるため、解析形状モデルの全体を一度に計算する場合と比較して計算負担を軽減できる。よって、伝熱計算に必要とされる計算時間を大幅に短縮できる。
(10) Calculating the heat transfer of a modeled object for calculating the heat transfer from the heat source that forms the welding bead to the modeled object when the modeled object is modeled by laminating welding beads based on a preset modeling plan. a device,
a model generation unit that obtains an analysis shape model in which the shape of the object is divided into a plurality of elements;
a molding condition acquisition unit that acquires molding conditions including heat input from a heat source for forming the welding bead, bead formation trajectory of the welding bead, and bead physical properties from the molding plan;
a target element selection unit that selects, from among the plurality of elements of the analytical shape model, elements included in a temperature calculation region centering on the position of the heat source where the welding bead is formed, as calculation target elements for heat transfer calculation; ,
a temperature distribution calculation unit that obtains a temperature distribution in the temperature calculation region based on a heat balance in which heat from the heat source is transferred to the calculation target element based on the modeling conditions;
Move the position of the heat source in the analytical shape model along the bead formation trajectory, select the calculation target element included in the temperature calculation area centered on the movement destination position of the heat source, and select the temperature calculation area a temperature history calculation unit that repeats the calculation of the temperature distribution to obtain a temperature history during the molding of the modeled object;
comprising
Heat transfer calculation device for molded objects.
According to this modeled object heat transfer calculation device, since the temperature calculation region is limited to within a predetermined range from the heat source, the calculation load can be reduced compared to the case where the entire analysis shape model is calculated at once. Therefore, the calculation time required for heat transfer calculation can be greatly reduced.

(11) (10)に記載の造形物の伝熱計算装置を用いて決定した前記造形計画に基づいて前記造形物を製造する造形物の製造装置。
この造形物の製造装置によれば、伝熱特性を考慮した造形計画を作成でき、より高品位な造形物を製造できる。
(11) A model manufacturing apparatus for manufacturing the model based on the model planning determined using the model heat transfer calculation device according to (10).
According to this modeled object manufacturing apparatus, it is possible to create a modeling plan in consideration of heat transfer characteristics, and to manufacture a higher quality modeled object.

(12) 予め設定された造形計画に基づいて溶着ビードを積層して造形物を造形する際の、前記溶着ビードを形成する熱源から前記造形物への伝熱を計算する造形物の伝熱計算方法の手順をコンピュータに実行させるプログラムであって、
コンピュータに、
前記造形物の形状を複数の要素に分割した解析形状モデルを求める機能と、
前記造形計画から前記溶着ビードを形成する熱源からの入熱、前記溶着ビードのビード形成軌道及びビード物性の情報を含む造形条件を取得する機能と、
前記解析形状モデルの複数の要素のうち、前記溶着ビードが形成される前記熱源の位置を中心とした温度計算領域に含まれる要素を、伝熱計算の計算対象要素に選定する機能と、
前記造形条件に基づく前記熱源からの熱が前記計算対象要素に伝熱される熱収支による、前記温度計算領域の温度分布を求める機能と、
前記解析形状モデルにおける前記熱源の位置を前記ビード形成軌道に沿って移動させ、前記熱源の移動先位置を中心とした前記温度計算領域に含まれる前記計算対象要素の選定、及び当該温度計算領域の前記温度分布の計算を繰り返して、前記造形物の造形途中の温度履歴を求める機能と、
を実現させるためのプログラム。
このプログラムによれば、温度計算領域が熱源から所定の範囲内に限定されるため、解析形状モデルの全体を一度に計算する場合と比較して計算負担を軽減できる。よって、伝熱計算に必要とされる計算時間を大幅に短縮できる。
(12) Calculating the heat transfer of a modeled object for calculating the heat transfer from the heat source that forms the welding bead to the modeled object when the modeled object is modeled by laminating welding beads based on a preset modeling plan. A program that causes a computer to perform the steps of the method,
to the computer,
A function to obtain an analysis shape model in which the shape of the object is divided into a plurality of elements;
A function of acquiring molding conditions including heat input from a heat source for forming the welding bead, bead formation trajectory of the welding bead, and bead physical properties from the molding plan;
A function of selecting, from among the plurality of elements of the analytical shape model, elements included in a temperature calculation region centered on the position of the heat source where the welding bead is formed, as calculation target elements for heat transfer calculation;
a function of determining the temperature distribution in the temperature calculation area based on the heat balance in which the heat from the heat source is transferred to the calculation target element based on the modeling conditions;
Move the position of the heat source in the analytical shape model along the bead formation trajectory, select the calculation target element included in the temperature calculation area centered on the movement destination position of the heat source, and select the temperature calculation area a function of repeating the calculation of the temperature distribution to obtain a temperature history during the molding of the modeled object;
program to make it happen.
According to this program, since the temperature calculation area is limited to within a predetermined range from the heat source, the calculation load can be reduced compared to the case of calculating the entire analytical shape model at once. Therefore, the calculation time required for heat transfer calculation can be greatly reduced.

11 造形部
13 制御部
15 溶接トーチ
17 溶接ロボット
21 ロボット駆動部
23 溶加材供給部
25 溶接電源部
27 リール
29 ベースプレート
31 モデル生成部
33 造形条件取得部
35 対象要素選定部
37 温度分布算出部
39 温度履歴算出部
41 外部巨大要素
B 溶着ビード
BDL 境界線
CA 温度計算領域
Em 要素
Emc 計算対象要素
M 溶加材(溶接ワイヤ)
MD 解析形状モデル
入熱位置
W 造形物
11 molding unit 13 control unit 15 welding torch 17 welding robot 21 robot drive unit 23 filler material supply unit 25 welding power supply unit 27 reel 29 base plate 31 model generation unit 33 molding condition acquisition unit 35 target element selection unit 37 temperature distribution calculation unit 39 Temperature history calculation unit 41 External giant element B Welding bead BDL Boundary line CA Temperature calculation area Em Element Emc Calculation target element M Filler metal (welding wire)
MD Analytical shape model P Q heat input position W Object

Claims (12)

予め設定された造形計画に基づいて溶着ビードを積層して造形物を造形する際の、前記溶着ビードを形成する熱源から前記造形物への伝熱を計算する造形物の伝熱計算方法であって、
前記造形物の形状を複数の要素に分割した解析形状モデルを求める工程と、
前記造形計画から前記溶着ビードを形成する熱源からの入熱、前記溶着ビードのビード形成軌道及びビード物性の情報を含む造形条件を取得する工程と、
前記解析形状モデルの複数の要素のうち、前記溶着ビードが形成される前記熱源の位置を中心とした温度計算領域に含まれる要素を、伝熱計算の計算対象要素に選定する工程と、
前記造形条件に基づく前記熱源からの熱が前記計算対象要素に伝熱される熱収支による、前記温度計算領域の温度分布を求める工程と、
前記解析形状モデルにおける前記熱源の位置を前記ビード形成軌道に沿って移動させ、前記熱源の移動先位置を中心とした前記温度計算領域に含まれる前記計算対象要素の選定、及び当該温度計算領域の前記温度分布の計算を繰り返して、前記造形物の造形途中の温度履歴を求める工程と、
を有する、
造形物の伝熱計算方法。
A heat transfer calculation method for a molded object for calculating heat transfer from a heat source forming a welding bead to the molded object when the molded object is built by laminating welding beads based on a preset molding plan. hand,
obtaining an analytical shape model in which the shape of the object is divided into a plurality of elements;
a step of obtaining molding conditions including information on heat input from a heat source for forming the welding bead, bead formation trajectory of the welding bead, and bead physical properties from the molding plan;
a step of selecting, from among the plurality of elements of the analytical shape model, elements included in a temperature calculation region centered on the position of the heat source where the welding bead is formed, as calculation target elements for heat transfer calculation;
obtaining a temperature distribution in the temperature calculation area based on a heat balance in which heat from the heat source is transferred to the calculation target element based on the modeling conditions;
Move the position of the heat source in the analytical shape model along the bead formation trajectory, select the calculation target element included in the temperature calculation area centered on the movement destination position of the heat source, and select the temperature calculation area a step of repeating the calculation of the temperature distribution to obtain a temperature history during the modeling of the modeled object;
having
Heat transfer calculation method for molded objects.
前記温度計算領域の大きさを、前記要素が前記熱源から受ける熱量、又は前記要素の前記熱源までの距離に対する温度の変化量のうち少なくとも一方に応じて設定する、
請求項1に記載の造形物の伝熱計算方法。
setting the size of the temperature calculation region according to at least one of an amount of heat received by the element from the heat source and an amount of change in temperature with respect to the distance of the element to the heat source;
The heat transfer calculation method for a modeled object according to claim 1 .
前記温度計算領域には、前記熱源から受ける熱量が周囲より大きい前記要素、又は前記熱源までの距離に対する温度の変化量が周囲より大きい前記要素が含まれる、
請求項2に記載の造形物の伝熱計算方法。
The temperature calculation area includes the element that receives more heat from the heat source than its surroundings, or the element that changes in temperature with respect to the distance to the heat source more than its surroundings.
The heat transfer calculation method for a modeled object according to claim 2 .
前記温度計算領域は、前記ビード形成軌道に沿って延び、前記熱源の位置を中心軸とする軸直交断面が円形の仮想立体内に含まれる前記計算対象要素からなる領域である、
請求項1~3のいずれか1項に記載の造形物の伝熱計算方法。
The temperature calculation area extends along the bead formation trajectory, and is an area composed of the calculation target elements included in a virtual solid with an axis-orthogonal cross section having the position of the heat source as the central axis.
A heat transfer calculation method for a model according to any one of claims 1 to 3.
前記仮想立体の半径又は軸方向長さの少なくとも一方のサイズを変更した場合に、変更後のサイズで計算される前記温度分布と、変更前のサイズで計算される前記温度分布との温度差が、予め定めた閾値より小さくなる範囲で前記サイズを大きく設定する、
請求項4に記載の造形物の伝熱計算方法。
When the size of at least one of the radius and axial length of the virtual solid is changed, the temperature difference between the temperature distribution calculated with the size after the change and the temperature distribution calculated with the size before the change is , setting the size large within a range smaller than a predetermined threshold;
The method for calculating heat transfer of a shaped object according to claim 4.
前記温度分布を計算する工程は、前記温度計算領域の内側と外側との間における熱の境界条件を、伝熱が生じない断熱条件で計算する、
請求項1~5のいずれか1項に記載の造形物の伝熱計算方法。
In the step of calculating the temperature distribution, a thermal boundary condition between the inside and the outside of the temperature calculation area is calculated under an adiabatic condition in which heat transfer does not occur.
A heat transfer calculation method for a model according to any one of claims 1 to 5.
前記温度分布を計算する工程は、前記温度計算領域の内側と外側との間における熱の境界条件を、伝熱が生じる伝熱条件で計算する、
請求項1~5のいずれか1項に記載の造形物の伝熱計算方法。
The step of calculating the temperature distribution calculates heat boundary conditions between the inside and the outside of the temperature calculation area under heat transfer conditions in which heat transfer occurs.
A heat transfer calculation method for a model according to any one of claims 1 to 5.
前記温度分布を計算する工程は、
前記温度計算領域の外側に配置される複数の前記要素を、単一の外側要素とみなし、
前記温度計算領域の内側と外側との間における熱収支を、前記温度計算領域の内側に配置される複数の前記要素と前記単一の外側要素との間で求める、請求項7に記載の伝熱計算方法。
The step of calculating the temperature distribution includes:
Considering the plurality of elements arranged outside the temperature calculation area as a single outer element,
8. The transmission of claim 7, wherein a heat balance between inside and outside of the temperature calculation area is determined between the plurality of elements arranged inside the temperature calculation area and the single outside element. heat calculation method.
請求項1~8のいずれか1項に記載の造形物の伝熱計算方法を用いて決定した前記造形計画に基づいて前記造形物を製造する造形物の製造方法。 A method for manufacturing a shaped article, comprising manufacturing the shaped article based on the shaping plan determined by using the heat transfer calculation method for the shaped article according to any one of claims 1 to 8. 予め設定された造形計画に基づいて溶着ビードを積層して造形物を造形する際の、前記溶着ビードを形成する熱源から前記造形物への伝熱を計算する造形物の伝熱計算装置であって、
前記造形物の形状を複数の要素に分割した解析形状モデルを求めるモデル生成部と、
前記造形計画から前記溶着ビードを形成する熱源からの入熱、前記溶着ビードのビード形成軌道及びビード物性の情報を含む造形条件を取得する造形条件取得部と、
前記解析形状モデルの複数の要素のうち、前記溶着ビードが形成される前記熱源の位置を中心とした温度計算領域に含まれる要素を、伝熱計算の計算対象要素に選定する対象要素選定部と、
前記造形条件に基づく前記熱源からの熱が前記計算対象要素に伝熱される熱収支による、前記温度計算領域の温度分布を求める温度分布算出部と、
前記解析形状モデルにおける前記熱源の位置を前記ビード形成軌道に沿って移動させ、前記熱源の移動先位置を中心とした前記温度計算領域に含まれる前記計算対象要素の選定、及び当該温度計算領域の前記温度分布の計算を繰り返して、前記造形物の造形途中の温度履歴を求める温度履歴算出部と、
を備える、
造形物の伝熱計算装置。
A heat transfer calculation device for a model, which calculates heat transfer from a heat source forming a welding bead to the model when the model is modeled by laminating welding beads based on a preset modeling plan. hand,
a model generation unit that obtains an analysis shape model in which the shape of the object is divided into a plurality of elements;
a molding condition acquisition unit that acquires molding conditions including heat input from a heat source for forming the welding bead, bead formation trajectory of the welding bead, and bead physical properties from the molding plan;
a target element selection unit that selects, from among the plurality of elements of the analytical shape model, elements included in a temperature calculation region centering on the position of the heat source where the welding bead is formed, as calculation target elements for heat transfer calculation; ,
a temperature distribution calculation unit that obtains a temperature distribution in the temperature calculation region based on a heat balance in which heat from the heat source is transferred to the calculation target element based on the modeling conditions;
Move the position of the heat source in the analytical shape model along the bead formation trajectory, select the calculation target element included in the temperature calculation area centered on the movement destination position of the heat source, and select the temperature calculation area a temperature history calculation unit that repeats the calculation of the temperature distribution to obtain a temperature history during the molding of the modeled object;
comprising
Heat transfer calculation device for molded objects.
請求項10に記載の造形物の伝熱計算装置を用いて決定した前記造形計画に基づいて前記造形物を製造する造形物の製造装置。 A model manufacturing apparatus for manufacturing the model based on the model plan determined by using the model heat transfer calculation apparatus according to claim 10 . 予め設定された造形計画に基づいて溶着ビードを積層して造形物を造形する際の、前記溶着ビードを形成する熱源から前記造形物への伝熱を計算する造形物の伝熱計算方法の手順をコンピュータに実行させるプログラムであって、
コンピュータに、
前記造形物の形状を複数の要素に分割した解析形状モデルを求める機能と、
前記造形計画から前記溶着ビードを形成する熱源からの入熱、前記溶着ビードのビード形成軌道及びビード物性の情報を含む造形条件を取得する機能と、
前記解析形状モデルの複数の要素のうち、前記溶着ビードが形成される前記熱源の位置を中心とした温度計算領域に含まれる要素を、伝熱計算の計算対象要素に選定する機能と、
前記造形条件に基づく前記熱源からの熱が前記計算対象要素に伝熱される熱収支による、前記温度計算領域の温度分布を求める機能と、
前記解析形状モデルにおける前記熱源の位置を前記ビード形成軌道に沿って移動させ、前記熱源の移動先位置を中心とした前記温度計算領域に含まれる前記計算対象要素の選定、及び当該温度計算領域の前記温度分布の計算を繰り返して、前記造形物の造形途中の温度履歴を求める機能と、
を実現させるためのプログラム。
A procedure of a model heat transfer calculation method for calculating the heat transfer from a heat source forming a welding bead to the modeled object when the modeled object is modeled by laminating welding beads based on a preset modeling plan. A program that causes a computer to execute
to the computer,
A function to obtain an analysis shape model in which the shape of the object is divided into a plurality of elements;
A function of acquiring molding conditions including heat input from a heat source for forming the welding bead, bead formation trajectory of the welding bead, and bead physical properties from the molding plan;
A function of selecting, from among the plurality of elements of the analytical shape model, elements included in a temperature calculation region centered on the position of the heat source where the welding bead is formed, as calculation target elements for heat transfer calculation;
a function of determining the temperature distribution in the temperature calculation area based on the heat balance in which the heat from the heat source is transferred to the calculation target element based on the modeling conditions;
Move the position of the heat source in the analytical shape model along the bead formation trajectory, select the calculation target element included in the temperature calculation area centered on the movement destination position of the heat source, and select the temperature calculation area a function of repeating the calculation of the temperature distribution to obtain a temperature history during the molding of the modeled object;
program to make it happen.
JP2021125749A 2021-07-30 2021-07-30 Heat transfer calculation method for molded object, heat transfer calculation device for molded object, molded object manufacturing method, molded object manufacturing device and program Pending JP2023020403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021125749A JP2023020403A (en) 2021-07-30 2021-07-30 Heat transfer calculation method for molded object, heat transfer calculation device for molded object, molded object manufacturing method, molded object manufacturing device and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021125749A JP2023020403A (en) 2021-07-30 2021-07-30 Heat transfer calculation method for molded object, heat transfer calculation device for molded object, molded object manufacturing method, molded object manufacturing device and program

Publications (1)

Publication Number Publication Date
JP2023020403A true JP2023020403A (en) 2023-02-09

Family

ID=85159039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021125749A Pending JP2023020403A (en) 2021-07-30 2021-07-30 Heat transfer calculation method for molded object, heat transfer calculation device for molded object, molded object manufacturing method, molded object manufacturing device and program

Country Status (1)

Country Link
JP (1) JP2023020403A (en)

Similar Documents

Publication Publication Date Title
JP7048435B2 (en) Laminating planning method of laminated model, manufacturing method and manufacturing equipment of laminated model
US9573224B2 (en) System and method for determining beam power level along an additive deposition path
US9757902B2 (en) Additive layering method using improved build description
US9939394B2 (en) Process mapping of cooling rates and thermal gradients
JP6936580B2 (en) Stacking control device, stacking control method and program
JP6797244B1 (en) Laminated modeling method
JP6822881B2 (en) Manufacturing method and manufacturing system for laminated models
JP7197437B2 (en) LAMINATED PRODUCT LAYER PLANNING METHOD, LAMINATED PRODUCT MANUFACTURING METHOD AND MANUFACTURING APPARATUS
JP6981957B2 (en) Surplus wall amount setting method, surplus wall amount setting device, manufacturing method of modeled object, and program
WO2022019013A1 (en) Machine learning device, laminate molding system, machine learning method for welding condition, welding condition determination method, and program
JP2023020403A (en) Heat transfer calculation method for molded object, heat transfer calculation device for molded object, molded object manufacturing method, molded object manufacturing device and program
JP7391718B2 (en) A method for predicting the material quality of an additively manufactured product, a method for constructing a material database, a layer planning method for an additively manufactured product, and a method for manufacturing an additively manufactured product
JP6753990B1 (en) Laminate planning method of laminated model, manufacturing method and manufacturing equipment of laminated model
JP6753989B1 (en) Laminate planning method of laminated model, manufacturing method and manufacturing equipment of laminated model
WO2023171151A1 (en) Learning device, temperature history prediction device, welding system, and program
Bauer et al. Numerical simulation and calibration of a single seam WAAM process with a commercial and an open source software
JP7160768B2 (en) Laminate-molded article setting method, laminate-molded article manufacturing method, and manufacturing apparatus
WO2021029297A1 (en) Lamination planning method for laminate molded object, and laminate molded object manufacturing method and manufacturing device
WO2023149143A1 (en) Control information generation device, control information generation method, program, welding control device, and welding device
JP2022054205A (en) Molding condition setting method, lamination molding method, lamination molding system, and program
JP2021074981A (en) Manufacturing method of molded product, manufacturing apparatus of molded product, and program
JP2022117082A (en) Deformation prediction method for laminated molding
JP2020001075A (en) Lamination molding plan design method of laminate molded article, production method, production device and program
WO2024053281A1 (en) Control information generation device, control information generation method, and program
WO2022091762A1 (en) Stacking plan creating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240508