JP2023019845A - Heat storage composition - Google Patents

Heat storage composition Download PDF

Info

Publication number
JP2023019845A
JP2023019845A JP2021124884A JP2021124884A JP2023019845A JP 2023019845 A JP2023019845 A JP 2023019845A JP 2021124884 A JP2021124884 A JP 2021124884A JP 2021124884 A JP2021124884 A JP 2021124884A JP 2023019845 A JP2023019845 A JP 2023019845A
Authority
JP
Japan
Prior art keywords
heat storage
temperature
melting point
reference example
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021124884A
Other languages
Japanese (ja)
Inventor
良太郎 天野
Ryotato Amano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Kaken Co Ltd
Original Assignee
SK Kaken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SK Kaken Co Ltd filed Critical SK Kaken Co Ltd
Priority to JP2021124884A priority Critical patent/JP2023019845A/en
Publication of JP2023019845A publication Critical patent/JP2023019845A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

To provide a heat storage composition having excellent heat storage properties in a desired temperature range.SOLUTION: A heat storage composition contains (A) a C14-18 linear saturated hydrocarbon compound, and (B) a linear saturated fatty acid monoester.SELECTED DRAWING: None

Description

本発明は、所望の温度領域で優れた蓄熱性を有する蓄熱材組成物に関する。 TECHNICAL FIELD The present invention relates to a heat storage material composition having excellent heat storage properties in a desired temperature range.

近年、太陽熱、地熱等の自然エネルギーや、冷暖房器具等からの余熱を有効利用する蓄熱技術が、エネルギー問題を解決する技術の一つとして着目されている。 BACKGROUND ART In recent years, heat storage technology that effectively utilizes natural energy such as solar heat and geothermal heat, and residual heat from air conditioners and the like, has attracted attention as one of the technologies for solving energy problems.

このような蓄熱技術に用いられる蓄熱材として、特に、物質が固体から液体に相変化する時に熱を蓄え(蓄熱)、液体から固体に相変化する時に熱を放出(放熱)する有機潜熱蓄熱材は、潜熱量が高く、取り扱いやすいため、実用化に向けて研究がなされている。 Organic latent heat storage materials that store heat (heat storage) when a substance undergoes a phase change from a solid to a liquid and release heat (radiate heat) when a substance undergoes a phase change from a liquid to a solid are among the heat storage materials used in such heat storage technology. has a large amount of latent heat and is easy to handle, so research is being conducted for its practical use.

例えば、炭化水素化合物は、融点付近で優れた蓄熱性能を示すことが知られている。
しかしながら、炭化水素化合物の融点付近以外の温度領域では、蓄熱性能は得られない(著しく低下する)ため、高い蓄熱性能が得られるのは、炭化水素化合物の融点付近に限定される、という問題がある。
For example, hydrocarbon compounds are known to exhibit excellent heat storage performance near their melting points.
However, since the heat storage performance cannot be obtained (remarkably decreased) in a temperature range other than near the melting point of the hydrocarbon compound, there is a problem that high heat storage performance can be obtained only near the melting point of the hydrocarbon compound. be.

このような問題に対し、例えば、異なる融点を有する炭化水素化合物を2種以上混合して、融点を調整する方法が考えられるが、このような方法では、目的とする温度領域での融点の調整が非常に難しい上、顕著な蓄熱性能の低下が見られることがわかっている。
また、特許文献1、2では、炭化水素化合物に、高級アルコールを混合することで、融点を調整する方法が試みられている。しかし、蓄熱性能の大きな低下は見られていないものの、広い温度域での融点温度調整には至っていない。また、このような方法でも、高い蓄熱性能が得られるのは、炭化水素化合物の融点付近に限定される、という問題がある。
To solve such a problem, for example, a method of adjusting the melting point by mixing two or more hydrocarbon compounds having different melting points is conceivable. However, it is known that the heat storage performance is significantly deteriorated.
Moreover, in Patent Documents 1 and 2, a method of adjusting the melting point by mixing a higher alcohol with a hydrocarbon compound is attempted. However, although a large decrease in heat storage performance was not observed, the melting point temperature could not be adjusted over a wide temperature range. Moreover, even with such a method, there is a problem that high heat storage performance can be obtained only near the melting point of the hydrocarbon compound.

特開2021-80368JP 2021-80368 WO2015/170779WO2015/170779

そこで、本発明が解決しようとする課題は、炭化水素化合物の融点付近以外の温度領域でも、優れた蓄熱性能を示す蓄熱材組成物を提供することにある。 Therefore, the problem to be solved by the present invention is to provide a heat storage material composition that exhibits excellent heat storage performance even in a temperature range other than the vicinity of the melting point of a hydrocarbon compound.

本発明は、上記課題を解決するために、鋭意検討した結果、炭素数14以上18以下の直鎖状飽和炭化水素化合物に、直鎖状飽和脂肪酸モノエステルを混合することによって、該直鎖状飽和炭化水素化合物の融点付近以外の温度領域でも、優れた蓄熱性を有する蓄熱材組成物が得られることを見い出し、本発明を完成するに至った。 In order to solve the above-mentioned problems, as a result of intensive studies, the present invention provides a linear saturated hydrocarbon compound having 14 to 18 carbon atoms by mixing a linear saturated fatty acid monoester. The inventors have found that a heat storage material composition having excellent heat storage properties can be obtained even in a temperature range other than the vicinity of the melting point of a saturated hydrocarbon compound, and have completed the present invention.

すなわち、本発明は、所望の温度領域で、優れた蓄熱性能を示す蓄熱材組成物を提供することができるもので、以下の特徴を有するものである。
1.(A)炭素数が14以上18以下の直鎖状飽和炭化水素化合物、及び
(B)直鎖状飽和脂肪酸モノエステル、
を含有することを特徴とする蓄熱材組成物。
2.(A)成分と(B)成分の混合比率(重量比率)が95:5から40:60であることを特徴とする1.記載の蓄熱材組成物。
That is, the present invention can provide a heat storage material composition that exhibits excellent heat storage performance in a desired temperature range, and has the following features.
1. (A) a linear saturated hydrocarbon compound having 14 or more and 18 or less carbon atoms, and (B) a linear saturated fatty acid monoester,
A heat storage material composition comprising:
2. 1. The mixing ratio (weight ratio) of component (A) and component (B) is from 95:5 to 40:60. The heat storage material composition described.

本発明の蓄熱材組成物は、所望の温度領域で優れた蓄熱性を有する。 The heat storage material composition of the present invention has excellent heat storage properties in a desired temperature range.

参考例1における蓄熱性試験の温度-時間グラフである。3 is a temperature-time graph of a heat storage property test in Reference Example 1. FIG. 実施例1における蓄熱性試験の温度-時間グラフである。4 is a temperature-time graph of a heat storage property test in Example 1. FIG.

以下、本発明を実施するための形態について説明する。 EMBODIMENT OF THE INVENTION Hereinafter, the form for implementing this invention is demonstrated.

本発明の蓄熱材組成物は、(A)炭素数が14以上18以下の直鎖状飽和炭化水素化合物(以下、「(A)成分」ともいう。)と、(B)直鎖状飽和脂肪酸モノエステル(以下、「(B)成分」ともいう。)を含有するものである。 The heat storage material composition of the present invention comprises (A) a straight-chain saturated hydrocarbon compound having 14 or more and 18 or less carbon atoms (hereinafter also referred to as "(A) component") and (B) a straight-chain saturated fatty acid It contains a monoester (hereinafter also referred to as "component (B)").

本発明で用いる(A)成分は、炭素数が14以上18以下の直鎖状飽和炭化水素化合物である。
具体的(A)成分としては、テトラデカン(融点5℃)、ペンタデカン(融点10℃)、ヘキサデカン(融点18℃)、ヘプタデカン(融点21℃)、オクタデカン(融点27℃)が挙げられ、本発明では特に、テトラデカン(融点6℃)、ヘキサデカン(融点18℃)、オクタデカン(融点27℃)から選ばれる1種以上が好ましい。このような(A)成分は、潜熱量が高く、各融点付近にて優れた蓄熱性能を有する。
The component (A) used in the present invention is a linear saturated hydrocarbon compound having 14 or more and 18 or less carbon atoms.
Specific examples of component (A) include tetradecane (melting point 5°C), pentadecane (melting point 10°C), hexadecane (melting point 18°C), heptadecane (melting point 21°C), and octadecane (melting point 27°C). In particular, one or more selected from tetradecane (melting point 6° C.), hexadecane (melting point 18° C.) and octadecane (melting point 27° C.) is preferable. Such component (A) has a large amount of latent heat and excellent heat storage performance near each melting point.

本発明で用いる(B)成分は、直鎖状飽和脂肪酸モノエステルであり、(A)成分と混合して簡単に融点調整ができるものである。また、(A)成分の優れた蓄熱性能を維持することができる。
例えば、(A)成分として、テトラデカン(融点5℃)とヘキサデカン(融点18℃)との間には、約13℃の融点差が存在する。本発明では、この融点と融点の間の温度領域にて簡単に融点調整が可能な技術であり、(A)成分に対し(B)成分を混合することで、簡単に融点調整が可能で、かつ、優れた蓄熱性能を維持することができるものである。
The component (B) used in the present invention is a linear saturated fatty acid monoester, which can be mixed with the component (A) to easily adjust the melting point. In addition, the excellent heat storage performance of the component (A) can be maintained.
For example, component (A) has a melting point difference of about 13° C. between tetradecane (melting point 5° C.) and hexadecane (melting point 18° C.). In the present invention, the melting point can be easily adjusted in the temperature range between these melting points. Moreover, excellent heat storage performance can be maintained.

(B)成分の製造方法は特に限定されないが、例えば、直鎖状飽和脂肪族モノカルボン酸と直鎖状飽和モノアルコールを反応させて得ることができる。 Although the method for producing component (B) is not particularly limited, it can be obtained, for example, by reacting a linear saturated aliphatic monocarboxylic acid and a linear saturated monoalcohol.

直鎖状飽和脂肪族モノカルボン酸としては、例えば、n-ヘキサン酸、n-ヘプタン酸、n-オクタン酸、n-ノナン酸、n-デカン酸、n-ウンデカン酸、n-ドデカン酸、n-トリデカン酸、n-テトラデカン酸、n-ペンタデカン酸、n-ヘキサデカン酸、n-ヘプタデカン酸、n-オクタデカン酸、n-ノナデカン酸、n-イコサン酸、n-ヘンイコサン酸、n-ドコサン酸が挙げられ、これらのうち1種または2種以上を用いることができる。 Linear saturated aliphatic monocarboxylic acids include, for example, n-hexanoic acid, n-heptanoic acid, n-octanoic acid, n-nonanoic acid, n-decanoic acid, n-undecanoic acid, n-dodecanoic acid, n - tridecanoic acid, n-tetradecanoic acid, n-pentadecanic acid, n-hexadecanoic acid, n-heptadecanoic acid, n-octadecanoic acid, n-nonadecanoic acid, n-icosanoic acid, n-henicosanoic acid, n-docosanoic acid. One or more of these can be used.

直鎖状飽和モノアルコールとしては、例えば、メタノール、エタノール、1-プロパノール、1-ブタノール、1-ペンタノール、1-ヘキサノール、1-ヘプタノール、1-オクタノール、1-ノナノール、1-デカノール、1-ウンデカノール、1-ドデカノール、1-トリデカノール、1-テトラデカノール、1-ペンタデカノール、1-ヘキサデカノール、1-ヘプタデカノール、1-オクタデカノール、1-ノナデカノール、1-エイコサノール、1-ヘンイコサノール、1-ドコサノールが挙げられ、これらのうち1種または2種以上を用いることができる。 Linear saturated monoalcohols include, for example, methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, 1-octanol, 1-nonanol, 1-decanol, 1- Undecanol, 1-dodecanol, 1-tridecanol, 1-tetradecanol, 1-pentadecanol, 1-hexadecanol, 1-heptadecanol, 1-octadecanol, 1-nonadecanol, 1-eicosanol, 1- Henicosanol and 1-docosanol can be mentioned, and one or more of these can be used.

(A)成分と(B)成分の混合比率(重量比率)は、95:5から40:60、さらには90:10から50:50であることが好ましい。このような範囲であることによって、広い温度領域で、優れた蓄熱性能を維持することができる。 The mixing ratio (weight ratio) of component (A) and component (B) is preferably from 95:5 to 40:60, more preferably from 90:10 to 50:50. With such a range, excellent heat storage performance can be maintained over a wide temperature range.

なお、(A)成分を2種以上用いる場合は、含有量の多い(A)成分に対し、(B)成分を選択すればよい。 In addition, when two or more kinds of (A) components are used, the (B) component may be selected for the (A) component having a large content.

なお、本発明の融点は、示唆走査熱量計により得られた値である。 The melting point in the present invention is a value obtained by differential scanning calorimeter.

本発明の蓄熱材組成物は、上記(A)成分、(B)成分以外に、その他添加剤を本発明の効果を損なわない程度に混合することができる。
その他添加剤としては、例えば、脂肪酸、脂肪族アルコール、また、上記(A)成分以外の炭化水素化合物(不飽和、分岐状、環状等)、上記(B)成分以外の脂肪酸エステル(不飽和、分岐状、環状等)等が挙げられる。
In addition to the components (A) and (B), the heat storage material composition of the present invention can be mixed with other additives to such an extent that the effects of the present invention are not impaired.
Other additives include, for example, fatty acids, fatty alcohols, hydrocarbon compounds other than component (A) (unsaturated, branched, cyclic, etc.), fatty acid esters other than component (B) (unsaturated, branched, cyclic, etc.).

本発明の蓄熱材組成物は、例えば、食品や薬品等の輸送・貯蔵用の冷蔵・冷凍庫、住宅等の建築物の内壁材、外壁材、天井材、床材、或いはその貼り合わせ材、車輌等の内装材、熱電変換システム、保温材料、極寒地や火災地域、また極地や宇宙空間における保護材料・保護服等に適用できる。 The heat storage material composition of the present invention can be used, for example, in refrigerators and freezers for transportation and storage of foods and medicines, interior wall materials, exterior wall materials, ceiling materials, floor materials of buildings such as houses, or laminating materials thereof, vehicles, etc. etc., thermoelectric conversion systems, heat insulating materials, protective materials and protective clothing in extreme cold regions, fire regions, polar regions and outer space.

本発明の蓄熱材組成物は、例えば、種々の方法で使用することができ、例えば、ケース、袋等に封入したり、基材に含浸させたり、カプセル化する方法を採用したり、結合材とともに固定化すること等もでき、有用である。 The heat storage material composition of the present invention can be used, for example, in various ways, for example, enclosing it in a case, bag, etc., impregnating it with a base material, adopting a method of encapsulation, or It is useful because it can also be immobilized together with

以下に実施例を示し、本発明の特徴をより明確にする。なお、本発明は、ここでの実施例に制限されるものではない。
Examples are shown below to further clarify the features of the present invention. It should be noted that the invention is not limited to the examples herein.

Figure 2023019845000001
Figure 2023019845000001

Figure 2023019845000002
Figure 2023019845000002

Figure 2023019845000003
Figure 2023019845000003

(参考例1)
表1に示す原料を用い、表2に示す配合量にて混合し、木質ボードに1.8kg/mで含浸させた。150×75mmに切断した木質ボードをナイロン-ポリエチレン複合フィルムでラミネートして試験片とした。
(Reference example 1)
Using the raw materials shown in Table 1, they were mixed in the amounts shown in Table 2 and impregnated into a wooden board at 1.8 kg/m 2 . A wooden board cut to 150×75 mm was laminated with a nylon-polyethylene composite film to obtain a test piece.

(蓄熱性試験)
2体の試験片にて熱電対を挟み込み試験体を作製し、該試験体を-20℃に設定した恒温機内で6時間静置させた。
その後、試験体の推定される融点よりも約10℃高い温度に設定した恒温機内に、試験体を移動させ、経過時間による温度変化を測定した。
測定結果は、グラフ1に示す。グラフ1に示すように溶融開始温度及び溶融終了温度を測定し、溶融開始温度と溶融終了温度の平均温度を蓄熱温度とし、さらに、溶融開始温度と溶融終了温度の温度差、及び、溶融開始時間から溶融終了時間に達するまでの時間(維持時間)を、評価した。評価結果は、表2に示す。
参考例1では、蓄熱温度が17.5℃、温度差1.4℃の狭い温度領域で、1.9時間と非常に長い維持時間を示し、17.5℃付近にて高い蓄熱性能を示した。
(Heat storage test)
A thermocouple was sandwiched between two test pieces to prepare a test piece, and the test piece was allowed to stand for 6 hours in a constant temperature machine set at -20°C.
After that, the test piece was moved into a thermostat set to a temperature about 10° C. higher than the estimated melting point of the test piece, and the temperature change over time was measured.
The measurement results are shown in Graph 1. As shown in graph 1, the melting start temperature and the melting end temperature are measured, the average temperature of the melting start temperature and the melting end temperature is set as the heat storage temperature, and the temperature difference between the melting start temperature and the melting end temperature and the melting start time The time (maintenance time) from to reaching the melting end time was evaluated. Evaluation results are shown in Table 2.
In Reference Example 1, in a narrow temperature range with a heat storage temperature of 17.5°C and a temperature difference of 1.4°C, a very long maintenance time of 1.9 hours was exhibited, and high heat storage performance was exhibited at around 17.5°C. rice field.

(実施例1)
参考例1と同様の方法で、表1に示す原料を用い、表2に示す配合量にて、試験体を作製し、参考例1と同様の蓄熱性試験を実施した。測定結果はグラフ2、評価結果は、表2に示す。
実施例1では、蓄熱温度が9.5℃、温度差3.0℃の温度領域で、1.7時間と非常に長い維持時間を示し、9.5℃付近にて高い蓄熱性能を示した。
(Example 1)
By the same method as in Reference Example 1, using the raw materials shown in Table 1, test specimens were produced in the blending amounts shown in Table 2, and the same heat storage test as in Reference Example 1 was conducted. Graph 2 shows the measurement results, and Table 2 shows the evaluation results.
In Example 1, in the temperature range where the heat storage temperature was 9.5°C and the temperature difference was 3.0°C, a very long maintenance time of 1.7 hours was exhibited, and high heat storage performance was exhibited at around 9.5°C. .

(実施例2)
参考例1と同様の方法で、表1に示す原料を用い、表2に示す配合量にて、試験体を作製し、参考例1と同様の蓄熱性試験を実施した。測定結果は、表2に示す。
実施例2では、蓄熱温度が13.2℃、温度差4.4℃の温度領域で、1.6時間と非常に長い維持時間を示し、13.2℃付近にて高い蓄熱性能を示した。
(Example 2)
By the same method as in Reference Example 1, using the raw materials shown in Table 1, test specimens were produced in the blending amounts shown in Table 2, and the same heat storage test as in Reference Example 1 was conducted. Table 2 shows the measurement results.
In Example 2, in the temperature range where the heat storage temperature was 13.2°C and the temperature difference was 4.4°C, a very long maintenance time of 1.6 hours was exhibited, and high heat storage performance was exhibited at around 13.2°C. .

(実施例3)
参考例1と同様の方法で、表1に示す原料を用い、表2に示す配合量にて、試験体を作製し、参考例1と同様の蓄熱性試験を実施した。測定結果は、表2に示す。
実施例3では、蓄熱温度が11.8℃、温度差2.2℃の狭い温度領域で、1.0時間と長い維持時間を示し、11.8℃付近にて高い蓄熱性能を示した。
(Example 3)
By the same method as in Reference Example 1, using the raw materials shown in Table 1, test specimens were produced in the blending amounts shown in Table 2, and the same heat storage test as in Reference Example 1 was conducted. Table 2 shows the measurement results.
In Example 3, in a narrow temperature range with a heat storage temperature of 11.8°C and a temperature difference of 2.2°C, a long maintenance time of 1.0 hours was exhibited, and high heat storage performance was exhibited around 11.8°C.

(実施例4)
参考例1と同様の方法で、表1に示す原料を用い、表2に示す配合量にて、試験体を作製し、参考例1と同様の蓄熱性試験を実施した。測定結果は、表2に示す。
実施例4では、蓄熱温度が15.8℃、温度差1.5℃の狭い温度領域で、1.8時間と非常に長い維持時間を示し、15.8℃付近にて高い蓄熱性能を示した。
(Example 4)
By the same method as in Reference Example 1, using the raw materials shown in Table 1, test specimens were produced in the blending amounts shown in Table 2, and the same heat storage test as in Reference Example 1 was conducted. Table 2 shows the measurement results.
In Example 4, in a narrow temperature range with a heat storage temperature of 15.8°C and a temperature difference of 1.5°C, a very long maintenance time of 1.8 hours was exhibited, and high heat storage performance was exhibited at around 15.8°C. rice field.

(参考例2)
参考例1と同様の方法で、表1に示す原料を用い、表3に示す配合量にて、試験体を作製し、参考例1と同様の蓄熱性試験を実施した。測定結果は、表3に示す。
参考例2では、蓄熱温度が4.7℃、温度差2.3℃の狭い温度領域で、2.1時間と非常に長い維持時間を示し、4.7℃付近にて高い蓄熱性能を示した。
(Reference example 2)
In the same manner as in Reference Example 1, using the raw materials shown in Table 1, test specimens were produced in the blending amounts shown in Table 3, and the same heat storage test as in Reference Example 1 was conducted. Table 3 shows the measurement results.
In Reference Example 2, in a narrow temperature range with a heat storage temperature of 4.7°C and a temperature difference of 2.3°C, a very long maintenance time of 2.1 hours was exhibited, and high heat storage performance was exhibited at around 4.7°C. rice field.

(実施例5)
参考例2と同様の方法で、表1に示す原料を用い、表3に示す配合量にて、試験体を作製し、参考例2と同様の蓄熱性試験を実施した。測定結果は、表3に示す。
実施例5では、蓄熱温度が1.0℃、温度差3.9℃の温度領域で、1.8時間と非常に長い維持時間を示し、1.0℃付近にて高い蓄熱性能を示した。
(Example 5)
In the same manner as in Reference Example 2, using the raw materials shown in Table 1, test specimens were produced in the blending amounts shown in Table 3, and the same heat storage test as in Reference Example 2 was conducted. Table 3 shows the measurement results.
In Example 5, in the temperature range where the heat storage temperature was 1.0°C and the temperature difference was 3.9°C, a very long maintenance time of 1.8 hours was exhibited, and high heat storage performance was exhibited near 1.0°C. .

(実施例6)
参考例2と同様の方法で、表1に示す原料を用い、表3に示す配合量にて、試験体を作製し、参考例2と同様の蓄熱性試験を実施した。測定結果は、表3に示す。
実施例6では、蓄熱温度が1.1℃、温度差2.2℃の狭い温度領域で、1.2時間と長い維持時間を示し、1.1℃付近にて高い蓄熱性能を示した。
(Example 6)
In the same manner as in Reference Example 2, using the raw materials shown in Table 1, test specimens were produced in the blending amounts shown in Table 3, and the same heat storage test as in Reference Example 2 was conducted. Table 3 shows the measurement results.
In Example 6, in a narrow temperature range with a heat storage temperature of 1.1°C and a temperature difference of 2.2°C, a long maintenance time of 1.2 hours was exhibited, and high heat storage performance was exhibited at around 1.1°C.

(実施例7)
参考例2と同様の方法で、表1に示す原料を用い、表3に示す配合量にて、試験体を作製し、参考例2と同様の蓄熱性試験を実施した。測定結果は、表3に示す。
実施例7では、蓄熱温度が1.4℃、温度差2.8℃の狭い温度領域で、2.1時間と非常に長い維持時間を示し、1.4℃付近にて高い蓄熱性能を示した。
(Example 7)
In the same manner as in Reference Example 2, using the raw materials shown in Table 1, test specimens were produced in the blending amounts shown in Table 3, and the same heat storage test as in Reference Example 2 was conducted. Table 3 shows the measurement results.
In Example 7, in a narrow temperature range with a heat storage temperature of 1.4°C and a temperature difference of 2.8°C, a very long maintenance time of 2.1 hours was exhibited, and high heat storage performance was exhibited at around 1.4°C. rice field.

(実施例8)
参考例2と同様の方法で、表1に示す原料を用い、表3に示す配合量にて、試験体を作製し、参考例2と同様の蓄熱性試験を実施した。測定結果は、表3に示す。
実施例8では、蓄熱温度が12.5℃、温度差4.9℃の温度領域で、1.0時間と長い維持時間を示し、12.5℃付近にて高い蓄熱性能を示した。
(Example 8)
In the same manner as in Reference Example 2, using the raw materials shown in Table 1, test specimens were produced in the blending amounts shown in Table 3, and the same heat storage test as in Reference Example 2 was conducted. Table 3 shows the measurement results.
In Example 8, in the temperature range where the heat storage temperature was 12.5°C and the temperature difference was 4.9°C, the retention time was as long as 1.0 hours, and high heat storage performance was exhibited near 12.5°C.

Claims (2)

(A)炭素数が14以上18以下の直鎖状飽和炭化水素化合物、及び
(B)直鎖状飽和脂肪酸モノエステル、
を含有することを特徴とする蓄熱材組成物。
(A) a linear saturated hydrocarbon compound having 14 or more and 18 or less carbon atoms, and (B) a linear saturated fatty acid monoester,
A heat storage material composition comprising:
(A)成分と(B)成分の混合比率(重量比率)が95:5から40:60であることを特徴とする請求項1記載の蓄熱材組成物。
2. The heat storage material composition according to claim 1, wherein the mixing ratio (weight ratio) of component (A) and component (B) is from 95:5 to 40:60.
JP2021124884A 2021-07-30 2021-07-30 Heat storage composition Pending JP2023019845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021124884A JP2023019845A (en) 2021-07-30 2021-07-30 Heat storage composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021124884A JP2023019845A (en) 2021-07-30 2021-07-30 Heat storage composition

Publications (1)

Publication Number Publication Date
JP2023019845A true JP2023019845A (en) 2023-02-09

Family

ID=85160232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021124884A Pending JP2023019845A (en) 2021-07-30 2021-07-30 Heat storage composition

Country Status (1)

Country Link
JP (1) JP2023019845A (en)

Similar Documents

Publication Publication Date Title
Zhao et al. Study on phase diagram of fatty acids mixtures to determine eutectic temperatures and the corresponding mixing proportions
Li et al. Influence of intumescent flame retardant on thermal and flame retardancy of eutectic mixed paraffin/polypropylene form-stable phase change materials
Yu et al. Bio-based PCM/carbon nanomaterials composites with enhanced thermal conductivity
KR101535392B1 (en) Plasticizer, resin composition and method for preparing them
CA2455191C (en) Alkyl phthalate mixtures with controlled viscosity
Cai et al. Preparation and characterizations of HDPE–EVA alloy/OMT nanocomposites/paraffin compounds as a shape stabilized phase change thermal energy storage material
İnce et al. Thermal properties of myristic acid/graphite nanoplates composite phase change materials
Sari et al. Synthesis and thermal energy storage properties of erythritol tetrastearate and erythritol tetrapalmitate
Philip et al. Lauryl alcohol and stearyl alcohol eutectic for cold thermal energy storage in buildings: Preparation, thermophysical studies and performance analysis
Chung et al. Thermal performance of organic PCMs/micronized silica composite for latent heat thermal energy storage
US20170044414A1 (en) Thermal energy storage and temperature stabilization phase change materials comprising alkanolamides and diesters and methods for making and using them
CN111164179B (en) Gel compositions comprising phase change materials
Fauzi et al. Preparation and thermal characteristics of eutectic fatty acids/Shorea javanica composite for thermal energy storage
CN104271716A (en) Esters as cooling and insulating fluids for transformers
Salih et al. Synthesis of oleic acid based esters as potential basestock for biolubricant production
JP2023019845A (en) Heat storage composition
Wang et al. Synergistic effects of dual imidazolium polyoxometalates on intumescent flame retardant polypropylene
Fernando et al. Phase behavior of the ethanol-biodiesel-diesel micro-emulsion system
Valentini et al. Development of eco-sustainable plasters with thermal energy storage capability
Kung et al. Molecular association in fatty acid potassium soap systems. II.
CN103827979A (en) Dielectric fluids comprising polyol esters, methods for preparing mixtures of polyol esters, and electrical apparatuses comprising polyol ester dielectric fluids
KR101718629B1 (en) Room temperature improving method of fatty acid, fatty acid triglyceride and mixture thereof
Zheng et al. Thermoelectric performance enhancement for Ca3Co4O9 ceramics Co-doped with Ag and Tb
Parra et al. Thermal behavior of the highly luminescent poly (3-hydroxybutyrate): Eu (tta) 3 (H 2 O) 2 red-emissive complex
Genc et al. Preparation and investigations of thermal properties of copper oxide, aluminium oxide and graphite based on new organic phase change material for thermal energy storage