JP2023017593A - ロボット制御装置、ロボット制御方法、ロボット制御プログラム、及びロボットシステム - Google Patents

ロボット制御装置、ロボット制御方法、ロボット制御プログラム、及びロボットシステム Download PDF

Info

Publication number
JP2023017593A
JP2023017593A JP2021121943A JP2021121943A JP2023017593A JP 2023017593 A JP2023017593 A JP 2023017593A JP 2021121943 A JP2021121943 A JP 2021121943A JP 2021121943 A JP2021121943 A JP 2021121943A JP 2023017593 A JP2023017593 A JP 2023017593A
Authority
JP
Japan
Prior art keywords
robot
state
flexible material
operating state
electrical characteristics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021121943A
Other languages
English (en)
Inventor
創 北野
So Kitano
泰通 若尾
Yasumichi Wakao
仁 安井
Hitoshi Yasui
真広 山口
Masahiro Yamaguchi
浩人 杉野
Hiroto Sugino
祐輔 藤沢
Yusuke FUJISAWA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2021121943A priority Critical patent/JP2023017593A/ja
Priority to PCT/JP2022/027486 priority patent/WO2023008190A1/ja
Priority to EP22849254.2A priority patent/EP4378639A1/en
Publication of JP2023017593A publication Critical patent/JP2023017593A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manipulator (AREA)

Abstract

【課題】特殊装置を用いることなく簡単な構成で、導電性を有する柔軟材料の電気特性から推定されるロボット状態を利用して、ロボットの作動を制御する。【解決手段】ロボット制御装置(1)は、作動状態が制御可能で、導電性を有し、かつ与えられた圧力の変化に応じて電気特性が変化する柔軟材料を備えたロボット(2)における複数の検出点間の電気特性を検出部で検出する。導出部(7)は、ロボット(2)の電気特性から第1学習モデル(51A)を用いて推定されたロボット状態に対応して変化させる作動状態を示す作動データ(8)を導出し、駆動部(119)へ出力する。ロボット制御装置(1)は、作動データ(8)に基づく駆動部(119)によるロボット(2)の少なくとも一部の部位の駆動によってロボット(2)の作動状態を制御する。【選択図】図1

Description

本開示は、ロボット制御装置、ロボット制御方法、ロボット制御プログラム、及びロボットシステムに関する。
従来より、ユーザの作業や動作を支援するロボットに関する技術開発が盛んに行われている。ロボットは、人や物との緩衝を考慮するため、多数の特殊な接触センサを備えて、ロボットに対する人や物の接触を検出する技術が知られている(例えば、特許文献1参照)。
また、ロボットに対する人や物の接触を検出するために、ロボットの外郭に生じる形状変化を検出することが考えられるが、形状変化を検出する側面で、変形を検出するためには、特殊な検出装置が要求される。例えば、カメラによる物体の変位と振動を測定して、変形画像を取得し、変形量を抽出する技術が知られている(例えば、特許文献2参照)。また、光の透過量から変形量を推定する柔軟触覚センサに関する技術も知られている(例えば、特許文献3参照)。
特開2011-056619号公報 国際公開2017029905号公報 特開2013-101096号公報
ところで、例えば、姿勢変化が可能なロボットでロボットの姿勢を変化させるための作動を制御する場合、ロボットに対する人体及び物体の少なくとも一方の接触やロボットの形状変化を検出して、予め定められた姿勢となるように制御することが考えられる。
しかしながら、多数の特殊な接触センサを備えて接触を検出する側面では、接触を検出するための各部位に接触センサを備えることが要求され、センサ数が膨大となって、ロボットの大型化を招くので好ましくはない。また、多数の特殊な接触センサ自体がロボットの接触状態を阻害する虞もある。
また、形状変化を検出する側面では、変形量を検出するためにカメラや光の透過量を検出するセンサとセンサ出力を解析する解析装置等を含むシステムは、大規模なものとなり、ロボットの大型化を招くので好ましくはない。また、変形量を検出するためにロボットの全ての部位に対して変形量を検出するセンサを配置することが要求され、好ましくはない。
従って、簡単な構成で、ロボットに対する人体及び物体の少なくとも一方の接触等に応じてロボットの作動を制御するためには、改善の余地がある。
本開示は、特殊装置を用いることなく簡単な構成で、導電性を有する柔軟材料の電気特性から推定されるロボット状態を利用して、ロボットの作動状態を制御することができるロボット制御装置、ロボット制御方法、ロボット制御プログラム、及びロボットシステムを提供することを目的とする。
上記目的を達成するために、第1態様は、
少なくとも一部の部位の作動状態が制御可能なロボットであって、導電性を有し、かつ与えられた圧力の変化に応じて電気特性が変化する柔軟材料を外郭部の少なくとも一部に備えた前記ロボットにおける前記柔軟材料に予め定められた複数の検出点間の電気特性を検出する検出部と、
前記柔軟材料に圧力を与えた際の前記複数の検出点間の時系列の電気特性と、前記柔軟材料に前記圧力を与えるロボット状態を示すロボット状態情報とを第1学習用データとして用いて、前記時系列の電気特性を入力した際に、前記ロボット状態情報を出力するように学習された第1学習モデル、及び前記柔軟材料に圧力を与えるロボット状態を示すロボット状態情報と、ロボット状態に対応して変化させる前記ロボットの少なくとも一部の部位の作動状態を示す作動状態情報とを第2学習用データとして用いて、前記ロボット状態情報を入力した際に、前記作動状態情報を出力するように学習されると共に、前記第1学習モデルの出力が入力されるように接続された第2学習モデルを備え、前記第1学習モデルに前記検出部で検出された時系列の電気特性が入力された際に出力される情報を、前記検出部で検出された電気特性に対応する作動状態として導出する導出部と、
前記導出部で導出された作動状態に基づいて、前記ロボットを制御する制御部と、
を含むロボット制御装置である。
第2態様は、第1態様のロボット制御装置において、
前記電気特性は、体積抵抗であり、
前記ロボットは、複数のパーツから構成され、
前記作動状態は、前記複数のパーツの組み合わせによって形成されるロボットの姿勢状態を含み、
前記作動状態情報は、前記ロボットが前記姿勢状態を示すように前記複数のパーツの内の少なくとも1パーツを駆動する駆動情報を含む。
第3態様は、第1態様又は第2態様のロボット制御装置において、
前記柔軟材料は、繊維状及び網目状の少なくとも一方の構造、又は内部に微小な空気泡が複数散在する構造のウレタン材の少なくとも一部に導電性が付与された材料を含む。
第4態様は、第1態様から第3態様の何れか1態様のロボット制御装置において、
前記柔軟材料は、前記ロボットの骨格の周囲に配置され、前記ロボットの骨格に近づくに従って、硬さが硬くなる材料で形成されるか、又は前記ロボットの骨格に近づくに従って、硬さが硬くなるように、硬さが異なる複数の材料を積層して形成される。
第5態様は、第1態様から第4態様の何れか1態様のロボット制御装置において、
前記第1学習モデルは、前記柔軟材料をリザーバとして当該リザーバを用いたリザーバコンピューティングによるネットワークを用いて学習させることで生成されたモデルを含む。
第6態様は、
少なくとも一部の部位の作動状態が制御可能なロボットであって、導電性を有し、かつ与えられた圧力の変化に応じて電気特性が変化する柔軟材料を外郭部の少なくとも一部に備えた前記ロボットと、
前記ロボット制御装置と、
を備えたロボットシステムである。
第7態様は、
コンピュータが
少なくとも一部の部位の作動状態が制御可能なロボットであって、導電性を有し、かつ与えられた圧力の変化に応じて電気特性が変化する柔軟材料を外郭部の少なくとも一部に備えた前記ロボットにおける前記柔軟材料に予め定められた複数の検出点間の電気特性を検出する検出部から前記電気特性を取得し、
前記柔軟材料に圧力を与えた際の前記複数の検出点間の時系列の電気特性と、前記柔軟材料に前記圧力を与えるロボット状態を示すロボット状態情報とを第1学習用データとして用いて、前記時系列の電気特性を入力した際に、前記ロボット状態情報を出力するように学習された第1学習モデル、及び前記柔軟材料に圧力を与えるロボット状態を示すロボット状態情報と、ロボット状態に対応して変化させる前記ロボットの少なくとも一部の部位の作動状態を示す作動状態情報とを第2学習用データとして用いて、前記ロボット状態情報を入力した際に、前記作動状態情報を出力するように学習されると共に、前記第1学習モデルの出力が入力されるように接続された第2学習モデルを用いて、前記第1学習モデルに前記検出部で検出された時系列の電気特性が入力された際に出力される情報を、前記検出部で検出された電気特性に対応する作動状態として導出し、
導出された作動状態に基づいて、前記ロボットを制御する
ロボット制御方法である。
第8態様は、
コンピュータに
少なくとも一部の部位の作動状態が制御可能なロボットであって、導電性を有し、かつ与えられた圧力の変化に応じて電気特性が変化する柔軟材料を外郭部の少なくとも一部に備えた前記ロボットにおける前記柔軟材料に予め定められた複数の検出点間の電気特性を検出する検出部から前記電気特性を取得し、
前記柔軟材料に圧力を与えた際の前記複数の検出点間の時系列の電気特性と、前記柔軟材料に前記圧力を与えるロボット状態を示すロボット状態情報とを第1学習用データとして用いて、前記時系列の電気特性を入力した際に、前記ロボット状態情報を出力するように学習された第1学習モデル、及び前記柔軟材料に圧力を与えるロボット状態を示すロボット状態情報と、ロボット状態に対応して変化させる前記ロボットの少なくとも一部の部位の作動状態を示す作動状態情報とを第2学習用データとして用いて、前記ロボット状態情報を入力した際に、前記作動状態情報を出力するように学習されると共に、前記第1学習モデルの出力が入力されるように接続された第2学習モデルを用いて、前記第1学習モデルに前記検出部で検出された時系列の電気特性が入力された際に出力される情報を、前記検出部で検出された電気特性に対応する作動状態として導出し、
導出された作動状態に基づいて、前記ロボットを制御する
処理を実行させるためのロボット制御プログラムである。
本開示によれば、特殊装置を用いることなく簡単な構成で、導電性を有する柔軟材料の電気特性から推定されるロボット状態を利用して、ロボットの作動状態を制御することができる、という効果を有する。
実施形態に係るロボット制御装置の構成を示す図である。 実施形態に係るロボットに関する図である。 実施形態に係るロボットの腕部に関する図である。 実施形態に係るロボットの外郭部に関する図である。 実施形態に係るロボットの外郭部の硬さに関する図である。 実施形態に係るロボットに関する図である。 実施形態に係るロボットに関する図である。 実施形態に係る導電性を有する部材の検出点に関する図である。 実施形態に係る導電性を有する部材に関する図である。 実施形態に係る導電性を有する部材に関する図である。 実施形態に係る導電性を有する部材に関する図である。 実施形態に係る学習処理に関する図である。 実施形態に係る学習処理に関する図である。 実施形態に係る学習データ収集処理の流れを示すフローチャートである。 実施形態に係る学習処理部における学習処理に関する図である。 実施形態に係る学習処理の流れを示すフローチャートである。 実施形態に係る学習処理部における学習処理に関する図である。 実施形態に係るロボット制御装置の構成を示す図である。 実施形態に係るロボット制御処理の流れを示すフローチャートである。 実施形態に係るロボットに関係する特性を示す図である。 実施形態に係るロボットに関係する特性を示す概念図である。
以下、図面を参照して本開示の技術を実現する実施形態を詳細に説明する。
なお、作用、機能が同じ働きを担う構成要素及び処理には、全図面を通して同じ符合を付与し、重複する説明を適宜省略する場合がある。また、本開示は、以下の実施形態に何ら限定されるものではなく、本開示の目的の範囲内において、適宜変更を加えて実施することができる。また、本開示では、主として非線形に変形する部材に対する物理量の推定を説明するが、線形に変形する部材に対する物理量の推定に適用可能であることは言うまでもない。
本開示において「ロボット」とは、複数の部位(以下、パーツという。)が連携して構成され、少なくとも一部のパーツが制御可能な可動体を含む概念である。「ロボット状態」とは、能動形態を示す状態(以下、能動形態状態という。)及び受動形態を示す状態(以下、受動形態状態という。)を含む概念である。能動形態状態は、可動体を構成する少なくとも一部のパーツによって示されるロボットの姿勢、立ち振る舞い、及び動き等の能動形態を示す状態を含む概念である。受動形態状態は、少なくとも一部のパーツに対して圧力等のエネルギが与えられることによって示される受動形態を示す状態を含む概念である。ロボット状態は、能動形態状態及び受動形態状態を組み合わせた状態でもよい。ロボット状態の一例には、1又は複数パーツの組み合わせによって示される静的な姿勢を示す姿勢状態、及び動的な動きを示す挙動状態が挙げられる。また、ロボット状態の他例には、人体及び物体の少なくとも一方がロボットに接触される接触状態を含む。なお、以下の説明では、人体と物体とを区別して説明することが不要の場合、人物と総称して説明する。つまり、ヒトとモノとを含む概念として人物と総称し、具体的には人体及び物体のそれぞれの単体、及び人体と物体の組み合わせを人物と称して説明する。
また、「ロボットの作動状態」とは、上述したロボット状態から、ロボットを構成する少なくとも一部のパーツが作動によって可動した場合に形成されるロボット状態を含む概念である。例えば、ロボットの作動状態は、能動形態状態及び受動形態状態の少なくとも一方の状態、すなわち、ロボットの少なくとも一部のパーツに対して圧力等のエネルギが与えられることが可能なロボット状態に対して、少なくとも一部のパーツの作動によって形成される、予め定められた(または予測された)ロボット状態を含む。
本開示において「柔軟材料」とは、外部力が与えられることによって少なくとも一部が撓み等のように変形可能な材料を含む概念であり、ゴム材料等の柔らかい弾性体、繊維状及び網目状の少なくとも一方の構造体、及び内部に微小な空気泡が複数散在する構造体を含む。繊維状及び網目状の少なくとも一方の構造体は、繊維状及び網目状の少なくとも一方を骨格として有する構造体でもよい。外部力の一例には圧力が挙げられる。繊維状及び網目状の少なくとも一方の構造体、及び内部に微小な空気泡が複数散在する構造体の一例には、ウレタン材などの高分子材料が挙げられる。「導電性が付与された柔軟材料」とは、導電性を有する材料を含む概念であり、導電性を付与するために導電材を柔軟材料に付与した材料、及び柔軟材料が導電性を有する材料を含む。また、導電性が付与された柔軟材料は、変形に応じて電気特性が変化する機能を有する。なお、変形に応じて電気特性が変化する機能を生じさせる物理量の一例には柔軟材料に与えられる圧力による刺激(以下、圧力刺激という。)を示す圧力値が挙げられる。柔軟材料の変形に応じて変化する電気特性を表す物理量の一例には、電気抵抗値が挙げられる。また、他例には、電圧値、又は電流値が挙げられる。電気抵抗値は、柔軟材料の体積抵抗値と捉えることが可能である。
柔軟材料は、導電性を与えることで、圧力による変形に応じた電気特性が現れる。すなわち、導電性が付与された柔軟材料は、電気経路が複雑に連携し、変形に応じて電気経路が伸縮したり膨縮したりする。また、電気経路が一時的に切断される挙動、及び以前と異なる接続が生じる挙動を示す場合もある。従って、柔軟材料は、所定距離を隔てた位置(例えば電極が配置された検出点の位置)の間では、与えられた力(例えば圧力刺激)の大きさや分布に応じて異なる電気特性を有する挙動を示す。このため、柔軟材料に与えられた力(例えば圧力刺激)の大きさや分布に応じて電気特性が変化する。
なお、導電性が付与された柔軟材料を用いるため、人体及び物体等の人物によって柔軟材料に圧力が与えられる箇所の全てに電極等の検出点を設ける必要はない。柔軟材料の圧力が与えられる箇所を挟む任意の少なくとも2箇所に電極等の検出点が設けられていればよい。
本開示のロボット制御装置は、作動状態が制御可能で、導電性を有し、かつ与えられた圧力の変化に応じて電気特性が変化する柔軟材料を備えたロボットにおける複数の検出点間の電気特性を検出部で検出する。導出部は、ロボットの電気特性から第1学習モデルを用いて推定されたロボット状態に対応して変化させる作動状態を示す作動データを導出し、ロボットのパーツを駆動する駆動部へ出力する。ロボット制御装置は、作動データに基づく駆動部によるロボットの少なくとも一部のパーツの駆動によってロボットの作動状態を制御する。
以下の説明では、導電性を有する柔軟材料としてウレタン部材の全部または少なくとも一部に導電材料が浸潤されたシート部材(以下、導電性ウレタンという。)が、ロボットの少なくとも一部の外郭部に配置された場合を説明する。また、導電性ウレタンを変形させる物理量としてはロボット、すなわち柔軟材料に与えられる圧力刺激を示す値(圧力値)を適用する。なお、圧力刺激に応じて変化する物理量としては、導電性ウレタンの電気抵抗値を適用した場合を説明する。
図1に、本開示のロボット制御装置の一例として、ロボット制御装置1の構成を示す。ロボット制御装置1は、ロボット状態推定装置1A、及びロボット駆動装置1Bを含む。
ロボット状態推定装置1Aは、推定部5を備え、推定部5において、ロボット状態を推定する推定処理を実行する。推定処理は、学習済みの学習モデル51を用いて、ロボット2に配置された導電性ウレタン22における電気特性(入力データ4)から、未知のロボット状態として、ロボット2におけるロボット状態を推定し、出力データ6として出力する。これにより、特殊な装置や大型の装置を用いたりロボット2の外郭の変形を直接計測することなく、ロボット状態を推定することが可能となる。学習モデル51は、ロボット状態(例えば、状態値)をラベルとし、当該ロボット状態における導電性ウレタンの電気特性(すなわち、ロボット2に配置された導電性ウレタンの電気抵抗値)を入力として学習される。推定処理及び推定処理で用いる学習モデル51の学習については後述する。
ロボット駆動装置1Bでは、導出部7を備え、導出部7において、ロボット状態推定装置1Aで推定されたロボット状態(出力データ6)を用いて、推定されたロボット状態に対応するロボット2の作動状態にロボット2を移行する制御を実行する。この制御は、学習済みの学習モデル51を用いて、ロボット2の現在のロボット状態に対して、将来のロボット状態、例えば次にロボット2が移行する状態を示すデータとして、ロボット2における各パーツの駆動値を示す作動データ8(駆動情報)を導出し、駆動部119に出力する。これにより、ロボット2は推定されたロボット状態に対応する作動状態9となり、特殊装置を用いることなく簡単な構成で、ロボットの作動を制御することが可能となる。学習モデル51は、将来のロボット状態(例えば、駆動値を含む作動状態値)をラベルとし、ロボット状態(すなわち、ロボット2に配置された導電性ウレタンの電気抵抗値から推定されるロボット2の状態)を入力として学習される。導出処理及び導出処理で用いる学習モデル51の学習については後述する。
なお、本実施形態では、ロボット制御装置1におけるロボット状態推定装置1A、及びロボット駆動装置1Bの各々で共通の学習モデル51を用いる場合を説明するが、本開示はこれに限定されない。例えば、ロボット状態推定装置1A、及びロボット駆動装置1Bの各々に対して独立した学習モデルを用いてもよい。
ここで、ロボット2の構造を説明する。図2に人型に模した人型ロボット200のロボット構造の一例を示す。
図2に示す人型ロボット200は、頭部210、胴体部220、腕部230(上腕232、前腕234、手236)、脚部240(大腿242、下腿244、足246)の各々のパーツが骨格21によって連結される。人型ロボット200は、骨格21の周囲に導電性ウレタン22を配置することで、人型ロボット200の外側である外郭に導電性ウレタン22が配置される。ロボット2に配置された導電性ウレタン22は、電極等の検出点75を介して電気特性検出部76(図8)に接続される。
例えば、図3に上腕232の概略構造の一例を断面図で示すように、上腕232の骨格21の周囲に、人工筋肉などの構造物を含む内部層25が配置され、内部層25の周囲に表皮としても機能する外郭部27が配置される。なお、骨格21の周囲に表皮として機能する外郭部27を配置してもよい。上腕232以外の腕部230である、前腕234、及び手236、並びに、頭部210、胴体部220、及び脚部240(大腿242、下腿244、足246)の各々のパーツにも外郭部27が配置されるが、同様の構成のため、説明を省略する。
導電性ウレタン22は、骨格21の周囲に配置する材料、すなわち外郭部27の少なくとも一部に配置すればよく、内部に配置してもよいし外部に配置してもよい(図4)。具体的な一例には、外郭部27のA-A断面を外郭断面27-1として示すように、外郭部27の内部を全て導電性ウレタン22で構成しても良い。また、外郭断面27-2に示すように、外郭部27の外側(表面側)の一部に導電性ウレタン22を形成しても良く、外郭断面27-3に示すように、外郭部27の内側(骨格側)に導電性ウレタン22を形成しても良い。さらに、外郭断面27-4に示すように、外郭部27の内部の一部に導電性ウレタン22を形成しても良い。また、外郭断面27-5に示すように、外郭部27を構成する柔軟性を有する材料27Aの外側に導電性ウレタン22を配置しても良く、外郭断面27-6に示すように、外郭部27の内側(骨格側)の外部に導電性ウレタン22を配置しても良い。導電性ウレタン22を外郭部27を構成する材料27Aの外部に配置する場合、導電性ウレタン22と外郭部27を構成する材料とを積層するのみでもよく、導電性ウレタン22と外郭部27を構成する材料とを接着等により一体化してもよい。なお、導電性ウレタン22を外郭部27を構成する材料の外部に配置する場合であっても、導電性ウレタン22が導電性を有するウレタン部材であるため、外郭部27を構成する材料の柔軟性は阻害されない。
また、導電性ウレタン22は、所定の硬さの柔軟性を有するように形成してもよく、例えば、図5に示すように、深さに応じて硬さが変化する柔軟性を有するように形成してもよい。図5はロボットの外郭部の硬さに関する概念図であり、紙面左側に導電性ウレタン22の構造に関する概念図を示し、紙面右側に導電性ウレタン22の深さと硬さの関係の概念図を示す。図5に示す例では、外郭断面27-7として示す外郭部27を導電性ウレタン22で構成する場合、外郭部27の外側(表面側)から内側(骨格側)に向かうに従って、すなわち深さが深くなるのに従って徐々に硬さが硬くなるように導電性ウレタン22を形成することが可能である。また、外郭断面27-8に示すように、硬さが異なる複数の導電性ウレタン22(硬さ:22X<22Y<22Z)を配置しても良い。導電性ウレタン22を含む外郭部27の硬さ(柔軟性)を深さに応じて変化するように構成することで、人体の表皮部分に近い触感を提供することが可能である。
以降では、説明を簡単にするため、本開示のロボットの一例として、図6に示す簡易型のロボットを含む自立型ロボットシステムをロボット2として適用した場合を説明する。ロボット2は、骨格21の周囲にロボット2の外側である外郭として導電性ウレタン22を配置して外郭部を形成する。
図6に示すように、ロボット2は、表示部211及び首部212を含んで頭部210を構成し、上部胴体222、及び下部胴体224を含んで胴体部220を構成する。また、ロボット2は、肩部231、アーム部233、及び手236を含んで腕部230を構成し、図示しない移動機構を備えたベース部241を含んで脚部240を構成する。頭部210、胴体部220、腕部230及び脚部240は、骨格21によって連結される。
図6に示すロボット2では、胴体部220(上部胴体222、及び下部胴体224)、腕部230(肩部231、アーム部233、及び手236)、脚部240(ベース部241)の各々の外側に導電性ウレタン22を含む外郭部27が配置される。なお、外郭部27は、1枚のシートで構成して配置してもよく、各々のパーツ毎に配置してもよい。各々のパーツ毎に導電性ウレタン22を含む外郭部27を配置する場合、外郭部27の一部が重複するように配置してもよい。ロボット2に配置された導電性ウレタン22は、電極等の検出点75を介して電気特性検出部76(図8)に接続される。
腕部230は、肩部231を支点として、アーム部233が屈曲可能に形成される。腕部230でアーム部233が屈曲可能に形成する構成には、線形又は非線形に変形する弾性体を含む部材が適用可能であり、付与された物理量(例えば圧力や流体の供給)により所定方向に収縮力を発生する弾性収縮体が一例として挙げられる。弾性収縮体の一例には、公知技術のエアバッグタイプの部材を適用可能である(例えば、特公昭52-40378号参照)。エアバッグタイプの弾性収縮体(例えば、ラバーアクチュエータ)は、ゴム部材等の柔らかい弾性体で構成される管状体の外周を、有機又は無機高張力繊維、例えば芳香族ポリアミド繊維の編組み補強構造により被覆した本体を有し、両端開口を閉塞部材によって封止したものである。ラバーアクチュエータは、その閉塞部材に設けられた接続口を介して内部空洞に加圧流体が供給されることによって膨径変形し、軸線方向に沿って収縮力が発生するようになっている。このラバーアクチュエータは、膨径変形によって、ラバーアクチュエータの長さが変化する。ただし、ラバーアクチュエータを適用対象とするのはあくまで一例に過ぎず、本開示のロボット制御装置はラバーアクチュエータ以外の部材にも適用可能である。
ロボット2は、図示しない弾性収縮体の駆動によって、図7に示すように、アーム部233が屈曲する。アーム部233の作動によって、人体の腕部を模擬することが可能となる。
また、ロボット2は、ベース部241に図示しない移動機構を備えることで、移動可能とされる。ベース部241には、ロボット2の制御を行う制御装置250が備えられている(図17)。制御装置250は、ロボット状態推定装置1A、及びロボット駆動装置1Bの各々として動作する機能部を含む。
また、ロボット2は、操作部115、表示部211、マイク117、スピーカ118を備えることで(図17)、ユーザからの指示やユーザの状態、及びユーザへの応答等の情報を取得したり提供することが可能である。
なお、ロボット2は、ベース部241を含む脚部240以外の部位において、骨格21の連携による各パーツを移動するための駆動部119(図17)を備えている。駆動部119(図17)の駆動によって、ロボット2は、パーツ毎の移動や変形、或いは複数のパーツが連携した移動や変形によって、各種の姿勢を維持したり、各種の挙動を実行することが可能となる。すなわち、ロボット2は、駆動部119の駆動によって、ロボット2の作動状態を制御可能である。よって、ロボット2は、自立型ロボットシステムとして動作する。なお、駆動部119は、頭部210に含まれる表示部211へのデータを表示するために、表示部211に表示のためのデータを出力する表示駆動部としても機能する。
ところで、ロボット制御装置1におけるロボット状態推定装置1Aは、ロボット状態を推定するために、ロボット2に配置された導電性ウレタン22における電気特性を検出する。
図8に示すように、距離を隔てて配置された複数(図8では2個)の検出点75からの信号によって、導電性ウレタン22の電気特性(すなわち、電気抵抗値である体積抵抗値)を検出することが可能である。図8は、外郭部27の一部として配置された導電性ウレタン22を平面展開した場合を例示した。また、図8では、導電性ウレタン22上の側辺部分に検出点75を偏らせて、導電性ウレタン22上で距離を隔てて対角位置に配置された複数の検出点75からの信号により電気抵抗値を検出する検出セット#1が示されている。なお、複数の検出点75の配置は、図8に示す位置に限定されるものではなく、導電性ウレタン22の電気特性を検出可能な位置であれば何れの位置でもよい。例えば、複数の検出点75を離間して配置すればよく、側辺部分への配置に限定されず、中央部であってもよく、側辺部分と中央部分との組み合わせであってもよい。また、導電性ウレタン22の電気特性は、電気特性(すなわち、電気抵抗値である体積抵抗値)の検出する電気特性検出部76を検出点75に接続し、その出力を用いればよい。
外郭部27に導電性ウレタン22を備えて構成されるロボット2において検出される電気抵抗値は、ロボット2の外郭部27に圧力刺激が与えられる等の導電性ウレタン22の変形によって、その変形の前後で変化する。よって、時系列の電気抵抗値の検出、すなわち、ロボット2に圧力刺激が与えられていない状態からの電気抵抗値の変化を検出(例えば予め定めた閾値を超えた電気抵抗値を検出)することで、ロボット2に対する人物の付勢を検出することが可能となる。具体的には、ロボット2に対する人物の付勢を示す付勢状態は、ロボット2に対する人物の接触であっても圧力刺激を伴うため、接触状態を含む。よって、ロボット2に導電性ウレタン22を配置することで、ロボット2に対する人物の接触を含む付勢を検出可能となる。また、ロボット2に与えられた圧力刺激の位置や分布、及び大きさの何れか1つが変化しても電気抵抗値は変化する。従って、時系列に変化した電気抵抗値から、ロボット2に対する人物の接触位置を含む付勢状態を検出することも不可能ではない。
ロボット2に形成される導電性ウレタン22を含む外郭部27は、ロボット2の外側を一体構造として導電性ウレタン22を含む外郭部27を形成してもよく、パーツ毎に独立した導電性ウレタン22を含む外郭部27を形成してもよい。
なお、1つの導電性ウレタン22の電気特性の検出精度を向上するため、図8に示す検出点(2個)より多くの検出点を用いてもよい。
一例としては、各々検出点が配置された複数の導電性ウレタン片からなる列を1列または複数列並べて導電性ウレタン22を形成し、複数の導電性ウレタン片毎に電気特性を検出してもよい。例えば、導電性ウレタン片23(図9)を、配列して導電性ウレタン22を構成してもよい(図10、図11)。図9に示す例は、距離を隔てて対角位置に配置された検出点75Aからの信号により電気抵抗値を検出する第1の検出セット#1と、他の対角位置に配列された検出点75Bからの信号により電気抵抗値を検出する第2の検出セット#2とを示している。また、図10に示す例では、導電性ウレタン片23(図9)を、外郭部27の長手方向に配列(4x1)して導電性ウレタン22を構成し、順に、第1の検出セット#1から第8の検出セット#8を構成することを示している。さらに、図11に示す例では、導電性ウレタン片23(図9)において各々第1の検出セット#1を採用し、外郭部27の長手方向及び幅方向に配列(4x2)して導電性ウレタン22を構成し、第1の検出セット#1から第8の検出セット#8を構成することを示している。
また、他例としては、導電性ウレタン22上における検出範囲を分割して分割した検出範囲毎に検出点を設けて検出範囲毎に電気特性を検出してもよい。例えば、図10及び図11に示す導電性ウレタン片23の大きさに相当する領域を検出範囲として導電性ウレタン22に設定し、設定した検出範囲毎に検出点を配置して、検出範囲毎に電気特性を検出すればよい。
図1に示すように、ロボット状態推定装置1Aは、推定部5を備えている。推定部5には、導電性ウレタン22における電気抵抗の大きさ(電気抵抗値)を表す時系列の入力データ(電気特性)4が入力される。具体的には、導電性ウレタン22の検出点75に接続された電気特性検出部76から出力される電気特性(すなわち、電気抵抗値である体積抵抗値)が入力される。入力データ4は、ロボット2のロボット状態3に対応する。また、推定部5は、推定結果として入力データ4に対応する未知のロボット状態を示す物理量(ロボット状態値)を表す出力データ6を出力する。なお、推定部5は、学習済みの学習モデル51を用いて未知のロボット状態を示す出力データ6を推定する。
また、図1に示すように、ロボット駆動装置1Bは、導出部7を備えている。導出部7には、ロボット状態推定装置1Aにおいて時系列の入力データ(電気特性)4から推定されたロボット状態(出力データ6)が入力される。入力されたロボット状態(出力データ6)には、将来、例えば、現在のロボット状態から次の作動状態に推移することが好ましい場合がある。そこで、導出部7は、推定されたロボット状態(出力データ6)に対応するロボット2の未知の作動状態に作動させるための物理量を表す作動データ8を導出し、駆動部119に出力する。よって、ロボット2は、作動状態9になるように駆動される。なお、導出部7は、学習済みの学習モデル51を用いて、推定されたロボット状態に対応する作動状態を示す作動データ8を導出する。
学習モデル51は、データが入力されると、入力されたデータの特徴や入力されたデータの関連情報を示すデータを出力するように学習された、学習済みのモデルである。具体的には、学習モデル51は、ロボット状態推定装置1Aで用いる学習モデルとして、導電性ウレタン22の電気抵抗(入力データ4)から、ロボット2におけるロボット状態(出力データ6)を導出する学習を済ませた第1学習モデル51Aを含む。また、学習モデル51は、ロボット駆動装置1Bで用いる学習モデルとして、推定部5で推定されたロボット状態から、当該ロボット状態に対応する作動状態にロボット2を制御するための作動データ8を導出する学習を済ませた第2学習モデル51Bを含む。学習モデル51は、例えば、学習済みのニューラルネットワークを規定するモデルであり、ニューラルネットワークを構成するノード(ニューロン)同士の間の結合の重み(強度)の情報の集合として表現される。
第1学習モデル51A及び第2学習モデル51Bを含む学習モデル51は、学習処理部52(図12A、図12B)の学習処理により生成される。
学習処理部52は、第1学習モデル51Aを生成するために、ロボット状態3により生じる圧力刺激で変化する導電性ウレタン22における電気特性(入力データ4)を用いて学習処理を行う(図12A)。すなわち、ロボット状態3をラベルとして導電性ウレタン22における電気抵抗を時系列に測定した大量のデータを学習データとする。具体的には、学習データは、電気抵抗値(入力データ4)を含んだ入力データと、その入力データに対応するロボット状態3を示す情報(出力データ6)と、のセットを大量に含む。ここでは、導電性ウレタン22の電気抵抗値(入力データ4)の各々に測定時刻を示す情報を付与することで時系列情報が対応付けられる。この場合、ロボット状態3として定まる期間について、導電性ウレタン22における時系列の電気抵抗値のセットに測定時刻を示す情報を付与して時系列情報を対応付けてもよい。
また、学習処理部52は、第2学習モデル51Bを生成するために、導電性ウレタン22の電気特性から推定されるロボット状態6xにより変化するロボット2の作動状態9を用いて学習処理を行う(図12B)。すなわち、ロボット2の作動状態9をラベルとして導電性ウレタン22の時系列の電気特性から推定されたロボット状態6xに対応する作動状態にロボット2を作動するための作動データを測定した大量のデータを学習データとする。具体的には、学習データは、ロボット状態6xを示す情報(出力データ6)を含んだ入力データと、その入力データに対応する作動データ8、すなわちロボット状態6xに対応してロボット2を作動させる作動データ8(出力データ)と、のセットを大量に含む。作動データ8は、ロボット2のバーツを駆動部119により駆動するためのデータである。
第1学習モデル51Aを生成するための学習データの一例には、ロボット状態に対応するデータが挙げられる。ロボット状態には、1又は複数パーツの組み合わせによって示される静的な姿勢を示す姿勢状態、及び動的な動きを示す挙動状態等の状態が適用される。例えば、ロボット2の少なくとも一部のパーツによる所定の姿勢や動き等の挙動となるように駆動部119の駆動制御を行い、そのときの電気抵抗値を検出して、ロボット状態(ロボット状態値)と対応付けて学習データとすればよい。ロボット2は、人物から少なくとも一部のパーツに対して圧力等のエネルギが与えられることによって外郭部27が変形して、導電性ウレタン22の電気抵抗値が変化するので、時系列の電気抵抗値を検出して、ロボット状態(ロボット状態値)と対応付けて学習データとすることが可能となる。
また、第2学習モデル51Bを生成するための学習データの一例には、推定されたロボット状態に対して、ロボット2が次に作動する作動状態を示すデータが挙げられる。作動状態には、ロボットが、推定されたロボット状態に応じたメッセージを報知する処理等のデータが適用される。また、作動状態には、人物からロボット2に対して与えられた圧力等のエネルギに対して応答する状態も適用可能である。例えば、ロボット2に与えられるエネルギが予め定められた閾値より大きく、この後にロボット2のバランスが崩れるようなロボット状態では、ロボット2は、バランスを維持する作動状態に推移する応答をすることが好ましい。具体的には、胴体部220に、予め定められた閾値(バランス維持可能に定めた値)より大きいエネルギでユーザが抱き着いた際のロボット状態に対する作動状態に推移すればよい。この場合、ロボット2は、バランスを維持する作動状態として、与えられたエネルギを抑制するへく、ロボット2が移動したり、エネルギが与えられた該当パーツ又は他のパーツを移動させたり変形させてバランスを維持する作動状態に移行すればよい。
学習処理部52は、図示しないCPUを含むコンピュータを含んで構成可能であり、学習データ収集処理及び学習処理を実行する。図13に、図示しないCPUが実行する学習データ収集処理の一例を示す。学習処理部52は、ステップS100で、ロボット状態を取得し、ステップS102で、導電性ウレタン22の電気抵抗値を時系列に取得する。次のステップS104では、取得した時系列の電気抵抗値にロボット状態3を示すデータ(ロボット状態値)をラベルとして付与した物理量のセットを記憶する。次のステップS105Aでは、ロボット状態への対応を示す情報(作動状態値)を取得する。作動状態値は、ロボット2のバーツを駆動するための駆動値を示す作動データ8が適用される。次のステップS105Bでは、取得したロボット状態への対応を示す情報(作動状態値)にロボット状態3を示すデータ(ロボット状態値)をラベルとして付与して、対応セットとして記憶する。なお、ロボット状態への対応を示す情報(作動状態)が存在しない場合は、ステップS105A及びステップS105Bの処理を省略(スキップ)してもよい。学習処理部52は、これらロボット状態値、及び導電性ウレタン22の電気抵抗値のセットが予め定めた所定数、又は予め定めた所定時間に達するまで(ステップS106で、肯定判断されるまで否定判断し)、上記処理を繰り返す。
これにより、学習処理部52は、ロボット状態3毎に、導電性ウレタン22における電気抵抗値を時系列に取得し、記憶することが可能となり、記憶されたロボット状態毎の時系列の導電性ウレタン22の電気抵抗値のセットが学習データとなる。記憶されたロボット状態毎の時系列の導電性ウレタン22の電気抵抗値のセットは、第1学習モデル51Aの学習データの一例である。また、学習処理部52は、ロボット状態3毎に、ロボット状態への対応を示す情報(作動状態値)を取得し、記憶することが可能となり、記憶されたロボット状態毎の作動状態値の対応セットも学習データとなる。記憶されたロボット状態毎の作動状態値の対応セットは、第2学習モデル51Bの学習データの一例である。
上述したロボット状態のうち、ロボット2に人物が接触等の圧力刺激を伴って付勢した場合、人物が外郭部27に接触する付勢状態から付勢力(押圧力)が大きくなるのに従って、電気特性(電気抵抗値)が大きく変化する。従って、時系列の電気特性が接触検出用に予め定めた閾値を超えることを検出することで、少なくとも人物が外郭部27に接触した付勢状態を検出可能である。よって、少なくとも人物が外郭部27に接触した付勢状態を検出するロボット状態を推定可能に学習処理を実行するのであれば、接触した付勢状態を特定する付勢力(押圧力)に対応する時系列の電気特性を学習データとすればよい。
図19に、ロボット2のアーム部233における電気特性の一例を示す。図19は、ロボット2のアーム部233を、異なる付勢力(ピーク値P1~P8の押圧力)によってユーザの手により押圧した際の導電性ウレタン22の電気特性を示す。また、ピーク値P1~P7は、人物が接触に至らないロボット状態とし、ピーク値P8は、人物が接触したときのロボット状態とする。
図19に示すように、導電性ウレタン22の時系列の電気特性(各ピーク値P1~P8を含む前後の電気特性)の各々が、ユーザの付勢力(押圧力)に応じてアーム部233に接触し、付勢された際のロボット状態における特徴パターンである。すなわち、アーム部233がユーザの手により押圧されると、電気抵抗値が急激に上昇し、押圧が解除(ユーザの手が離間)されると電気抵抗値が徐々に低下するパターンが、特徴パターンとして現れている。図19に示す例では、ピーク値P1~P7に比べて、ピーク値P8が大きい電気抵抗値となっている。このため、ピーク値P1~P7を超える電気抵抗値を閾値thに定めることで、人物が外郭部27に接触した付勢状態を検出可能である。よって、学習処理部52は、接触した付勢状態を特定する付勢力(押圧力)に対応する時系列の電気特性を学習データとして学習する。
一方、接触検出に限定しないロボット状態は、ロボット2における各パーツの位置、又は複数のパーツの相対的な位置関係、各パーツにおける圧力刺激の分布、大きさ、及び頻度等の各物理量により同定可能である。従って、導電性ウレタン22の時系列の電気特性には、ロボット状態を示す時系列の物理量の特徴が含まれる。本実施形態では、導電性ウレタン22を用いることで、これらの物理量が反映された電気特性(体積抵抗)を時系列に検出することが可能である。
従って、ロボット状態に応じてロボット2における圧力刺激が変化し、その圧力刺激の変化に対応する電気特性を時系列に取得することで、ロボット状態に時系列の電気特性を対応付けて記憶することが可能となる。当該時系列の電気特性およびロボット状態を示すロボット状態値とのセットを学習データとすることが可能となる。
ところで、ロボット状態のうち、ロボット2に人物の付勢による圧力刺激が与えられた際に、ロボット2が所定の作動状態に移行することが好ましい場合がある。例えば、人物が外郭部27に与える付勢力(押圧力)が大きくなるのに従って、電気特性(電気抵抗値)が大きく変化する。従って、時系列の電気特性が所定の作動状態への移行用に予め定めた閾値を超えることを検出することで、所定の作動状態に移行するための人物による外郭部27への付勢状態を検出可能である。よって、所定の作動状態に移行するための付勢状態を検出するロボット状態を推定可能に学習処理を実行するのであれば、付勢状態を特定する付勢力(押圧力)に対応する時系列の電気特性を学習データとすればよい。
図20に、ロボット2の胴体部220における電気特性の概念図を一例として示す。図20は、図19に示す電気特性を基にして、ロボット2の胴体部220に対して、異なる付勢力(ピーク値P11~P17の押圧力)でのユーザの抱き着きについて技術的に予測可能な導電性ウレタン22の電気特性の概念図である。図中、ピーク値P11、P13、P14、P17は、ユーザがロボット2の胴体部220への抱き着きに至らないロボット状態に対応する電気特性の概念である。また、ピーク値P12、P16は、胴体部220への抱き着きによるロボット状態に対応する電気特性の概念である。さらに、ピーク値P15は、ロボット2がバランスを崩す程度に胴体部220へのユーザの抱き着きによるロボット状態に対応する電気特性の概念である。よって、学習処理部52は、接触した付勢状態を特定する付勢力(押圧力)に対応する時系列の電気特性を学習データとして学習することが可能である。
図20に概念図として示す導電性ウレタン22の時系列の電気特性(各ピーク値P11~P17を含む前後の電気特性)の各々が、ロボット2の胴体部220へのユーザの付勢力(押圧力)に応じたロボット状態における特徴パターンとして捉えることが可能である。時系列の電気特性は、胴体部220がユーザにより押圧されると、電気抵抗値が急激に上昇し、押圧が解除(ユーザが離間)されると電気抵抗値が徐々に低下するパターンが、特徴パターンとして現れると考えられる。また、ピーク値P12、P16は、ピーク値P11、P13,P14,P17と比べて大きい電気抵抗値である。このため、ピーク値P11、P13,P14,P17を超える電気抵抗値を閾値th1に定めることで、ユーザが胴体部220の外郭部27に接触した付勢状態(抱き着いた状態)を検出することも可能である。
一方、ピーク値P15は、ピーク値P12、P16に比べてさらに大きい電気抵抗値に推移すると考えられる。このため、ピーク値P12、P16を超える電気抵抗値を閾値th2に定めることで、ロボット2がバランスを崩す程度に胴体部220にユーザが抱き着いた状態を検出することも可能である。例えば、ロボット2は、閾値th2を超えた電気抵抗値によるロボット状態になることが予測されるときに、バランスを維持する作動状態として、与えられたエネルギを抑制するべく、ロボット2が移動してバランスを維持する作動状態に移行する処理を実行してもよい。また、ロボット2は、バランスを維持する作動状態として、エネルギが与えられた該当パーツ又は他のパーツの移動及び変形によってバランスを維持する作動状態に移行する処理を実行してもよい。
次に、上述した学習データの一例を表で示す。表1は、第1学習モデル51Aを生成するためのロボット状態に関する学習データとして、時系列の電気抵抗値データ(r)とロボット状態値とを対応付けたデータの一例である。表2から表4は、第2学習モデル51Bを生成するための作動状態に関する学習データとして、ロボット状態値と作動状態値とを対応付けたデータの一例である。
表1に示す例は、ロボット状態を示すロボット状態値を、3つの指標を含むデータとして示す一例である。第1指標は、入力する電気特性の対象部位をパーツとして示すデータである。第2指標は、入力する電気特性に対応するロボット状態を推定状態として示すデータである。第3指標は、入力する電気特性に対応するロボット状態で示される圧力が与えられる状態の大きさ(強度)や性質などの物理量を感度として示すデータである。表1に示す例は、パーツ、推定状態、及び感度の各指標をロボット状態値として入力する電気特性に対応付けた学習データの一例である。
Figure 2023017593000002
表2に示す例は、ロボット2の作動状態として、表示部211等へのデータの表示を、ロボット状態への対応とする側面の学習データの一例である。表2では、ロボット状態は、上述した3つの指標により示し、ロボット状態を推定する処理(一時処理)による推定結果として表記している。また、作動状態の欄では、作動状態の情報(作動状態値)として、電気特性から推定されたロボット状態に対して実行されるロボット2における処理を対応処理とし、対応処理で用いるデータを作動データとして示す一例である。
Figure 2023017593000003
表3に示す例は、ロボット2の作動状態として、一次処理で推定されたロボット状態からさらに詳細な推定を実行することを、ロボット状態への対応とする側面の学習データの一例である。表3では、接触により推定された接触対象の平滑な状態であることを示すロボット状態から、さらにロボット2の手を駆動部119への駆動値で微小移動させたり摺動させることで、詳細な推定を実行可能にするようにロボット2を作動させることを示している。
Figure 2023017593000004
表4に示す例は、ロボット2の作動状態として、一次処理で推定されたロボット状態に対して、ロボットを作動させることを、ロボット状態への対応とする側面の学習データの一例である。表4では、ロボット状態に対する対応処理としてロボット2を作動させる駆動部119の駆動値を作動データ8としてロボット2を作動させることを示している。
Figure 2023017593000005
次に、学習処理部52における学習処理ついて説明する。図14は、学習処理部52の図示しないCPUにおける機能を示す図である。図14に示す例は、第1学習モデル51Aを生成するための学習処理における学習処理部52の機能を示す。
学習処理部52の図示しないCPUは、生成器54及び演算器56の機能部を含む。生成器54は、入力である時系列に取得された電気抵抗値の前後関係を考慮して出力を生成する機能を有する。
また、学習処理部52は、学習用データとして、上述した入力データ4(電気抵抗値)と、入力データ4(電気抵抗値)に対応するロボット状態3である出力データ6とのセットを多数保持している。
生成器54は、入力層540、中間層542、および出力層544を含んで、公知のニューラルネットワーク(NN:Neural Network)を構成する。ニューラルネットワーク自体は公知の技術であるため詳細な説明は省略するが、中間層542は、ノード間結合およびフィードバック結合を有するノード群(ニューロン群)を多数含む。その中間層542には、入力層540からのデータが入力され、中間層542の演算結果のデータは、出力層544へ出力される。
生成器54は、入力された入力データ4(電気抵抗)からロボット状態を表す生成出力データ6Aを生成するニューラルネットワークである。生成出力データ6Aは、入力データ4(電気抵抗)からロボット状態を推定したデータである。生成器54は、時系列に入力された入力データ4(電気抵抗)から、ロボット状態に近い状態を示す生成出力データを生成する。生成器54は、多数の入力データ4(電気抵抗)を用いて学習することで、ロボット2すなわち導電性ウレタン22に圧力刺激が与えられるロボット状態に近い生成出力データ6Aを生成できるようになる。他の側面では、時系列に入力された入力データ4である電気特性をパターンとして捉え、当該パターンを学習することで、ロボット2すなわち導電性ウレタン22に圧力刺激が与えられるロボット状態に近い生成出力データ6Aを生成できるようになる。
演算器56は、生成出力データ6Aと、学習データの出力データ6とを比較し、その比較結果の誤差を演算する演算器である。学習処理部52は、生成出力データ6A、および学習データの出力データ6を演算器56に入力する。これに応じて、演算器56は、生成出力データ6Aと、学習データの出力データ6との誤差を演算し、その演算結果を示す信号を出力する。
学習処理部52は、演算器56で演算された誤差に基づいて、ノード間の結合の重みパラメータをチューニングする、生成器54の学習を行う。具体的には、生成器54における入力層540と中間層542とのノード間の結合の重みパラメータ、中間層542内のノード間の結合の重みパラメータ、および中間層542と出力層544とのノード間の結合の重みパラメータの各々を例えば勾配降下法や誤差逆伝搬法等の手法を用いて、生成器54にフィードバックする。すなわち、学習データの出力データ6を目標として、生成出力データ6Aと学習データの出力データ6との誤差を最小化するように全てのノード間の結合を最適化する。
第1学習モデル51Aは、上述した学習処理部52の学習処理により生成される。第1学習モデル51Aは、学習処理部52による学習結果のノード間の結合の重みパラメータ(重み又は強度)の情報の集合として表現される。
なお、第2学習モデル51Bについては、上述した第1学習モデル51Aと同様のため、詳細な説明を省略する。
図15に学習処理の流れの一例を示す。学習処理部52は、ステップS110で、ロボット状態を示す情報をラベルとした入力データ4(時系列の電気抵抗)、すなわち、ロボット状態値及び電気抵抗値のセットの学習データを取得する。学習処理部52は、ステップS112で、学習データを用いて学習モデル51を生成する。すなわち、上記のようにして多数の学習データを用いて学習した学習結果のノード間の結合の重みパラメータ(重み又は強度)の情報の集合を得る。そして、ステップS114で、学習結果のノード間の結合の重みパラメータ(重み又は強度)の情報の集合として表現されるデータを学習モデル51に含まれる第1学習モデル51Aとして記憶する。
次に、学習処理部52は、ステップS120で、ロボット状態値及び電気抵抗値のセットの学習データに対応する作動状態を示す作動データ8(作動状態値)が記憶されているか否かを判断する。ステップS120で肯定判断の場合はステップS122へ処理を移行し、否定判断の場合は本処理ルーチンを終了する。
ステップS122では、学習処理部52は、ロボット状態を示す情報(ロボット状態値)をラベルとした作動状態を示す作動データ8(作動状態値)、すなわち、ロボット状態及び作動状態を示す情報の対応セットの学習データを取得する。学習処理部52は、ステップS124で、対応セットの学習データを用いて学習モデル51を生成する。すなわち、上記のようにして多数の学習データを用いて学習した学習結果のノード間の結合の重みパラメータ(重み又は強度)の情報の集合を得る。そして、ステップS126で、学習結果のノード間の結合の重みパラメータ(重み又は強度)の情報の集合として表現されるデータを学習モデル51に含まれる第2学習モデル51Bとして記憶する。
なお、生成器54は、時系列入力の前後関係を考慮して出力を生成する機能を有する再帰型ニューラルネットワークを用いてもよく、他の手法を用いてもよい。
そして、ロボット制御装置1では、以上に例示した手法により生成した学習済みの生成器54(すなわち、学習結果のノード間の結合の重みパラメータの情報の集合として表現されるデータ)を学習モデル51として用いる。十分に学習した学習モデル51を用いれば、ロボット2、すなわち外郭部27に配置された導電性ウレタン22における時系列の電気抵抗値からロボット状態を同定すること、及び当該ロボット状態に対する作動状態を同定することも不可能ではない。
なお、学習処理部52による処理は、本開示の導出部で用いる学習モデルを生成する処理の一例である。また、ロボット制御装置1は、本開示の導出部および制御部の一例である。導出部7は、本開示の導出部の一例である。駆動部119は、本開示の制御部でロボットを制御する際のロボットを作動する機能部の一例である。
ところで、上述したように、導電性ウレタン22は、上述したように電気経路が複雑に連携し、変形に応じた電気経路の伸縮、膨縮、一時的な切断、及び新たな接続が生じる等の挙動を示し、結果的に、与えられた力(例えば圧力刺激)に応じて異なる電気特性を有する挙動を示す。このことは、導電性ウレタン22を、導電性ウレタン22の変形に関するデータを貯留するリザーバとして扱うことが可能である。すなわち、ロボット状態推定装置1Aを含むロボット制御装置1は、物理的なリザーバコンピューティング(PRC:Physical Reservoir Computing)と呼ばれるネットワークモデル(以下、PRCNという。)に、導電性ウレタン22を適用することが可能である。PRCおよびPRCN自体は公知の技術であるため、詳細な説明を省略するが、すなわち、PRC、及びPRCNは、導電性ウレタン22の変形に関する情報の推定に好適に適用可能である。
図16に、導電性ウレタン22を含むロボット2を、ロボット2の変形に関するデータを貯留するリザーバとして扱って学習する学習処理部52の一例を示す。導電性ウレタン22は、多様な圧力刺激の各々に応じた電気特性(電気抵抗値)となり、電気抵抗値を入力する入力層として機能し、また、導電性ウレタン22の変形に関するデータを貯留するリザーバ層として機能する。導電性ウレタン22は、ロボット状態3により与えられた圧力刺激に応じて異なる電気特性(入力データ4)を出力するので、推定層で、導電性ウレタン22の電気抵抗値から、ロボット状態3を推定することが可能である。従って、学習処理では、推定層を学習すればよい。
上述のロボット制御装置1は、例えば、コンピュータに上述の各機能を表すプログラムを実行させることにより実現可能である。
図17に、ロボット制御装置1の各種機能を実現する処理を実行する実行装置としてコンピュータを含んで構成した制御装置250の一例を示す。
ロボット制御装置1として機能する制御装置250は、図17に示すコンピュータ本体100を備えている。コンピュータ本体100は、CPU102、揮発性メモリ等のRAM104、ROM106、ハードディスク装置(HDD)等の補助記憶装置108、及び入出力インターフェース(I/O)110を備えている。これらのCPU102、RAM104、ROM106、補助記憶装置108、及び入出力I/O110は、相互にデータ及びコマンドを授受可能にバス112を介して接続された構成である。また、入出力I/O110には、外部装置と通信するための通信部114が接続されている。通信部114は、導電性ウレタン22を含むロボット2との間で、入力データ4(電気抵抗)を取得する機能する。すなわち、通信部114は、検出部である、ロボット2に配置された導電性ウレタン22における検出点75に接続された電気特性検出部76から入力データ4(電気抵抗)を取得することが可能である。
また、入出力I/O110には、キーボード等の操作部115、ディスプレイ等の表示部211、音声入力のためのマイク117、音声出力のためのスピーカ118、及び駆動部119が接続されている。表示部211は、ロボット2の頭部210に配置される。また、操作部115、マイク117、及びスピーカ118は、例えば、ロボット2の胴体部220の内部に配置される(図示省略)。駆動部119は、ロボット2の骨格21の連携による各パーツを移動可能に駆動するように配置される(図示省略)。
補助記憶装置108には、コンピュータ本体100をロボット制御装置1として機能させるための制御プログラム108Pが記憶される。CPU102は、制御プログラム108Pを補助記憶装置108から読み出してRAM104に展開して処理を実行する。これにより、制御プログラム108Pを実行したコンピュータ本体100は、本開示のロボット装置として動作する。
なお、補助記憶装置108には、学習モデル108M、及び各種データを含むデータ108Dが記憶される。制御プログラム108Pは、CD-ROM等の記録媒体により提供するようにしても良い。学習モデル108Mには、第1学習モデル51A及び第2学習モデル51Bを含む学習モデル51が格納される。
次に、コンピュータにより実現されたロボット制御装置1におけるロボット制御処理について説明する。
図18に、コンピュータ本体100において、実行される制御プログラム108Pによるロボット制御処理の流れの一例を示す。
図18に示すロボット制御処理は、コンピュータ本体100が電源投入されると、CPU102により実行される。すなわち、CPU102は、制御プログラム108Pを補助記憶装置108から読み出し、RAM104に展開して処理を実行する。本実施形態では、ロボット制御処理は、ロボット2のロボット状態を推定する推定処理と、推定されたロボット状態に応じたロボット制御に関する処理とを含む。
まず、CPU102は、ロボット2のロボット状態を推定する推定処理を実行する。具体的には、CPU102は、ステップS200で、補助記憶装置108の学習モデル108Mから学習モデル51(すなわち、第1学習モデル51A)を読み出し、RAM104に展開することで、学習モデル51(すなわち、第1学習モデル51A)を取得する。具体的には、学習モデル51に含まれる第1学習モデル51Aとして表現された重みパラメータによるノード間の結合となるネットワークモデル(図14、図16参照)を、RAM104に展開する。よって、重みパラメータによるノード間の結合が実現された第1学習モデル51Aが構築される。
次に、CPU102は、ステップS202で、導電性ウレタン22に与えられた圧力刺激によるロボット状態の推定対象となる未知の入力データ4(電気抵抗)を、通信部114を介して時系列に取得する。
次に、CPU102は、ステップS204で、ステップS200で取得した学習モデル51(すなわち、第1学習モデル51A)を用いて、ステップS202において取得した入力データ4(電気抵抗)に対応する出力データ6(未知のロボット状態)を推定する。
次に、CPU102は、ステップS204で推定されたロボット状態に応じたロボット制御に関する処理を実行する。具体的には、ステップS206で、推定結果の出力データ6(ロボット状態を示すロボット状態値)を出力する出力制御を行う。この出力制御には、出力データ6を通信部114を介して外部に出力する処理、出力データ6に対応する信号をスピーカ118に出力する処理、及び出力データ6に対応するメッセージデータを表示部211に出力する処理等の少なくとも1処理が適用可能である。なお、ステップS206の処理は、後述するステップS212の処理に含めてもよい。
次に、CPU102は、ステップS210で、学習モデル51(すなわち、第2学習モデル51B)を用いて、推定された出力データ6(未知のロボット状態)への対応を示す情報であるロボット2の作動状態を示す作動状態値(作動データ8)を導出する。例えば、作動状態値(作動データ8)は、ロボット2のバーツを駆動するための駆動値を示すデータが導出される。
次に、CPU102は、ステップS212で、導出されたロボット状態への対応を示す情報(作動状態値)を用いて、ロボット2が作動状態に移行するように作動状態に関する処理を実行することでロボット2の制御を行って、本処理ルーチンを終了する。具体的には、CPU102は、駆動部119へ、ロボット2のバーツを駆動するための駆動値(作動データ8)を出力する制御を行う。これによって、ロボット2は、駆動部119に入力されたロボット2において該当するバーツが駆動され、ロボット2が作動状態に移行される。
なお、図18に示す制御処理は、本開示のロボット制御方法で実行される処理の一例である。また、図18に示す制御処理をコンピュータに実行させるためのプログラムは、本開示のロボット制御プログラムの一例である。
以上説明したように、本開示によれば、導電性ウレタン22に対して、ロボット状態3における圧力刺激に応じて変化する入力データ4(電気抵抗)から、ロボット状態を推定することが可能となる。すなわち、特殊な装置や大型の装置を用いたり柔軟部材の変形を直接計測することなく、未知のロボット状態を推定することが可能となる。
また、ロボット状態への対応を示す作動状態にロボット2を作動させることが可能であり、特殊装置を用いることなく簡単な構成で、導電性ウレタン22の電気特性から推定されるロボット状態を利用して、ロボットの作動状態を制御することが可能になる。
本実施形態に係るロボット制御装置1では、上述した学習処理によって学習された学習モデル51を用いることによって、導電性ウレタン22の電気特性を入力することで、電気特性に対応した様々なロボット状態を推定でき、そのロボット状態に対する対応としてロボット2を制御可能であることを確認した。
なお、本実施形態では、上述したように、柔軟部材の一例として導電性ウレタンを適用した場合を説明したが、柔軟部材は導電性を有する材料であればよく、導電性ウレタンに限定されないことは勿論である。
本開示の技術的範囲は上記実施形態に記載の範囲には限定されない。要旨を逸脱しない範囲で上記実施形態に多様な変更または改良を加えることができ、当該変更または改良を加えた形態も本開示の技術的範囲に含まれる。
また、上記実施形態では、推定処理及び学習処理を、フローチャートを用いた処理によるソフトウエア構成によって実現した場合について説明したが、これに限定されるものではなく、例えば各処理をハードウェア構成により実現する形態としてもよい。
また、推定装置の一部、例えば学習モデル等のニューラルネットワークを、ハードウェア回路として構成してもよい。
1 ロボット制御装置
1A ロボット状態推定装置
1B ロボット駆動装置
2 ロボット
3 ロボット状態
4 入力データ
5 推定部
6 出力データ
6x ロボット状態
7 導出部
8 作動データ
9 作動状態
22 導電性ウレタン
27 外郭部
51 学習モデル
51A 第1学習モデル
51B 第2学習モデル
75 検出点
76 電気特性検出部
119 駆動部
200 人型ロボット
250 制御装置

Claims (8)

  1. 少なくとも一部の部位の作動状態が制御可能なロボットであって、導電性を有し、かつ与えられた圧力の変化に応じて電気特性が変化する柔軟材料を外郭部の少なくとも一部に備えた前記ロボットにおける前記柔軟材料に予め定められた複数の検出点間の電気特性を検出する検出部と、
    前記柔軟材料に圧力を与えた際の前記複数の検出点間の時系列の電気特性と、前記柔軟材料に前記圧力を与えるロボット状態を示すロボット状態情報とを第1学習用データとして用いて、前記時系列の電気特性を入力した際に、前記ロボット状態情報を出力するように学習された第1学習モデル、及び前記柔軟材料に圧力を与えるロボット状態を示すロボット状態情報と、ロボット状態に対応して変化させる前記ロボットの少なくとも一部の部位の作動状態を示す作動状態情報とを第2学習用データとして用いて、前記ロボット状態情報を入力した際に、前記作動状態情報を出力するように学習されると共に、前記第1学習モデルの出力が入力されるように接続された第2学習モデルを備え、前記第1学習モデルに前記検出部で検出された時系列の電気特性が入力された際に出力される情報を、前記検出部で検出された電気特性に対応する作動状態として導出する導出部と、
    前記導出部で導出された作動状態に基づいて、前記ロボットを制御する制御部と、
    を含むロボット制御装置。
  2. 前記電気特性は、体積抵抗であり、
    前記ロボットは、複数のパーツから構成され、
    前記作動状態は、前記複数のパーツの組み合わせによって形成されるロボットの姿勢状態を含み、
    前記作動状態情報は、前記ロボットが前記姿勢状態を示すように前記複数のパーツの内の少なくとも1パーツを駆動する駆動情報を含む
    請求項1に記載のロボット制御装置。
  3. 前記柔軟材料は、繊維状及び網目状の少なくとも一方の構造、又は内部に微小な空気泡が複数散在する構造のウレタン材の少なくとも一部に導電性が付与された材料を含む
    請求項1又は請求項2に記載のロボット制御装置。
  4. 前記柔軟材料は、前記ロボットの骨格の周囲に配置され、前記ロボットの骨格に近づくに従って、硬さが硬くなる材料で形成されるか、又は前記ロボットの骨格に近づくに従って、硬さが硬くなるように、硬さが異なる複数の材料を積層して形成される
    請求項1から請求項3の何れか1項に記載のロボット制御装置。
  5. 前記第1学習モデルは、前記柔軟材料をリザーバとして当該リザーバを用いたリザーバコンピューティングによるネットワークを用いて学習させることで生成されたモデルを含む
    請求項1から請求項4の何れか1項に記載のロボット制御装置。
  6. 少なくとも一部の部位の作動状態が制御可能なロボットであって、導電性を有し、かつ与えられた圧力の変化に応じて電気特性が変化する柔軟材料を外郭部の少なくとも一部に備えた前記ロボットと、
    請求項1から請求項5の何れか1項に記載のロボット制御装置と、
    を備えたロボットシステム。
  7. コンピュータが
    少なくとも一部の部位の作動状態が制御可能なロボットであって、導電性を有し、かつ与えられた圧力の変化に応じて電気特性が変化する柔軟材料を外郭部の少なくとも一部に備えた前記ロボットにおける前記柔軟材料に予め定められた複数の検出点間の電気特性を検出する検出部から前記電気特性を取得し、
    前記柔軟材料に圧力を与えた際の前記複数の検出点間の時系列の電気特性と、前記柔軟材料に前記圧力を与えるロボット状態を示すロボット状態情報とを第1学習用データとして用いて、前記時系列の電気特性を入力した際に、前記ロボット状態情報を出力するように学習された第1学習モデル、及び前記柔軟材料に圧力を与えるロボット状態を示すロボット状態情報と、ロボット状態に対応して変化させる前記ロボットの少なくとも一部の部位の作動状態を示す作動状態情報とを第2学習用データとして用いて、前記ロボット状態情報を入力した際に、前記作動状態情報を出力するように学習されると共に、前記第1学習モデルの出力が入力されるように接続された第2学習モデルを用いて、前記第1学習モデルに前記検出部で検出された時系列の電気特性が入力された際に出力される情報を、前記検出部で検出された電気特性に対応する作動状態として導出し、
    導出された作動状態に基づいて、前記ロボットを制御する
    ロボット制御方法。
  8. コンピュータに
    少なくとも一部の部位の作動状態が制御可能なロボットであって、導電性を有し、かつ与えられた圧力の変化に応じて電気特性が変化する柔軟材料を外郭部の少なくとも一部に備えた前記ロボットにおける前記柔軟材料に予め定められた複数の検出点間の電気特性を検出する検出部から前記電気特性を取得し、
    前記柔軟材料に圧力を与えた際の前記複数の検出点間の時系列の電気特性と、前記柔軟材料に前記圧力を与えるロボット状態を示すロボット状態情報とを第1学習用データとして用いて、前記時系列の電気特性を入力した際に、前記ロボット状態情報を出力するように学習された第1学習モデル、及び前記柔軟材料に圧力を与えるロボット状態を示すロボット状態情報と、ロボット状態に対応して変化させる前記ロボットの少なくとも一部の部位の作動状態を示す作動状態情報とを第2学習用データとして用いて、前記ロボット状態情報を入力した際に、前記作動状態情報を出力するように学習されると共に、前記第1学習モデルの出力が入力されるように接続された第2学習モデルを用いて、前記第1学習モデルに前記検出部で検出された時系列の電気特性が入力された際に出力される情報を、前記検出部で検出された電気特性に対応する作動状態として導出し、
    導出された作動状態に基づいて、前記ロボットを制御する
    処理を実行させるためのロボット制御プログラム。
JP2021121943A 2021-07-26 2021-07-26 ロボット制御装置、ロボット制御方法、ロボット制御プログラム、及びロボットシステム Pending JP2023017593A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021121943A JP2023017593A (ja) 2021-07-26 2021-07-26 ロボット制御装置、ロボット制御方法、ロボット制御プログラム、及びロボットシステム
PCT/JP2022/027486 WO2023008190A1 (ja) 2021-07-26 2022-07-12 推定装置、推定方法、及び推定プログラム
EP22849254.2A EP4378639A1 (en) 2021-07-26 2022-07-12 Estimation device, estimation method, and estimation program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021121943A JP2023017593A (ja) 2021-07-26 2021-07-26 ロボット制御装置、ロボット制御方法、ロボット制御プログラム、及びロボットシステム

Publications (1)

Publication Number Publication Date
JP2023017593A true JP2023017593A (ja) 2023-02-07

Family

ID=85157995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021121943A Pending JP2023017593A (ja) 2021-07-26 2021-07-26 ロボット制御装置、ロボット制御方法、ロボット制御プログラム、及びロボットシステム

Country Status (1)

Country Link
JP (1) JP2023017593A (ja)

Similar Documents

Publication Publication Date Title
Kim et al. Review of machine learning methods in soft robotics
Li et al. Model-free control for continuum robots based on an adaptive Kalman filter
Tawk et al. Soft pneumatic sensing chambers for generic and interactive human–machine interfaces
WO2021124992A1 (ja) 推定装置、推定方法、プログラム、及び学習モデル生成装置
Zeng et al. Encoding multiple sensor data for robotic learning skills from multimodal demonstration
Yang et al. Design a multifunctional soft tactile sensor enhanced by machine learning approaches
Duan et al. Sequential learning unification controller from human demonstrations for robotic compliant manipulation
Gao et al. User modelling using multimodal information for personalised dressing assistance
Navarro-Gonzalez et al. On-line incremental learning for unknown conditions during assembly operations with industrial robots
JP2023017593A (ja) ロボット制御装置、ロボット制御方法、ロボット制御プログラム、及びロボットシステム
JP2023017591A (ja) 推定装置、推定方法、推定プログラム、ロボットシステム及び学習モデル生成装置
JP2023017636A (ja) 推定装置、推定方法、推定プログラム、ロボットシステム及び学習モデル生成装置
Trinh et al. Computational model for tactile sensing system with wrinkle’s morphological change
JP2023017580A (ja) 推定装置、推定方法、推定プログラム、ロボットシステム及び学習モデル生成装置
JP2023017579A (ja) 推定装置、推定方法、推定プログラム、ロボットシステム及び学習モデル生成装置
JP2023017578A (ja) 推定装置、推定方法、推定プログラム、ロボットシステム及び学習モデル生成装置
WO2023008190A1 (ja) 推定装置、推定方法、及び推定プログラム
JP2023017592A (ja) 推定装置、推定方法、推定プログラム、及び学習モデル生成装置
Wang et al. Bio-inspired robust control of a robot arm-and-hand system based on human viscoelastic properties
Lee et al. Force and Position Control of Mechatronic Systems
Shih et al. Classification of components of affective touch using rapidly-manufacturable soft sensor skins
Faisal et al. Underactuated digital twin's robotic hands with tactile sensing capabilities for well-being
JP2023017635A (ja) 推定装置、推定方法、推定プログラム、ロボットシステム及び学習モデル生成装置
KR20230109752A (ko) 센서 배열체의 힘 추론을 위한 방법, 네트워크들을 트레이닝하기 위한 방법들, 힘 추론 모듈 및 센서 배열체
WO2023008160A1 (ja) 推定装置、推定方法、推定プログラム、及びロボットシステム