JP2023016656A - Method of recycling copper and phosphorous resource in copper pyrophosphate plating waste water - Google Patents

Method of recycling copper and phosphorous resource in copper pyrophosphate plating waste water Download PDF

Info

Publication number
JP2023016656A
JP2023016656A JP2021142844A JP2021142844A JP2023016656A JP 2023016656 A JP2023016656 A JP 2023016656A JP 2021142844 A JP2021142844 A JP 2021142844A JP 2021142844 A JP2021142844 A JP 2021142844A JP 2023016656 A JP2023016656 A JP 2023016656A
Authority
JP
Japan
Prior art keywords
copper
wastewater
pyrophosphate plating
exchange membrane
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021142844A
Other languages
Japanese (ja)
Other versions
JP7037023B1 (en
Inventor
胡小英
Xiaoying Hu
賀框
Kuang He
劉嘉烈
jia lie Liu
張曼麗
man li Zhang
李潔
Jie Li
卓麗
Li Zhuo
蔡洪英
hong ying Cai
張明楊
Mingyang Zhang
杜建偉
Jianwei Du
温勇
Yong Wen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Municipal Solid Waste Man Center
South China Institute of Environmental Science of Ministry of Ecology and Environment
Original Assignee
Chongqing Municipal Solid Waste Man Center
South China Institute of Environmental Science of Ministry of Ecology and Environment
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Municipal Solid Waste Man Center, South China Institute of Environmental Science of Ministry of Ecology and Environment filed Critical Chongqing Municipal Solid Waste Man Center
Application granted granted Critical
Publication of JP7037023B1 publication Critical patent/JP7037023B1/en
Publication of JP2023016656A publication Critical patent/JP2023016656A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0084Treating solutions
    • C22B15/0086Treating solutions by physical methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/16Nature of the water, waste water, sewage or sludge to be treated from metallurgical processes, i.e. from the production, refining or treatment of metals, e.g. galvanic wastes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

To provide a method of recycling copper and a phosphorus resource in copper pyrophosphate plating waste water.SOLUTION: The present invention discloses a method of recovering copper and a phosphorus resource in copper pyrophosphate plating waste water, the method comprising the steps of: removing particulate impurity in a waste solution by pretreating the copper pyrophosphate plating waste water; subjecting the pretreated copper pyrophosphate plating waste water to an electrodialysis treatment; and recovering metallic copper in copper-containing concentrated liquid by treating the copper-containing concentrated liquid again. According to the present invention, copper and phosphor are efficiently separated and concentrated by a relatively simple process, with respect to a current situation where it is difficult to recycle the copper and the phosphorus resource in the copper pyrophosphate plating waste water; and contaminations of the waste solution to an environment can be reduced by efficiently recovering the copper and the phosphorus resource in the waste water.SELECTED DRAWING: Figure 1

Description

本発明は、産業廃水処理およびリサイクルの技術分野に関し、具体的にピロリン酸銅めっ
き廃水中の銅およびリン資源をリサイクルする方法に関する。
The present invention relates to the technical field of industrial wastewater treatment and recycling, and specifically to a method for recycling copper and phosphorus resources in copper pyrophosphate plating wastewater.

電気めっきは、電気化学的原理を使用して、材料の導電性、耐摩耗性、耐食性、およびそ
の他の物理的および化学的特性を改善するために、金属または合金の層を金属または非金
属材料の表面にめっきするプロセスである。加工製造の一環として、電気めっきは中国の
国内産業の不可欠な部分になっている。
銅メッキは、その優れた可塑性、接着性、および研磨の容易さから、装飾保護メッキの最
下層として広く使用されている。ピロリン酸銅めっきは、ピロリン酸銅を主塩として使用
し、さらに錯化剤やその他の補助錯化剤、光沢剤などの成分を使用し、pH、電流密度、
空気攪拌、温度などのプロセス条件を制御することで、結晶性の微細で明るいコーティン
グを実現するプロセスの一つである。めっき液はシアン化物を含まないため、安定してお
り、電流効率が高く、研磨性能も良好で、換気装置や吸引装置を追加する必要がないため
、工業的な大量生産に使用されている。
ピロリン酸銅めっきの幅広い用途もまた、ピロリン酸銅めっき廃水の処分の問題を引き起
こしている。ピロリン酸銅めっき廃水には、大量の重金属銅に加えて、大量のピロリン酸
も含まれている。水域に過剰に排出された銅は、水生動植物にストレスを与える可能性が
あり、重金属銅はまた、生物学的鎖の濃縮を通じて人体に侵入し、人体に害を及ぼす可能
性がある。廃水中のリンは効果的な処理をせずに水域に排出されると、水域の富栄養化を
引き起こしやすくなる。
同時に、銅とリンも貴重で希少な資源である。国際市場での銅とクロムの価格は3万元/
トンを超えて、リン資源も中国で希少な資源のひとつであり、中国国土資源省は、201
0年以降の国家経済発展のニーズを満たすことができない重要な鉱物の1つとしてリン鉱
石資源を登録する。近年、多くの学者が、国内の下水処理施設で発生する汚泥からますま
す貴重なリン資源を抽出する方法を研究している。ピロリン酸銅廃液中の銅とリンを恣意
的にリサイクル・排出しないと、必然的にそのような希少で貴重な資源の浪費になってい
る。
Electroplating uses electrochemical principles to deposit layers of metals or alloys on metallic or non-metallic materials in order to improve the material's electrical conductivity, wear resistance, corrosion resistance, and other physical and chemical properties. It is a process of plating on the surface of As part of processing manufacturing, electroplating has become an integral part of China's domestic industry.
Copper plating is widely used as the bottom layer of decorative protective plating due to its excellent plasticity, adhesion, and ease of polishing. Copper pyrophosphate plating uses copper pyrophosphate as the main salt, and further uses components such as complexing agents, other auxiliary complexing agents, and brighteners to control pH, current density,
By controlling process conditions such as air agitation and temperature, it is one of the processes that realize fine, bright, crystalline coatings. Because the plating solution does not contain cyanide, it is stable, has high current efficiency, has good polishing performance, and does not require additional ventilation or suction devices, so it is used for industrial mass production.
Widespread use of copper pyrophosphate plating also poses problems of disposal of copper pyrophosphate plating wastewater. Copper pyrophosphate plating wastewater contains a large amount of pyrophosphate in addition to a large amount of heavy metal copper. Excess copper discharged into water bodies can stress aquatic animals and plants, and heavy metal copper can also enter and harm the human body through the concentration of biological chains. Phosphorus in wastewater is likely to cause eutrophication of water bodies if discharged into water bodies without effective treatment.
At the same time, copper and phosphorus are also precious and scarce resources. The price of copper and chromium in the international market is 30,000 yuan/
Beyond tons, phosphorus resources are also one of the scarce resources in China.
Register phosphate rock resources as one of the important minerals that cannot meet the needs of national economic development after 0 years. In recent years, many scholars have been researching methods to extract increasingly valuable phosphorus resources from the sludge generated by domestic sewage treatment plants. Failure to arbitrarily recycle and discharge the copper and phosphorus in the copper pyrophosphate waste liquid inevitably leads to the waste of such scarce and valuable resources.

本発明の目的は、ピロリン酸銅めっき廃水中の銅およびリン資源をリサイクルする方法を
提供することである。
It is an object of the present invention to provide a method for recycling copper and phosphorus resources in copper pyrophosphate plating wastewater.

本発明の技術的解決策は、以下のピロリン酸銅めっき廃水中の銅およびリン資源をリサイ
クルする方法を提供し、それは、
S1:ピロリン酸銅めっき廃水を前処理して廃液中の粒子状不純物を除去するステップと

S2:前処理されたピロリン酸銅めっき廃水を電気透析処理するステップと、
S2-1:前処理されたピロリン酸銅めっき廃水を全陰イオン交換膜に通過させ、廃液中
のピロリン酸イオンを電界力の作用下で、全陰イオン交換膜を通過してリン含有濃縮液プ
ールに入れ、ピロリン酸銅めっき廃水中のリンを分離および濃縮するステップと、
S2-2:電気透析全陰イオン一方向膜を通過したピロリン酸銅めっき廃水を全陽イオン
交換膜に通過させ、廃液中の銅イオンを電界力の作用下で、全陽イオン交換膜を通過させ
て銅含有濃縮液プールに入れ、ピロリン酸銅めっき廃水中の銅を分離および濃縮するステ
ップと、
S3:銅含有濃縮液を再処理して銅含有濃縮液から金属銅を回収するステップと、を含む
The technical solution of the present invention provides the following method for recycling copper and phosphorus resources in copper pyrophosphate plating wastewater, which includes:
S1: A step of pretreating copper pyrophosphate plating wastewater to remove particulate impurities in the wastewater;
S2: A step of electrodialyzing the pretreated copper pyrophosphate plating wastewater;
S2-1: The pretreated copper pyrophosphate plating wastewater is passed through a total anion exchange membrane, and pyrophosphate ions in the wastewater are removed under the action of an electric field force through the total anion exchange membrane to obtain a phosphorus-containing concentrate. pooling to separate and concentrate phosphorus in the copper pyrophosphate plating wastewater;
S2-2: Pyrophosphate copper plating wastewater that has passed through electrodialysis all-anion unidirectional membrane is passed through all-cation exchange membrane, and copper ions in the wastewater are passed through all-cation exchange membrane under the action of electric field force. into a copper-containing concentrate pool to separate and concentrate the copper in the copper pyrophosphate plating wastewater;
S3: Reprocessing the copper-containing concentrate to recover metallic copper from the copper-containing concentrate.

本発明の一側面として、S1の前処理は、具体的に、セキュリティフィルターシステムを
使用して、ピロリン酸銅めっき廃水を処理して廃液中の粒子状不純物を除去することを含
み、セキュリティフィルターシステムを直接使用することで、工業化されたプラントの準
備とプロセスサポート施設の確立がより容易になる。
In one aspect of the present invention, the pretreatment of S1 specifically includes treating copper pyrophosphate plating wastewater to remove particulate impurities in the wastewater using a security filter system, The direct use makes it easier to prepare industrialized plants and establish process support facilities.

本発明の一側面として、S1の前処理は、具体的に、ピロリン酸銅めっき廃水をグリッド
で粗ろ過処理した後、ゼオライトフィルターで二次ろ過して廃液中の粒子状不純物を除去
することであり、処理コストは比較的低くなる。
As one aspect of the present invention, the pretreatment of S1 is specifically performed by coarsely filtering copper pyrophosphate plating wastewater with a grid and then secondary filtering with a zeolite filter to remove particulate impurities in the wastewater. Yes, and processing costs are relatively low.

本発明の一側面として、S1の前処理は、具体的に、水とともに空気を噴出するエジェク
ターを使用してピロリン酸銅めっき廃水中に空気を混合し、エアフロート法により廃液中
の粒子状不純物を除去し、使用する設備がシンプルで、エアフロート原理により粒子状不
純物を効率的に除去することができる。
As one aspect of the present invention, the pretreatment of S1 specifically involves mixing air into copper pyrophosphate plating wastewater using an ejector that ejects air together with water, and removing particulate impurities in the wastewater by an air float method. The equipment used is simple, and the air float principle can effectively remove particulate impurities.

本発明の一側面として、S2-2の全陽イオン交換膜は修飾陽イオン交換膜である。 In one aspect of the invention, all cation exchange membranes of S2-2 are modified cation exchange membranes.

本発明の一側面として、前記修飾陽イオン交換膜の調製方法は、
1)1:3~13:11~15の質量比で、ガラス繊維、炭素繊維、アラミド繊維を多軸布
機で調製して多軸生地を得るステップと、
2)ポリ塩化ビニルとスチレン-ブタジエン-スチレントリブロック共重合体、修飾ナノ酸
化チタンを35~55:3~7:0.2~1.3の質量比でブレンドした後、180~22
0℃の条件下で多軸生地に塗布するステップと、
3)自然冷却後、脱イオン水で20~25分間超音波洗浄し、次に50~60℃の条件下
で4~8時間真空乾燥して、マトリックス膜を得るステップと、
4)マトリックス膜を1~2時間スルホン化し、次に濃度75~85wt%の濃硫酸、濃
度25~40wt%の希硫酸に順次2時間浸漬し、そして濃度3~15wt%の塩化ナト
リウム溶液に15~20時間浸漬して修飾陽イオン交換膜を得るステップと、を含む。
In one aspect of the invention, the method for preparing the modified cation exchange membrane comprises:
1) preparing glass fiber, carbon fiber, aramid fiber in a mass ratio of 1:3-13:11-15 with a multiaxial cloth machine to obtain a multiaxial fabric;
2) Polyvinyl chloride, styrene-butadiene-styrene triblock copolymer, and modified nanotitanium oxide are blended at a weight ratio of 35-55:3-7:0.2-1.3, and then 180-22.
applying to a multiaxial fabric under conditions of 0° C.;
3) After natural cooling, ultrasonically clean with deionized water for 20 to 25 minutes, then vacuum dry at 50 to 60° C. for 4 to 8 hours to obtain a matrix membrane;
4) The matrix membrane is sulfonated for 1-2 hours, then immersed in concentrated sulfuric acid with a concentration of 75-85 wt%, dilute sulfuric acid with a concentration of 25-40 wt% for 2 hours, and then immersed in a sodium chloride solution with a concentration of 3-15 wt% for 15 hours. Soaking for ~20 hours to obtain a modified cation exchange membrane.

本発明の一側面として、前記修飾陽イオン交換膜の調製方法包括:
1)1:3~13:11~15の質量比でガラス繊維、炭素繊維、アラミド繊維を多軸布機
で調製して多軸生地を得るステップと、
2)塩化ベンジルトリエチルアンモニウムとリンタングステン酸を3~5:2.3~3の
質量比で混合して、転移活性剤を得るステップと、
3)ポリビニルアルコール樹脂を80~90℃の条件下で脱イオン水に溶解し、95℃に
加熱した後、ポリビニルアルコール樹脂との質量比2~7:22~35でオルトケイ酸エ
チルを加え、磁力で2~3時間攪拌し、次にオルトケイ酸エチルとの質量比0.5~1.
3:1で転移活性剤を加え、磁力で1~2時間攪拌して、ゾルマトリックスを得るステッ
プと、
4)多軸生地を80~90℃の条件下でゾルマトリックスに15~20時間浸漬した後、
濃度3~15wt%の塩化ナトリウム溶液に15~20時間浸漬して、修飾陽イオン交換
膜を得るステップと、を含む。
本発明の一側面として、S3の再処理は、具体的に、サイクロン電解装置を使用して銅含
有濃縮液を処理し、廃液中の有機複合体をアノードで酸化し、銅イオンがカソードに還元
され金属銅として堆積し、サイクロン電解処理した後、銅含有濃縮液中の銅を10g/L
から0.5g/L以下に減らし、残りの濃縮液を電気透析陽イオン一方向膜に戻して濃縮
し、その中の金属銅をさらに回収する。
In one aspect of the invention, a method for preparing the modified cation exchange membrane includes:
1) preparing glass fiber, carbon fiber, and aramid fiber in a mass ratio of 1:3-13:11-15 with a multiaxial cloth machine to obtain a multiaxial fabric;
2) mixing benzyltriethylammonium chloride and phosphotungstic acid in a weight ratio of 3-5:2.3-3 to obtain a transfer activator;
3) Polyvinyl alcohol resin is dissolved in deionized water under conditions of 80 to 90° C., heated to 95° C., ethyl orthosilicate is added at a mass ratio of 2 to 7:22 to 35 with respect to polyvinyl alcohol resin, and magnetic force is applied. for 2 to 3 hours, and then mixed with ethyl orthosilicate in a mass ratio of 0.5 to 1.5.
adding a transfer activator at 3:1 and magnetically stirring for 1-2 hours to obtain a sol matrix;
4) After immersing the multiaxial fabric in a sol matrix for 15 to 20 hours at 80 to 90 ° C.,
immersing in a sodium chloride solution with a concentration of 3-15 wt% for 15-20 hours to obtain a modified cation exchange membrane.
As an aspect of the present invention, the reprocessing of S3 specifically uses a cyclone electrolyzer to process a copper-containing concentrate, anodicly oxidizing the organic complexes in the effluent, and reducing the copper ions to the cathode. It was deposited as metallic copper, and after cyclone electrolysis, 10 g/L of copper in the copper-containing concentrate was
is reduced to less than 0.5 g/L, and the remaining concentrate is returned to the electrodialysis cationic unidirectional membrane for concentration and further recovery of metallic copper therein.

従来技術と比べると、本発明は以下の有益な効果を有する。本発明は、ピロリン酸銅めっ
き廃水中の銅およびリン資源のリサイクルおよび利用の困難さを考慮して、比較的単純な
プロセスを使用することにより、銅およびリンの高効率の分離および濃縮を実現し、銅の
効果的な回収を実現し、廃水中のリン資源、および廃液の環境への汚染を低減する。
Compared with the prior art, the present invention has the following beneficial effects. Considering the difficulty of recycling and utilization of copper and phosphorus resources in copper pyrophosphate plating wastewater, the present invention achieves highly efficient separation and enrichment of copper and phosphorus by using a relatively simple process. and realize effective recovery of copper, reduce phosphorus resource in waste water and pollution of waste liquid to environment.

実施例5のプロセスのフローチャートである。10 is a flowchart of the process of Example 5; 本発明における電気透析による銅およびリンの分離および濃縮の原理図である。1 is a principle diagram of separation and concentration of copper and phosphorus by electrodialysis in the present invention. FIG.

実施例1:ピロリン酸銅めっき廃水中の銅およびリン資源をリサイクルする方法は、
S1:セキュリティフィルターシステムを使用してピロリン酸銅めっき廃水を処理し、廃
液中の粒子状不純物を除去するステップと、
S2:前処理されたピロリン酸銅めっき廃水を30分間電気透析処理するステップと、
S2-1:前処理されたピロリン酸銅めっき廃水を全陰イオン交換膜に通過させ、廃液中
のピロリン酸イオンを電界力の作用下で全陰イオン交換膜に通過させてリン含有濃縮液プ
ールに入れ、ピロリン酸銅めっき廃水中のリンを分離および濃縮するステップと、
S2-2:電気透析全陰イオン一方向膜を通過したピロリン酸銅めっき廃水を全陽イオン
交換膜に通過させ、廃液中の銅イオンを電界力の作用下で、全陽イオン交換膜を通過させ
て銅含有濃縮液プールに入れ、ピロリン酸銅めっき廃水中の銅を分離および濃縮するステ
ップと、
S3:銅含有濃縮液を再処理して銅含有濃縮液から金属銅を回収し、再処理は具体的に硫
化法を使用して金属銅を回収するステップと、を含む。
Example 1: A method for recycling copper and phosphorus resources in copper pyrophosphate plating wastewater comprises:
S1: treating copper pyrophosphate plating wastewater using a security filter system to remove particulate impurities in the wastewater;
S2: A step of electrodialyzing the pretreated copper pyrophosphate plating wastewater for 30 minutes;
S2-1: The pretreated copper pyrophosphate plating wastewater is passed through a total anion exchange membrane, and the pyrophosphate ions in the wastewater are passed through the total anion exchange membrane under the action of an electric field force to form a phosphorus-containing concentrate pool. to separate and concentrate the phosphorus in the copper pyrophosphate plating wastewater;
S2-2: Pyrophosphate copper plating wastewater that has passed through electrodialysis all-anion unidirectional membrane is passed through all-cation exchange membrane, and copper ions in the wastewater are passed through all-cation exchange membrane under the action of electric field force. into a copper-containing concentrate pool to separate and concentrate the copper in the copper pyrophosphate plating wastewater;
S3: Reprocessing the copper-containing concentrate to recover metallic copper from the copper-containing concentrate, wherein the reprocessing specifically uses a sulfidation method to recover metallic copper.

実施例2:ピロリン酸銅めっき廃水中の銅およびリン資源をリサイクルする方法は、
S1:ピロリン酸銅めっき廃水を、グリッドで粗ろ過処理した後、ゼオライトフィルター
で二次ろ過して廃液中の粒子状不純物を除去するステップと、
S2:前処理されたピロリン酸銅めっき廃水を30分間電気透析処理するステップと、
S2-1:前処理されたピロリン酸銅めっき廃水を全陰イオン交換膜に通過させ、廃液中
のピロリン酸イオンを電界力の作用下で、全陰イオン交換膜に通過させてリン含有濃縮液
プールに入れ、ピロリン酸銅めっき廃水中のリンを分離および濃縮するステップと、
S2-2:電気透析全陰イオン一方向膜を通過したピロリン酸銅めっき廃水を全陽イオン
交換膜に通過させ、廃液中の銅イオンを電界力の作用下で、全陽イオン交換膜を通過させ
て銅含有濃縮液プールに入れ、ピロリン酸銅めっき廃水中の銅を分離および濃縮するステ
ップと、
S3:銅含有濃縮液を再処理して銅含有濃縮液から金属銅を回収し、再処理は具体的に硫
化法を使用して金属銅を回収するステップと、を含む。
Example 2: A method for recycling copper and phosphorus resources in copper pyrophosphate plating wastewater comprises:
S1: A step of subjecting copper pyrophosphate plating wastewater to rough filtration treatment with a grid, followed by secondary filtration with a zeolite filter to remove particulate impurities in the wastewater;
S2: A step of electrodialyzing the pretreated copper pyrophosphate plating wastewater for 30 minutes;
S2-1: Pretreated copper pyrophosphate plating wastewater is passed through a total anion exchange membrane, and pyrophosphate ions in the wastewater are passed through the total anion exchange membrane under the action of an electric field force to obtain a phosphorus-containing concentrate. pooling to separate and concentrate phosphorus in the copper pyrophosphate plating wastewater;
S2-2: Pyrophosphate copper plating wastewater that has passed through electrodialysis all-anion unidirectional membrane is passed through all-cation exchange membrane, and copper ions in the wastewater are passed through all-cation exchange membrane under the action of electric field force. into a copper-containing concentrate pool to separate and concentrate the copper in the copper pyrophosphate plating wastewater;
S3: Reprocessing the copper-containing concentrate to recover metallic copper from the copper-containing concentrate, wherein the reprocessing specifically uses a sulfidation method to recover metallic copper.

実施例3:ピロリン酸銅めっき廃水中の銅およびリン資源をリサイクルする方法は、
S1:ピロリン酸銅めっき廃水を、グリッドで粗ろ過処理した後、ゼオライトフィルター
で二次ろ過して廃液中の粒子状不純物を除去するステップと、
S2:前処理されたピロリン酸銅めっき廃水を30分間電気透析処理するステップと、
S2-1:前処理されたピロリン酸銅めっき廃水を全陰イオン交換膜に通過させ、廃液中
のピロリン酸イオンを電界力の作用下で、全陰イオン交換膜に通過させてリン含有濃縮液
プールに入れ、ピロリン酸銅めっき廃水中のリンを分離および濃縮するステップと、
S2-2:電気透析全陰イオン一方向膜を通過したピロリン酸銅めっき廃水を全陽イオン
交換膜に通過させ、廃液中の銅イオンを電界力の作用下で、全陽イオン交換膜を通過させ
て銅含有濃縮液プールに入れ、ピロリン酸銅めっき廃水中の銅を分離および濃縮するステ
ップと、
S3:サイクロン電解装置を使用して銅含有濃縮液を処理し、廃液中の有機複合体がアノ
ードに酸化され、銅イオンがカソードに還元され金属銅として堆積するステップと、
S4:20分間サイクロン電解処理するステップと、を含む。
Example 3: A method for recycling copper and phosphorus resources in copper pyrophosphate plating wastewater is
S1: A step of subjecting copper pyrophosphate plating wastewater to rough filtration treatment with a grid, followed by secondary filtration with a zeolite filter to remove particulate impurities in the wastewater;
S2: A step of electrodialyzing the pretreated copper pyrophosphate plating wastewater for 30 minutes;
S2-1: Pretreated copper pyrophosphate plating wastewater is passed through a total anion exchange membrane, and pyrophosphate ions in the wastewater are passed through the total anion exchange membrane under the action of an electric field force to obtain a phosphorus-containing concentrate. pooling to separate and concentrate phosphorus in the copper pyrophosphate plating wastewater;
S2-2: Pyrophosphate copper plating wastewater that has passed through electrodialysis all-anion unidirectional membrane is passed through all-cation exchange membrane, and copper ions in the wastewater are passed through all-cation exchange membrane under the action of electric field force. into a copper-containing concentrate pool to separate and concentrate the copper in the copper pyrophosphate plating wastewater;
S3: Using a cyclone electrolyzer to treat a copper-containing concentrate, the organic complexes in the effluent being oxidized to the anode and the copper ions being reduced to the cathode and deposited as metallic copper;
S4: Cyclone electrolytic treatment for 20 minutes.

実施例4:ピロリン酸銅めっき廃水中の銅およびリン資源をリサイクルする方法は、
S1:水とともに空気を噴出するエジェクターを使用して、ピロリン酸銅めっき廃水に空
気を混合してエアフロート法により廃液中の粒子状不純物を除去するステップと、
S2:前処理されたピロリン酸銅めっき廃水を25分間電気透析処理するステップと、
S2-1:前処理されたピロリン酸銅めっき廃水を全陰イオン交換膜に通過させ、廃液中
のピロリン酸イオンを電界力の作用下で、全陰イオン交換膜に通過させてリン含有濃縮液
プールに入れ、ピロリン酸銅めっき廃水中のリンを分離および濃縮するステップと、
S2-2:電気透析全陰イオン一方向膜を通過したピロリン酸銅めっき廃水を全陽イオン
交換膜に通過させ、廃液中の銅イオンを電界力の作用下で、全陽イオン交換膜を通過させ
て銅含有濃縮液プールに入れ、ピロリン酸銅めっき廃水中の銅を分離および濃縮するステ
ップと、
S3:サイクロン電解装置を使用して銅含有濃縮液を処理し、廃液中の有機複合体がアノ
ードに酸化され、銅イオンがカソードに還元され金属銅として堆積するステップと、
S4:20分間サイクロン電解処理し、残りの濃縮液を電気透析陽イオン一方向膜に戻し
てステップS2-2で濃縮した後、その中の金属銅を回収するステップと、を含む。
Example 4: A method for recycling copper and phosphorus resources in copper pyrophosphate plating wastewater is
S1: A step of removing particulate impurities in the wastewater by an air float method by mixing air into copper pyrophosphate plating wastewater using an ejector that ejects air together with water;
S2: A step of electrodialyzing the pretreated copper pyrophosphate plating wastewater for 25 minutes;
S2-1: Pretreated copper pyrophosphate plating wastewater is passed through a total anion exchange membrane, and pyrophosphate ions in the wastewater are passed through the total anion exchange membrane under the action of an electric field force to obtain a phosphorus-containing concentrate. pooling to separate and concentrate phosphorus in the copper pyrophosphate plating wastewater;
S2-2: Pyrophosphate copper plating wastewater that has passed through electrodialysis all-anion unidirectional membrane is passed through all-cation exchange membrane, and copper ions in the wastewater are passed through all-cation exchange membrane under the action of electric field force. into a copper-containing concentrate pool to separate and concentrate the copper in the copper pyrophosphate plating wastewater;
S3: Using a cyclone electrolyzer to treat a copper-containing concentrate, the organic complexes in the effluent being oxidized to the anode and the copper ions being reduced to the cathode and deposited as metallic copper;
S4: Cyclone electrolysis for 20 minutes, returning the remaining concentrate to the electrodialysis cationic unidirectional membrane for concentration in step S2-2, and then recovering metallic copper therein.

実施例5:ピロリン酸銅めっき廃水中の銅およびリン資源をリサイクルする方法は、
S1:セキュリティフィルターシステムを使用し、ピロリン酸銅めっき廃水を処理して廃
液中の粒子状不純物を除去するステップと、
S2:前処理されたピロリン酸銅めっき廃水を25分間電気透析処理するステップと、
S2-1:前処理されたピロリン酸銅めっき廃水を全陰イオン交換膜に通過させ、廃液中
のピロリン酸イオンを電界力の作用下で、全陰イオン交換膜に通過させてリン含有濃縮液
プールに入れ、ピロリン酸銅めっき廃水中のリンを分離および濃縮するステップと、
S2-2:電気透析全陰イオン一方向膜を通過したピロリン酸銅めっき廃水を全陽イオン
交換膜に通過させ、廃液中の銅イオンを電界力の作用下で、全陽イオン交換膜を通過させ
て銅含有濃縮液プールに入れ、ピロリン酸銅めっき廃水中の銅を分離および濃縮するステ
ップと、
S3:サイクロン電解装置を使用して銅含有濃縮液を処理し、廃液中の有機複合体がアノ
ードに酸化され、銅イオンがカソードに還元され金属銅として堆積するステップと、
S4:30分間サイクロン電解処理し、残りの濃縮液を電気透析陽イオン一方向膜に戻し
てステップS2-2で濃縮した後、その中の金属銅を回収するステップと、を含む。
Example 5: A method for recycling copper and phosphorus resources in copper pyrophosphate plating wastewater comprises:
S1: Using a security filter system to treat copper pyrophosphate plating wastewater to remove particulate impurities in the wastewater;
S2: A step of electrodialyzing the pretreated copper pyrophosphate plating wastewater for 25 minutes;
S2-1: Pretreated copper pyrophosphate plating wastewater is passed through a total anion exchange membrane, and pyrophosphate ions in the wastewater are passed through the total anion exchange membrane under the action of an electric field force to obtain a phosphorus-containing concentrate. pooling to separate and concentrate phosphorus in the copper pyrophosphate plating wastewater;
S2-2: Pyrophosphate copper plating wastewater that has passed through electrodialysis all-anion unidirectional membrane is passed through all-cation exchange membrane, and copper ions in the wastewater are passed through all-cation exchange membrane under the action of electric field force. into a copper-containing concentrate pool to separate and concentrate the copper in the copper pyrophosphate plating wastewater;
S3: Using a cyclone electrolyzer to treat a copper-containing concentrate, the organic complexes in the effluent being oxidized to the anode and the copper ions being reduced to the cathode and deposited as metallic copper;
S4: Cyclone electrolysis for 30 minutes, returning the remaining concentrate to the electrodialysis cation unidirectional membrane for concentration in step S2-2, and then recovering metallic copper therein.

実施例6:ピロリン酸銅めっき廃水中の銅およびリン資源をリサイクルする方法は、
S1:セキュリティフィルターシステムを使用して、ピロリン酸銅めっき廃水を処理して
廃液中の粒子状不純物を除去するステップと、
S2:前処理されたピロリン酸銅めっき廃水を30分間電気透析処理するステップと、
S2-1:前処理されたピロリン酸銅めっき廃水を全陰イオン交換膜に通過させ、廃液中
のピロリン酸イオンを電界力の作用下で、全陰イオン交換膜に通過させリン含有濃縮液プ
ールに入れ、ピロリン酸銅めっき廃水中のリンを分離および濃縮するステップと、
S2-2:電気透析全陰イオン一方向膜を通過したピロリン酸銅めっき廃水を全陽イオン
交換膜に通過させ、廃液中の銅イオンを電界力の作用下で、全陽イオン交換膜を通過させ
て銅含有濃縮液プールに入れ、ピロリン酸銅めっき廃水中の銅を分離および濃縮し、全陽
イオン交換膜は修飾陽イオン交換膜であるステップと、を含む。
Example 6: A method for recycling copper and phosphorus resources in copper pyrophosphate plating wastewater comprises:
S1: Using a security filter system to treat copper pyrophosphate plating wastewater to remove particulate impurities in the wastewater;
S2: A step of electrodialyzing the pretreated copper pyrophosphate plating wastewater for 30 minutes;
S2-1: Pretreated copper pyrophosphate plating wastewater is passed through a total anion exchange membrane, and pyrophosphate ions in the wastewater are passed through the total anion exchange membrane under the action of an electric field force to form a phosphorus-containing concentrate pool. to separate and concentrate the phosphorus in the copper pyrophosphate plating wastewater;
S2-2: Pyrophosphate copper plating wastewater that has passed through electrodialysis all-anion unidirectional membrane is passed through all-cation exchange membrane, and copper ions in the wastewater are passed through all-cation exchange membrane under the action of electric field force. into a copper-containing concentrate pool to separate and concentrate the copper in the copper pyrophosphate plating wastewater, wherein all the cation exchange membranes are modified cation exchange membranes.

修飾陽イオン交換膜の調製方法は、
1)1:3:11の質量比でガラス繊維、炭素繊維、アラミド繊維を多軸布機で調製して多
軸生地を得るステップと、
2)ポリ塩化ビニルとスチレン-ブタジエン-スチレントリブロック共重合体、修飾ナノ酸
化チタンを35:3:0.2の質量比でブレンドした後、180℃の条件下で多軸生地に塗
布するステップと、
3)自然冷却後、脱イオン水で20分間超音波洗浄し、次に50℃の条件下で4時間真空
乾燥して、マトリックス膜を得るステップと、
4)マトリックス膜を1時間スルホン化し次に濃度75wt%の濃硫酸、濃度25wt%
の希硫酸に順次2時間浸漬し、そして濃度3wt%の塩化ナトリウム溶液に15時間浸漬
浸漬して修飾陽イオン交換膜を得るステップと、
S3:サイクロン電解装置を使用して銅含有濃縮液を処理し、廃液中の有機複合体がアノ
ードに酸化され、銅イオンがカソードに還元され金属銅として堆積するステップと、
S4:20分間サイクロン電解処理し、残りの濃縮液を電気透析陽イオン一方向膜に戻し
てステップS2-2の濃縮した後、その中の金属銅をさらに回収するステップと、を含む
A method for preparing a modified cation exchange membrane comprises:
1) preparing glass fiber, carbon fiber and aramid fiber in a mass ratio of 1:3:11 with a multiaxial cloth machine to obtain a multiaxial fabric;
2) A step of blending polyvinyl chloride, styrene-butadiene-styrene triblock copolymer, and modified nano-titanium oxide at a weight ratio of 35:3:0.2, and then applying the mixture to a multiaxial fabric at 180°C. and,
3) After natural cooling, ultrasonically clean with deionized water for 20 minutes, then vacuum dry at 50° C. for 4 hours to obtain a matrix membrane;
4) The matrix membrane was sulfonated for 1 hour, then concentrated sulfuric acid at a concentration of 75 wt%, a concentration of 25 wt%.
of dilute sulfuric acid for 2 hours, and then immersed in a sodium chloride solution with a concentration of 3 wt% for 15 hours to obtain a modified cation exchange membrane;
S3: Using a cyclone electrolyzer to treat a copper-containing concentrate, the organic complexes in the effluent being oxidized to the anode and the copper ions being reduced to the cathode and deposited as metallic copper;
S4: Cyclone electrolysis for 20 minutes, returning the remaining concentrate to the electrodialysis cation unidirectional membrane to further recover metallic copper therein after the concentration of step S2-2.

実施例7:ピロリン酸銅めっき廃水中の銅およびリン資源をリサイクルする方法は、
S1:セキュリティフィルターシステムを使用して、ピロリン酸銅めっき廃水を処理して
廃液中の粒子状不純物を除去するステップと、
S2:前処理されたピロリン酸銅めっき廃水を25分間電気透析処理するステップと、
S2-1:前処理されたピロリン酸銅めっき廃水を全陰イオン交換膜に通過させ、廃液中
のピロリン酸イオンを電界力の作用下で、全陰イオン交換膜に通過させリン含有濃縮液プ
ールに入れ、ピロリン酸銅めっき廃水中のリンを分離および濃縮するステップと、
S2-2:電気透析全陰イオン一方向膜を通過したピロリン酸銅めっき廃水を全陽イオン
交換膜に通過させ、廃液中の銅イオンを電界力の作用下で、全陽イオン交換膜を通過させ
て銅含有濃縮液プールに入れ、ピロリン酸銅めっき廃水中の銅を分離および濃縮し、全陽
イオン交換膜は修飾陽イオン交換膜であるステップと、を含む。
修飾陽イオン交換膜の調製方法は、
1)1:7.3:11.5の質量比でガラス繊維、炭素繊維、アラミド繊維を多軸布機で調
製して多軸生地を得るステップと、
2)ポリ塩化ビニルとスチレン-ブタジエン-スチレントリブロック共重合体、修飾ナノ酸
化チタンを45:5:1.1の質量比でブレンドした後、195℃の条件下で多軸生地に塗
布するステップと、
3)自然冷却後、脱イオン水で23分間超音波洗浄し、次に55℃の条件下で6時間真空
乾燥して、マトリックス膜を得るステップと、
4)マトリックス膜を2時間スルホン化し、次に濃度80wt%の濃硫酸、濃度30wt
%の希硫酸に順次2時間浸漬して、そして濃度10wt%の塩化ナトリウム溶液に18時
間浸漬した後、修飾陽イオン交換膜を得るステップと、
S3:サイクロン電解装置を使用して銅含有濃縮液を処理し、廃液中の有機複合体がアノ
ードに酸化され、銅イオンがカソードに還元され金属銅として堆積するステップと、
S4:20分間サイクロン電解処理し、残りの濃縮液を電気透析陽イオン一方向膜に戻し
てステップS2-2の濃縮した後、その中の金属銅をさらに回収するステップとを含む。
Example 7: A method for recycling copper and phosphorus resources in copper pyrophosphate plating wastewater comprises:
S1: Using a security filter system to treat copper pyrophosphate plating wastewater to remove particulate impurities in the wastewater;
S2: A step of electrodialyzing the pretreated copper pyrophosphate plating wastewater for 25 minutes;
S2-1: Pretreated copper pyrophosphate plating wastewater is passed through a total anion exchange membrane, and pyrophosphate ions in the wastewater are passed through the total anion exchange membrane under the action of an electric field force to form a phosphorus-containing concentrate pool. to separate and concentrate the phosphorus in the copper pyrophosphate plating wastewater;
S2-2: Pyrophosphate copper plating wastewater that has passed through electrodialysis all-anion unidirectional membrane is passed through all-cation exchange membrane, and copper ions in the wastewater are passed through all-cation exchange membrane under the action of electric field force. into a copper-containing concentrate pool to separate and concentrate the copper in the copper pyrophosphate plating wastewater, wherein all the cation exchange membranes are modified cation exchange membranes.
A method for preparing a modified cation exchange membrane comprises:
1) preparing glass fiber, carbon fiber and aramid fiber in a mass ratio of 1:7.3:11.5 on a multiaxial cloth machine to obtain a multiaxial fabric;
2) A step of blending polyvinyl chloride, styrene-butadiene-styrene triblock copolymer, and modified nano-titanium oxide at a weight ratio of 45:5:1.1, and then applying the mixture to a multiaxial fabric at 195°C. and,
3) After natural cooling, ultrasonically clean with deionized water for 23 minutes, then vacuum dry at 55° C. for 6 hours to obtain a matrix membrane;
4) sulfonate the matrix membrane for 2 hours, then concentrated sulfuric acid with a concentration of 80 wt%, concentration of 30 wt.
% dilute sulfuric acid for 2 hours and then immersed in a sodium chloride solution with a concentration of 10 wt% for 18 hours to obtain a modified cation exchange membrane;
S3: Using a cyclone electrolyzer to treat a copper-containing concentrate, the organic complexes in the effluent being oxidized to the anode and the copper ions being reduced to the cathode and deposited as metallic copper;
S4: Cyclone electrolysis for 20 minutes, returning the remaining concentrate to the electrodialysis cation unidirectional membrane to further recover metallic copper therein after the concentration of step S2-2.

実施例8:ピロリン酸銅めっき廃水中の銅およびリン資源をリサイクルする方法は、
S1:セキュリティフィルターシステムを使用して、ピロリン酸銅めっき廃水を処理して
廃液中の粒子状不純物を除去するステップと、
S2:前処理されたピロリン酸銅めっき廃水を20分間電気透析処理するステップと、
S2-1:前処理されたピロリン酸銅めっき廃水を全陰イオン交換膜に通過させ、廃液中
のピロリン酸イオンを電界力の作用下で、全陰イオン交換膜に通過させリン含有濃縮液プ
ールに入れ、ピロリン酸銅めっき廃水中のリンを分離および濃縮するステップと、
S2-2:電気透析全陰イオン一方向膜を通過したピロリン酸銅めっき廃水を全陽イオン
交換膜に通過させ、廃液中の銅イオンを電界力の作用下で、全陽イオン交換膜を通過させ
て銅含有濃縮液プールに入れ、ピロリン酸銅めっき廃水中の銅を分離および濃縮し、全陽
イオン交換膜は修飾陽イオン交換膜であるステップと、を含む。
Example 8: A method for recycling copper and phosphorus resources in copper pyrophosphate plating wastewater comprises:
S1: Using a security filter system to treat copper pyrophosphate plating wastewater to remove particulate impurities in the wastewater;
S2: A step of electrodialyzing the pretreated copper pyrophosphate plating wastewater for 20 minutes;
S2-1: Pretreated copper pyrophosphate plating wastewater is passed through a total anion exchange membrane, and pyrophosphate ions in the wastewater are passed through the total anion exchange membrane under the action of an electric field force to form a phosphorus-containing concentrate pool. to separate and concentrate the phosphorus in the copper pyrophosphate plating wastewater;
S2-2: Pyrophosphate copper plating wastewater that has passed through electrodialysis all-anion unidirectional membrane is passed through all-cation exchange membrane, and copper ions in the wastewater are passed through all-cation exchange membrane under the action of electric field force. into a copper-containing concentrate pool to separate and concentrate the copper in the copper pyrophosphate plating wastewater, wherein all the cation exchange membranes are modified cation exchange membranes.

修飾陽イオン交換膜の調製方法は、
1)1:13:15の質量比でガラス繊維、炭素繊維、アラミド繊維を多軸布機で調製して
多軸生地を得るステップと、
2)ポリ塩化ビニルとスチレン-ブタジエン-スチレントリブロック共重合体、修飾ナノ酸
化チタンを55:7:1.3の質量比でブレンドした後、220℃の条件下で多軸生地に塗
布するステップと、
3)自然冷却後、脱イオン水で25分間超音波洗浄し、次に60℃の条件下で8時間真空
乾燥して、マトリックス膜を得るステップと、
4)マトリックス膜を2時間スルホン化し、濃度85wt%の濃硫酸、濃度40wt%の
希硫酸に順次2時間浸漬し、そして濃度15wt%の塩化ナトリウム溶液に20時間浸漬
して、修飾陽イオン交換膜を得るステップと、
S3:サイクロン電解装置を使用して銅含有濃縮液を処理し、廃液中の有機複合体がアノ
ードに酸化され、銅イオンがカソードに還元され金属銅として堆積するステップと、
S4:20分間サイクロン電解処理し、残りの濃縮液を電気透析陽イオン一方向膜に戻し
てステップS2-2の濃縮した後、その中の金属銅をさらに回収するステップとを含む。
A method for preparing a modified cation exchange membrane comprises:
1) preparing glass fiber, carbon fiber and aramid fiber in a mass ratio of 1:13:15 on a multiaxial cloth machine to obtain a multiaxial fabric;
2) A step of blending polyvinyl chloride, styrene-butadiene-styrene triblock copolymer, and modified nano-titanium oxide at a weight ratio of 55:7:1.3, and then applying the mixture to a multiaxial fabric at 220°C. and,
3) After natural cooling, ultrasonically clean with deionized water for 25 minutes, then vacuum dry at 60° C. for 8 hours to obtain a matrix membrane;
4) The matrix membrane was sulfonated for 2 hours, immersed in concentrated sulfuric acid with a concentration of 85 wt%, dilute sulfuric acid with a concentration of 40 wt% for 2 hours, and then immersed in a sodium chloride solution with a concentration of 15 wt% for 20 hours to obtain a modified cation exchange membrane. a step of obtaining
S3: Using a cyclone electrolyzer to treat a copper-containing concentrate, the organic complexes in the effluent being oxidized to the anode and the copper ions being reduced to the cathode and deposited as metallic copper;
S4: Cyclone electrolysis for 20 minutes, returning the remaining concentrate to the electrodialysis cation unidirectional membrane to further recover metallic copper therein after the concentration of step S2-2.

実施例9:実施例7と異なり、本実施例の修飾陽イオン交換膜の調製方法は、
1)1:3:11の質量比でガラス繊維、炭素繊維、アラミド繊維を多軸布機で調製して多
軸生地を得るステップと、
2)塩化ベンジルトリエチルアンモニウムとリンタングステン酸を3:2.3の質量比で
混合して、転移活性剤を得るステップと、
3)ポリビニルアルコール樹脂を80℃の条件下で脱イオン水に溶解し、次に95℃に加
熱した後ポリビニルアルコール樹脂との質量比1:11のオルトケイ酸エチルを加え、2
時間磁力攪拌し、そしてオルトケイ酸エチルとの質量比0.5:1の転移活性剤を加え、
1時間磁力攪拌して、ゾルマトリックスを得るステップと、
2)多軸生地を80℃の条件下でゾルマトリックスに15時間浸漬し、次に濃度3wt%
の塩化ナトリウム溶液に15時間浸漬して、修飾陽イオン交換膜を得るステップとを含む
Example 9: Unlike Example 7, the method for preparing the modified cation exchange membrane of this example comprises:
1) preparing glass fiber, carbon fiber and aramid fiber in a mass ratio of 1:3:11 with a multiaxial cloth machine to obtain a multiaxial fabric;
2) mixing benzyltriethylammonium chloride and phosphotungstic acid in a weight ratio of 3:2.3 to obtain a transfer activator;
3) Dissolve polyvinyl alcohol resin in deionized water at 80°C, then heat to 95°C, add ethyl orthosilicate in a mass ratio of 1:11 to polyvinyl alcohol resin,
magnetically stirred for an hour, and added a transfer activator in a mass ratio of 0.5:1 to ethyl orthosilicate;
Magnetic stirring for 1 hour to obtain a sol matrix;
2) The multiaxial fabric is immersed in the sol matrix for 15 hours under the condition of 80 ° C, then the concentration is 3 wt%
sodium chloride solution for 15 hours to obtain a modified cation exchange membrane.

実施例10:実施例7と異なり、本実施例の修飾陽イオン交換膜の調製方法は、
1)1:7:12の質量比でガラス繊維、炭素繊維、アラミド繊維を多軸布機で調製して多
軸生地を得るステップと、
2)塩化ベンジルトリエチルアンモニウムとリンタングステン酸を4:2.8の質量比で
混合して、転移活性剤を得るステップと、
3)ポリビニルアルコール樹脂を85℃の条件下で脱イオン水に溶解し、次に95℃に加
熱してポリビニルアルコール樹脂との質量比1:6のオルトケイ酸エチルを加え、3時間
磁力攪拌し、そしてオルトケイ酸エチルとの質量比1:1の転移活性剤を加え、1.5時
間磁力攪拌して、ゾルマトリックスを得るステップと、
4)多軸生地を85℃の条件下でゾルマトリックスに18時間浸漬し、次に濃度8wt%
の塩化ナトリウム溶液に18時間浸漬して、修飾陽イオン交換膜を得るステップとを含む
Example 10: Unlike Example 7, the method for preparing the modified cation exchange membrane of this example comprises:
1) preparing glass fiber, carbon fiber and aramid fiber in a mass ratio of 1:7:12 on a multiaxial cloth machine to obtain a multiaxial fabric;
2) mixing benzyltriethylammonium chloride and phosphotungstic acid in a mass ratio of 4:2.8 to obtain a transfer activator;
3) Dissolve polyvinyl alcohol resin in deionized water at 85°C, then heat to 95°C, add ethyl orthosilicate in a mass ratio of 1:6 to polyvinyl alcohol resin, magnetically stir for 3 hours, a step of adding a transfer activator with a mass ratio of 1:1 to ethyl orthosilicate and magnetically stirring for 1.5 hours to obtain a sol matrix;
4) The multiaxial fabric is immersed in the sol matrix for 18 hours under the condition of 85 ° C., then the concentration is 8 wt%
sodium chloride solution for 18 hours to obtain a modified cation exchange membrane.

実施例11:実施例7と異なり、本実施例の修飾陽イオン交換膜の調製方法は、
1)1:13:15の質量比でガラス繊維、炭素繊維、アラミド繊維を多軸布機で調製して
多軸生地を得るステップと、
2)塩化ベンジルトリエチルアンモニウムとリンタングステン酸を5:3の質量比で混合
して、転移活性剤を得るステップと、
3)ポリビニルアルコール樹脂を90℃の条件下で脱イオン水に溶解し、次に95℃に加
熱してポリビニルアルコール樹脂との質量比1:5のオルトケイ酸エチルを加え、3時間
磁力攪拌し、そしてオルトケイ酸エチルとの質量比1.3:1の転移活性剤を加え、2時
間磁力攪拌して、ゾルマトリックスを得るステップと、
4)多軸生地を80~90℃の条件下でゾルマトリックスに20時間浸漬し、次に濃度1
5wt%の塩化ナトリウム溶液に20時間浸漬して、修飾陽イオン交換膜を得るステップ
とを含む。
Example 11: Unlike Example 7, the method for preparing the modified cation exchange membrane of this example comprises:
1) preparing glass fiber, carbon fiber and aramid fiber in a mass ratio of 1:13:15 on a multiaxial cloth machine to obtain a multiaxial fabric;
2) mixing benzyltriethylammonium chloride and phosphotungstic acid in a weight ratio of 5:3 to obtain a transfer activator;
3) Dissolve polyvinyl alcohol resin in deionized water at 90°C, then heat to 95°C, add ethyl orthosilicate in a mass ratio of 1:5 to polyvinyl alcohol resin, magnetically stir for 3 hours, a step of adding a transfer activator with a mass ratio of 1.3:1 to ethyl orthosilicate and magnetically stirring for 2 hours to obtain a sol matrix;
4) The multiaxial fabric is immersed in the sol matrix for 20 hours under the conditions of 80-90 ° C., and then the concentration is 1
and immersing in a 5 wt% sodium chloride solution for 20 hours to obtain a modified cation exchange membrane.

実験例:
一、実験廃水:ある工場のめっき部品浸出水からピロリン酸銅めっき廃水を入手し、廃水
が薄青色であり、そのうちに、Cu2+質量濃度が47.51mg/Lで、P 4-
量濃度が437.35mg/Lで、TP質量濃度が64.72mg/Lで、pH=8.7で
ある。
二、実施例1~11に記載の方法を使用して回収実験を行い、1組の対照実験を用意し、
対照実験は、具体的に電解法を使用して銅を回収し、試験終了後、合計時間、銅の回収率
、リンの回収率を記録し、上澄み液Cu2+、TP質量濃度を測定し、そのうちに、銅の
回収率=(粉末回収質量×銅含有量)÷持ち込まれた銅量であり、銅含有量はXRD分光
法により測定され、持ち込まれた銅量=Cu2+質量濃度×ピロリン酸銅めっき廃水量で
あり、具体的に表1に示される。
表1:試験データ記録テーブル
Experimental example:
1. Experimental wastewater: Obtained copper pyrophosphate plating wastewater from the leachate of plated parts in a factory. - Mass concentration is 437.35 mg/L, TP mass concentration is 64.72 mg/L, pH=8.7.
2. Perform recovery experiments using the methods described in Examples 1-11 and provide a set of control experiments;
In the control experiment, the electrolytic method was specifically used to recover copper, and after the end of the test, the total time, copper recovery rate, phosphorus recovery rate were recorded, and the supernatant Cu 2+ and TP mass concentrations were measured. , In the meantime, the recovery rate of copper = (mass of powder recovered × copper content) ÷ the amount of copper brought in, the copper content was measured by XRD spectroscopy, the amount of copper brought in = Cu 2+ mass concentration × It is the amount of copper pyrophosphate plating wastewater, which is specifically shown in Table 1.
Table 1: Test data recording table


Figure 2023016656000002

Figure 2023016656000002

三、結論:実施例1~11の方法はすべて良好な回収効果を達成し、Cu2+、P
4-回収率がともに99.5%より高かった。
3. Conclusion: The methods of Examples 1-11 all achieved good recovery effect, Cu 2+ , P 2 O 7
4 --both recoveries were greater than 99.5%.

Claims (6)

S1:ピロリン酸銅めっき廃水を前処理して廃液中の粒子状不純物を除去するステップと

S2:前処理されたピロリン酸銅めっき廃水を電気透析処理するステップと、
S2-1:前処理されたピロリン酸銅めっき廃水を全陰イオン交換膜に通過させ、廃液中
のピロリン酸イオンを電界力の作用下で、全陰イオン交換膜を通過してリン含有濃縮液プ
ールに入れ、ピロリン酸銅めっき廃水中のリンを分離および濃縮するステップと、
S2-2:電気透析全陰イオン一方向膜を通過したピロリン酸銅めっき廃水を全陽イオン
交換膜に通過させ、廃液中の銅イオンを電界力の作用下で、全陽イオン交換膜を通過させ
て銅含有濃縮液プールに入れ、ピロリン酸銅めっき廃水中の銅を分離および濃縮するステ
ップと、
S3:銅含有濃縮液を再処理して銅含有濃縮液から金属銅を回収するステップと、
を含む、ことを特徴とするピロリン酸銅めっき廃水中の銅およびリン資源をリサイクルす
る方法。
S1: A step of pretreating copper pyrophosphate plating wastewater to remove particulate impurities in the wastewater;
S2: A step of electrodialyzing the pretreated copper pyrophosphate plating wastewater;
S2-1: The pretreated copper pyrophosphate plating wastewater is passed through a total anion exchange membrane, and pyrophosphate ions in the wastewater are removed under the action of an electric field force through the total anion exchange membrane to obtain a phosphorus-containing concentrate. pooling to separate and concentrate phosphorus in the copper pyrophosphate plating wastewater;
S2-2: Pyrophosphate copper plating wastewater that has passed through electrodialysis all-anion unidirectional membrane is passed through all-cation exchange membrane, and copper ions in the wastewater are passed through all-cation exchange membrane under the action of electric field force. into a copper-containing concentrate pool to separate and concentrate the copper in the copper pyrophosphate plating wastewater;
S3: reprocessing the copper-containing concentrate to recover metallic copper from the copper-containing concentrate;
A method for recycling copper and phosphorus resources in copper pyrophosphate plating wastewater, comprising:
S1の前処理は、セキュリティフィルターシステムを使用して、ピロリン酸銅めっき廃水
を処理して廃液中の粒子状不純物を除去することを含む、
ことを特徴とする請求項1に記載の方法。
The S1 pretreatment includes treating the copper pyrophosphate plating wastewater to remove particulate impurities in the wastewater using a security filter system.
2. The method of claim 1, wherein:
S2-2の全陽イオン交換膜は、修飾陽イオン交換膜である、
ことを特徴とする請求項1に記載の方法。
All cation exchange membranes of S2-2 are modified cation exchange membranes,
2. The method of claim 1, wherein:
前記修飾陽イオン交換膜の調製方法は、
1)1:3~13:11~15の質量比で、ガラス繊維、炭素繊維、アラミド繊維を多軸布
機で調製して多軸生地を得るステップと、
2)ポリ塩化ビニルとスチレン-ブタジエン-スチレントリブロック共重合体、修飾ナノ酸
化チタンを35~55:3~7:0.2~1.3の質量比でブレンドした後、180~22
0℃の条件下で多軸生地に塗布するステップと、
3)自然冷却後、脱イオン水で20~25分間超音波洗浄し、次に50~60℃の条件下
で4~8時間真空乾燥して、マトリックス膜を得るステップと、
4)マトリックス膜を1~2時間スルホン化し、次に濃度75~85wt%の濃硫酸、濃
度25~40wt%の希硫酸に順次2時間浸漬し、そして濃度3~15wt%の塩化ナト
リウム溶液に15~20時間浸漬して修飾陽イオン交換膜を得るステップと、
を含むことを特徴とする請求項3に記載の方法。
The method for preparing the modified cation exchange membrane comprises:
1) preparing glass fiber, carbon fiber, aramid fiber in a mass ratio of 1:3-13:11-15 with a multiaxial cloth machine to obtain a multiaxial fabric;
2) Polyvinyl chloride, styrene-butadiene-styrene triblock copolymer, and modified nanotitanium oxide are blended at a weight ratio of 35-55:3-7:0.2-1.3, and then 180-22.
applying to a multiaxial fabric under conditions of 0° C.;
3) After natural cooling, ultrasonically clean with deionized water for 20 to 25 minutes, then vacuum dry at 50 to 60° C. for 4 to 8 hours to obtain a matrix membrane;
4) The matrix membrane is sulfonated for 1-2 hours, then immersed in concentrated sulfuric acid with a concentration of 75-85 wt%, dilute sulfuric acid with a concentration of 25-40 wt% for 2 hours, and then immersed in a sodium chloride solution with a concentration of 3-15 wt% for 15 hours. soaking for ~20 hours to obtain a modified cation exchange membrane;
4. The method of claim 3, comprising:
前記修飾陽イオン交換膜の調製方法は、
1)1:3~13:11~15の質量比でガラス繊維、炭素繊維、アラミド繊維を多軸布機
で調製して多軸生地を得るステップと、
2)塩化ベンジルトリエチルアンモニウムとリンタングステン酸を3~5:2.3~3の
質量比で混合して、転移活性剤を得るステップと、
3)ポリビニルアルコール樹脂を80~90℃の条件下で脱イオン水に溶解し、95℃に
加熱した後、ポリビニルアルコール樹脂との質量比2~7:22~35でオルトケイ酸エ
チルを加え、磁力で2~3時間攪拌し、次にオルトケイ酸エチルとの質量比0.5~1.
3:1で転移活性剤を加え、磁力で1~2時間攪拌して、ゾルマトリックスを得るステッ
プと、
4)多軸生地を80~90℃の条件下でゾルマトリックスに15~20時間浸漬した後、
濃度3~15wt%の塩化ナトリウム溶液に15~20時間浸漬して、修飾陽イオン交換
膜を得るステップと、
を含むことを特徴とする請求項3に記載の方法。
The method for preparing the modified cation exchange membrane comprises:
1) preparing glass fiber, carbon fiber, and aramid fiber in a mass ratio of 1:3-13:11-15 with a multiaxial cloth machine to obtain a multiaxial fabric;
2) mixing benzyltriethylammonium chloride and phosphotungstic acid in a weight ratio of 3-5:2.3-3 to obtain a transfer activator;
3) Polyvinyl alcohol resin is dissolved in deionized water under conditions of 80 to 90° C., heated to 95° C., ethyl orthosilicate is added at a mass ratio of 2 to 7:22 to 35 with respect to polyvinyl alcohol resin, and magnetic force is applied. for 2 to 3 hours, and then mixed with ethyl orthosilicate in a mass ratio of 0.5 to 1.5.
adding a transfer activator at 3:1 and magnetically stirring for 1-2 hours to obtain a sol matrix;
4) After immersing the multiaxial fabric in a sol matrix for 15 to 20 hours at 80 to 90 ° C.,
immersing in a sodium chloride solution with a concentration of 3-15 wt% for 15-20 hours to obtain a modified cation exchange membrane;
4. The method of claim 3, comprising:
S3の再処理は、サイクロン電解装置を使用して銅含有濃縮液を処理し、廃液中の有機複
合体をアノードで酸化し、銅イオンがカソードに還元され金属銅として堆積し、サイクロ
ン電解処理した後、銅含有濃縮液中の銅を10g/Lから0.5g/L以下に減らし、残り
の濃縮液を電気透析陽イオン一方向膜に戻して濃縮し、その中の金属銅をさらに回収する

ことを特徴とする請求項1に記載の方法。
Reprocessing of S3 used a cyclone electrolyzer to treat the copper-containing concentrate, oxidizing organic complexes in the effluent at the anode, copper ions being reduced at the cathode and deposited as metallic copper, and subjected to cyclone electrolysis. After that, the copper in the copper-containing concentrate is reduced from 10 g/L to 0.5 g/L or less, and the remaining concentrate is returned to the electrodialysis cationic unidirectional membrane for concentration, and the metallic copper therein is further recovered. ,
2. The method of claim 1, wherein:
JP2021142844A 2021-07-22 2021-09-02 Copper Pyrophosphate Plating How to Recycle Copper and Phosphorus Resources in Wastewater Active JP7037023B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110830575.6 2021-07-22
CN202110830575.6A CN113526752B (en) 2021-07-22 2021-07-22 Method for recycling copper and phosphorus resources in pyrophosphoric acid copper plating wastewater

Publications (2)

Publication Number Publication Date
JP7037023B1 JP7037023B1 (en) 2022-03-16
JP2023016656A true JP2023016656A (en) 2023-02-02

Family

ID=78088698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021142844A Active JP7037023B1 (en) 2021-07-22 2021-09-02 Copper Pyrophosphate Plating How to Recycle Copper and Phosphorus Resources in Wastewater

Country Status (2)

Country Link
JP (1) JP7037023B1 (en)
CN (1) CN113526752B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114671496A (en) * 2022-01-17 2022-06-28 杭州职业技术学院 High-stability wastewater treatment system
CN115927861A (en) * 2023-02-01 2023-04-07 福建百灵天地环保科技有限公司 Process for extracting metal copper from copper-containing acidic mine wastewater
CN115849524B (en) * 2023-02-23 2023-05-05 西安泰瑞环保技术有限公司 Wastewater heavy metal recovery method, device and equipment based on improved electrodialysis method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL109262C (en) * 1953-02-11
JPS5850790B2 (en) * 1975-08-30 1983-11-12 ユニチカ株式会社 Pyrroline Sanenkiyozonshitadou Iongan Yuhaisuino Shiyoriho
JPS588913B2 (en) * 1975-10-16 1983-02-18 ユニチカ株式会社 Pyrolin Sandwich
JPS5389268A (en) * 1977-01-17 1978-08-05 Nippon Fuirutaa Kk Method of and device for obtaining purified water by separating and recovering heavy metal and complex agent from waste liquid or like
JPS56136968A (en) * 1980-03-27 1981-10-26 Hitachi Ltd Method and apparatus for selectively deionizing chemical copper plating bath
JPS6116000A (en) * 1984-06-30 1986-01-24 Masanori Nagata Method for regenerating spent silver plating solution
JPH0780253A (en) * 1993-09-13 1995-03-28 Chlorine Eng Corp Ltd Electrodialytic purifying method
US7790016B2 (en) * 2005-04-05 2010-09-07 King Fahd University Of Petroleum And Minerals Integrated electrolytic-electrodialytic apparatus and process for recovering metals from metal ion-containing waste streams
TWI362367B (en) * 2009-02-20 2012-04-21 Kismart Corp Electrodialysis method for purifying of silicate-containing potassium hydroxide etching solution
DK3041795T3 (en) * 2013-09-06 2020-03-23 Univ Denmark Tech Dtu Electrodialytic separation of heavy metals from heavy metal-containing particulate matter
CN104108812B (en) * 2014-07-03 2017-01-11 苏州联科纳米净化科技有限公司 Treating method for copper pyrophosphate electroplating wastewater
CN106044965B (en) * 2016-08-12 2023-01-10 宁波市海智材料产业创新研究院 Device and method for recovering heavy metals in electroplating wastewater

Also Published As

Publication number Publication date
CN113526752A (en) 2021-10-22
CN113526752B (en) 2023-07-28
JP7037023B1 (en) 2022-03-16

Similar Documents

Publication Publication Date Title
JP7037023B1 (en) Copper Pyrophosphate Plating How to Recycle Copper and Phosphorus Resources in Wastewater
Liu et al. Treatment of raffinate generated via copper ore hydrometallurgical processing using a bipolar membrane electrodialysis system
CN101423309B (en) Electroplating waste water and heavy metal double recovery method
CN104388990B (en) A kind of preparation method of sulfamic acid nickel plating solution
CN102452743A (en) Method for treating complex-containing nickel plating wastewater
CN101497942A (en) Biological leaching-solvent extraction-electrodeposition recovering method for heavy metal copper in sludge
JP6990348B1 (en) How to recover and reuse nickel and phosphorus resources in electroless nickel plating waste liquid
CN110395817A (en) The recycling processing method of chemical nickel plating waste solution
CN109868476A (en) A kind of etching liquid recycling and reusing method of copper ions and nitrate anion
US4210530A (en) Treatment of metal plating wastes with an unexpanded vermiculite cation exchange column
CN105399187B (en) A kind of method of recycling steel wire rope pickle liquor
CN102839379A (en) On-line treatment method of acidic etching solution
CN101372746A (en) Copper resource cyclic regeneration method in manufacture process
CN102107973B (en) Closed cyclic processing method for low-concentration acid wastewater during industrial production
CN110668533A (en) Method and system for treating alkaline chemical nickel plating wastewater
CN110592623A (en) Formula and method of nickel electroplating solution for improving uniform distribution of neodymium iron boron magnet coating
CN112813268B (en) PCB (printed circuit board) copper electroplating and acid etching copper resource recycling method
CN112429888A (en) Method for recycling cadmium-containing heavy metal wastewater
CN102241448A (en) Comprehensive utilization method of sodium sulfate wastewater
CN103966442A (en) Electro-deposition method for preparing high-purity copper from scrap copper
CN113846221B (en) Environment-friendly recycling method for neodymium-iron-boron alloy waste
Stergiopoulos et al. Jestr r
CN105731696B (en) Silicon carbide pickling waste water reclaiming treatment process
CN106145458A (en) A kind of processing method of electroplating wastewater
CN113816517A (en) Resource recovery method for self-catalytic reduction chemical nickel plating waste liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210902

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220128

R150 Certificate of patent or registration of utility model

Ref document number: 7037023

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150