JP2023015876A - Adsorber for heat storage - Google Patents

Adsorber for heat storage Download PDF

Info

Publication number
JP2023015876A
JP2023015876A JP2021119940A JP2021119940A JP2023015876A JP 2023015876 A JP2023015876 A JP 2023015876A JP 2021119940 A JP2021119940 A JP 2021119940A JP 2021119940 A JP2021119940 A JP 2021119940A JP 2023015876 A JP2023015876 A JP 2023015876A
Authority
JP
Japan
Prior art keywords
adsorbent
heat
adsorption layer
heat storage
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021119940A
Other languages
Japanese (ja)
Inventor
靖樹 廣田
Yasuki Hirota
智行 秋田
Tomoyuki Akita
隆太 神谷
Ryuta Kamiya
啓志 神谷
Keishi Kamiya
義宏 深澤
Yoshihiro Fukasawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Aichi Steel Corp
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc, Aichi Steel Corp filed Critical Toyota Motor Corp
Priority to JP2021119940A priority Critical patent/JP2023015876A/en
Publication of JP2023015876A publication Critical patent/JP2023015876A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

To provide a structure of an adsorbent suitable for adsorption for a relatively long time in an adsorber for heat storage that stores cold or heat by adsorption of an adsorbate to the adsorbent.SOLUTION: In an adsorber for heat storage that stores cold or heat by adsorption of an adsorbate to the adsorbent, on an outer periphery of a heat transfer pipe where a heating medium flows, an adsorption layer is formed by stacking the adsorbents at a plurality of stages to form a mesh shape. In the adsorber for heat storage, the adsorbents at the same stage are disposed in parallel in the same direction leaving gaps between them, and the adsorbents at the adjacent stages are disposed in the directions different from each other.SELECTED DRAWING: Figure 3

Description

本発明は、蓄熱用吸着器に関する。 The present invention relates to a heat storage adsorber.

従来、蒸発した吸着質、たとえば水、を吸着したり脱着したりする吸着材を含む吸着器が知られている。たとえば、下記特許文献1には、板状に形成されている複数の吸着体の間に配置されている流路に、吸着体に吸着される作動媒体を流通させる技術が開示されている。また、下記特許文献2には、板状の吸着体に形成されている複数の穴に作動流体を流通させる技術が開示されている。 Adsorbers are known in the art which contain adsorbents for adsorbing and desorbing vaporized adsorbates, such as water. For example, Patent Literature 1 listed below discloses a technique in which a working medium to be adsorbed by adsorbents is circulated through a channel disposed between a plurality of plate-shaped adsorbents. Further, Patent Document 2 below discloses a technique for circulating a working fluid through a plurality of holes formed in a plate-like adsorbent.

特許第6045413号公報Japanese Patent No. 6045413 特許第5900391号公報Japanese Patent No. 5900391

従来の吸着器では、熱交換媒体が流動する伝熱管の外周に、吸着材を充填して固めた吸着層を有している。この吸着層では、吸着材はランダムに充填されている。このような従来の吸着器において、吸着質の吸着を、たとえば1時間のような比較的長時間にわたって行うことで吸着量を増大させるようとするために、吸着層の厚みを増大させることが行われる。しかし、このような充填構造の吸着層の場合、吸着層の厚みを増大させるにつれて、熱抵抗及び吸着質の輸送抵抗の両方が増大することで、吸着材の利用率が却って低下することとなる。 A conventional adsorber has an adsorption layer filled with an adsorbent and hardened on the outer periphery of a heat transfer tube through which a heat exchange medium flows. In this adsorption layer, the adsorbent is randomly packed. In such a conventional adsorber, the thickness of the adsorption layer is increased in order to increase the amount of adsorption by adsorbing the adsorbate over a relatively long period of time, such as one hour. will be However, in the case of an adsorption layer with such a packed structure, as the thickness of the adsorption layer increases, both the thermal resistance and the transport resistance of the adsorbate increase, resulting in a decrease in the utilization rate of the adsorbent. .

本開示は、吸着質を吸着材に吸着することで冷熱又は温熱を蓄熱する蓄熱用吸着器において、比較的長時間の吸着に適した吸着材の構造を実現することを課題とする。 An object of the present disclosure is to realize an adsorbent structure suitable for adsorption for a relatively long time in a heat storage adsorber that stores cold or warm heat by adsorbing an adsorbate to the adsorbent.

本開示の第一の実施態様は、吸着質を吸着材に吸着することで冷熱又は温熱を蓄熱する蓄熱用吸着器において、熱媒体が流動する伝熱管の外周に、前記吸着材が網目状に複数段、積層されているとともに、同じ段の前記吸着材は同方向に並行して配置され、隣接する段の吸着材は互いに異なる方向に配置されている。 A first embodiment of the present disclosure is a heat storage adsorber that stores cold or hot heat by adsorbing an adsorbate to an adsorbent, in which the adsorbent is formed in a mesh shape on the outer periphery of a heat transfer tube in which a heat medium flows. A plurality of stages are stacked, and the adsorbents in the same stage are arranged in parallel in the same direction, and the adsorbents in adjacent stages are arranged in different directions.

すなわち、吸着材が網目状に複数段、積層されているとともに、同じ段の前記吸着材は同方向に並行して配置され、隣接する段の吸着材は互いに異なる方向に配置されているので、吸着材の間に吸着質の移動経路となる流路が設けられることになる。この流路によって、吸着質の移動抵抗が低下するので、吸着層の厚みを増大させても熱抵抗の増大をもたらすことがない。 That is, since the adsorbents are stacked in multiple stages in a mesh shape, the adsorbents in the same stage are arranged in parallel in the same direction, and the adsorbents in adjacent stages are arranged in different directions, A flow path is provided between the adsorbents as a transfer route for the adsorbate. Since the flow path reduces the transfer resistance of the adsorbate, even if the thickness of the adsorption layer is increased, the thermal resistance does not increase.

本開示の第二の実施態様の蓄熱用吸着器は、第一の実施態様の構成に加え、前記吸着材の線径をw(mm)及び前記吸着層の厚さをH(mm)としたとき、
0.95≦w≦1.47、かつ、13≦H≦(1100w-161)/52、又は、
1.47<w≦3.2、かつ、13≦H≦28、
である。
In addition to the configuration of the first embodiment, the heat storage adsorber of the second embodiment of the present disclosure has a wire diameter of the adsorbent of w (mm) and a thickness of the adsorption layer of H (mm). when
0.95≦w≦1.47 and 13≦H≦(1100w−161)/52, or
1.47<w≦3.2 and 13≦H≦28,
is.

ここで、上記関係式において、吸着材の線径wと吸着層の厚さHとの間には、
H=nw(ただし、nは2以上の自然数)
の関係がある。すなわち、線径wの吸着材がn段積層されることで、厚さHの吸着層が形成される。
Here, in the above relational expression, between the wire diameter w of the adsorbent and the thickness H of the adsorption layer,
H = nw (where n is a natural number of 2 or more)
There is a relationship That is, an adsorption layer with a thickness H is formed by stacking n stages of adsorbents with a wire diameter w.

吸着材の線径wと、吸着層の厚さHとが上記関係を満たす場合、このような吸着層を有する蓄熱用吸着器では、長時間、たとえば1時間かけて吸着質を吸着するときに、吸着材の利用率が向上するとともに、冷熱又は温熱を放出する際の出力が増大する。 When the wire diameter w of the adsorbent and the thickness H of the adsorption layer satisfy the above relationship, the heat storage adsorber having such an adsorption layer adsorbs the adsorbate over a long period of time, for example, one hour. , the utilization rate of the adsorbent is improved and the power output in releasing cold or hot heat is increased.

本開示の第三の実施態様の蓄熱用吸着器は、第二の実施態様の構成に加え、前記吸着材の線径w(mm)が
1.1≦w≦2.8
であり、
前記吸着層の厚さH(mm)が
16≦H≦21
である。
The heat storage adsorber of the third embodiment of the present disclosure, in addition to the configuration of the second embodiment, has a wire diameter w (mm) of the adsorbent of 1.1 ≤ w ≤ 2.8
and
The thickness H (mm) of the adsorption layer is 16≦H≦21
is.

吸着材の線径wと、吸着層の厚さHとが上記関係を満たす場合、このような吸着層を有する蓄熱用吸着器では、長時間、たとえば1時間かけて吸着質を吸着するときに、吸着材の利用率がさらに向上するとともに、冷熱又は温熱を放出する際の出力がさらに増大する。 When the wire diameter w of the adsorbent and the thickness H of the adsorption layer satisfy the above relationship, the heat storage adsorber having such an adsorption layer adsorbs the adsorbate over a long period of time, for example, one hour. , the utilization rate of the adsorbent is further improved and the power output in discharging cold or hot heat is further increased.

本開示の第四の実施態様は、第一から第三までのいずれかの実施態様の構成に加え、隣接する前記吸着材の間の間隙は500μm以下である。 A fourth embodiment of the present disclosure has the configuration of any one of the first to third embodiments, and in addition, the gap between the adjacent adsorbents is 500 μm or less.

吸着材間の間隙を500μm以下とすることで、気体性状の吸着質が吸着層内で移動する経路が確保できるため、吸着層の表面のみならず内部での吸着材の利用率が向上する。なお、吸着材管の間隙の下限値は、0μmを上回る値であれば特に限定はされないが、吸着質の移動を確保する観点から、50μm以上であることが望ましい。 By setting the gap between the adsorbents to 500 μm or less, it is possible to secure a path for the gaseous adsorbate to move within the adsorption layer, thereby improving the utilization rate of the adsorbent not only on the surface of the adsorption layer but also inside the adsorption layer. Although the lower limit of the gap between the adsorbent tubes is not particularly limited as long as it exceeds 0 μm, it is preferably 50 μm or more from the viewpoint of ensuring the movement of the adsorbate.

本開示の実施態様は上記のように構成されているので、吸着質を吸着材に吸着することで冷熱又は温熱を蓄熱する蓄熱用吸着器において、比較的長時間の吸着に適した吸着材の構造が実現される。 Since the embodiments of the present disclosure are configured as described above, in a heat storage adsorber that stores cold or warm heat by adsorbing an adsorbate to the adsorbent, an adsorbent that is suitable for adsorption for a relatively long time is used. A structure is realized.

実施形態の吸着層を備える吸着式ヒートポンプの模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram of the adsorption heat pump provided with the adsorption layer of embodiment. 吸着体の構造を示す模式図である。It is a schematic diagram which shows the structure of an adsorbent. 吸着層の詳細構造を示す模式図である。It is a schematic diagram which shows the detailed structure of an adsorption layer. 吸着材が7段積層された場合の厚さHの吸着層について、(A)平均冷熱出力(VCP)、(B)総蓄熱密度(Q)及び(C)吸着材の利用率(X)の値を測定したグラフである。For an adsorption layer with a thickness H when the adsorbent is stacked in seven stages, (A) average cold power (VCP), (B) total heat storage density (Q), and (C) utilization rate (X) of the adsorbent It is the graph which measured the value. 吸着材が10段積層された場合の厚さHの吸着層について、(A)平均冷熱出力(VCP)、(B)総蓄熱密度(Q)及び(C)吸着材の利用率(X)の値を測定したグラフである。For an adsorption layer with a thickness H when the adsorbent is stacked in 10 layers, (A) average cold power (VCP), (B) total heat storage density (Q), and (C) utilization rate (X) of the adsorbent It is the graph which measured the value. 吸着材が13段積層された場合の厚さHの吸着層について、(A)平均冷熱出力(VCP)、(B)総蓄熱密度(Q)及び(C)吸着材の利用率(X)の値を測定したグラフである。For the adsorption layer of thickness H when the adsorbent is stacked in 13 stages, (A) average cold power (VCP), (B) total heat storage density (Q) and (C) utilization rate (X) of adsorbent It is the graph which measured the value. 比較例の吸着層について、(A)平均冷熱出力(VCP)、(B)総蓄熱密度(Q)及び(C)吸着材の利用率(X)の値を測定したグラフである。4 is a graph showing measured values of (A) average cold power output (VCP), (B) total heat storage density (Q), and (C) adsorbent utilization (X) for the adsorption layer of the comparative example. 吸着材の線径wと吸着層の厚さHとに対する平均冷熱出力(VCP)の計算結果を示すコンター図である。FIG. 4 is a contour diagram showing calculation results of an average cold power output (VCP) with respect to a wire diameter w of an adsorbent and a thickness H of an adsorption layer. 吸着材の線径wと吸着層の厚さHとに対する吸着材の利用率(X)の計算結果を示すコンター図である。FIG. 4 is a contour diagram showing calculation results of a utilization rate (X) of the adsorbent with respect to the wire diameter w of the adsorbent and the thickness H of the adsorption layer.

(1)実施形態の概略構成
図1は、実施形態の吸着層20を備える吸着式ヒートポンプ10の模式図である。吸着式ヒートポンプ10は、2つの蓄熱用吸着器6、7と、2つの蒸発凝縮器8、9と、これらを接続する接続配管3a、3b、3c、3dと、接続配管3a、3b、3c、3dにそれぞれ配置される複数のバルブ4a、4b、4c、4dと、図示しない制御部と、を備える。吸着式ヒートポンプ10は、2組の蓄熱用吸着器6、7と蒸発凝縮器8、9との組み合わせを利用して、温熱から冷熱を発生させる。
(1) Schematic Configuration of Embodiment FIG. 1 is a schematic diagram of an adsorption heat pump 10 including an adsorption layer 20 of the embodiment. The adsorption heat pump 10 includes two heat storage adsorbers 6 and 7, two evaporative condensers 8 and 9, connection pipes 3a, 3b, 3c and 3d connecting these, connection pipes 3a, 3b and 3c, It includes a plurality of valves 4a, 4b, 4c, 4d arranged respectively in 3d, and a control unit (not shown). The adsorption heat pump 10 uses a combination of two sets of heat storage adsorbers 6 and 7 and evaporative condensers 8 and 9 to generate cold heat from hot heat.

蓄熱用吸着器6、7はそれぞれ、反応容器6a、7aと、反応容器6a、7aの内部に収容されている吸着体1と、反応容器6a、7aの内部において熱媒体を流通させる熱交換器5と、を備える。吸着体1は、蒸発凝縮器8、9において発生する吸着質の蒸気、たとえば、水蒸気を吸着する。また、水蒸気を吸着している吸着体1は、熱交換器5を流れる熱媒体、たとえば、温水の熱を用いて水蒸気を脱離する。換言すると、蓄熱用吸着器6、7は、吸着質を、吸着体1を構成する吸着材25(図3参照)に吸着することで冷熱又は温熱を蓄熱する。 The heat storage adsorbers 6 and 7 are respectively the reaction vessels 6a and 7a, the adsorbents 1 accommodated inside the reaction vessels 6a and 7a, and the heat exchangers for circulating the heat medium inside the reaction vessels 6a and 7a. 5 and . The adsorbent 1 adsorbs adsorbate vapors, for example water vapor, generated in the evaporative condensers 8,9. Also, the adsorbent 1 adsorbing water vapor desorbs the water vapor using the heat of a heat medium flowing through the heat exchanger 5, for example, hot water. In other words, the heat storage adsorbers 6 and 7 store cold heat or heat by adsorbing the adsorbate on the adsorbent 25 (see FIG. 3) that constitutes the adsorbent 1 .

蒸発凝縮器8、9はそれぞれ、熱媒体が流れる配管8a、9aと、吸着体1に吸着される吸着質、たとえば、水を貯留する貯留容器8b、9bと、を有する。蒸発凝縮器8、9では、接続する蓄熱用吸着器6、7のモードに応じて、貯留容器8b、9b内の吸着質が蒸発するときの気化熱によって配管8a、9aを流れる熱媒体が冷却されたり、貯留容器8b、9b内の吸着質の蒸気が凝縮されて液体に戻されたりする。 The evaporative condensers 8 and 9 respectively have pipes 8a and 9a through which a heat medium flows, and storage vessels 8b and 9b that store adsorbate, such as water, to be adsorbed by the adsorbent 1 . In the evaporative condensers 8, 9, the heat medium flowing through the pipes 8a, 9a is cooled by the heat of vaporization when the adsorbate in the storage containers 8b, 9b evaporates according to the mode of the heat storage adsorbers 6, 7 connected. or the adsorbate vapor in the storage vessels 8b, 9b is condensed back to liquid.

次に、図1の吸着式ヒートポンプ10の作用について説明する。図1に示す状態では、制御部からの指令によって、蓄熱用吸着器6と蒸発凝縮器8とを接続する接続配管3aに配置されるバルブ4aと、蓄熱用吸着器7と蒸発凝縮器9とを接続する接続配管3bに配置されているバルブ4bとが開けられており、蓄熱用吸着器6と蒸発凝縮器9とを接続する接続配管3cに配置されるバルブ4cと、蓄熱用吸着器7と蒸発凝縮器8とを接続する接続配管3dに配置されているバルブ4dとが閉められている。 Next, the action of the adsorption heat pump 10 of FIG. 1 will be described. In the state shown in FIG. 1, the valve 4a arranged in the connection pipe 3a connecting the heat storage adsorber 6 and the evaporative condenser 8, and the heat storage adsorber 7 and the evaporative condenser 9 are connected by a command from the control unit. is opened, the valve 4c arranged in the connection pipe 3c connecting the heat storage adsorber 6 and the evaporative condenser 9, and the heat storage adsorber 7 and the valve 4d arranged in the connecting pipe 3d connecting the evaporative condenser 8 is closed.

接続配管3aを介して接続されている蓄熱用吸着器6と蒸発凝縮器8とでは、吸着工程として、図示しないポンプによって内部が減圧される。これにより、蒸発凝縮器8内に吸着質の蒸気が生成される。生成された吸着質の蒸気は、接続配管3aを通って(白抜き矢印F11)、蓄熱用吸着器6の内部に入り、吸着体1に吸着される。このとき、蒸発凝縮器8の配管8aを流れる熱媒体、たとえば水は、吸着質の気化熱によって冷却される。これにより、配管8aから冷却された熱媒体、たとえば冷水が排出されることで、冷熱が吸着式ヒートポンプ10の外部に供給される。 In the heat storage adsorber 6 and the evaporative condenser 8, which are connected via the connecting pipe 3a, the pressure inside is reduced by a pump (not shown) as an adsorption step. This produces adsorbate vapor in the evaporative condenser 8 . The generated adsorbate vapor passes through the connection pipe 3a (white arrow F11), enters the heat storage adsorber 6, and is adsorbed by the adsorbent 1. As shown in FIG. At this time, the heat medium such as water flowing through the pipe 8a of the evaporative condenser 8 is cooled by the heat of vaporization of the adsorbate. As a result, cold heat is supplied to the outside of the adsorption heat pump 10 by discharging a cooled heat medium such as cold water from the pipe 8a.

接続配管3bを介して接続されている蓄熱用吸着器7と蒸発凝縮器9とでは、脱離工程として、蓄熱用吸着器7の熱交換器5に熱媒体、たとえば温水が供給される。吸着質を吸着している蓄熱用吸着器7の吸着体1では、供給される熱媒体の熱によって吸着質が吸着体1から脱離する。脱離した吸着質は蒸気として蒸発凝縮器9の内部に入り(白抜き矢印F12)、配管9aを流れる熱媒体、たとえば水によって凝縮され、液体、たとえば水になる。この液体の熱媒体は、次の吸着工程において利用される。 In the heat storage adsorber 7 and the evaporative condenser 9, which are connected via the connecting pipe 3b, a heat medium such as hot water is supplied to the heat exchanger 5 of the heat storage adsorber 7 as a desorption step. In the adsorbent 1 of the heat storage adsorber 7 that adsorbs the adsorbate, the adsorbate is desorbed from the adsorbate 1 by the heat of the heat medium supplied. The desorbed adsorbate enters the evaporative condenser 9 as vapor (white arrow F12) and is condensed by a heat medium such as water flowing through the pipe 9a to become a liquid such as water. This liquid heat carrier is utilized in the subsequent adsorption step.

図1の吸着式ヒートポンプ10では、蓄熱用吸着器6、7の一方が吸着質の蒸気を吸着し、他方が吸着質を脱離することで、たとえば温水のような比較的高温の液体状の吸着質の供給による冷熱の生成が連続的に行われる。 In the adsorption heat pump 10 of FIG. 1, one of the heat storage adsorbers 6 and 7 adsorbs the vapor of the adsorbate, and the other desorbs the adsorbate. The production of cold by the feed of adsorbate is done continuously.

吸着体1は、図2に示すように、蓄熱用吸着器6、7内で熱交換器5における熱媒体の流路が細分化した伝熱管30の外周に吸着層20が形成された線形構造が多数束ねられた構造を有している。換言すると、熱媒体が流動する伝熱管の外周に、前記吸着材が網目状に複数段、積層されて吸着層が形成されている。吸着層20は、図3に示すように、同方向に互いに間隙25aを介して並行して配置される吸着材25が、複数段にわたって積層された網目状の構造を有している。隣接する段の吸着材25は、図3に示すように互いに異なる方向に配置されている。 As shown in FIG. 2, the adsorbent 1 has a linear structure in which an adsorption layer 20 is formed on the outer circumference of a heat transfer tube 30 in which the flow path of the heat medium in the heat exchanger 5 is subdivided in the heat storage adsorbers 6 and 7. has a structure in which a large number of are bundled. In other words, an adsorption layer is formed by laminating the adsorbent in a plurality of mesh-like stages on the outer periphery of the heat transfer tube through which the heat medium flows. As shown in FIG. 3, the adsorption layer 20 has a mesh-like structure in which adsorbents 25 arranged in parallel in the same direction with gaps 25a interposed therebetween are laminated over a plurality of stages. Adjacent stages of adsorbent 25 are oriented in different directions as shown in FIG.

図3に示す吸着材25の線径をw(mm)とし、また、この吸着材25が複数段(図3では例として4段)積層された吸着層20の厚さをH(mm)としたとき、0.95≦w≦1.47、かつ、13≦H≦(1100w-161)/52であるか、又は、1.47<w≦3.2、かつ、13≦H≦28であることが望ましい。具体的には、詳しくは後述するが、図8のグラフにおける五角形ABCDEの内部の領域で特定される線径w及び厚さHで吸着材25を形成することが望ましい。なお、吸着材25の断面は、図3に模式的に示すような略正方形状でも、また、略円形状でも、いずれでもよい。略正方形状の場合の線径wは一辺の長さを表し、また、略円形状の場合の線径wは直径を表す。 Let w (mm) be the wire diameter of the adsorbent 25 shown in FIG. 3, and let H (mm) be the thickness of the adsorption layer 20 in which the adsorbent 25 is stacked in multiple stages (four stages in FIG. 3, for example). 0.95≦w≦1.47 and 13≦H≦(1100w−161)/52, or 1.47<w≦3.2 and 13≦H≦28 It is desirable to have Specifically, although details will be described later, it is desirable to form the adsorbent 25 with a wire diameter w and a thickness H specified in the area inside the pentagon ABCDE in the graph of FIG. The cross-section of the adsorbent 25 may be substantially square as schematically shown in FIG. 3, or may be substantially circular. The wire diameter w in the case of a substantially square shape represents the length of one side, and the wire diameter w in the case of a substantially circular shape represents a diameter.

さらには、1.1≦w≦2.8、かつ、16≦H≦21であることがより望ましい。具体的には、詳しくは後述するが、図8のグラフにおける長方形A′B′C′D′の内部の領域で特定される線径w及び厚さHで吸着材25を形成することがより望ましい。 More preferably, 1.1≤w≤2.8 and 16≤H≤21. Specifically, although details will be described later, it is more preferable to form the adsorbent 25 with a wire diameter w and a thickness H specified in the area inside the rectangle A'B'C'D' in the graph of FIG. desirable.

吸着材25間の間隙25aは、10μm以上が望ましく、20μm以上がさらに望ましく、50μm以上が最も望ましい。また、吸着材25間の間隙25aは、1000μm以下が望ましく、700μm以下がさらに望ましく、500μm以下が最も望ましい。 The gap 25a between the adsorbents 25 is desirably 10 μm or more, more desirably 20 μm or more, most desirably 50 μm or more. Also, the gap 25a between the adsorbents 25 is desirably 1000 μm or less, more desirably 700 μm or less, most desirably 500 μm or less.

吸着材25の材質は、通常の熱交換器における吸着材として使用できるものであれば特に限定されないが、たとえば、シリカゲル、13Xゼオライト又はY型ゼオライトを用いることが望ましい。また、吸着材25の材質には、カーボンのような熱伝導助剤が配合されていることが望ましい。 The material of the adsorbent 25 is not particularly limited as long as it can be used as an adsorbent in a normal heat exchanger, but it is desirable to use silica gel, 13X zeolite, or Y-type zeolite, for example. Moreover, it is desirable that the material of the adsorbent 25 contains a heat conduction aid such as carbon.

以下、好適な吸着材の線径w及び吸着層の厚さHについて検証した。具体的には、伝熱管の内径は1cmとした。また、以下に示す吸着層が設けられた伝熱管同士は、2mm間隔に配置した。吸着材25の材料としては、粒径74μmのシリカゲルを主材として、これに、全体の10質量%の割合で熱伝導助剤としてのカーボンを混合した。この材料を断面略正方形状の、線径wの線状に形成した吸着材を、伝熱管の外周に、図3に示すように網目状にn段、積層して吸着層を形成した。実施例としては、n=7(図4)、n=10(図5)及びn=13(図6)として形成された吸着層を有する吸着体1を備えた蓄熱用吸着器について、吸着時間を1時間としたときの、平均冷熱出力(VCP)、総蓄熱密度(Q)及び吸着材の利用率(X)を測定した。平均冷熱出力(kW/m)は、単位体積当たりの仕事率として算出した。総蓄熱密度(MJ/m)は、単位体積当たりのエネルギーとして算出した。吸着材の利用率は、理論上吸着し得る吸着質の量に対する、実際に吸着した吸着質の量の割合で算出した。また、比較例として、吸着材25と同じ材料を所定の厚さHの充填構造で伝熱管30の外周に付着させた吸着層20についても同様に平均冷熱出力(VCP)、総蓄熱密度(Q)及び吸着材の利用率(X)の測定を行った(図7)。 The wire diameter w of the suitable adsorbent and the thickness H of the adsorption layer were verified below. Specifically, the inner diameter of the heat transfer tube was set to 1 cm. In addition, the heat transfer tubes provided with the adsorption layers described below were arranged at intervals of 2 mm. As the material of the adsorbent 25, silica gel having a particle size of 74 μm is used as the main material, and carbon as a heat conduction aid is mixed with this at a rate of 10% by mass of the whole. Adsorbents obtained by forming this material into a linear shape having a substantially square cross section and a wire diameter w were laminated on the outer circumference of the heat transfer tube in n layers in a mesh shape as shown in FIG. 3 to form an adsorption layer. As an example, for a thermal storage adsorber comprising an adsorbent 1 with adsorbent layers formed with n=7 (FIG. 4), n=10 (FIG. 5) and n=13 (FIG. 6), the adsorption time The average cold power output (VCP), the total heat storage density (Q) and the utilization rate of the adsorbent (X) were measured when the time was set to 1 hour. The average cold output (kW/m 3 ) was calculated as power per unit volume. Total heat storage density (MJ/m 3 ) was calculated as energy per unit volume. The utilization rate of the adsorbent was calculated as the ratio of the amount of adsorbate actually adsorbed to the amount of adsorbate that could theoretically be adsorbed. Further, as a comparative example, the adsorption layer 20 in which the same material as the adsorbent 25 is attached to the outer periphery of the heat transfer tube 30 in a filling structure having a predetermined thickness H is also similarly average cold heat output (VCP), total heat storage density (Q ) and adsorbent utilization (X) were measured (FIG. 7).

なお、図4~図7においては、平均冷熱出力(VCP)と吸着層の厚さ(H、単位mm)との関係をそれぞれ縦軸と横軸とにプロットしたグラフを(A)として、総蓄熱密度(Q)と吸着層の厚さ(H)との関係をそれぞれ縦軸と横軸とにプロットしたグラフを(B)として、及び、吸着材の利用率(X)吸着層の厚さ(H)との関係をそれぞれ縦軸と横軸とにプロットしたグラフを(C)として、それぞれ表している。 In FIGS. 4 to 7, the relationship between the average cold heat output (VCP) and the thickness of the adsorption layer (H, unit: mm) is plotted on the vertical axis and the horizontal axis, respectively. (B) is a graph in which the relationship between the heat storage density (Q) and the thickness (H) of the adsorption layer is plotted on the vertical axis and the horizontal axis, respectively, and the utilization rate of the adsorbent (X) and the thickness of the adsorption layer. (C) is a graph in which the relationship with (H) is plotted on the vertical axis and the horizontal axis.

図4は、n=7、すなわち、吸着材を7段積層して吸着層を形成した場合を示している。図4(A)に示すように、吸着層の厚さHが増すにつれて平均冷熱出力(VCP)は増加し、約16.8mmのところで40kW/mを上回るピークを示した。厚さHがそれ以上になると、平均冷熱出力は緩やかな減少傾向を示した。一方、図4(B)に示すように、総蓄熱密度(Q)は、吸着層の厚さHが増すにつれて増加したが、図4(A)でピークを示した厚さHの値以上になると増加の度合いはプラトーに近づくように思われた。また、図4(C)に示すように、吸着材の利用率(X)は吸着層の厚さHが0を上回ると急激に0.75を超える値となるが、やはり図4(A)でピークを示した厚さHの値を境に減少傾向を示した。よって、図4(A)~(C)を総合すると、吸着層の厚さHが約16.8mm、及びこれをnで除した吸着材の線径wが2.4mmの近傍の組み合わせが、蓄熱用吸着器としては望ましいことが分かった。 FIG. 4 shows the case where n=7, that is, the adsorption layer is formed by laminating seven layers of adsorbents. As shown in FIG. 4(A), the average cooling power (VCP) increased as the thickness H of the adsorption layer increased, showing a peak of over 40 kW/m 3 at about 16.8 mm. When the thickness H became more than that, the average cold heat output showed a gradual decreasing tendency. On the other hand, as shown in FIG. 4(B), the total heat storage density (Q) increased as the thickness H of the adsorption layer increased. Then the rate of increase seemed to approach a plateau. In addition, as shown in FIG. 4(C), the utilization rate (X) of the adsorbent rapidly exceeds 0.75 when the thickness H of the adsorption layer exceeds 0, but again FIG. It showed a decreasing tendency from the value of the thickness H showing a peak at . Therefore, when FIG. 4 (A) to (C) is put together, the combination of the thickness H of the adsorption layer of about 16.8 mm and the wire diameter w of the adsorbent divided by n in the vicinity of 2.4 mm is It has been found to be desirable as a heat storage adsorber.

図5は、n=10、すなわち、吸着材を10段積層して吸着層を形成した場合を示している。図5(A)に示すように、吸着層の厚さHが増すにつれて平均冷熱出力(VCP)は増加し、約18mmのところで40kW/mを上回るピークを示した。厚さHがそれ以上になると、平均冷熱出力は緩やかな減少傾向を示した。一方、図5(B)に示すように、総蓄熱密度(Q)は、吸着層の厚さHが増すにつれて増加したが、図5(A)でピークを示した厚さHの値以上になると増加の度合いはプラトーに近づくように思われた。また、図5(C)に示すように、吸着材の利用率(X)は吸着層の厚さHが0を上回ると急激に0.75を超える値となるが、やはり図5(A)でピークを示した厚さHの値を境に減少傾向を示した。よって、図5(A)~(C)を総合すると、吸着層の厚さHが約18mm、及びこれをnで除した吸着材の線径wが1.8mmの近傍の組み合わせが、蓄熱用吸着器としては望ましいことが分かった。 FIG. 5 shows the case where n=10, that is, the adsorption layer is formed by stacking 10 layers of adsorbents. As shown in FIG. 5(A), the average cooling power (VCP) increased as the thickness H of the adsorption layer increased, and showed a peak exceeding 40 kW/m 3 at about 18 mm. When the thickness H became more than that, the average cold heat output showed a gradual decreasing tendency. On the other hand, as shown in FIG. 5(B), the total heat storage density (Q) increased as the thickness H of the adsorption layer increased. Then the rate of increase seemed to approach a plateau. In addition, as shown in FIG. 5(C), the utilization rate (X) of the adsorbent sharply exceeds 0.75 when the thickness H of the adsorption layer exceeds 0. However, as shown in FIG. It showed a decreasing tendency from the value of the thickness H showing a peak at . Therefore, when FIG. 5 (A) to (C) is summarized, the combination in which the thickness H of the adsorption layer is about 18 mm and the wire diameter w of the adsorbent divided by n is around 1.8 mm is suitable for heat storage. It was found to be desirable as an adsorber.

図6は、n=13、すなわち、吸着材を13段積層して吸着層を形成した場合を示している。図6(A)に示すように、吸着層の厚さHが増すにつれて平均冷熱出力(VCP)は増加し、約19.5mmのところで40kW/mを上回るピークを示した。厚さHがそれ以上になると、平均冷熱出力は緩やかな減少傾向を示した。一方、図6(B)に示すように、総蓄熱密度(Q)は、吸着層の厚さHが増すにつれて増加したが、図6(A)でピークを示した厚さHの値以上になると増加の度合いはプラトーに近づくように思われた。また、図6(C)に示すように、吸着材の利用率(X)は吸着層の厚さHが0を上回ると急激に0.75を超える値となるが、やはり図6(A)でピークを示した厚さHの値を境に減少傾向を示した。よって、図6(A)~(C)を総合すると、吸着層の厚さHが約19.5mm、及びこれをnで除した吸着材の線径wが1.5mmの近傍の組み合わせが、蓄熱用吸着器としては望ましいことが分かった。 FIG. 6 shows the case where n=13, that is, the adsorption layer is formed by stacking 13 layers of adsorbents. As shown in FIG. 6(A), the average cooling power (VCP) increased as the thickness H of the adsorption layer increased, and showed a peak exceeding 40 kW/m 3 at about 19.5 mm. When the thickness H became more than that, the average cold heat output showed a gradual decreasing tendency. On the other hand, as shown in FIG. 6(B), the total heat storage density (Q) increased as the thickness H of the adsorption layer increased. Then the rate of increase seemed to approach a plateau. In addition, as shown in FIG. 6(C), the utilization rate (X) of the adsorbent sharply exceeds 0.75 when the thickness H of the adsorption layer exceeds 0. However, as shown in FIG. It showed a decreasing tendency from the value of the thickness H showing a peak at . 6A to 6C together, the combination of the thickness H of the adsorption layer of about 19.5 mm and the wire diameter w of the adsorbent divided by n in the vicinity of 1.5 mm is It has been found to be desirable as a heat storage adsorber.

なお、図7に示す比較例では、吸着層が積層構造を有さないためか、図7(C)に示すように厚さHが約3mmと各実施例に比べ5分の1を下回る値で吸着材の利用率(X)がピークに達し、しかもそれ以上の厚さHになると急激に減少した。平均冷熱出力(VCP)についても同様であった(図7(A))。なお、図7(B)に示す総蓄熱密度(Q)については吸着層の厚さHが増すにつれて増加したのは各実施例と同様であった。 In the comparative example shown in FIG. 7, probably because the adsorption layer does not have a laminated structure, the thickness H is about 3 mm as shown in FIG. The utilization factor (X) of the adsorbent reached a peak at 100.degree. C., and decreased sharply when the thickness H exceeded that. The same was true for the average cold heat output (VCP) (Fig. 7(A)). It should be noted that the total heat storage density (Q) shown in FIG. 7(B) increased as the thickness H of the adsorption layer increased, as in each example.

以上、吸着材が複数段積層された吸着層を有することで、積層構造を取らない充填構造の場合よりも、吸着材が吸着質と接触しやすくなることで、吸着材の利用率(X)が向上し、平均冷熱出力(VCP)が高くなるような吸着層の厚さHも大きくなった。なお、総蓄熱密度(Q)については、吸着材の材質に依存すると思われるため各実施例及び比較例の間では大差はなかったものの、吸着材の利用率(X)及び平均冷熱出力(VCP)を高くしつつ吸着層の厚さHを大きくできるので、蓄熱用吸着器全体としての総蓄熱量は増大すると考えられる。 As described above, by having an adsorption layer in which the adsorbent is laminated in multiple stages, the adsorbent is more likely to come into contact with the adsorbate than in the case of a packed structure that does not have a laminated structure, so the utilization rate (X) of the adsorbent was improved, and the thickness H of the adsorption layer, which increased the average cold power output (VCP), was also increased. Regarding the total heat storage density (Q), it seems that it depends on the material of the adsorbent, so there was no big difference between each example and comparative example, but the utilization rate (X) and average cold power (VCP ) can be increased while the thickness H of the adsorption layer can be increased.

図8は、図4(A)、図5(A)及び図6(A)にプロットされた各点を、x軸に吸着層の厚さH、y軸にHをnで除して得られる吸着材の線径w、z軸に平均冷熱出力(VCP)を三次元プロットした立体グラフに基づいて作成したコンター図である。図8中に記載されている数値は、当該領域の平均冷熱出力(VCP)の数値範囲を表す。また、図9は、図4(C)、図5(C)及び図6(C)にプロットされた各点を、x軸に吸着層の厚さH、y軸にHをnで除して得られる吸着材の線径w、z軸に吸着材の利用率(X)を三次元プロットした立体グラフに基づいて作成したコンター図である。図9中に記載されている数値は、当該領域の吸着材の利用率(X)の数値範囲を表す。なお、図8及び図9のグラフにおいて左上で斜線が施されていない領域は、吸着材が積層される段数であるnの値が大きくなり過ぎるために、数値の補完ができなった領域を示す。 FIG. 8 is obtained by dividing each point plotted in FIGS. 4A, 5A and 6A by the thickness H of the adsorption layer on the x-axis and H on the y-axis divided by n. It is a contour diagram created based on a three-dimensional graph in which the average cold power output (VCP) is three-dimensionally plotted on the wire diameter w of the adsorbent and the z axis. The numerical values shown in FIG. 8 represent the numerical range of the average cold power output (VCP) of the region. 9, each point plotted in FIG. 4(C), FIG. 5(C) and FIG. 6(C) is plotted with the thickness H of the adsorption layer on the x-axis and H divided by n on the y-axis. 2 is a contour diagram created based on a three-dimensional graph obtained by three-dimensionally plotting the wire diameter w of the adsorbent and the utilization rate (X) of the adsorbent on the z-axis. The numerical values shown in FIG. 9 represent the numerical range of the utilization rate (X) of the adsorbent in the region. In the graphs of FIGS. 8 and 9, the non-shaded area in the upper left indicates an area where the numerical value cannot be complemented because the value of n, which is the number of layers of the adsorbent layered, becomes too large. .

図8において、w=1.47かつH=28である点A、w=3.2かつH=28である点B、w=3.2かつH=13である点C、w=0.95かつH=13である点D、及びw=0.95かつH=17である点Eで囲まれる五角形ABCDEの範囲内の線径w及び厚さHを有する吸着材は、少なくとも40kW/mの平均冷熱出力(VCP)が得られることが分かる。 In FIG. 8, point A with w=1.47 and H=28, point B with w=3.2 and H=28, point C with w=3.2 and H=13, w=0. An adsorbent with wire diameter w and thickness H within the pentagon ABCDE bounded by point D where 95 and H = 13 and point E where w = 0.95 and H = 17 is at least 40 kW/m It can be seen that an average cold power output (VCP) of 3 is obtained.

ここで、点Aと点Eとを通る直線AEは、線径wと厚さHとの関数と見ることができる。この関数を仮に、
H=aw+b・・・式(1)
とする。ここで、上記式(1)中のaはこの直線の傾きを、bはこの直線のy切片をそれぞれ表す。
Here, a straight line AE passing through the points A and E can be seen as a function of the wire diameter w and the thickness H. If this function is
H=aw+b Expression (1)
and Here, a in the above formula (1) represents the slope of this straight line, and b represents the y-intercept of this straight line.

この式1に、点Aのw=1.47及びH=28並びに点Eのw=0.95かつH=17を代入して得られる連立方程式を解くことで上記式(1)中のa及びbの値が求められる。その結果、直線AEは、
H=(1100w-161)/52・・・式(2)
と表すことができる。したがって、
H≦(1100w-161)/52
である領域は、図8において直線AEの下側の領域である。
By solving the simultaneous equations obtained by substituting w = 1.47 and H = 28 at point A and w = 0.95 and H = 17 at point E into this equation 1, a in the above equation (1) and b are determined. As a result, the straight line AE is
H=(1100w-161)/52 Expression (2)
It can be expressed as. therefore,
H≤(1100w-161)/52
is the area below the straight line AE in FIG.

すなわち、図8中の五角形ABCDE内の範囲内の吸着材の線径wと吸着層の厚さHとの関係は、
0.95≦w≦1.47、かつ、13≦H≦(1100w-161)/52、又は、
1.47<w≦3.2、かつ、13≦H≦28、
と表される。
That is, the relationship between the wire diameter w of the adsorbent within the range within the pentagon ABCDE in FIG. 8 and the thickness H of the adsorption layer is
0.95≦w≦1.47 and 13≦H≦(1100w−161)/52, or
1.47<w≦3.2 and 13≦H≦28,
is represented.

すなわち、吸着材の線径w及び吸着層の厚さHが上記の関係を満たす場合、この吸着剤を使用した蓄熱用吸着器では、40kW/m以上と、高い値の平均冷熱出力(VCP)が得られることになる。なお、この範囲を図9に当てはめると、吸着材の線径w及び吸着層の厚さHが上記の関係を満たす場合、吸着材の利用率(X)はほぼ0.75以上とこれも高い値が得られることになる。 That is, when the wire diameter w of the adsorbent and the thickness H of the adsorption layer satisfy the above relationship , the heat storage adsorber using this adsorbent has a high average cold power output (VCP ) will be obtained. When this range is applied to FIG. 9, when the wire diameter w of the adsorbent and the thickness H of the adsorption layer satisfy the above relationship, the utilization rate (X) of the adsorbent is approximately 0.75 or more, which is also high. value will be obtained.

なお、図8において、w=1.1かつH=21である点A′、w=2.8かつH=21である点B′、w=2.8かつH=16である点C′、w=1.1かつH=16である点D′で囲まれる長方形A′B′C′D′の範囲内の線径w及び厚さHを有する吸着材は、少なくとも42.5kW/mと、さらに高い平均冷熱出力(VCP)が得られることが分かる。なお、図9から、この長方形A′B′C′D′の範囲内の吸着材の利用率(X)は0.75を上回っている。 In FIG. 8, point A' where w=1.1 and H=21, point B' where w=2.8 and H=21, and point C' where w=2.8 and H=16. , w=1.1 and H=16, the adsorbent having a wire diameter w and a thickness H within the rectangle A'B'C'D' enclosed by the point D' where w=1.1 and H=16. 3 , and even higher average cold power output (VCP) can be obtained. Incidentally, from FIG. 9, the utilization rate (X) of the adsorbent within the range of this rectangle A'B'C'D' exceeds 0.75.

すなわち、吸着材の線径w(mm)が
1.1≦w≦2.8
であり、また、吸着層の厚さH(mm)が
16≦H≦21
であることにより、この吸着剤を使用した蓄熱用吸着器では、さらに高い値の平均冷熱出力(VCP)が安定して得られることになる。
That is, the wire diameter w (mm) of the adsorbent is 1.1 ≤ w ≤ 2.8
and the thickness H (mm) of the adsorption layer is 16 ≤ H ≤ 21
As a result, a heat storage adsorber using this adsorbent can stably obtain a higher average cold power output (VCP).

1 吸着体
3a、3b、3c、3d 接続配管
4a、4b、4c、4d バルブ
5 熱交換器
6 蓄熱用吸着器
6a 反応容器
7 蓄熱用吸着器
7a 反応容器
8 蒸発凝縮器
8a 配管
8b 貯留容器
9 蒸発凝縮器
9a 配管
9b 貯留容器
10 吸着式ヒートポンプ
20 吸着層
25 吸着材
25a 間隙
30 伝熱管
1 Adsorbents 3 a, 3 b, 3 c, 3 d Connection pipes 4 a, 4 b, 4 c, 4 d Valve 5 Heat exchanger 6 Heat storage adsorber 6 a Reaction vessel 7 Heat storage adsorber 7 a Reaction vessel 8 Evaporative condenser 8 a Piping 8 b Storage vessel 9 Evaporative condenser 9a Piping 9b Storage container 10 Adsorption heat pump 20 Adsorption layer 25 Adsorbent 25a Gap 30 Heat transfer tube

Claims (4)

吸着質を吸着材に吸着することで冷熱又は温熱を蓄熱する蓄熱用吸着器において、
熱媒体が流動する伝熱管の外周に、前記吸着材が網目状に複数段、積層されて吸着層が形成されているとともに、同じ段の前記吸着材は同方向に互いに間隙を介して並行して配置され、隣接する段の吸着材は互いに異なる方向に配置されている、蓄熱用吸着器。
In a heat storage adsorber that stores cold or warm heat by adsorbing an adsorbate to an adsorbent,
An adsorption layer is formed by stacking a plurality of stages of the adsorbents in a mesh shape on the outer circumference of the heat transfer tube through which the heat medium flows, and the adsorbents in the same stage are arranged in parallel with each other in the same direction with a gap therebetween. , wherein the adsorbents in adjacent stages are oriented in different directions from each other.
前記吸着材の線径をw(mm)及び前記吸着層の厚さをH(mm)としたとき、
0.95≦w≦1.47、かつ、13≦H≦(1100w-161)/52、又は、
1.47<w≦3.2、かつ、13≦H≦28、
である、請求項1に記載の蓄熱用吸着器。
When the wire diameter of the adsorbent is w (mm) and the thickness of the adsorption layer is H (mm),
0.95≦w≦1.47 and 13≦H≦(1100w−161)/52, or
1.47<w≦3.2 and 13≦H≦28,
The heat storage adsorber according to claim 1, wherein
前記吸着材の線径w(mm)が
1.1≦w≦2.8
であり、
前記吸着層の厚さH(mm)が
16≦H≦21
である、請求項2に記載の蓄熱用吸着器。
The wire diameter w (mm) of the adsorbent is 1.1 ≤ w ≤ 2.8
and
The thickness H (mm) of the adsorption layer is 16≦H≦21
The heat storage adsorber according to claim 2, wherein
前記間隙は500μm以下である、請求項1から請求項3までのいずれか1項に記載の蓄熱用吸着器。 4. The heat storage adsorber according to any one of claims 1 to 3, wherein said gap is 500 [mu]m or less.
JP2021119940A 2021-07-20 2021-07-20 Adsorber for heat storage Pending JP2023015876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021119940A JP2023015876A (en) 2021-07-20 2021-07-20 Adsorber for heat storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021119940A JP2023015876A (en) 2021-07-20 2021-07-20 Adsorber for heat storage

Publications (1)

Publication Number Publication Date
JP2023015876A true JP2023015876A (en) 2023-02-01

Family

ID=85131019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021119940A Pending JP2023015876A (en) 2021-07-20 2021-07-20 Adsorber for heat storage

Country Status (1)

Country Link
JP (1) JP2023015876A (en)

Similar Documents

Publication Publication Date Title
KR102089349B1 (en) Hybrid adsorber heat exchanging device and method of manufacture
US10101066B2 (en) Adsorber and adsorption refrigerator
JP5482681B2 (en) Heat storage device
JP4220762B2 (en) Solid filling tank
Zhao et al. Optimization of thermochemical energy storage systems based on hydrated salts: A review
US20080023181A1 (en) Adsorption heat exchanger
US5619866A (en) Adsorptive type refrigeration apparatus
US9822999B2 (en) Systems, devices and methods for gas distribution in a sorber
CN105209815A (en) Gas storage modules, apparatus, systems and methods utilizing adsorbent materials
KR101941309B1 (en) Method for operating an adsorption compressor and adsorption compressor for use in said method
WO2018056074A1 (en) Energy conversion device
Stefański et al. Adsorption bed configurations for adsorption cooling application
JP2023015876A (en) Adsorber for heat storage
JP2550768B2 (en) Adsorption heat exchanger
JP6028758B2 (en) Adsorption heat pump system and cold heat generation method
US20160131400A1 (en) Adsorption system heat exchanger
JP6364198B2 (en) Thermal storage reactor and thermal storage system
JP7307694B2 (en) Adsorbents, heat exchangers and adsorption heat pumps
JP5315893B2 (en) Adsorption heat pump
JPH05157400A (en) Adsorption type reactor
Çağlar Design and experimental testing of an adsorbent bed for a thermal wave adsorption cooling cycle
RU2648387C1 (en) Absorptive gas terminal
JP2023001626A (en) Adsorbent, heat exchanger, and adsorptive heat pump
Ilisca Microporous Materials for Hydrogen Liquefiers and Storage Vessels
Rezk et al. Numerical Investigation of Copper Foam Adsorption Beds Packed with MOF-801 for Space Cooling and Desalination Applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240404