JP2023013842A - Chain elongation detection device - Google Patents

Chain elongation detection device Download PDF

Info

Publication number
JP2023013842A
JP2023013842A JP2021118280A JP2021118280A JP2023013842A JP 2023013842 A JP2023013842 A JP 2023013842A JP 2021118280 A JP2021118280 A JP 2021118280A JP 2021118280 A JP2021118280 A JP 2021118280A JP 2023013842 A JP2023013842 A JP 2023013842A
Authority
JP
Japan
Prior art keywords
elongation
chain
data
link
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021118280A
Other languages
Japanese (ja)
Other versions
JP7293289B2 (en
Inventor
正昭 平井
Masaaki Hirai
正志 首藤
Masashi Shudo
寛之 司馬
Hiroyuki Shiba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Elevator and Building Systems Corp
Original Assignee
Toshiba Elevator Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Elevator Co Ltd filed Critical Toshiba Elevator Co Ltd
Priority to JP2021118280A priority Critical patent/JP7293289B2/en
Priority to CN202210669797.9A priority patent/CN115611125A/en
Publication of JP2023013842A publication Critical patent/JP2023013842A/en
Application granted granted Critical
Publication of JP7293289B2 publication Critical patent/JP7293289B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B29/00Safety devices of escalators or moving walkways
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B29/00Safety devices of escalators or moving walkways
    • B66B29/005Applications of security monitors

Landscapes

  • Escalators And Moving Walkways (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)

Abstract

To provide a chain elongation detection device capable of accurately detecting partial elongation of a chain.SOLUTION: A chain elongation detection device includes: a measuring unit 15 for continuously measuring a total elongation amount of a plurality of links in a predetermined section of a chain 10 that meshes with a pair of sprockets 12, 13; and an estimation unit 22 for estimating an elongation amount per link by inputting the total elongation amount measured by the measuring unit 15 into a system that is trained with a number of data sets that combine elongation amount data for each link of one lap of a chain and data corresponding to the total elongation amount measured by the measuring unit 15.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、チェーンの部分伸びを検出可能なチェーン伸び検出装置に関する。 An embodiment of the present invention relates to a chain elongation detection device capable of detecting partial elongation of a chain.

一般にエスカレータやオートロードなどの搬送装置では、乗客や物を乗せる踏み段や、乗客が把持する移動手摺を設けており、これらは駆動装置により回転駆動される無端状のチェーンと同期して循環移動する。チェーンは、周知のようにピン、ブッシュ、及びローラからなる軸部を所定ピッチで配列し、これら軸部間を内リンクと外リンクにより交互に連結して構成される。 In general, conveying devices such as escalators and auto roads are provided with steps on which passengers and objects are placed, and moving handrails that are held by passengers. do. As is well known, a chain is constructed by arranging shafts composed of pins, bushes, and rollers at a predetermined pitch, and alternately connecting these shafts with inner links and outer links.

このような構造のチェーンは、上述した軸部の摩耗などにより経時的に伸びが生じる。この伸びが大きくなるとスプロケットとうまく噛み合わず、スプロケットの歯を乗り越える歯飛びを起こすことがある。このような問題が生じないように、チェーンの伸びを計測し、これを監視することが提案されている(例えば、特許文献1参照)。 A chain having such a structure elongates over time due to the above-described wear of the shaft portion and the like. If this elongation becomes large, it may not mesh well with the sprocket, causing the teeth to jump over the sprocket teeth. To prevent such problems from occurring, it has been proposed to measure and monitor the elongation of the chain (see, for example, Patent Document 1).

特許文献1に開示されたチェーンの伸びを測定する技術は、伸び量を測定対象のチェーンの走行方向に沿う互いに離間した2か所に、それぞれ光電センサーを設置し、その信号を測定用のマイコンに接続している。2つの光電センサー間の距離は、チェーンの公式ピッチのN倍に設定する。各光電センサーは、チェーンの各軸部が光軸を通過する際、光軸が遮られるよう設置する。チェーンが伸びていないとき、2つの光電センサーの光軸上を、ローラが同時に通過するため、同時にセンサー信号がオンする。しかし、チェーンが経年使用によって伸びてくると、その伸び量に比例してセンサー信号のオン時刻に時間差が生じる。この時間差はチェーンの伸び量に比例しており、2つの光電センサー間に位置しているN個の連続したリンクの合計の伸び量が測定される。なお測定時、チェーン速度は一定とする。 The technique for measuring the elongation of the chain disclosed in Patent Document 1 is to install photoelectric sensors at two mutually separated locations along the running direction of the chain to be measured, and transmit the signals to a microcomputer for measurement. connected to. The distance between the two photoelectric sensors is set to N times the official pitch of the chain. Each photoelectric sensor is installed so that the optical axis is blocked when each shaft of the chain passes through the optical axis. When the chain is not stretched, the rollers pass through the optical axes of the two photoelectric sensors at the same time, so the sensor signals are turned on at the same time. However, as the chain lengthens due to long-term use, a time lag occurs in the ON time of the sensor signal in proportion to the length of the chain. This time difference is proportional to the amount of chain elongation, and the total elongation of N consecutive links located between the two photoelectric sensors is measured. The chain speed is assumed to be constant during the measurement.

2つの光電センサー間には、チェーンの走行に伴い、常にN個(例えば15個)のリンクが存在し、これらN個のリンクの合計の伸び量が連続的に測定される。チェーンは基本的にはほぼ均一に伸びるので、この測定技術で通常は問題なくチェーンの経年伸び量を監視でき、チェーンの交換が必要かどうかを判定できる。 Between the two photoelectric sensors, there are always N (for example, 15) links as the chain runs, and the total elongation of these N links is continuously measured. Since the chain stretches essentially uniformly, this measurement technique is usually sufficient to monitor the amount of chain elongation over time and determine if the chain needs to be replaced.

しかし、実際には、発生頻度は少ないが、1リンクだけが大きく伸びる部分伸びが生じて、チェーンの交換が必要となるケースがある。この場合、前述の測定技術では、チェーンの走行により所定の範囲(2つの光電センサー間)に入ったN個のリンクの合計伸び量を測定するため、1リンクだけが大きく伸びた部分が測定データの中に埋もれてしまい、チェーン交換用の閾値に達しない伸び量として判定されてしまう。このため、部分伸びによりチェーンの交換が必要になっているという状況を正しく判別できず、見逃されてしまうという可能性が高い。その場合、最悪は、その部分のチェーンリンクが破断してしまう可能性がある。 However, in reality, although the frequency of occurrence is low, partial elongation occurs in which only one link is greatly elongated, and the chain needs to be replaced. In this case, the above-mentioned measurement technology measures the total amount of elongation of N links that enter a predetermined range (between two photoelectric sensors) as the chain runs. It will be buried in the chain and will be judged as an elongation amount that does not reach the threshold for chain replacement. Therefore, there is a high possibility that the situation that the chain needs to be replaced due to partial elongation cannot be correctly determined and is overlooked. In that case, in the worst case, the chain link at that portion may break.

特許第6505890号公報Japanese Patent No. 6505890

これまでの測定技術では、チェーン1周中の1個のリンク、または所定数以下の少数のリンク、或いは離れて位置するリンクにランダムに部分伸びが生じた場合、これを検出することができなかった。
本発明は、チェーンの部分伸びを的確に検出することができるチェーンの伸び検出装置を提供することにある。
Conventional measurement technology cannot detect random partial elongation of one link in one lap of the chain, a small number of links below a predetermined number, or links located far apart. rice field.
SUMMARY OF THE INVENTION It is an object of the present invention to provide a chain elongation detection device capable of accurately detecting partial elongation of a chain.

本発明の実施の形態に係るチェーンの伸び検出装置は、 複数のリンクが無端状に連結され、一対のスプロケット間に架け渡されたチェ-ンの伸びを検出するもので、前記一対のスプロケットと噛み合い、長さ方向に走行するチェーンの、所定の区間内の複数のリンクの合計伸び量を連続的に測定する測定部と、前記チェーン1周分のリンクごとの伸び量データと、前記測定部で測定される前記合計伸び量に相当するデータとを組み合わせた多数のデータセットで訓練されたシステムに、前記測定部により測定された前記合計伸び量を入力することでリンクごとの伸び量を推測する推測部とを備えたことを特徴とする。 A chain elongation detection device according to an embodiment of the present invention detects the elongation of a chain that is spanned between a pair of sprockets with a plurality of links connected in an endless manner. A measuring unit that continuously measures the total elongation of a plurality of links in a predetermined section of a chain that meshes and runs in the longitudinal direction, elongation data for each link for one circumference of the chain, and the measuring unit. estimating the elongation for each link by inputting the total elongation measured by the measuring unit into a system trained with multiple data sets combined with data corresponding to the total elongation measured by and an estimating unit that

上記構成によれば、従来検出困難であったチェーンの部分伸びを的確に検出でき、部分伸びを生じたチェーンの交換を確実に実施することができる。 According to the above configuration, it is possible to accurately detect partial elongation of the chain, which has been difficult to detect in the past, and to reliably replace the chain in which partial elongation has occurred.

本発明の一実施形態に係るチェーンの伸び検出装置の構成図である。1 is a configuration diagram of a chain elongation detection device according to an embodiment of the present invention; FIG. 一実施の形態における伸び検出対象となるチェーンの分解斜視図である。1 is an exploded perspective view of a chain whose elongation is to be detected in one embodiment; FIG. 一実施の形態におけるチェーン伸びの測定部のセンサー配置の一例を説明する図である。It is a figure explaining an example of sensor arrangement of a measuring part of chain elongation in one embodiment. (a)は前記チェーン伸びの測定部で測定されるチェーンのリンクごとの伸びを示す図、(b)はチェーン1周分の各リンクの伸び量を表す波形図である。(a) is a diagram showing the elongation of each link of the chain measured by the chain elongation measuring section, and (b) is a waveform diagram showing the amount of elongation of each link for one circumference of the chain. (a)はセンサーの設置位置で決まる所定の区間内の複数のリンクの伸び測定状態を表す図、(b)は(a)で示す測定状態にて図3(b)で示した部分伸びを有するチェーンの伸びを測定した場合の複数リンクの合計伸び量の変化を表す波形図である。(a) is a diagram showing the measurement state of elongation of a plurality of links in a predetermined section determined by the installation position of the sensor, (b) is the partial elongation shown in FIG. 3 (b) in the measurement state shown in (a). FIG. 10 is a waveform diagram showing changes in the total elongation amount of a plurality of links when the elongation of the chain is measured. 一実施の形態におけるチェーン伸びの推測部の一例である構成する深層学習モデルを表す図である。FIG. 4 is a diagram showing a deep learning model that is an example of a chain elongation estimator in one embodiment. 図5で示した深層学習モデルの訓練用データセットの一例を示しており、(a)は出力側のターゲットデータ、(b)は入力側のデータを示している。6 shows an example of a training data set for the deep learning model shown in FIG. 5, where (a) shows target data on the output side and (b) shows data on the input side. 図5で示した深層学習モデルの多数の訓練用データセット全体の一例を示しており、(a)は出力側のターゲットデータ、(b)は入力側のデータを示している。FIG. 6 shows an example of a whole number of training data sets for the deep learning model shown in FIG. 5, where (a) shows target data on the output side and (b) shows data on the input side. 図5で示した深層学習モデルの多数の訓練用データセットの他の例を示しており、(a)は出力側のターゲットデータ、(b)は入力側のデータを示している。6 shows another example of many training data sets for the deep learning model shown in FIG. 5, where (a) shows target data on the output side and (b) shows data on the input side. 図5で示した深層学習モデルの多数の訓練用データセットのさらに他の例を示しており、(a)は出力側のターゲットデータ、(b)は入力側のデータを示している。6 shows still another example of a large number of training data sets for the deep learning model shown in FIG. 5, where (a) shows target data on the output side and (b) shows data on the input side. 一実施形態に係るチェーンの伸び検出装置における推測部を複数設けた実施例を示す構成図である。FIG. 4 is a configuration diagram showing an example in which a plurality of estimating units are provided in the chain elongation detection device according to the embodiment; 一実施形態に係るチェーンの伸び検出装置における推測部をエスカレータマイコン側に設けた実施例を示す構成図である。FIG. 4 is a configuration diagram showing an example in which an estimation unit in the chain elongation detection device according to the embodiment is provided on the escalator microcomputer side; 本発明の他の実施形態に係るチェーンの伸び検出装置におけるチェーン伸びの測定部を説明する図である。FIG. 7 is a diagram illustrating a chain elongation measuring unit in a chain elongation detection device according to another embodiment of the present invention; (a)はチェーン1周中、1リンクだけ大きく伸びた状態を示す図、(b)は(a)のチェーンを図12の伸びの測定部で測定した、所定の測定区間における複数リンクの合計伸び量の測定結果を表す波形図である。(a) is a diagram showing a state in which only one link is greatly stretched during one lap of the chain, and (b) is the sum of multiple links in a predetermined measurement section, measured by the elongation measurement section of FIG. 12 for the chain in (a). It is a wave form diagram showing the measurement result of elongation amount. 図13で示した部分伸びチェーンの実測結果をずらして深層学習モデルの訓練用データセット1とした場合の、(a)は出力側のターゲットデータである部分伸び波形を示し、(b)は入力側の実測波形を示す図である。When the actual measurement result of the partially stretched chain shown in FIG. 13 is shifted and used as a training data set 1 for the deep learning model, (a) shows the partially stretched waveform that is the target data on the output side, and (b) shows the input FIG. 10 is a diagram showing measured waveforms on the side. 図13で示した部分伸びチェーンの実測結果をずらして深層学習モデルの訓練用データセット2とした場合の、(a)は出力側のターゲットデータである部分伸び波形を示し、(b)は入力側の実測波形を示す図である。When the actual measurement result of the partially stretched chain shown in FIG. 13 is shifted and used as a training data set 2 for the deep learning model, (a) shows the partially stretched waveform that is the target data on the output side, and (b) shows the input FIG. 10 is a diagram showing measured waveforms on the side. 図13で示した部分伸びチェーンの実測結果をずらして深層学習モデルの訓練用データセット3とした場合の、(a)は出力側のターゲットデータである部分伸び波形を示し、(b)は入力側の実測波形を示す図である。When the actual measurement result of the partially stretched chain shown in FIG. 13 is shifted and used as a training data set 3 for the deep learning model, (a) shows the partially stretched waveform that is the target data on the output side, and (b) shows the input FIG. 10 is a diagram showing measured waveforms on the side. 図13で示した部分伸びチェーンの実測結果をずらして深層学習モデルの訓練用データセット4とした場合の、(a)は出力側のターゲットデータである部分伸び波形を示し、(b)は入力側の実測波形を示す図である。When the actual measurement result of the partially stretched chain shown in FIG. 13 is shifted and used as a training data set 4 for the deep learning model, (a) shows the partially stretched waveform that is the target data on the output side, and (b) shows the input FIG. 10 is a diagram showing measured waveforms on the side.

以下、本発明の実施の形態を、図面を用いて詳細に説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1に、本発明の一実施の形態に係るチェーンの伸び検出装置を示す。図1はエスカレータの駆動チェーン部分を示している。ここで、エスカレータには駆動チェーン、手すり駆動チェーン、踏段チェーンなどがあるが、この実施の形態では伸び検出対象のチェーン10として駆動チェーンを例示している。 FIG. 1 shows a chain elongation detection device according to an embodiment of the present invention. FIG. 1 shows the drive chain portion of an escalator. Here, an escalator includes a drive chain, a handrail drive chain, a step chain, and the like, but in this embodiment, the drive chain is exemplified as the chain 10 whose elongation is to be detected.

このチェーン10は無端状に形成され、一対のスプロケット(駆動用のスプロケット12と、従動用のスプロケット13)間に掛け渡されている。駆動用のスプロケット12は、エスカレータ駆動用モータの減速機11に設けられている。従動用のスプロケット13は、図示しない無端状の踏み段や手摺ベルトを駆動するために用いられる。そして、一対のスプロケット12,13との噛み合いにより駆動され、長さ方向に沿って周回走行する。 The chain 10 is formed endlessly and is stretched between a pair of sprockets (a driving sprocket 12 and a driven sprocket 13). A drive sprocket 12 is provided on a speed reducer 11 of an escalator drive motor. The driven sprocket 13 is used to drive endless steps and handrail belts (not shown). Then, it is driven by meshing with the pair of sprockets 12 and 13 and travels around along the length direction.

チェーン10は、図2Aで示すように、軸部101を所定ピッチで配列し、隣り合うこれら軸部101の両端部間をリンク102で連結している。なお、軸部101はピン101C、ブッシュ101b、及びローラ101aからなる。また、リンク102は、外リンク102aと内リンク102bとがあり、これら外リンク102a及び内リンク102bは、交互に軸部101間を連結している。 As shown in FIG. 2A, the chain 10 has shafts 101 arranged at a predetermined pitch, and links 102 connect the ends of the adjacent shafts 101 . In addition, the shaft portion 101 is composed of a pin 101C, a bush 101b, and a roller 101a. Further, the link 102 has an outer link 102a and an inner link 102b, and these outer links 102a and inner links 102b alternately connect the shaft portions 101 together.

図1に戻って、この実施の形態によるチェーンの伸び検出装置は、チェーン伸びの測定部15と、この測定部15により測定した測定データを監視センター21に送信する送信装置20と、監視センター21に設けられ、送信されてきた測定データからチェーン10の1リンクごとの伸び量を推測する推測部22とを有する。 Returning to FIG. 1, the chain elongation detection device according to this embodiment includes a chain elongation measuring unit 15, a transmitting device 20 for transmitting measurement data measured by the measuring unit 15 to a monitoring center 21, and a monitoring center 21. and an estimation unit 22 for estimating the elongation amount of each link of the chain 10 from the transmitted measurement data.

チェーン伸びの測定部15は、従来技術で説明したものと基本的に同じものであり、2つのセンサー(以下、光電センサーとして説明する)151,152と、エスカレータマイコン19に構成された伸び量算出部153とを有する。このチェーン伸びの測定部15は、図2Bで示すように、2つの光電センサー151,152の設置位置で規定される所定の区間内を走行するチェーン10の、複数のリンク102の合計伸び量を連続的に測定する。なお、図2Bではリンク102は外リンクのみを示しており、内リンクの図示は省略している。 The chain elongation measuring unit 15 is basically the same as that described in the prior art, and includes two sensors (hereinafter referred to as photoelectric sensors) 151 and 152 and an elongation amount calculator configured in the escalator microcomputer 19. and a portion 153 . As shown in FIG. 2B, the chain elongation measuring unit 15 measures the total elongation of the plurality of links 102 of the chain 10 running in a predetermined section defined by the installation positions of the two photoelectric sensors 151 and 152. Measure continuously. Note that FIG. 2B shows only the outer link of the link 102 and omits the illustration of the inner link.

2つの光電センサー151,152は、チェーン10の移動方向に沿って、チェーン10のピッチの整数倍の長さ間隔で配置する。例えば、図1及び図2Bで示すように、チェーン10上に配置されたチェーン切断検出部品18を避けた左右の位置に、第1、第2の光電センサー151,152を配置する。両光電センサー151,152の設置間隔、すなわち、各光軸間の距離は、チェーン10のリンク分のピッチ間隔、例えば15×ピッチとする。 The two photoelectric sensors 151 and 152 are arranged along the direction of movement of the chain 10 at intervals of an integer multiple of the pitch of the chain 10 . For example, as shown in FIGS. 1 and 2B, the first and second photoelectric sensors 151 and 152 are arranged at left and right positions avoiding the chain break detection component 18 arranged on the chain 10 . The installation interval between the photoelectric sensors 151 and 152, that is, the distance between the optical axes, is the pitch interval of the links of the chain 10, for example, 15×pitch.

光電センサー151,152は図2Bで示すように、投光部と受光部とで構成され、この間の光軸をチェーン10の軸部101が通過する毎に信号を伸び量の算出部153へ出力する。伸び量の算出部153は、2つの光電センサー151,152から入力される両検出信号の時間ずれの大きさに基づいて、チェーン10の伸び量を算出する。 As shown in FIG. 2B, the photoelectric sensors 151 and 152 are composed of a light projecting portion and a light receiving portion, and each time the shaft portion 101 of the chain 10 passes through the optical axis between them, a signal is output to the elongation amount calculating portion 153. do. The elongation amount calculator 153 calculates the elongation amount of the chain 10 based on the magnitude of the time lag between the two detection signals input from the two photoelectric sensors 151 and 152 .

推測部22は、前述のように、測定部15から送信されてきた測定データからチェーン10の1リンクごとの伸び量を推測する。推測部22は、多数のデータセット用いて訓練された推測用のシステム、例えば深層学習モデルを有し、このシステムによりチェーン10の1リンクごとの伸び量を推測する。訓練用のデータセットは、チェーン10の1周分のリンクごとの伸び量データと、測定部15で測定される合計伸び量に相当するデータとを組み合わせたもので、このデータセットを多数(例えば1000または2000個)用意して訓練する。すなわち、前述の合計伸び量に相当するデータを入力とし、1リンクごとの伸び量データをターゲットとして訓練を行う。このように訓練されたシステムに、測定部15により測定された合計伸び量を入力することで1リンクごとの伸び量を推測する。 The estimation unit 22 estimates the amount of elongation of each link of the chain 10 from the measurement data transmitted from the measurement unit 15, as described above. The estimating unit 22 has an estimating system, such as a deep learning model, trained using a large number of data sets, and uses this system to estimate the amount of elongation of each link of the chain 10 . The training data set is a combination of elongation amount data for each link of the chain 10 for one round and data corresponding to the total elongation amount measured by the measuring unit 15. 1000 or 2000) are prepared and trained. That is, training is performed with data corresponding to the above-mentioned total elongation amount as input and elongation amount data for each link as a target. By inputting the total elongation measured by the measuring unit 15 into the system trained in this way, the elongation for each link is estimated.

図3(a)は、チェーンの1リンクの伸び量測定部分を示し、同図(b)は、このリンクが複数連結されたチェーン10の、チェーン1周分の各リンクの伸び量を1リンクごとに表している。チェーン10のリンク102は、前述したように外リンク102aと内リンク102bとがあり、これらは、交互に軸部101間を連結している。周知のように、内リンク102b間の伸びはほぼゼロであり、外リンク102a間に伸びが生じる。このため、図3(b)で示すように、伸びが生じていないものと、伸びが生じたものが交互に繰り返される鋸歯状の伸び量として表される。 FIG. 3(a) shows an elongation measurement portion of one link of the chain, and FIG. are shown for each. As described above, the links 102 of the chain 10 include outer links 102a and inner links 102b, which alternately connect the shafts 101 together. As is well known, there is approximately zero stretch between inner links 102b and stretch between outer links 102a. Therefore, as shown in FIG. 3(b), the amount of elongation in a saw-tooth shape in which the non-elongation and the elongation are alternately shown.

チェーン10の各リンク102は、図3(b)で示すように、おおむね均等な伸び量を有しているが、稀に図示のように1リンクだけが大きく伸びるケースがある。この1リンクだけ伸びた部分が図示のように要交換値を超えていれば、チェーン交換が必要となる。図4は、図3のチェーン10の伸び量を、図1で示した測定部15で測定した測定値である。光電センサー151,152は、チェーン10の移動方向に沿って、チェーン10のピッチの整数倍(この実施例では前述のように15倍とする)の長さ間隔で設置されており、チェーン10の走行により、図4(a)で示すように、光電センサー151,152の設置位置で規定される区間に入った連続した15リンク分の合計の伸び量が逐次測定される。このため、図4(b)で示すように、図3で示した1リンクごとの細かい伸び量の変動は平滑化されて測定され、比較的平坦な測定値が得られる。また1リンクだけ大きく伸びた部分についても測定値が平滑化される関係上、全体の測定値の中に埋もれ気味となり、チェーンの要交換ラインよりも小さい伸び量と判断される。 As shown in FIG. 3(b), each link 102 of the chain 10 has a substantially equal amount of elongation, but there are rare cases where only one link is greatly elongated as shown in the figure. If the portion that extends by one link exceeds the replacement value as shown in the figure, the chain needs to be replaced. FIG. 4 shows measured values of the elongation amount of the chain 10 of FIG. 3 measured by the measuring unit 15 shown in FIG. The photoelectric sensors 151 and 152 are installed along the moving direction of the chain 10 at intervals of an integer multiple (in this embodiment, 15 times as described above) of the pitch of the chain 10 . As the vehicle travels, as shown in FIG. 4A, the total elongation of 15 consecutive links in the section defined by the installation positions of the photoelectric sensors 151 and 152 is sequentially measured. For this reason, as shown in FIG. 4(b), fine fluctuations in elongation amount for each link shown in FIG. 3 are smoothed and measured, and relatively flat measured values are obtained. In addition, since the measured values for the portion that has been greatly elongated by one link are smoothed, the measured values tend to be buried in the overall measured values, and it is judged that the amount of elongation is smaller than that of the line requiring replacement of the chain.

図1の監視センター21に設けられた推測部22は、エスカレータ側に設けられた測定部15から送られてくる、図4(b)で示す平滑化された15リンク分の合計伸び量である測定データから、1リンクごとの伸び量を推測する。この推測部22の推測用のシステムとしては、図5で示す、訓練済みの深層学習モデルを用いる。この深層学習モデルは、3層ニューラルネットとして構成され、入力側はチェーン10の1周分のリンク数に相当するノード(例えば、112ノード)を有する。入力データは、測定部15により測定されたチェーン伸び測定データ、すなわち、連続15リンクの合計伸び量を、チェーン10の走行に伴い、チェーン1周分について1リンクずつ測定範囲をずらして測定された測定データである。 The estimation unit 22 provided in the monitoring center 21 in FIG. 1 is the smoothed total elongation amount for 15 links shown in FIG. From the measured data, the amount of elongation for each link is estimated. A trained deep learning model shown in FIG. 5 is used as the estimation system of the estimation unit 22 . This deep learning model is configured as a three-layer neural network, and the input side has nodes corresponding to the number of links for one round of the chain 10 (for example, 112 nodes). The input data is the chain elongation measurement data measured by the measuring unit 15, that is, the total elongation amount of 15 consecutive links is measured by shifting the measurement range by one link per circumference of the chain as the chain 10 runs. measurement data.

訓練済みの深層学習モデルに入力された測定データは1層目(336ノード)、2層目(224のード、3層目(112ノード)を経て出力される。すなわち、出力側は、入力側と同じチェーン10の1周分のリンク数に相当する112ノードから、1リンクごとの伸び量に変換したチェーン1周分の推定値が出力される。この深層学習モデルとなるニューラルネットは、予め訓練用データセットによって上述の推測機能を持つように訓練されている。 The measured data input to the trained deep learning model is output through the first layer (336 nodes), the second layer (224 nodes), and the third layer (112 nodes). 112 nodes corresponding to the number of links for one round of the same chain 10 as the side output the estimated value for one round of the chain converted into the amount of elongation for each link.The neural network that becomes this deep learning model is: It is pre-trained to have the above-mentioned inference function by a training data set.

訓練用データセットの一例を図6(a)(b)で説明する。図6(a)は、チェーン1周分の各リンクの伸び量を定めた模擬伸びデータであり、これが出力としての訓練データ(ターゲットデータ:求めたいデータ)となる。この模擬伸びデータは、実際のチェーンの伸び方を模擬したもので、伸びが生じていないものと、伸びが生じたものが交互に繰り返す鋸歯状の伸び量とする。伸びているリンクについては、その伸び量をランダム値として設定した。すなわち、模擬伸びデータは、伸びが一般的に生じない内リンクは伸び量0とし、外リンク側は、それぞれがランダムな伸び量を有するものとして、ランダム値を設定した。 An example of a training data set will be described with reference to FIGS. 6(a) and 6(b). FIG. 6(a) shows simulated elongation data that defines the elongation amount of each link for one cycle of the chain, and this becomes training data (target data: data to be obtained) as an output. This simulated elongation data simulates the actual elongation of the chain, and is a serrated elongation amount in which the non-elongated chain and the elongated chain are alternately repeated. For stretched links, the amount of stretch was set as a random value. That is, for the simulated elongation data, random values were set assuming that the elongation amount of the inner link, which generally does not occur, is 0, and that each of the outer links has an elongation amount that is random.

図6(b)は、同図(a)で示したチェーンの模擬伸び量を、図1の測定部15が、15リンクずつ測定した場合、どのように測定されるかを計算によって求めた模擬測定データであり、訓練データの入力側のデータとなる。このような入力側の模擬測定データと、同図(a)で示した出力側の模擬伸びデータを組み合わせたデータセットを多数、例えば1000個用意する。 FIG. 6(b) is a simulation obtained by calculating how the simulated elongation amount of the chain shown in FIG. 6(a) is measured when the measuring unit 15 of FIG. It is measurement data and becomes data on the input side of training data. A large number of data sets, for example, 1000, are prepared by combining the simulated measurement data on the input side and the simulated elongation data on the output side shown in FIG.

この訓練用のデータセットの例を図7(a)(b)で示す。これら1番目からM番目(この場合1000番目)の多数のデータセットを使い、深層学習モデルを訓練する。誤差が十分に小さくなるように訓練が実施できた場合には、前述のように測定部15が測定する15リンクごとの測定データを与えると1リンクごとの伸び量が精度良く出力される。 An example of this training data set is shown in FIGS. 7(a) and 7(b). A number of these 1st to Mth (1000th in this case) data sets are used to train a deep learning model. If the training can be carried out so that the error is sufficiently small, the measurement data for each 15 links measured by the measurement unit 15 is supplied as described above, and the elongation amount for each link is output with high accuracy.

上記構成において、図1で説明したチェーン伸び検出装置により、例えば、日に1回、チェーン10の伸び量を測定する。すなわち、一対のスプロケット12,13を回転駆動し、チェーン10を長さ方向に周回走行させる。この走行により、光電センサー151,152の設置位置で規定される区間内に入った15リンクの合計伸び量を、エスカレータマイコン19に構成された伸び量の算出部153により算出する。このチェーン10の連続15リンクごとの合計伸び量を1周分測定する。その測定データは、エスカレータマイコン19内のメモリに一時的に保存される。 In the above configuration, the elongation amount of the chain 10 is measured, for example, once a day by the chain elongation detection device described with reference to FIG. That is, the pair of sprockets 12 and 13 are rotationally driven, and the chain 10 is made to circulate in the length direction. As a result of this running, the total elongation of the 15 links within the section defined by the installation positions of the photoelectric sensors 151 and 152 is calculated by the elongation calculator 153 of the escalator microcomputer 19 . The total elongation of every 15 consecutive links of the chain 10 is measured for one round. The measurement data is temporarily stored in the memory within the escalator microcomputer 19 .

この測定データは、ある所定の時刻に測定データ送信装置20によって監視センター21に送信される。監視センター21では、この測定データが、推測部22となる訓練済みの深層モデルに入力される。図5で示す訓練済みの深層モデルは、入力された15リンクごとの測定データを、1リンクごとの伸び量の測定データ(推定値)に変換する。この変換後のデータが、チェーンの要交換の判定に用いられる。 This measurement data is transmitted to the monitoring center 21 by the measurement data transmission device 20 at a predetermined time. In the monitoring center 21 , this measurement data is input to a trained deep model serving as the estimation unit 22 . The trained deep model shown in FIG. 5 converts the input measured data for every 15 links into measured data (estimated value) of the elongation amount for each link. This converted data is used to determine whether the chain needs to be replaced.

このように、チェーン10の1リンクごとの伸び量の測定データ(推定値)が得られるので、1リンクだけ伸びた場合でもこれを的確に検出することができる。すなわち、従来の技術では、チェーンの伸び量データは、図4(b)の形で得られる波形からチェーンの交換が必要かどうかを判断している。このため、実際のチェーンの伸び量が図3のようなに1リンクだけ大きく伸びた状態の場合は、チェーン交換は不要と判断されることがある。 In this manner, measurement data (estimated value) of the amount of elongation for each link of the chain 10 can be obtained, so even if only one link elongates, this can be accurately detected. That is, in the conventional technology, it is determined whether or not the chain needs to be replaced from the waveform obtained in the form of FIG. 4(b) for the chain elongation amount data. Therefore, when the actual elongation amount of the chain is greatly elongated by one link as shown in FIG. 3, it may be determined that the chain does not need to be replaced.

これに対し、本実施形態では、推定部21により、図4の測定データを図3の1リンクごとの測定値に変換したデータが得られ、このデータで判断するため、1リンクだけ大きく伸びた部分も正しく検出でき、判断を間違えることがない。従って、1リンクだけが部分的に伸びた状況を正しく検出でき、自動的に点検員への現地調査や、チェーン交換の指示を出せるようになり、より安全性を提供できることとなる。 On the other hand, in this embodiment, the measurement data in FIG. 4 is converted into the measurement value for each link in FIG. Parts can also be detected correctly, and there is no misjudgment. Therefore, it is possible to correctly detect a situation in which only one link is partially stretched, and it becomes possible to automatically instruct an inspector to carry out an on-site inspection or to replace the chain, thereby providing greater safety.

推測部22の訓練用データセットの他の例としては、図8(a)(b)や図9(a)(b)で示すものがある。 Other examples of training data sets for the estimation unit 22 are shown in FIGS. 8A and 8B and FIGS. 9A and 9B.

図8はチェーン10の一部が伸びる、部分伸びを主に想定した訓練データで、1000個の訓練用データセットを用意した場合を示している。同図(a)は、チェーン10のリンクごとの伸びを示す模擬伸びデータであり、出力側データ(ターゲット)である。同図(b)は、測定部15が測定した15リンクごとの測定データを模擬した模擬測定データであり、同図(a)の伸び量に基づき算出され、図5の深層学習モデルの入力側の訓練データとなる。 FIG. 8 shows a case where 1000 training data sets are prepared as training data mainly assuming partial elongation in which a part of the chain 10 is elongated. FIG. 1(a) shows simulated elongation data indicating elongation of each link of the chain 10, which is output side data (target). FIG. 5(b) is simulated measurement data simulating measurement data for every 15 links measured by the measurement unit 15, calculated based on the elongation amount shown in FIG. training data.

図8(a)の模擬伸びデータにおいて、上から2番目は、伸びない内リンクの伸び量は0とし、外リンク側は、チェーン1周の中で1個だけランダムに伸びたものとした。また、図8(a)の上から1番目、3番目、及び1000番目は、伸びない内リンクは伸び量0とし、外リンク側はチェーン1周の中で1か所だけ、最大5個程度以下の連続した数の外リンクが部分的に伸びている状態を想定し、それぞれのリンクの伸び量はランダムとして設定した。 In the simulated elongation data of FIG. 8(a), the second from the top is assumed that the elongation amount of the inner link that does not elong is 0, and that only one outer link is elongated at random during one circumference of the chain. In addition, in the first, third, and 1000th links from the top of FIG. 8(a), the amount of elongation for the inner links that do not extend is 0, and the outer link side has only one location in one circumference of the chain, and a maximum of about five links. Assuming that the following number of consecutive outer links are partially extended, the amount of extension of each link was set as random.

上述した図8の訓練用のデータセットは、チェーン1周の中の1か所に部分伸びが集中して生じている場合を想定したものである。チェーン1周の中で、部分的に伸びた部分の伸び量はランダム値とし、伸びが生じているリンク番号もランダムとする。また、1か所に生じている部分伸びリンクの数も、5リンク以下という小さい範囲としてランダムな数とする。このようなデータセットで訓練した深層モデルによれば、チェーンに各種形態で生じる部分伸びを的確に検出できる。 The training data set of FIG. 8 described above is based on the assumption that partial elongation is concentrated at one point in one round of the chain. The amount of elongation of the partially elongated portion in one round of the chain is set to a random value, and the number of the link where the elongation occurs is also set to be random. In addition, the number of partially stretched links generated at one location is also a random number within a small range of 5 links or less. A deep model trained on such a data set can accurately detect various forms of partial elongation in the chain.

なお、図8では、1個または少数(5個以下)リンクの部分伸びがチェーンの一周の中の1カ所に生じた場合を想定しているが、チェーンの一周の中の互いに離れた複数個所に上述の部分伸びが生じた場合を想定して、図8(a)の模擬伸びデータを形成し、これを基に理論計算により同図(b)の模擬測定データを算出してもよい。 In FIG. 8, it is assumed that the partial elongation of one or a few (five or less) links occurs at one point on the circumference of the chain. Assuming that the above-mentioned partial elongation occurs in , the simulated elongation data of FIG. 8(a) may be formed, and based on this, the simulated measurement data of FIG. 8(b) may be calculated by theoretical calculation.

この図8の訓練データにより訓練した深層学習モデルを用いた場合、深層学習モデルの訓練が容易になり、それに伴う訓練精度の向上がある。すなわち、図6、図7の訓練データで訓練する場合は、チェーン1周分の全てのリンクが、ランダムに伸びているという訓練データのため、深層学習モデルが推定しなければいけない情報量が非常に大きくなる。このため、推定精度が高いモデルを得るのは、相当の困難を有し、必ずしも精度良いモデルが得られることが保証されない。 When a deep learning model trained using the training data shown in FIG. 8 is used, training of the deep learning model is facilitated, resulting in an improvement in training accuracy. That is, when training with the training data of FIGS. 6 and 7, the amount of information that the deep learning model must estimate is very large because of the training data in which all the links for one round of the chain are randomly extended. grow to Therefore, it is quite difficult to obtain a model with high estimation accuracy, and obtaining a model with high accuracy is not necessarily guaranteed.

これに対し、図8で示す訓練データにより訓練した深層モデルを用いた場合、チェーン1周の中で、推定すべき部分はたかだか5リンク程度となり、深層モデルが推定する情報が大幅に少なくなる。このため、深層学習モデルの訓練が容易となり、得られるモデルの推定精度も高くなることが期待でき、より高い精度で1リンクごとの伸び量を推定できる。ただし、全体的に伸びたようなチェーンのデータについては、訓練モデルの構成と異なるため、逆に推定精度が落ちる可能性はある。 On the other hand, when a deep model trained using the training data shown in FIG. 8 is used, the number of links to be estimated is at most about 5 links in one round of the chain, and the amount of information estimated by the deep model is greatly reduced. Therefore, training of the deep learning model is facilitated, and it can be expected that the estimation accuracy of the obtained model will be high, and the extension amount for each link can be estimated with higher accuracy. However, for chain data that looks like it has been stretched as a whole, there is a possibility that the estimation accuracy will decrease because it differs from the configuration of the training model.

図9で示す訓練データは、同図(a)模擬伸びデータは、全ての外リンクの伸び量は全て均一の一定値として伸びた場合を想定した。すなわち、この場合は、部分伸びではなく、チェーン全体が均一に伸びた状態を想定している。伸びた側と伸びていない側が交互に現れるが、それぞれの伸び量はチェーン1周において全て等しいものとした。これは、実際のチェーンにおいて、一般的に最も多い伸び方に類似している。 The training data shown in FIG. 9 assumes that the simulated elongation data (a) in FIG. 9 assumes that the elongation amounts of all the outer links are all uniform constant values. That is, in this case, it is assumed that the chain as a whole is uniformly stretched rather than partially stretched. The stretched side and the non-stretched side appeared alternately, but the amount of stretch was assumed to be the same for each circumference of the chain. This is similar to the most common elongation in an actual chain.

図9の訓練用データでは、全てのリンクの伸び量値を一定とした。このため、図6、図7の全てのリンクの伸び量をランダムとした場合に比べて訓練はしやすくなり、訓練後の推定精度も高くなる。また図9は、一般的には最も頻繁に発生する一般的なチェーンの伸び方を想定したものであるため、測定データに混入するセンサーノイズなどの影響についても、この図9の訓練用データで訓練済みの深層モデルに測定データ与えて出力した結果は、センサーノイズが除去されたものとなる。したがって、深層モデルを通さない従来技術よりも、より精度良くチェーンの平均的な伸び量を検出できるという効果が期待できる。 In the training data shown in FIG. 9, the elongation values of all links were constant. Therefore, compared to the case where the elongation amounts of all the links in FIGS. 6 and 7 are random, the training becomes easier, and the estimation accuracy after the training becomes higher. In addition, since FIG. 9 assumes a general chain elongation that occurs most frequently, the effects of sensor noise and other factors mixed in the measurement data are also considered using the training data in FIG. The sensor noise is removed from the result of giving the measured data to the trained deep model and outputting it. Therefore, it can be expected that the average elongation amount of the chain can be detected more accurately than the conventional technique that does not pass the deep model.

前述した各訓練用データは、入力側となる模擬測定データが、全データが0の場合を除き、最大値が1または1以下の特定の数値となるように正規化処理を実施したものとする。
また、訓練データの出力側は、模擬的に生成した模擬伸びデータだけでなく、実際に、測定システムで測定された実際のチェーン伸びデータも含むものとしてもよい。
Each of the training data described above is normalized so that the maximum value of the simulated measurement data on the input side is 1 or a specific numerical value of 1 or less, except when all data are 0. .
Also, the training data output side may include not only simulated elongation data generated in a simulation, but also actual chain elongation data actually measured by the measurement system.

図10のチェーン伸び測定装置は、監視センター21に推測部22である訓練済み深層学習モデルを複数(22A,22B)設けて、それらの出力値を受けて、総合的にチェーンの状態を判断する総合判定部23を設けた。この場合、複数の深層学習モデル22A,22Bは、それぞれの特性が異なるものとする。例えば、深層学習モデル22Aは図8の訓練データで訓練し、深層学習モデル22Bは図9の訓練データで訓練したものとする。このように構成すると、深層学習モデル22Aでは主に部分的に大きく伸びた部分を抽出し、深層学習モデル22Bでは、平均的な伸び量を抽出する。総合判定部23は、これら両者の抽出結果を見てチェーン交換が必要か判断する。 In the chain elongation measuring device of FIG. 10, a monitoring center 21 is provided with a plurality of trained deep learning models (22A, 22B), which are estimation units 22, and their output values are received to comprehensively determine the state of the chain. A comprehensive determination unit 23 is provided. In this case, the deep learning models 22A and 22B are assumed to have different characteristics. For example, deep learning model 22A should be trained with the training data of FIG. 8, and deep learning model 22B should be trained with the training data of FIG. When configured in this way, the deep learning model 22A mainly extracts a partially large stretched portion, and the deep learning model 22B extracts an average stretch amount. The comprehensive judgment unit 23 judges whether chain replacement is necessary by looking at the extraction results of both.

この図10のチェーン伸び測定装置では、平均的な伸び量が大きくなったケースと、部分的に大きく伸びたケースの両方を確実に捉えられる。このため、チェーンの伸び状態や異常を見逃すことなく、より乗客の安全性を確保でき、かつ、より精度よく保守を行うことができる。 With the chain elongation measuring apparatus of FIG. 10, both the case where the average amount of elongation is large and the case where the chain is partially elongated can be reliably detected. Therefore, it is possible to ensure the safety of passengers and perform maintenance with higher accuracy without overlooking elongation of the chain and abnormalities.

図11のチェーン伸び測定装置は、推測部22である訓練済みの深層学習モデルを、監視センター21側ではなく、エスカレータマイコン19内に構成した。このように構成すると、エスカレータマイコン19内部で1リンクごとの伸び量が推定される。このため、個々のエスカレータ側で、1リンクごとの伸び量の推測データが抽出され、監視センター21側に出力されてくる。監視センター21側は、各エスカレータから送られてくるデータについて、いちいちデータ処理をすることないため、チェーンの異常の有無や交換の有無の判断だけを行えばよく、監視センター21側の処理が軽減されるという効果がある。 In the chain elongation measuring device of FIG. 11, the trained deep learning model, which is the estimation unit 22, is configured in the escalator microcomputer 19 instead of the monitoring center 21 side. With this configuration, the elongation amount for each link is estimated inside the escalator microcomputer 19 . For this reason, on the side of each escalator, estimated data on the amount of elongation for each link is extracted and output to the monitoring center 21 side. Since the monitoring center 21 side does not process the data sent from each escalator one by one, it is only necessary to judge whether there is an abnormality in the chain or whether the chain needs to be replaced, thus reducing the processing on the monitoring center 21 side. has the effect of being

上述したいずれの実施例において、チェーンの伸び検出用の2個のセンサー151,152は、光電センサーとしたが、必ずしも光電センサーに限定されるわけではなく、同様の測定原理であれば、センサーの種類は問わない。例えば、レーザ変位センサーや、近接センサーなどで、連続したチェーン区間の合計の伸び量を測定するシステムのすべてに適用される。 In any of the above-described embodiments, the two sensors 151 and 152 for detecting elongation of the chain are photoelectric sensors, but they are not necessarily limited to photoelectric sensors. It doesn't matter what kind. For example, it applies to all systems that measure the total elongation of continuous chain sections, such as laser displacement sensors and proximity sensors.

前述した実施形態では図1、及び図10、図11で示したチェーンの伸び測定部15は、いずれもチェーンの走行方向に沿って第1のセンサー151と第2のセンサー152を複数リンク(15リンクと例示)分の間隔を保って配置し、チェーン10の移動に伴って、センサー151,152間に入る15リンクの合計伸び量を検出していたが、このような構成以外のチェーンの伸び測定部を用いてもよい。以下の実施の形態では、図12で示す構成のチェーン伸びの測定部25を用いる。 In the above-described embodiment, the chain elongation measuring unit 15 shown in FIGS. 1, 10 and 11 has a plurality of links (15 The total elongation of the 15 links between the sensors 151 and 152 is detected as the chain 10 moves. A measuring unit may be used. In the following embodiments, a chain elongation measuring section 25 configured as shown in FIG. 12 is used.

測定対象となるチェーン10は一対のスプロケット12,13間に架け渡されている。チェーン伸びの測定部25を構成する第1のセンサー251及び第2のセンサー252を、対応するスプロケット12,13近くに配置し、スプロケット12,13の歯の通過タイミングを検出して検出信号を出力する。これら検出信号の発生タイミングによりチェーン10の伸びを測定する。この測定原理は、本願出願人により、特願2020-131993として出願済のものである。なお、図12は測定原理を説明するものであり、スプロケット12,13は同じ直径に描いているが、これは説明を見易くするためであり、図1などで示したように、互いに異なる直径であっても同じである。 A chain 10 to be measured is stretched between a pair of sprockets 12 and 13 . A first sensor 251 and a second sensor 252 that constitute the chain elongation measuring unit 25 are arranged near the corresponding sprockets 12 and 13 to detect the timing at which the teeth of the sprockets 12 and 13 pass and output a detection signal. do. The elongation of the chain 10 is measured based on the timing of generation of these detection signals. This measurement principle has been filed as Japanese Patent Application No. 2020-131993 by the applicant of the present application. FIG. 12 illustrates the principle of measurement, and the sprockets 12 and 13 are drawn to have the same diameter. It is the same even if there is.

チェーン10は、スプロケット12,13が回転することにより駆動され、その長さ方向に周回移動する。このとき、第1のセンサー251は、スプロケット12の歯の通過タイミングを検出して第1検出信号を出力する。第2のセンサー252は、スプロケット13の歯の通過タイミングを検出して第2検出信号を出力する。これら第1、第2の検出信号は、チェーン伸びを算出する算出部253に入力、これら第1、第2の検出信号の位相差によりチェーン10の伸びを測定する。 The chain 10 is driven by the rotation of the sprockets 12 and 13 and circulates in its length direction. At this time, the first sensor 251 detects the passage timing of the teeth of the sprocket 12 and outputs a first detection signal. The second sensor 252 detects the passage timing of the teeth of the sprocket 13 and outputs a second detection signal. These first and second detection signals are input to a calculation section 253 for calculating chain elongation, and the elongation of the chain 10 is measured based on the phase difference between these first and second detection signals.

この算出部253は、図1などで示した伸び量の算出部153に対応するもので、算出結果は図1で示した送信装置20により監視センター21に送られる。なお、第1のセンサー251及び第2のセンサー252としては、透過型光電センサー、反射型光電センサー、近接センサー等を用いることが可能である。 The calculation unit 253 corresponds to the elongation amount calculation unit 153 shown in FIG. 1 and the like, and the calculation result is sent to the monitoring center 21 by the transmission device 20 shown in FIG. As the first sensor 251 and the second sensor 252, a transmissive photoelectric sensor, a reflective photoelectric sensor, a proximity sensor, or the like can be used.

このチェーン伸び測定部25の作用を説明する。図13(a)で示すように、チェーン10の1周の中、1リンクだけが大きく伸びたものとする。チェーン10の移動に伴い、この大きく伸びた1リンクが図12で示すスプロケット13との噛み合い起点Aから、噛み合いの終点Bに達するまで間、測定部25の測定値、すなわち、第1のセンサー251及び第2のセンサー252が検出し、算出部253で算出される伸び量は、図13(b)のように変化する。この伸び量は、上述の起点Aから終点Bまでの所定区間のリンク数の合計伸び量となる。 The operation of this chain elongation measuring section 25 will be described. As shown in FIG. 13(a), it is assumed that only one link in one lap of the chain 10 is greatly elongated. As the chain 10 moves, the measured value of the measuring unit 25, that is, the first sensor 251, is measured from the starting point A of meshing with the sprocket 13 shown in FIG. And the amount of elongation detected by the second sensor 252 and calculated by the calculator 253 changes as shown in FIG. 13(b). This elongation amount is the total elongation amount of the number of links in the predetermined section from the start point A to the end point B described above.

この測定された伸び量を図1で示した推測部22に入力し、図5で示した深層学習モデルによって、リンクごとの伸び量を推測する。この場合、推測部22を構成する深層学習モデルの訓練は、図14乃至図17で示す訓練データセットを用いて行う。これらは図14乃至図17で示す訓練データセットは、図13で示した実測データを用いて、そのリンク位置をずらせたものであり、これらを多数用意し、これらを訓練データとして用いる。 The measured elongation amount is input to the estimation unit 22 shown in FIG. 1, and the elongation amount for each link is estimated by the deep learning model shown in FIG. In this case, training of the deep learning model that constitutes the estimation unit 22 is performed using the training data sets shown in FIGS. 14 to 17 . The training data sets shown in FIGS. 14 to 17 are obtained by shifting the link positions of the measured data shown in FIG. 13, and a large number of these are prepared and used as training data.

これは、図13(a)で示す1リンクのみの伸びに対して測定部25で測定された測定結果が、図13(b)で示すように、非線形となるため、図6乃至図9で示した前述の実施形態のデータセットのように、(a)のリンクごとの伸び量(出力側)を基に複数リンク合計伸び量(入力側)を理論計算で作成することが難しいためである。 This is because the measurement result measured by the measuring unit 25 for the elongation of only one link shown in FIG. 13(a) is non-linear as shown in FIG. 13(b). This is because it is difficult to theoretically create the total elongation of a plurality of links (input side) based on the elongation of each link (output side) in (a), as in the data set of the embodiment shown above. .

このように、理論的に測定波形を計算できないので、1周の中で、1リンクだけ伸びたチェーンを装着して、実際に図12のチェーン伸び測定部25で伸び量を測定し、図13で示す測定波形をリファレンスとする。この1回の試験の測定データを流用して、図14乃至図17で示すように1リンク伸びの位置がずれた測定波形を形成する。このような測定波形は、データ処理で簡単に得られるので、実測データ1個を用いて、多数の訓練データセットを用意し、深層学習モデルを訓練する。 Thus, since the measured waveform cannot be calculated theoretically, a chain that has been stretched by one link in one lap is mounted, and the amount of stretch is actually measured by the chain stretch measuring unit 25 in FIG. The measured waveform indicated by is used as a reference. By using the measurement data of this one test, a measurement waveform is formed in which the position of one link elongation is shifted as shown in FIGS. 14 to 17 . Such measured waveforms can be easily obtained by data processing, so a single piece of measured data is used to prepare a large number of training data sets and train a deep learning model.

このようにして訓練された推測部22に測定部25で測定された複数の伸びの合計値を入力することにより、前述の実施形態と同じようにチェーン10の部分伸びを的確に検出することができる。 By inputting the total value of a plurality of elongations measured by the measuring unit 25 to the estimating unit 22 trained in this manner, the partial elongation of the chain 10 can be accurately detected in the same manner as in the above-described embodiment. can.

本発明のいくつかの実施形態を説明したが、これらの実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他のさまざまな形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 While several embodiments of the invention have been described, these embodiments have been presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be embodied in various other forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are included in the scope of the invention described in the claims and equivalents thereof.

10…チェーン
101…軸部
102…リンク
11…減速機
12、13…一対のスプロケット
15,25…伸びの測定部
151,152,251,252…センサー
153,253…伸び量の算出部
18…チェーン切断検出装置
19…エスカレータマイコン
20…測定データの送信装置
21…監視センター
22…推測部
23…総合判定部

DESCRIPTION OF SYMBOLS 10... Chain 101... Shaft part 102... Link 11... Reduction gear 12, 13... Pair of sprockets 15, 25... Elongation measurement part 151, 152, 251, 252... Sensor 153, 253... Elongation amount calculation part 18... Chain DISCONNECTION DETECTION DEVICE 19 Escalator microcomputer 20 Measured data transmission device 21 Monitoring center 22 Guessing part 23 Comprehensive judging part

この測定データは、ある所定の時刻に測定データ送信装置20によって監視センター21に送信される。監視センター21では、この測定データが、推測部22となる訓練済みの深層学習モデルに入力される。図5で示す訓練済みの深層学習モデルは、入力された15リンクごとの測定データを、1リンクごとの伸び量の測定データ(推定値)に変換する。この変換後のデータが、チェーンの要交換の判定に用いられる。 This measurement data is transmitted to the monitoring center 21 by the measurement data transmission device 20 at a predetermined time. In the monitoring center 21 , this measured data is input to a trained deep learning model that serves as the estimator 22 . The trained deep learning model shown in FIG. 5 converts the input measurement data for every 15 links into measurement data (estimated value) of elongation amount for each link. This converted data is used to determine whether the chain needs to be replaced.

これに対し、本実施形態では、推測部22により、図4の測定データを図3の1リンクごとの測定値に変換したデータが得られ、このデータで判断するため、1リンクだけ大きく伸びた部分も正しく検出でき、判断を間違えることがない。従って、1リンクだけが部分的に伸びた状況を正しく検出でき、自動的に点検員への現地調査や、チェーン交換の指示を出せるようになり、より安全性を提供できることとなる。 On the other hand, in this embodiment, the measurement data in FIG. 4 is converted into the measurement value for each link in FIG. Parts can also be detected correctly, and there is no misjudgment. Therefore, it is possible to correctly detect a situation in which only one link is partially stretched, and it becomes possible to automatically instruct an inspector to carry out an on-site inspection or to replace the chain, thereby providing greater safety.

上述した図8の訓練用のデータセットは、チェーン1周の中の1か所に部分伸びが集中して生じている場合を想定したものである。チェーン1周の中で、部分的に伸びた部分の伸び量はランダム値とし、伸びが生じているリンク番号もランダムとする。また、1か所に生じている部分伸びリンクの数も、5リンク以下という小さい範囲としてランダムな数とする。このようなデータセットで訓練した深層学習モデルによれば、チェーンに各種形態で生じる部分伸びを的確に検出できる。 The training data set of FIG. 8 described above is based on the assumption that partial elongation is concentrated at one point in one round of the chain. The amount of elongation of the partially elongated portion in one round of the chain is set to a random value, and the number of the link where the elongation occurs is also set to be random. In addition, the number of partially stretched links generated at one location is also a random number within a small range of 5 links or less. A deep learning model trained on such a dataset can accurately detect various forms of partial elongation in the chain.

これに対し、図8で示す訓練データにより訓練した深層学習モデルを用いた場合、チェーン1周の中で、推定すべき部分はたかだか5リンク程度となり、深層学習モデルが推定する情報が大幅に少なくなる。このため、深層学習モデルの訓練が容易となり、得られるモデルの推定精度も高くなることが期待でき、より高い精度で1リンクごとの伸び量を推定できる。ただし、全体的に伸びたようなチェーンのデータについては、訓練モデルの構成と異なるため、逆に推定精度が落ちる可能性はある。 On the other hand, when using the deep learning model trained with the training data shown in FIG. 8, the part to be estimated is at most about 5 links in one round of the chain, and the information estimated by the deep learning model is significantly less. Become. Therefore, training of the deep learning model is facilitated, and it can be expected that the estimation accuracy of the obtained model will be improved, and the extension amount for each link can be estimated with higher accuracy. However, for chain data that looks like it has been stretched as a whole, there is a possibility that the estimation accuracy will decrease because it differs from the configuration of the training model.

図9の訓練用データでは、全てのリンクの伸び量値を一定とした。このため、図6、図7の全てのリンクの伸び量をランダムとした場合に比べて訓練はしやすくなり、訓練後の推定精度も高くなる。また図9は、一般的には最も頻繁に発生する一般的なチェーンの伸び方を想定したものであるため、測定データに混入するセンサーノイズなどの影響についても、この図9の訓練用データで訓練済みの深層学習モデルに測定データ与えて出力した結果は、センサーノイズが除去されたものとなる。したがって、深層学習モデルを通さない従来技術よりも、より精度良くチェーンの平均的な伸び量を検出できるという効果が期待できる。 In the training data shown in FIG. 9, the elongation values of all links were constant. Therefore, compared to the case where the elongation amounts of all the links in FIGS. 6 and 7 are random, the training becomes easier, and the estimation accuracy after the training becomes higher. In addition, since FIG. 9 assumes a general chain elongation that occurs most frequently, the effects of sensor noise and other factors mixed in the measurement data are also considered using the training data in FIG. The sensor noise is removed from the output result of giving the measured data to the trained deep learning model. Therefore, it can be expected that the average elongation amount of the chain can be detected more accurately than the conventional technique that does not pass through the deep learning model.

図10のチェーン伸び検出装置は、監視センター21に推測部22である訓練済み深層学習モデルを複数(22A,22B)設けて、それらの出力値を受けて、総合的にチェーンの状態を判断する総合判定部23を設けた。この場合、複数の深層学習モデル22A,22Bは、それぞれの特性が異なるものとする。例えば、深層学習モデル22Aは図8の訓練データで訓練し、深層学習モデル22Bは図9の訓練データで訓練したものとする。このように構成すると、深層学習モデル22Aでは主に部分的に大きく伸びた部分を抽出し、深層学習モデル22Bでは、平均的な伸び量を抽出する。総合判定部23は、これら両者の抽出結果を見てチェーン交換が必要か判断する。 In the chain elongation detection device of FIG. 10, a monitoring center 21 is provided with a plurality of trained deep learning models (22A, 22B), which are estimation units 22, and their output values are received to comprehensively determine the state of the chain. A comprehensive determination unit 23 is provided. In this case, the deep learning models 22A and 22B are assumed to have different characteristics. For example, deep learning model 22A should be trained with the training data of FIG. 8, and deep learning model 22B should be trained with the training data of FIG. When configured in this way, the deep learning model 22A mainly extracts a partially large stretched portion, and the deep learning model 22B extracts an average stretch amount. The comprehensive judgment unit 23 judges whether chain replacement is necessary by looking at the extraction results of both.

この図10のチェーン伸び検出装置では、平均的な伸び量が大きくなったケースと、部分的に大きく伸びたケースの両方を確実に捉えられる。このため、チェーンの伸び状態や異常を見逃すことなく、より乗客の安全性を確保でき、かつ、より精度よく保守を行うことができる。 With the chain elongation detection device of FIG. 10, both the case where the average amount of elongation is large and the case where the chain is partially elongated to a large extent can be reliably detected. Therefore, it is possible to ensure the safety of passengers and perform maintenance with higher accuracy without overlooking elongation of the chain and abnormalities.

図11のチェーン伸び検出装置は、推測部22である訓練済みの深層学習モデルを、監視センター21側ではなく、エスカレータマイコン19内に構成した。このように構成すると、エスカレータマイコン19内部で1リンクごとの伸び量が推定される。このため、個々のエスカレータ側で、1リンクごとの伸び量の推測データが抽出され、監視センター21側に出力されてくる。監視センター21側は、各エスカレータから送られてくるデータについて、いちいちデータ処理をすることないため、チェーンの異常の有無や交換の有無の判断だけを行えばよく、監視センター21側の処理が軽減されるという効果がある。 In the chain elongation detection device of FIG. 11, the trained deep learning model, which is the estimation unit 22, is configured in the escalator microcomputer 19 instead of the monitoring center 21 side. With this configuration, the elongation amount for each link is estimated inside the escalator microcomputer 19 . For this reason, on the side of each escalator, estimated data on the amount of elongation for each link is extracted and output to the monitoring center 21 side. Since the monitoring center 21 side does not process the data sent from each escalator one by one, it is only necessary to judge whether there is an abnormality in the chain or whether the chain needs to be replaced, thus reducing the processing on the monitoring center 21 side. has the effect of being

Claims (9)

複数のリンクが無端状に連結され、一対のスプロケット間に架け渡されたチェ-ンの伸びを検出するチェーンの伸び検出装置であって、
前記一対のスプロケットと噛み合い、長さ方向に走行するチェーンの、所定の区間内を走行する複数のリンクの合計伸び量を連続的に測定する測定部と、
前記チェーン1周分のリンクごとの伸び量データと、前記測定部で測定される前記合計伸び量に相当するデータとを組み合わせた多数のデータセットで訓練されたシステムに、前記測定部により測定された前記合計伸び量を入力することでリンクごとの伸び量を推測する推測部と、
を備えたチェーンの伸び検出装置。
A chain elongation detection device for detecting elongation of a chain, in which a plurality of links are connected endlessly and spanned between a pair of sprockets,
a measuring unit that continuously measures the total elongation of a plurality of links running in a predetermined section of the chain that meshes with the pair of sprockets and runs in the length direction;
A system trained with a large number of data sets combining elongation amount data for each link of one circumference of the chain and data corresponding to the total elongation amount measured by the measurement unit is provided with the data measured by the measurement unit. an estimation unit for estimating an elongation amount for each link by inputting the total elongation amount;
chain elongation detection device.
前記推測部の訓練用のデータセットは、予め部分伸びを生じさせたチェーン1周分のリンクごとの伸び量データと、前記測定部により測定される、前記チェーンの一方のスプロケットとの噛み合い起点から終点までの区間内の複数のリンクの前記合計伸び量の実測値とを組み合わせたデータセットを用い、これらデータセットのリンク位置をずらせて形成したデータセットを多数生成して訓練用データセットとしたことを特徴とする請求項1に記載のチェーンの伸び検出装置。 The data set for training of the estimating unit is the elongation amount data for each link for one circumference of the chain in which partial elongation has occurred in advance, and the starting point of meshing with one of the sprockets of the chain measured by the measuring unit. Using a data set that combines the measured values of the total elongation of a plurality of links in the section up to the end point, a large number of data sets formed by shifting the link positions of these data sets were generated and used as a training data set. The chain elongation detection device according to claim 1, characterized in that: 前記推測部の訓練用のデータセットは、チェーン1周分のリンクごとの伸び量を模擬した模擬伸びデータと、この模擬伸びデータを基に理論計算で算出した、前記測定部で測定した複数リンクの前記合計伸び量に相当する模擬測定データで構成されることを特徴とする請求項1に記載のチェーンの伸び検出装置。 The data set for training of the estimation unit includes simulated elongation data that simulates the amount of elongation of each link for one round of the chain, and multiple links measured by the measuring unit that are calculated by theoretical calculation based on this simulated elongation data. 2. The chain elongation detecting device according to claim 1, wherein the chain elongation detecting device is composed of simulated measurement data corresponding to the total elongation amount of the chain. 前記模擬伸びデータは、伸びがほぼ生じない内リンクは伸び量0とし、各外リンクは、それぞれがランダムな伸び量を有するものとして、ランダム値を設定したことを特徴とする請求項3に記載のチェーンの伸び検出装置。 4. A random value is set for the simulated elongation data, assuming that an inner link that hardly elongates has an elongation amount of 0, and each outer link has an elongation amount that is random. chain elongation detection device. 前記模擬伸びデータは、伸びがほぼ生じない内リンクの伸び量は0とし、外リンクについては、チェーン1周の中で1個のリンク、または位置が離れた数か所のリンクがランダムに伸びたものとしたことを特徴とする設定したことを特徴とする請求項3に記載のチェーンの伸び検出装置。 In the simulated elongation data, the elongation amount of the inner link, which hardly causes elongation, is assumed to be 0. As for the outer link, one link or several distant links in one circumference of the chain are randomly elongated. 4. A chain elongation detecting device according to claim 3, characterized in that the chain elongation detecting device is set to be a vertical one. 前記模擬伸びデータは、伸びがほぼ生じない内リンクの伸び量は0とし、外リンクについては、連続した最大5個以下の外リンクが伸びていると想定し、それぞれのリンクの伸び量はランダムに設定したことを特徴とする請求項5に記載のチェーンの伸び検出装置。 In the simulated elongation data, the elongation amount of the inner link, which hardly causes any elongation, is assumed to be 0. Regarding the outer links, it is assumed that a maximum of 5 consecutive outer links are elongating, and the elongation amount of each link is random. 6. The chain elongation detecting device according to claim 5, wherein the chain elongation detecting device is set to . 前記模擬伸びデータは、伸びがほぼ生じない内リンクは伸び量0とし、外リンクの伸び量は均一の一定値と設定したことを特徴とする請求項3に記載のチェーンの伸び検出装置。 4. The chain elongation detecting device according to claim 3, wherein the simulated elongation data is set such that the elongation amount of the inner link which hardly elongates is 0, and the elongation amount of the outer link is set to a uniform constant value. 前記模擬測定データは、最大値が1または1以下の特定の数値となるように正規化処理を実施したものとする請求項3に記載のチェーンの伸び検出装置。 4. The chain elongation detection device according to claim 3, wherein the simulated measurement data is normalized so that the maximum value is 1 or a specific numerical value of 1 or less. 前記訓練用のデータセットの、チェーン1周分のリンクごとの伸び量データとして、実測された伸びデータも含むことを特徴とする請求項3に記載のチェーンの伸び検出装置。

4. The chain elongation detecting device according to claim 3, wherein actually measured elongation data is included as elongation amount data for each link for one circumference of the chain in the training data set.

JP2021118280A 2021-07-16 2021-07-16 Chain elongation detector Active JP7293289B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021118280A JP7293289B2 (en) 2021-07-16 2021-07-16 Chain elongation detector
CN202210669797.9A CN115611125A (en) 2021-07-16 2022-06-14 Chain extension detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021118280A JP7293289B2 (en) 2021-07-16 2021-07-16 Chain elongation detector

Publications (2)

Publication Number Publication Date
JP2023013842A true JP2023013842A (en) 2023-01-26
JP7293289B2 JP7293289B2 (en) 2023-06-19

Family

ID=84856708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021118280A Active JP7293289B2 (en) 2021-07-16 2021-07-16 Chain elongation detector

Country Status (2)

Country Link
JP (1) JP7293289B2 (en)
CN (1) CN115611125A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010190578A (en) * 2009-02-16 2010-09-02 Unitika Ltd Method and device for measuring elongation of link chain
JP2020033164A (en) * 2018-08-31 2020-03-05 中西金属工業株式会社 Chain facility monitoring system
JP2020135008A (en) * 2019-02-13 2020-08-31 セイコーエプソン株式会社 Information processing apparatus, learning device, and learned model

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010190578A (en) * 2009-02-16 2010-09-02 Unitika Ltd Method and device for measuring elongation of link chain
JP2020033164A (en) * 2018-08-31 2020-03-05 中西金属工業株式会社 Chain facility monitoring system
JP2020135008A (en) * 2019-02-13 2020-08-31 セイコーエプソン株式会社 Information processing apparatus, learning device, and learned model

Also Published As

Publication number Publication date
CN115611125A (en) 2023-01-17
JP7293289B2 (en) 2023-06-19

Similar Documents

Publication Publication Date Title
JPH082565Y2 (en) Endless moving body elongation measuring device
EP3212557B1 (en) Structural health monitoring of an escalator drive system
KR101133830B1 (en) Abrasion sensing type conveyor chain and a method of judging degree of its abrasion
GB2406843A (en) Apparatus and method for comparing elongation of two chains
CN107021412B (en) Chain loading device and passenger conveyors and chain elongation detection method
JP7293289B2 (en) Chain elongation detector
CN101613052B (en) Handrail driving force monitoring device of passenger conveyer
JP2009084028A (en) Diagnostic method of chain of passenger conveyor
JP4880557B2 (en) Device for measuring the amount of slack in a transmission strip for driving a handrail of a passenger conveyor
CN102167222B (en) Transmission double-chain synchronism monitoring method and device
JP5963332B1 (en) Transport device
JP2009173364A (en) Failure diagnostic system of passenger conveyer
CN110871985B (en) Chain equipment monitoring system
US20220153555A1 (en) Diagnostic system
JP2017167132A (en) Elongation measurement device and elongation measurement method
CN202967841U (en) Chain state detection device for passenger conveyor
JP3400946B2 (en) Chain elongation diagnostic device
JP2011173719A (en) Chain abrasion detecting device
CN110040468A (en) A kind of method for diagnosing faults and device of belt feeder
CN115744559A (en) Escalator anomaly detection device and escalator anomaly detection method
CN109534140B (en) Escalator step chain modeling and fault simulation method based on SIMPACK
CN114072348B (en) Auxiliary tool and method for inspecting chain of passenger conveyor
Stojanovic et al. Analysis of tribological processes at timing belt's tooth flank
JPH07239229A (en) Method and device of pitch measurement for endless chain
JP2000028324A (en) Device for diagnosing degree of extension of chain

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230607

R150 Certificate of patent or registration of utility model

Ref document number: 7293289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150