JP2023013344A - Bisbenzimide analog, production method thereof, and use thereof - Google Patents

Bisbenzimide analog, production method thereof, and use thereof Download PDF

Info

Publication number
JP2023013344A
JP2023013344A JP2021117459A JP2021117459A JP2023013344A JP 2023013344 A JP2023013344 A JP 2023013344A JP 2021117459 A JP2021117459 A JP 2021117459A JP 2021117459 A JP2021117459 A JP 2021117459A JP 2023013344 A JP2023013344 A JP 2023013344A
Authority
JP
Japan
Prior art keywords
general formula
represented
bisbenzimide
functional group
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021117459A
Other languages
Japanese (ja)
Inventor
一仁 田邉
Kazuhito Tanabe
宏紀 蒔苗
Hiroki Makanai
美優 水谷
Miyu Mizutani
達哉 西原
Tatsuya Nishihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2021117459A priority Critical patent/JP2023013344A/en
Publication of JP2023013344A publication Critical patent/JP2023013344A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

To provide a bisbenzimide analog realizing selective light emission from hypoxic cells.SOLUTION: The bisbenzimide analog is represented by the general formula (1) in the figure, where -R1 represents a C1-3 alkyl group, and -X represents an azido group or azo group-containing substituent.SELECTED DRAWING: Figure 1

Description

本発明は、新規なビスベンズイミド類縁体化合物、その化合物の製造方法及びその化合物の用途に関する。 The present invention relates to a novel bisbenzimide analog compound, a method for producing the compound, and uses of the compound.

腫瘍や虚血性疾患等では、低酸素細胞が発生する。低酸素細胞とは、酸素濃度の低い細胞を指す。腫瘍組織では、腫瘍細胞の非常に早い細胞増殖と血管形成の不均衡に伴って低酸素細胞(低酸素領域)が発生する。一方、梗塞等の虚血性疾患では、血管が詰まる結果、その下流領域で低酸素細胞が発生する。重篤な低酸素環境の細胞は、正常組織には発生しないことから、低酸素細胞を可視化することはこれら疾患の可視化につながると期待されている。低酸素細胞の細胞核を染色する技術はこれまでには報告されていない。一般に、細胞核を染色することは、動物組織の顕微鏡等による画像化において、非常に見やすくまた汎用的に用いられる技術であることから、低酸素細胞という異常な細胞を明瞭に可視化する技術は診断薬や低酸素細胞を必要とするライフサイエンス研究に応用が期待される。 Hypoxic cells are generated in tumors, ischemic diseases, and the like. Hypoxic cells refer to cells with low oxygen concentration. In tumor tissue, hypoxic cells (hypoxic regions) occur with very rapid cell proliferation and angiogenic imbalance of tumor cells. On the other hand, in ischemic diseases such as infarction, blood vessels become clogged, resulting in the generation of hypoxic cells in the downstream region. Since cells in a severely hypoxic environment do not occur in normal tissues, visualization of hypoxic cells is expected to lead to visualization of these diseases. Techniques for staining the nuclei of hypoxic cells have not been previously reported. In general, staining cell nuclei is a technique that is very easy to see and is widely used in microscopic imaging of animal tissues. It is expected to be applied to life science research that requires hypoxic cells.

細胞核を染色する核染色として下記構造式

Figure 2023013344000002
で表されるビスベンズイミド化合物が知られ、Hoechst分子などとも呼ばれる。Hoechst分子は細胞核内に集積し、ゲノムDNAと結合する結果、発光する性質をもつ。このことから、細胞核を染色する核染色として汎用されてきた。 As a nuclear stain that stains the cell nucleus, the following structural formula
Figure 2023013344000002
A bisbenzimide compound represented by is known and is also called a Hoechst molecule. Hoechst molecules accumulate in the cell nucleus and have the property of emitting light as a result of binding with genomic DNA. For this reason, it has been widely used as a nuclear stain for staining cell nuclei.

上述した細胞の染色とは別の課題として、細胞核との親和性の高い化合物には、Huisgen反応への応用が期待される。Huisgen反応とは、これまでにも有機合成で広く用いられてきた化学反応である。アジド基とアセチレン基との間で、銅触媒存在下環化付加反応を起こす。また、歪みの大きなアセチレン誘導体を用いると触媒の非存在下であっても環化付加反応が進行する。この反応は様々な生体分子(タンパク質や核酸など)と機能分子をつなぐ反応として、汎用されてきた。また、Hoechst分子の修飾にも用いられてきた(特許文献1) As a separate issue from the staining of cells described above, compounds with high affinity for cell nuclei are expected to be applied to the Huisgen reaction. The Huisgen reaction is a chemical reaction that has been widely used in organic synthesis. A cycloaddition reaction occurs between an azide group and an acetylene group in the presence of a copper catalyst. Moreover, when an acetylene derivative with a large strain is used, the cycloaddition reaction proceeds even in the absence of a catalyst. This reaction has been widely used as a reaction that connects various biomolecules (proteins, nucleic acids, etc.) and functional molecules. It has also been used to modify Hoechst molecules (Patent Document 1).

国際公開第WO2015/042438号International Publication No. WO2015/042438

上述したように、Hoechst分子は細胞核内に集積し、ゲノムDNAと結合する結果、発光する性質をもつ。しかし、Hoechst分子に細胞を選択する機能はなく、全ての細胞の細胞核を染色する。よって、Hoechst分子では、低酸素細胞の検出には不向きである。このような事情に鑑み、低酸素細胞を選択的に発光させる化合物の提供を本発明の課題とする。 As described above, Hoechst molecules accumulate in the cell nucleus and have the property of emitting light as a result of binding to genomic DNA. However, the Hoechst molecule has no cell-selective function and stains the nuclei of all cells. Therefore, the Hoechst molecule is unsuitable for detecting hypoxic cells. In view of such circumstances, an object of the present invention is to provide a compound that selectively causes hypoxic cells to emit light.

上述したHuisgen反応については、従来の化合物ではHoechst側にアセチレン基、機能分子側にアジド基をもつ化合物を縮合することで達成されている。しかし、アジド基の導入は通常複雑な反応を経ることが多い。よって、機能分子へアジド基を導入することなくHuisgen反応に用いることができるような化合物の提供ができることがさらに好ましい。 The above-mentioned Huisgen reaction is achieved by condensing a compound having an acetylene group on the Hoechst side and an azide group on the functional molecule side in conventional compounds. However, introduction of an azide group usually involves complicated reactions in many cases. Therefore, it is more preferable to provide a compound that can be used in the Huisgen reaction without introducing an azide group into the functional molecule.

本発明者らは鋭意検討した結果、以下に示す本発明を完成した。 The present inventors completed the present invention shown below as a result of intensive studies.

(I)下記一般式(1)

Figure 2023013344000003
(式中、-R1は炭素数1~3のアルキル基を表し、-Xは下記(X1)~(X3)のいずれかで表される官能基を表す。)
Figure 2023013344000004
で表される、ビスベンズイミド類縁体。
(II)下記一般式(2)で表される化合物(式中、-R1は上記と同じ官能基を表す。)及び下記一般式(3)で表される4-ニトロベンズアルデヒド
Figure 2023013344000005
を共存させた状態で酸性条件下で還元して、次いで環化させることで、下記一般式(4)
Figure 2023013344000006
(式中、-R1は上記と同じ官能基を表す。)で表されるビスベンズイミド類縁体を得て、上記一般式(4)で表されるビスベンズイミド類縁体の末端アミノ基を上記官能基Xに置換することによる、上記(I)の一般式(1)で表される、ビスベンズイミド類縁体の製造方法。
(III)被検細胞の細胞核に上記(I)のビスベンズイミド類縁体を結合させ、前記結合後の被検細胞に光を照射して、前記照射に基づく蛍光を観測する、被検細胞の酸素濃度の評価方法。
(IV)上記(I)のビスベンズイミド類縁体を含有する診断薬であって、被検細胞の細胞核に前記ビスベンズイミド類縁体を結合させ、前記結合後の被検細胞に光を照射して、前記照射に基づく蛍光を観測することにより、被検細胞の酸素濃度を評価するための、前記診断薬。
(V)上記(I)のビスベンズイミド類縁体(但し、-Xは下記(X1)で表される官能基である。)及び下記一般式(5)
Figure 2023013344000007
(式中、-Yは、一般式(5)に表示される炭素原子とC-C単結合を形成する官能基を表す。)で表される化合物を反応させて、下記一般式(6)
Figure 2023013344000008
で表される化合物を得て、得られた一般式(6)で表される化合物を細胞核に結合させる、官能基-Yを有する化合物を細胞核へ導入する方法。
(VI)上記(I)のビスベンズイミド類縁体(但し、-Xは下記(X1)で表される官能基である。)及び下記一般式(7)
Figure 2023013344000009
(式中、-Zは、一般式(7)に表示される窒素原子とN-C単結合を形成する官能基を表す。)で表される化合物を反応させて、下記一般式(8)
Figure 2023013344000010
で表される化合物を得て、得られた一般式(8)で表される化合物を細胞核に結合させる、官能基-Zを有する化合物を細胞核へ導入する方法。 (I) the following general formula (1)
Figure 2023013344000003
(Wherein, -R1 represents an alkyl group having 1 to 3 carbon atoms, and -X represents a functional group represented by any one of the following (X1) to (X3).)
Figure 2023013344000004
A bisbenzimide analogue represented by
(II) a compound represented by the following general formula (2) (wherein —R represents the same functional group as above) and 4-nitrobenzaldehyde represented by the following general formula (3)
Figure 2023013344000005
in the presence of the following general formula (4) by reducing under acidic conditions and then cyclizing
Figure 2023013344000006
(Wherein, -R1 represents the same functional group as above), and the terminal amino group of the bisbenzimide analogue represented by the general formula (4) is attached to the functional group X. A method for producing a bisbenzimide analogue represented by general formula (1) of (I) above by substitution.
(III) The bisbenzimide analog of (I) is bound to the cell nucleus of the test cell, the test cell after binding is irradiated with light, and the fluorescence based on the irradiation is observed, whereby the oxygen concentration of the test cell. evaluation method.
(IV) A diagnostic agent containing the bisbenzimide analogue of (I) above, wherein the bisbenzimide analogue is bound to the cell nucleus of a test cell, the test cell after binding is irradiated with light, and the irradiation is performed. said diagnostic agent for assessing the oxygen concentration of a test cell by observing fluorescence based on
(V) the bisbenzimide analog of (I) above (where -X is a functional group represented by (X1) below) and the following general formula (5)
Figure 2023013344000007
(Wherein, -Y represents a functional group that forms a C—C single bond with the carbon atom shown in general formula (5).) by reacting the compound represented by the following general formula (6)
Figure 2023013344000008
A method of introducing a compound having a functional group -Y into cell nuclei, comprising obtaining a compound represented by and binding the obtained compound represented by general formula (6) to cell nuclei.
(VI) the bisbenzimide analog of (I) above (where -X is a functional group represented by (X1) below) and the following general formula (7)
Figure 2023013344000009
(Wherein, -Z represents a functional group that forms an NC single bond with the nitrogen atom represented by the general formula (7).) The compound represented by the following general formula (8)
Figure 2023013344000010
A method of introducing a compound having a functional group -Z into a cell nucleus, which comprises obtaining a compound represented by and binding the obtained compound represented by the general formula (8) to the cell nucleus.

本発明により提供される上記(I)のビスベンズイミド類縁体は、細胞核内に取り込まれた場合に、その細胞が低酸素細胞であるときに選択的に染色することができる。よって、前記類縁体は、細胞の酸素濃度の診断薬として用いることが期待される。 The bisbenzimide analogue of (I) provided by the present invention can selectively stain hypoxic cells when taken into the cell nucleus. Therefore, the analogue is expected to be used as a diagnostic agent for measuring oxygen concentration in cells.

さらに、本発明により提供される上記(I)のビスベンズイミド類縁体(上記Xが-Nである。)については、炭素-炭素三重結合を有する機能分子をHuisgen反応によって細胞内に取り込ませることが期待される。この場合、前記機能分子はアジド基を有していなくてもよい点において、用いることが出来る機能分子の選択肢が広がるという利点がある。 Furthermore, with regard to the bisbenzimide analogue (I) ( where X is -N3) provided by the present invention, a functional molecule having a carbon-carbon triple bond can be incorporated into cells by the Huisgen reaction. Be expected. In this case, the functional molecule need not have an azide group, so there is an advantage that the options for the functional molecule that can be used are widened.

有酸素条件及び低酸素条件における、本発明のビスベンズイミド類縁体存在下における蛍光強度の観察像である。1 shows observation images of fluorescence intensity in the presence of the bisbenzimide analogue of the present invention under aerobic and hypoxic conditions. 有酸素条件及び低酸素条件における、本発明のビスベンズイミド類縁体存在下における蛍光強度の相対値の時間経過を表す。1 shows the time course of relative fluorescence intensity in the presence of the bisbenzimide analogue of the present invention under aerobic and hypoxic conditions.

本発明で提供される新規ビスベンズイミド類縁体(以下、本発明の化合物、とも呼ぶ。)は、下記一般式(1)で表される。

Figure 2023013344000011
The novel bisbenzimide analogue provided by the present invention (hereinafter also referred to as the compound of the present invention) is represented by the following general formula (1).
Figure 2023013344000011

一般式(1)中、-R1は炭素数1~3のアルキル基を表す。好適には、メチル基又はエチル基である。 In general formula (1), -R1 represents an alkyl group having 1 to 3 carbon atoms. Preferably, it is a methyl group or an ethyl group.

一般式(1)中、-Xは下記(X1)~(X3)のいずれかで表される官能基を表す。

Figure 2023013344000012
In general formula (1), -X represents a functional group represented by any one of the following (X1) to (X3).
Figure 2023013344000012

従来技術の欄で紹介したHoechst分子との構造類似性を考慮して、本明細書では、以下の略称を用いることがある。 In consideration of the structural similarity with the Hoechst molecule introduced in the prior art column, the following abbreviations may be used in this specification.

Hoechst-N3:一般式(1)において-R1がメチル基であり、-Xが上記(X1)で表される官能基であるビスベンズイミド類縁体。 Hoechst-N3: A bisbenzimide analog in which -R1 is a methyl group and -X is the functional group represented by (X1) in the general formula (1).

Hoechst-Azo-NMe2:一般式(1)において-R1がメチル基であり、-Xが上記(X2)で表される官能基であるビスベンズイミド類縁体。 Hoechst-Azo-NMe2: A bisbenzimide analog in which -R1 is a methyl group and -X is the functional group represented by (X2) in the general formula (1).

Hoechst-Azo-NO2:一般式(1)において-R1がメチル基であり、-Xが上記(X3)で表される官能基であるビスベンズイミド類縁体。 Hoechst-Azo-NO2: A bisbenzimide analog in which -R1 is a methyl group and -X is the functional group represented by (X3) in the general formula (1).

Hoechst-NH2:一般式(1)において-R1がメチル基であり、-Xがアミノ基であるビスベンズイミド類縁体であり、言い換えると、一般式(4)において-R1がメチル基である化合物であり、本発明の化合物の前駆体になり得る化合物である。 Hoechst-NH2: A bisbenzimide analog in which -R1 is a methyl group and -X is an amino group in the general formula (1), in other words, a compound in which -R1 is a methyl group in the general formula (4). , is a compound that can be a precursor of the compound of the present invention.

本発明の化合物の製造方法は特に限定は無く、好適には、一般式(1)において-Xがアミノ基である化合物、すなわち、下記一般式(4)で表される化合物

Figure 2023013344000013
(例:R1がメチル基である場合は、Hoechst-NH2である。)を得て、前記アミノ基を所望の官能基X、すなわち、上記(X1)~(X3)に置換する合成スキームが提案される。一般式(4)で表される化合物からアミノ基を上記(X1)~(X3)に置換する具体的方法は、後述の実施例を参考にすることができる。 The method for producing the compound of the present invention is not particularly limited, and is preferably a compound in which -X is an amino group in the general formula (1), that is, a compound represented by the following general formula (4)
Figure 2023013344000013
(Example: when R1 is a methyl group, it is Hoechst-NH2), and a synthetic scheme is proposed in which the amino group is substituted with the desired functional group X, that is, (X1) to (X3) above. be done. Specific methods for substituting (X1) to (X3) for the amino group in the compound represented by the general formula (4) can refer to Examples described later.

一般式(4)で表される化合物は、下記一般式(2)で表される化合物及び下記一般式(3)で表される4-ニトロベンズアルデヒド

Figure 2023013344000014
を共存させた状態で酸性条件下で還元して、次いで環化させることで得られ、具体的な合成例は後述の実施例を参照することができる。 The compound represented by the general formula (4) is a compound represented by the following general formula (2) and 4-nitrobenzaldehyde represented by the following general formula (3)
Figure 2023013344000014
is coexisted, and then reduced under acidic conditions, followed by cyclization. Specific synthetic examples can be referred to the examples described later.

本発明の化合物は、従来のHoechst分子と同じように、細胞核内のDNA二重鎖に結合する機能分子である。しかし、従来のHoechst分子とは異なり、細胞の酸素濃度によって蛍光の程度が変化するという特徴がある。このメカニズムは概略以下のように推察される。 The compounds of the present invention are functional molecules that bind to DNA duplexes within the cell nucleus in the same way as conventional Hoechst molecules. However, unlike the conventional Hoechst molecule, it has the characteristic that the degree of fluorescence changes depending on the oxygen concentration of the cell. This mechanism is roughly inferred as follows.

本発明の化合物は、一般式(1)中、-Xとして、上記(X1)~(X3)のいずれかで表される官能基を有している。これらの官能基はアジド構造又はアゾ構造を有していて、当該構造は、蛍光による発光は生じない。ここで、本発明の化合物が低酸素濃度の細胞に取り込まれた場合は、還元酵素による還元を受けて、アミノ基へと還元され、上述の一般式(4)で表される化合物へと変換される。アミノ基を有する一般式(4)で表される化合物は、特定の波長の光照射により蛍光を発するため、発光現象が観測される。 The compound of the present invention has a functional group represented by any one of the above (X1) to (X3) as -X in general formula (1). These functional groups have an azide structure or an azo structure, and these structures do not emit fluorescence. Here, when the compound of the present invention is taken into cells with low oxygen concentration, it undergoes reduction by a reductase, is reduced to an amino group, and is converted to a compound represented by the above general formula (4). be done. Since the compound represented by the general formula (4) having an amino group emits fluorescence when irradiated with light of a specific wavelength, a luminescence phenomenon is observed.

このように、本発明の化合物は低酸素細胞の細胞核を選択的に染色することができるので、低酸素細胞の所在を明らかにしたり、被検細胞の酸素濃度を評価したりするための診断薬として用いることができる。虚血性疾患や固形がん組織などに低酸素細胞が存在するため、これらの疾患を早期に発見するためにも本発明の化合物の利用が期待される。後述の実施例では励起波長405nmの光照射に対する蛍光を観測している。 As described above, the compound of the present invention can selectively stain the cell nuclei of hypoxic cells, so that it can be used as a diagnostic agent for clarifying the location of hypoxic cells and evaluating the oxygen concentration of test cells. can be used as Hypoxic cells are present in ischemic diseases, solid cancer tissues, and the like, and thus the compound of the present invention is expected to be useful for early detection of these diseases. In Examples described later, fluorescence is observed with respect to light irradiation with an excitation wavelength of 405 nm.

次に、本発明の化合物が有する細胞核内への機能分子運搬機能について説明する。本発明の化合物、すなわち上記一般式(1)で表される化合物のうち、官能基-Xが-Nである化合物はHuisgen反応により、アセチレン構造を有する化合物と化学結合させることができる。そのように化学結合した化合物を細胞核にさらに結合させることは、前記アジド構造又はアセチレン構造を有する化合物を細胞核内に運搬することに相当する。 Next, the function of the compound of the present invention to transport functional molecules into the cell nucleus will be described. The compound of the present invention, that is, the compound represented by the general formula (1), wherein the functional group -X is -N3 , can be chemically bonded to a compound having an acetylene structure by Huisgen reaction. Further bonding of such a chemically bonded compound to the cell nucleus corresponds to transporting the compound having the azide structure or acetylene structure into the cell nucleus.

上述のアセチレン構造を有する化合物の一例として、下記一般式(5)で表される化合物が挙げられる。

Figure 2023013344000015
一般式(5)において、-Yは、一般式(5)に表示される炭素原子とC-C単結合を形成する官能基を表す。一般式(5)で表される化合物及び上記一般式(1)で表される化合物のうち、官能基-Xが-Nである化合物を、同触媒の存在下、Huisgen反応に供することにより、下記一般式(6)
Figure 2023013344000016
で表される化合物を得ることができる。得られた一般式(6)で表される化合物を細胞核に結合させることは、官能基-Yを有する化合物を細胞核へ導入することに相当する。 An example of the compound having the above-mentioned acetylene structure is the compound represented by the following general formula (5).
Figure 2023013344000015
In general formula (5), —Y represents a functional group forming a C—C single bond with the carbon atom shown in general formula (5). By subjecting the compound represented by the general formula (5) and the compound represented by the general formula (1), wherein the functional group -X is -N3 , to the Huisgen reaction in the presence of the same catalyst. , the following general formula (6)
Figure 2023013344000016
A compound represented by can be obtained. Binding the obtained compound represented by the general formula (6) to the cell nucleus corresponds to introducing the compound having the functional group -Y into the cell nucleus.

具体的な官能基-Yとしては、例示として、蛍光色素のようなシグナル発信分子、DNAアルキル化剤のような細胞核内ゲノムDNAと作用する薬剤等が好適に挙げられる。 Specific examples of the functional group -Y preferably include signal-transmitting molecules such as fluorescent dyes, agents that act on genomic DNA in cell nuclei such as DNA alkylating agents, and the like.

上述のアセチレン構造を有する化合物の別の例として、下記一般式(7)で表される化合物が挙げられる。

Figure 2023013344000017
一般式(7)において、-Zは、一般式(7)に表示される窒素原子とN-C単結合を形成する官能基を表す。一般式(7)で表される化合物及び上記一般式(1)で表される化合物のうち、官能基-Xが-Nである化合物を、Huisgen反応に供することにより、下記一般式(8)
Figure 2023013344000018
で表される化合物を得ることができる。得られた一般式(8)で表される化合物を細胞核に結合させることは、官能基-Zを有する化合物を細胞核へ導入することに相当する。通常は、アセチレン構造を有する化合物が一般式(8)で表されるように、比較的に複雑な構造の環式構造を有する場合には、Huisgen反応において同触媒は通常は不要である。 Another example of the compound having the acetylene structure is the compound represented by the following general formula (7).
Figure 2023013344000017
In general formula (7), -Z represents a functional group that forms an NC single bond with the nitrogen atom shown in general formula (7). Among the compounds represented by the general formula (7) and the compounds represented by the general formula (1), the compound in which the functional group -X is -N 3 is subjected to the Huisgen reaction to obtain the following general formula (8) )
Figure 2023013344000018
A compound represented by can be obtained. Binding the obtained compound represented by general formula (8) to the cell nucleus corresponds to introducing a compound having a functional group -Z into the cell nucleus. Generally, when a compound having an acetylene structure has a cyclic structure with a relatively complicated structure as represented by general formula (8), the same catalyst is usually unnecessary in the Huisgen reaction.

具体的な官能基-Zとしては、例示として、蛍光色素のようなシグナル発信分子、DNAアルキル化剤のような細胞核内ゲノムDNAと作用する薬剤等が好適に挙げられる。 Specific examples of the functional group -Z preferably include signal-transmitting molecules such as fluorescent dyes, agents that act on intranuclear genomic DNA such as DNA alkylating agents, and the like.

本発明によるHuisgen反応を用いた機能分子の導入の利点は、上述の例では一般式(5)や一般式(7)で表される化合物、すなわち細胞への導入を目的とする機能分子側に、アジド構造を導入する必要が無いことである。任意の化学構造をもつ化合物に、アジド構造を導入することは通常は複雑な反応を要しがちであるから、本発明のように、アジド構造を導入する必要が無いことは、Huisgen反応の利用をより促進することにつながり得る。 The advantage of introducing a functional molecule using the Huisgen reaction according to the present invention is that, in the above example, the compound represented by the general formula (5) or the general formula (7), that is, the functional molecule intended to be introduced into a cell , there is no need to introduce an azide structure. Since introduction of an azide structure into a compound having an arbitrary chemical structure usually requires a complicated reaction, the use of the Huisgen reaction eliminates the need to introduce an azide structure as in the present invention. can lead to further promotion of

以下、本発明を実施例に基づいて詳細に説明するが、本発明は、本実施例により何ら限定されるものではない。 EXAMPLES The present invention will be described in detail below based on examples, but the present invention is not limited by these examples.

合成した化合物などの測定は以下の装置を用いた。
NMR spectra JNM-ECX500II (1H: 500 MHz, 13C: 125 MHz) spectrometer (JEOL) and chemical shifts: 溶媒の残留プロトンにより設定
(CD3OD: δ3.30 (1H NMR)
FAB mass spectrometry:JMS-700N mass spectrometer (JEOL)
Matrix: nitrobenzylalcohol
共焦点顕微鏡
C2 confocal laser scanning microscope (Nikon)
合成のための試薬等は、特記しない限りは、富士フィルム和光純薬、東京化成工業、関東化学、Sigma-Aldrich製の試薬を用いた。
The following equipment was used for the measurement of the synthesized compounds.
NMR spectra JNM-ECX500II ( 1 H: 500 MHz, 13 C: 125 MHz) spectrometer (JEOL) and chemical shifts: set by residual protons of solvent
(CD3OD: δ3.30 ( 1 H NMR)
FAB mass spectrometry: JMS-700N mass spectrometer (JEOL)
Matrix: nitrobenzylalcohol
confocal microscope
C2 confocal laser scanning microscope (Nikon)
Unless otherwise specified, reagents and the like for synthesis were manufactured by Fujifilm Wako Pure Chemical Industries, Tokyo Kasei Kogyo, Kanto Kagaku, and Sigma-Aldrich.

(1)Hoechst-NH2の合成:
Hoechst-NH2は、上記一般式(4)で表される化合物であり(式中、R1はメチル基である。)、この化合物を以下のスキームで得た。

Figure 2023013344000019

ニトロアニリン誘導体1 (680 mg, 1.93×10-2 mol)、アルデヒド2 (1.46 g, 9.66×10-3 mol)、Sn (1.29 g, 1.09×10-2 mol)の混合物にEtOH (15 mL)と濃塩酸 (1 mL)を加え、90 ℃で3時間攪拌した。セライトを用いてろ過をした後、水酸化ナトリウム水溶液を用いてろ液を中和した。続いて、Na2S2O5水溶液(388 mg, 2.04×10-3 molを水2 mLに溶解したもの)を加えて、100 ℃で2時間攪拌した。反応終了後、溶媒を留去した後、カラムクロマトグラフィー(固定相: SiO2, 移動相: CHCl3-MeOH-aq.NH3)で分離し、Hoechst-NH2(680 mg, 83%)をオレンジ色固体として得た。
なお、ニトロアニリン誘導体1は、文献J. Med. Chem. 1996, 39, 4804-4809を参考に合成し、得た。
同定:1H NMR (CD3OD, 500 MHz) δ8.21 (d, 1H, J = 1.0 Hz), 7.91 (dd, 1H, J = 1,0, 8.5 Hz), 7.87 (d, 1H, J = 9.0 Hz), 7.64 (d, 1H, J = 8.0 Hz), 7.50 (d, 1H, J = 8.5 Hz), 7.14 (brs, 1H), 7.04 (dd, 1H, J = 1,5, 9.0 Hz), 6.80 (d, 1H, J = 8.5 Hz), 3.22 (t, 4H, J = 4.5 Hz), 2.67 (t, 4H, J = 4.5 Hz), 2.37 (s, 3H); FABMS (NBA) m/z 424 [(M + H)+]; HRMS calcd. for C25H26N7 [(M + H)+] 424.2250, found 424.2251. (1) Synthesis of Hoechst-NH2:
Hoechst-NH2 is a compound represented by the above general formula (4) (wherein R1 is a methyl group), and this compound was obtained by the following scheme.
Figure 2023013344000019

A mixture of nitroaniline derivative 1 (680 mg, 1.93×10 -2 mol), aldehyde 2 (1.46 g, 9.66×10 -3 mol) and Sn (1.29 g, 1.09×10 -2 mol) was added with EtOH (15 mL). and concentrated hydrochloric acid (1 mL) were added, and the mixture was stirred at 90°C for 3 hours. After filtration using celite, the filtrate was neutralized using an aqueous sodium hydroxide solution. Subsequently, an aqueous Na 2 S 2 O 5 solution (388 mg, 2.04×10 −3 mol dissolved in 2 mL of water) was added, and the mixture was stirred at 100° C. for 2 hours. After completion of the reaction, the solvent was distilled off and separated by column chromatography (stationary phase: SiO 2 , mobile phase: CHCl 3 -MeOH-aq.NH 3 ) to obtain Hoechst-NH2 (680 mg, 83%) as an orange Obtained as a colored solid.
Nitroaniline derivative 1 was obtained by synthesizing with reference to J. Med. Chem. 1996, 39, 4804-4809.
Identification: 1 H NMR (CD 3 OD, 500 MHz) δ8.21 (d, 1H, J = 1.0 Hz), 7.91 (dd, 1H, J = 1,0, 8.5 Hz), 7.87 (d, 1H, J = 9.0 Hz), 7.64 (d, 1H, J = 8.0 Hz), 7.50 (d, 1H, J = 8.5 Hz), 7.14 (brs, 1H), 7.04 (dd, 1H, J = 1,5, 9.0 Hz ), 6.80 (d, 1H, J = 8.5 Hz), 3.22 (t, 4H, J = 4.5 Hz), 2.67 (t, 4H, J = 4.5 Hz), 2.37 (s, 3H); FABMS (NBA) m /z 424 [(M + H) + ]; HRMS calcd . for C25H26N7 [(M + H) + ] 424.2250 , found 424.2251.

(2)Hoechst-N3の合成:
Hoechst-N3は、上記一般式(1)で表される化合物であり(式中、R1はメチル基であり、Xは-Nである。)、この化合物を以下のスキームで得た。

Figure 2023013344000020

Hoechst-NH2 (18 mg, 4.25×10-5 mol)に水(2 mL)と6N 塩酸(200 μL)を加え、0 ℃で10分攪拌した後、NaNO2水溶液 (14 mgのNaNO2を水1mLに溶解したもの)を加えた。続いて、0 ℃で30分攪拌した後、NaN3水溶液(17 mgのNaN3を水1mLに溶解したもの)を加え、0 ℃で30分攪拌した。さらに、室温に温度を上げて30分攪拌した。反応終了後、溶媒を留去した後、カラムクロマトグラフィー(固定相: SiO2, 移動相: CHCl3-MeOH-aq.NH3)で分離し、Hoechst-N3(18mg, 94%)を赤色固体として得た。
同定:1H NMR (CD3OD, 500 MHz) δ 8.28 (d, 1H, J = 1.0 Hz), 8.14 (d, 2H, J = 9.0 Hz), 7.97 (dd, 1H, J = 1.5, 8.5 Hz), 7.71 (d, 1H, J = 8.5 Hz), 7.51 (d, 1H, J = 9.0 Hz), 7.25 (d, 2H, J = 8.5 Hz), 7.14 (d, 1H, J = 1.5 Hz), 7.05 (dd, 1H, J = 2.5, 9.5 Hz), 3.23 (t, 4H, J = 4.5 Hz), 2.68 (t, 1H, J = 4.5 Hz), 2.37 (s, 3H); 1H NMR (CD3OD, 125 MHz) δ 154.4, 151.5, 149.1, 143.5, 136.7, 131.3, 129.3, 126.1, 122.5, 120.8, 120.3, 118.4, 117.5, 116.6, 115.8. 115.3, 114.5, 101.6, 54.8, 54.7, 43.7; FABMS (NBA) m/z 450 [(M + H)+]; HRMS calcd. for C25H24N9 [(M + H)+] 450.2155, found 450.2155. (2) Synthesis of Hoechst-N3:
Hoechst-N3 is a compound represented by the above general formula ( 1 ) (wherein R1 is a methyl group and X is -N3), and this compound was obtained by the following scheme.
Figure 2023013344000020

Water ( 2 mL) and 6N hydrochloric acid (200 μL) were added to Hoechst- NH2 (18 mg, 4.25×10 -5 mol) and stirred at 0 °C for 10 minutes. 1 mL) was added. Subsequently, after stirring at 0°C for 30 minutes, an aqueous NaN 3 solution (17 mg of NaN 3 dissolved in 1 mL of water) was added, and the mixture was stirred at 0°C for 30 minutes. Furthermore, the temperature was raised to room temperature and stirred for 30 minutes. After completion of the reaction, the solvent was distilled off and separated by column chromatography (stationary phase: SiO 2 , mobile phase: CHCl 3 -MeOH-aq.NH 3 ) to give Hoechst-N3 (18mg, 94%) as a red solid. obtained as
Identification: 1 H NMR (CD 3 OD, 500 MHz) δ 8.28 (d, 1H, J = 1.0 Hz), 8.14 (d, 2H, J = 9.0 Hz), 7.97 (dd, 1H, J = 1.5, 8.5 Hz ), 7.71 (d, 1H, J = 8.5 Hz), 7.51 (d, 1H, J = 9.0 Hz), 7.25 (d, 2H, J = 8.5 Hz), 7.14 (d, 1H, J = 1.5 Hz), 7.05 (dd, 1H, J = 2.5, 9.5 Hz), 3.23 (t, 4H, J = 4.5 Hz), 2.68 (t, 1H, J = 4.5 Hz), 2.37 (s, 3H ); 3 OD, 125 MHz) δ 154.4, 151.5, 143.5, 143.5, 143.5, 136.3, 129.3, 126.1, 122.5, 120.3, 120.3, 118.4, 117.5, 116.6, 115.8. (NBA) m/z 450 [(M + H) + ]; HRMS calcd. for C 25 H 24 N 9 [(M + H) + ] 450.2155, found 450.2155.

(3)Hoechst-Azo-NMe2の合成:
Hoechst-Azo-NMe2は、上記一般式(1)で表される化合物であり(式中、R1はメチル基であり、Xは上記(X2)で表される官能基である。)、この化合物を以下のスキームで得た。

Figure 2023013344000021
Hoechst-NH2 (86 mg, 2.01×10-4 mol)を1N 塩酸(400 μL)に溶かし、室温で20分攪拌した。続いて、NaNO2 (42 mg, 6.09×10-4 mol)を添加し、30分室温で攪拌した。さらに、ジメチルアニリンの塩酸溶液(73 mg, 6.09×10-4 molのジメチルアニリンを1N 塩酸に溶解したもの)を添加し、1時間室温で攪拌した。反応終了後、NaHCO3飽和溶液を加えて中和し、酢酸エチルで抽出した。最後にカラムクロマトグラフィー(固定相: SiO2, 移動相: CHCl3-MeOH-aq.NH3)で分離し、Hoechst-Azo-NMe2(26 mg, 23%, cis体とtrans体の混合物)をオレンジ色固体として得た。
同定:1H NMR (CD3OD, 500 MHz) δ 8.30 (br, 1H), 8.26-8.17 (1H), 8.24 (dd, 1H, J = 1.5, 9.0 Hz), 8.14 (m, 1H), 8.30-7.96 (1H), 7.95 (dd, 1H, J = 2.0, 9.0 Hz), 7.86 (m, 1H), 7.83-7.69 (2H), 7.61-7.46 (2H), 7.20-7.09 (1H), 7.06 (dd, 1H, J = 2.0, 9.0 Hz), 6.83 (d, 1H, J = 7.0 Hz), 3.30 (6H), 3.24 (m, 4H), 2.68 (m, 4H), 2.38 (s, 3H); FABMS (NBA) m/z 556 [(M + H)+]; HRMS calcd. for C33H34N9 [(M + H)+] 556.2937, found 556.2935. (3) Synthesis of Hoechst-Azo-NMe2:
Hoechst-Azo-NMe2 is a compound represented by the above general formula (1) (wherein R1 is a methyl group and X is a functional group represented by (X2) above), and this compound was obtained by the following scheme.
Figure 2023013344000021
Hoechst-NH2 (86 mg, 2.01×10 -4 mol) was dissolved in 1N hydrochloric acid (400 μL) and stirred at room temperature for 20 minutes. Subsequently, NaNO 2 (42 mg, 6.09×10 -4 mol) was added and stirred for 30 minutes at room temperature. Furthermore, a hydrochloric acid solution of dimethylaniline (73 mg, 6.09×10 −4 mol of dimethylaniline dissolved in 1N hydrochloric acid) was added and stirred at room temperature for 1 hour. After completion of the reaction, NaHCO 3 saturated solution was added to neutralize and extracted with ethyl acetate. Finally, column chromatography (stationary phase: SiO 2 , mobile phase: CHCl 3 -MeOH-aq.NH 3 ) separated Hoechst-Azo-NMe2 (26 mg, 23%, mixture of cis and trans isomers). Obtained as an orange solid.
Identification: 1 H NMR (CD 3 OD, 500 MHz) δ 8.30 (br, 1H), 8.26-8.17 (1H), 8.24 (dd, 1H, J = 1.5, 9.0 Hz), 8.14 (m, 1H), 8.30 -7.96 (1H), 7.95 (dd, 1H, J = 2.0, 9.0 Hz), 7.86 (m, 1H), 7.83-7.69 (2H), 7.61-7.46 (2H), 7.20-7.09 (1H), 7.06 ( dd, 1H, J = 2.0, 9.0 Hz), 6.83 (d, 1H, J = 7.0 Hz), 3.30 (6H), 3.24 (m, 4H), 2.68 (m, 4H), 2.38 (s, 3H); FABMS (NBA) m/z 556 [(M + H) + ]; HRMS calcd. for C 33 H 34 N 9 [(M + H) + ] 556.2937, found 556.2935.

(3)Hoechst-Azo-NO2
Hoechst-Azo-NO2は、上記一般式(1)で表される化合物であり(式中、R1はメチル基であり、Xは上記(X3)で表される官能基である。)、この化合物を以下のスキームで得た。

Figure 2023013344000022
4-Nitroaniline 3 (21 mg, 1.52×10-4 mol)とPotassium Peroxymonosulfate (122 mg, 1.98×10-4 mol) の混合物にCH2Cl2 (0.5 mL), H2O (0.5 mL)を加えて、室温で3時間攪拌した。反応終了後、反応終了後、水を加えた後、クロロホルムで抽出し、4(ニトロソニトロベンゼン)の粗生成物を得た。続いて、得られた粗生成物に、Hoechst-NH2 (19 mg, 4.48×10-5 mol)、さらにCH2Cl2 ( 0.5 mL)、酢酸(0.5 mL)を加えて、室温で16時間攪拌した。反応終了後、NaOH水溶液で中和した。最後にカラムクロマトグラフィー(固定相: SiO2, 移動相: CHCl3-MeOH-aq.NH3)で分離し、Hoechst-Azo-NO2(21 mg, 84%)をオレンジ色固体として得た。
同定:1H NMR (CD3OD, 500 MHz) δ 7.90-7.70 (5H), 7.68-7.58 (1H), 7.58-7.42 (5H), 7.25 (d, 2H, J = 8.0 Hz), 6.90-6.76 (2H), 3.32 (br, 4H), 2.86 (br, 4H), 2.53 (s, 3H); FABMS (NBA) m/z 558 [(M + H)+]; HRMS calcd. for C31H28N9O2 [(M + H)+] 558.2366, found 558.2366. (3) Hoechst-Azo-NO2
Hoechst-Azo-NO2 is a compound represented by the above general formula (1) (wherein R1 is a methyl group and X is a functional group represented by (X3) above), and this compound was obtained by the following scheme.
Figure 2023013344000022
CH 2 Cl 2 (0.5 mL) and H 2 O (0.5 mL) were added to a mixture of 4-Nitroaniline 3 (21 mg, 1.52×10 -4 mol) and Potassium Peroxymonosulfate (122 mg, 1.98×10 -4 mol). and stirred at room temperature for 3 hours. After completion of the reaction, water was added, and the mixture was extracted with chloroform to obtain a crude product of 4 (nitrosonitrobenzene). Subsequently, Hoechst-NH2 (19 mg, 4.48×10 -5 mol), CH 2 Cl 2 (0.5 mL) and acetic acid (0.5 mL) were added to the obtained crude product, and the mixture was stirred at room temperature for 16 hours. bottom. After completion of the reaction, it was neutralized with an aqueous NaOH solution. Finally, separation was performed by column chromatography (stationary phase: SiO2 , mobile phase: CHCl3-MeOH - aq.NH3 ) to obtain Hoechst-Azo-NO2 (21 mg, 84%) as an orange solid.
Identification: 1 H NMR (CD 3 OD, 500 MHz) δ 7.90-7.70 (5H), 7.68-7.58 (1H), 7.58-7.42 (5H), 7.25 (d, 2H, J = 8.0 Hz), 6.90-6.76 (2H), 3.32 (br, 4H), 2.86 (br, 4H), 2.53 (s, 3H); FABMS (NBA) m/z 558 [ ( M + H) + ]; HRMS calcd. for C31H28 N9O2 [(M + H) + ]558.2366, found 558.2366.

(4)Hoechst-N3のHuisgen反応:
上記合成したHoechst-N3を以下のスキームにてHuisgen反応に供した。

Figure 2023013344000023
Hoechst-N3 (16 mg, 3.56×10-5 mol)と1-ethynyl-4-nitrobenzene 5 (61 mg, 4.15×10-5 mol)の混合物をDMF (300 mL)に溶かし、続いて、TBTA (4.7 mg, 2.94×10-5 mol)、CuSO4 (4.7 mg, 2.94×10-5 mol)、アスコルビン酸(6.6 mg, 3.33×10-5 mol)を加えて、4時間室温で攪拌した。反応終了後、溶媒を留去した後、カラムクロマトグラフィー(固定相: SiO2, 移動相: CHCl3-MeOH-aq.NH3)で分離し、付加体6(8 mg, 38%)をオレンジ色固体として得た。
同定:1H NMR (CD3OD, 500 MHz) δ9.71 (s, 1H), 8.48 (d, 2H, J = 8.0 Hz), 8.40 (d, 2H, J = 7.5 Hz), 8.40-8.31 (1H), 8.24 (d, 2H, J = 7.5 Hz), 8.20 (d, 2H, J = 7.5 Hz), 8.06 (d, 1H, J = 8.0 Hz), 7.80-7.70 (1H), 7.69 (m, 1H), 6.93 (br, 2H), 3.12 (br, 4H), 2.26-2.20 (4H); FABMS (NBA) m/z 597 [(M + H)+]; HRMS calcd. for C33H29N10O2 [(M + H)+] 597.2475, found 597.2477. (4) Huisgen reaction of Hoechst-N3:
Hoechst-N3 synthesized above was subjected to Huisgen reaction according to the following scheme.
Figure 2023013344000023
A mixture of Hoechst-N3 (16 mg, 3.56×10 -5 mol) and 1-ethynyl-4-nitrobenzene 5 (61 mg, 4.15×10 -5 mol) was dissolved in DMF (300 mL), followed by TBTA ( 4.7 mg, 2.94×10 −5 mol), CuSO 4 (4.7 mg, 2.94×10 −5 mol) and ascorbic acid (6.6 mg, 3.33×10 −5 mol) were added and stirred at room temperature for 4 hours. After completion of the reaction, the solvent was distilled off and separated by column chromatography (stationary phase: SiO 2 , mobile phase: CHCl 3 -MeOH-aq.NH 3 ) to give adduct 6 (8 mg, 38%) as an orange Obtained as a colored solid.
Identification: 1 H NMR (CD 3 OD, 500 MHz) δ9.71 (s, 1H), 8.48 (d, 2H, J = 8.0 Hz), 8.40 (d, 2H, J = 7.5 Hz), 8.40-8.31 ( 1H), 8.24 (d, 2H, J = 7.5Hz), 8.20 (d, 2H, J = 7.5Hz), 8.06 (d, 1H, J = 8.0Hz), 7.80-7.70 (1H), 7.69 (m, 1H), 6.93 (br, 2H), 3.12 (br, 4H), 2.26-2.20 (4H); FABMS (NBA) m/z 597 [(M + H) + ]; HRMS calcd. for C 33 H 29 N 10 O2 [(M + H) + ] 597.2475, found 597.2477.

このようにして得られる付加体6を、所望の細胞核に結合せしめることにより、原料として用いた1-ethynyl-4-nitrobenzene 5を細胞核に導入することができる。 By binding the adduct 6 thus obtained to a desired cell nucleus, 1-ethynyl-4-nitrobenzene 5 used as a raw material can be introduced into the cell nucleus.

(5)Hoechst-N3の細胞実験:
ヒト肺がん細胞A549をwell上に蒔いた(培地DMEM)後、24時間37 ℃で有酸素条件下(O2濃度21%)及び低酸素条件下(O2濃度0.3%)で培養した。続いて、培地を除去した後、すぐにHoechst-N3(10 μM)が溶解した培地(DMEM 100 μL)を細胞に添加し、所定時間(10分, 30分, 60分又は24 時間)37 ℃で培養した。続いて、細胞をPBSで洗浄した後、共焦点顕微鏡で細胞を観察し、励起光(Ex. 405 nm)を照射して蛍光発光を観測した。図1は前記観測像である。実際には青色の蛍光が観測されるところ、図1ではグレースケールに変換して描画している。図1における描画が白色に近いほど青色の発光が強いことを示す。図1(A)は低酸素条件である細胞における観察像であり、図1(B)は有酸素条件である細胞における観察像である。図2は、前記観測された蛍光強度の相対値を縦軸に、時間経過を横軸にとって表示したものである。Hoechst-N3は、低酸素濃度の細胞を選択的に発光せしめることが示されている。
(5) Hoechst-N3 cell experiments:
Human lung cancer cell A549 was plated on wells (medium DMEM) and cultured at 37° C. for 24 hours under aerobic conditions (O 2 concentration 21%) and hypoxic conditions (O 2 concentration 0.3%). Subsequently, after removing the medium, the medium (DMEM 100 μL) in which Hoechst-N3 (10 μM) was dissolved was immediately added to the cells and incubated at 37° C. for a predetermined time (10 minutes, 30 minutes, 60 minutes or 24 hours). cultured in Subsequently, after washing the cells with PBS, the cells were observed with a confocal microscope, irradiated with excitation light (Ex. 405 nm), and fluorescence emission was observed. FIG. 1 is the observed image. Although blue fluorescence is actually observed, it is converted to grayscale and drawn in FIG. The closer to white the drawing in FIG. 1 is, the stronger the blue light emission is. FIG. 1(A) is an observation image of cells under hypoxic conditions, and FIG. 1(B) is an observation image of cells under aerobic conditions. FIG. 2 shows the relative values of the observed fluorescence intensity on the vertical axis and the time course on the horizontal axis. Hoechst-N3 has been shown to selectively illuminate hypoxic cells.

Claims (6)

下記一般式(1)
Figure 2023013344000024
(式中、-R1は炭素数1~3のアルキル基を表し、-Xは下記(X1)~(X3)のいずれかで表される官能基を表す。)
Figure 2023013344000025
で表される、ビスベンズイミド類縁体。
General formula (1) below
Figure 2023013344000024
(Wherein, -R1 represents an alkyl group having 1 to 3 carbon atoms, and -X represents a functional group represented by any one of the following (X1) to (X3).)
Figure 2023013344000025
A bisbenzimide analogue represented by
下記一般式(2)で表される化合物(式中、-R1は上記と同じ官能基を表す。)及び下記一般式(3)で表される4-ニトロベンズアルデヒド
Figure 2023013344000026
を共存させた状態で酸性条件下で還元して、次いで環化させることで、下記一般式(4)
Figure 2023013344000027
(式中、-R1は上記と同じ官能基を表す。)で表されるビスベンズイミド類縁体を得て、
上記一般式(4)で表されるビスベンズイミド類縁体の末端アミノ基を上記官能基Xに置換することによる、
請求項1記載の一般式(1)で表される、ビスベンズイミド類縁体の製造方法。
A compound represented by the following general formula (2) (wherein —R represents the same functional group as above) and 4-nitrobenzaldehyde represented by the following general formula (3)
Figure 2023013344000026
in the presence of the following general formula (4) by reducing under acidic conditions and then cyclizing
Figure 2023013344000027
(Wherein, -R1 represents the same functional group as above) to obtain a bisbenzimide analogue represented by
By substituting the terminal amino group of the bisbenzimide analogue represented by the general formula (4) with the functional group X,
A method for producing a bisbenzimide analog represented by the general formula (1) according to claim 1.
被検細胞の細胞核に請求項1記載のビスベンズイミド類縁体を結合させ、前記結合後の被検細胞に光を照射して、前記照射に基づく蛍光を観測する、
被検細胞の酸素濃度の評価方法。
binding the bisbenzimide analog according to claim 1 to the cell nucleus of the test cell, irradiating the test cell after the binding with light, and observing fluorescence based on the irradiation;
A method for evaluating the oxygen concentration of test cells.
請求項1記載のビスベンズイミド類縁体を含有する診断薬であって、
被検細胞の細胞核に前記ビスベンズイミド類縁体を結合させ、前記結合後の被検細胞に光を照射して、前記照射に基づく蛍光を観測することにより、被検細胞の酸素濃度を評価するための、
前記診断薬。
A diagnostic agent containing the bisbenzimide analogue according to claim 1,
The bisbenzimide analog is bound to the cell nuclei of the test cells, the test cells after the binding are irradiated with light, and fluorescence based on the irradiation is observed to evaluate the oxygen concentration of the test cells. ,
Said diagnostic agent.
請求項1記載のビスベンズイミド類縁体(但し、-Xは下記(X1)で表される官能基である。)及び下記一般式(5)
Figure 2023013344000028
(式中、-Yは、一般式(5)に表示される炭素原子とC-C単結合を形成する官能基を表す。)で表される化合物を反応させて、下記一般式(6)
Figure 2023013344000029
で表される化合物を得て、得られた一般式(6)で表される化合物を細胞核に結合させる、
官能基-Yを有する化合物を細胞核へ導入する方法。
The bisbenzimide analogue according to claim 1 (where -X is a functional group represented by the following (X1)) and the following general formula (5)
Figure 2023013344000028
(Wherein, -Y represents a functional group that forms a C—C single bond with the carbon atom shown in general formula (5).) by reacting the compound represented by the following general formula (6)
Figure 2023013344000029
Obtaining a compound represented by and binding the obtained compound represented by the general formula (6) to the cell nucleus,
A method for introducing a compound having a functional group -Y into a cell nucleus.
請求項1記載のビスベンズイミド類縁体(但し、-Xは下記(X1)で表される官能基である。)及び下記一般式(7)
Figure 2023013344000030
(式中、-Zは、一般式(7)に表示される窒素原子とN-C単結合を形成する官能基を表す。)で表される化合物を反応させて、下記一般式(8)
Figure 2023013344000031
で表される化合物を得て、得られた一般式(8)で表される化合物を細胞核に結合させる、
官能基-Zを有する化合物を細胞核へ導入する方法。
The bisbenzimide analogue according to claim 1 (where -X is a functional group represented by the following (X1)) and the following general formula (7)
Figure 2023013344000030
(Wherein, -Z represents a functional group that forms an NC single bond with the nitrogen atom represented by the general formula (7).) The compound represented by the following general formula (8)
Figure 2023013344000031
Obtaining a compound represented by and binding the obtained compound represented by the general formula (8) to the cell nucleus,
A method for introducing a compound having a functional group -Z into a cell nucleus.
JP2021117459A 2021-07-15 2021-07-15 Bisbenzimide analog, production method thereof, and use thereof Pending JP2023013344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021117459A JP2023013344A (en) 2021-07-15 2021-07-15 Bisbenzimide analog, production method thereof, and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021117459A JP2023013344A (en) 2021-07-15 2021-07-15 Bisbenzimide analog, production method thereof, and use thereof

Publications (1)

Publication Number Publication Date
JP2023013344A true JP2023013344A (en) 2023-01-26

Family

ID=85129767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021117459A Pending JP2023013344A (en) 2021-07-15 2021-07-15 Bisbenzimide analog, production method thereof, and use thereof

Country Status (1)

Country Link
JP (1) JP2023013344A (en)

Similar Documents

Publication Publication Date Title
CN108440475B (en) Ratio type fluorescent probe for distinguishing lipid droplets with different polarities and preparation method and application thereof
Kele et al. Clickable fluorophores for biological labeling—with or without copper
AU2009334648B2 (en) Novel fluorescent boron-substituted dipyrromethenes and use thereof for diagnosis
CN108069966B (en) Small molecular fluorescent probe for SNAP protein labeling and synthetic method and application thereof
CN110746410B (en) Leucine aminopeptidase and monoamine oxidase activated near-infrared fluorescent probe, synthetic method and biological application
CN108069967B (en) Fluorescent probe for intracellular protein labeling and synthetic method and application thereof
JP4656541B2 (en) Method for producing two-photon excitation fluorescent probe and method for real-time monitoring of intracellular magnesium
EP3074403B1 (en) Fluorescent red emitting functionalizable calcium indicators
KR101715543B1 (en) MegaStokes Amino-Triazolyl-BODIPY compounds and Applications to Live Neuron Staining and Human Serum Albumin FA1 Drug Site Probing
CN105670609B (en) A kind of novel Rhodamine fluorescent probe and preparation method thereof of detection mercury ion
JP2016050296A (en) Fluorochrome-coupled coelenterazine
Furukawa et al. Reduction-triggered red fluorescent probes for dual-color detection of oligonucleotide sequences
EP1173519A1 (en) Novel carbopyronine fluorescence dyes
JP2007238489A (en) Chemiluminescent compound and labeling agent composed of the same
US20040043498A1 (en) Reagent for determining singlet oxygen
JP2006342299A (en) Fluorescent amino acid derivative
JP2023013344A (en) Bisbenzimide analog, production method thereof, and use thereof
CN110627715B (en) Quinoline aromatic ethylene derivative and application thereof in preparation of fluorescent dye and fluorescent probe
CN106634964A (en) Application of oxazine compound in preparation of near infrared fluorescence probe
CN110590664A (en) Preparation method of fluorescent probe and application of fluorescent probe
US8084647B2 (en) Two-photon probe for real-time monitoring of intracellular calcium ions, method for preparing the probe and method for real-time monitoring of intracellular calcium ions using the probe
KR101381767B1 (en) two-photon fluorescent probes for nitric oxide, biological imaging methode of nitric oxide using the same and synthesis methode of the same
CN108949159B (en) Fluorescent probe for detecting palladium ions and synthetic method and application thereof
US9499528B2 (en) Class of near infrared molecular probes for biological applications
JP7204728B2 (en) Serum stable procoelenterazine analogues