JP2016050296A - Fluorochrome-coupled coelenterazine - Google Patents

Fluorochrome-coupled coelenterazine Download PDF

Info

Publication number
JP2016050296A
JP2016050296A JP2014178104A JP2014178104A JP2016050296A JP 2016050296 A JP2016050296 A JP 2016050296A JP 2014178104 A JP2014178104 A JP 2014178104A JP 2014178104 A JP2014178104 A JP 2014178104A JP 2016050296 A JP2016050296 A JP 2016050296A
Authority
JP
Japan
Prior art keywords
coelenterazine
fluorescent dye
ctz
mmol
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014178104A
Other languages
Japanese (ja)
Inventor
鈴木 孝治
Koji Suzuki
鈴木  孝治
ダニエル チッテリオ
Daniel Citterio
ダニエル チッテリオ
善樹 角舘
Yoshiki Kakudate
善樹 角舘
笑美 星野
Emi Hoshino
笑美 星野
諒 西原
Ryo NISHIHARA
諒 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Original Assignee
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University filed Critical Keio University
Priority to JP2014178104A priority Critical patent/JP2016050296A/en
Publication of JP2016050296A publication Critical patent/JP2016050296A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide techniques of making the light emission wavelength of a Renilla luciferase (Rluc)-coelenterazine light-emitting system longer by modifying coelenterazine.SOLUTION: A fluorochrome-coupled coelenterazine is represented by the general formula [I], where A is a fluorochrome moiety including a fluorochrome.SELECTED DRAWING: Figure 3

Description

本発明は、蛍光色素が結合されたセレンテラジンに関する。   The present invention relates to coelenterazine to which a fluorescent dye is bound.

近年、生体内の生命現象を光により可視化し、病気の解明等に広く用いられている技術として、光学的な生体内イメージングが注目されている。光を用いたイメージングは他のイメージング方法であるMRIなどと比較すると比較的安価で、高感度、非侵襲的などの利点がある。イメージングに用いられる光として、近赤外光と呼ばれる600 nm〜900 nmの領域が適している。この理由は、近赤外領域において生体内の分子であるヘモグロビンや水などの吸光係数が小さく、また生体内の自家蛍光物質の影響が少ないため、深部組織への応用も可能で、バックグラウンドの小さい高感度な測定が行えるためである。   In recent years, optical in vivo imaging has attracted attention as a technique widely used for elucidating diseases by visualizing life phenomena in the living body with light. Imaging using light is relatively inexpensive compared with other imaging methods such as MRI, and has advantages such as high sensitivity and non-invasiveness. As light used for imaging, a region of 600 nm to 900 nm called near infrared light is suitable. This is because the absorption coefficient of hemoglobin or water, which is a molecule in the living body, is small in the near-infrared region, and the influence of autofluorescent substances in the living body is small. This is because small and highly sensitive measurement can be performed.

生体内イメージングで用いられる光の種類として蛍光、化学発光、生物発光がある。これらのうち、生物発光は、励起光源を用いず、量子収率が比較的高いという利点がある。生物発光において最も有用であるとされているのは、ホタルのルシフェリン-ルシフェラーゼ反応である。ホタルルシフェリンの発光は、生物発光種の中で最も量子収率が0.41と高く、また560 nmの比較的長波長の発光を示すため、生体内イメージングに多く用いられている。しかし、ホタルルシフェリンはマグネシウムイオンとATPといった補因子存在下でないと起こらないため、その点が生体内イメージングに応用した際の弊害となってしまう。   There are fluorescence, chemiluminescence, and bioluminescence as types of light used in in vivo imaging. Among these, bioluminescence has an advantage that a quantum yield is relatively high without using an excitation light source. The most useful in bioluminescence is the firefly luciferin-luciferase reaction. The emission of firefly luciferin has the highest quantum yield of 0.41 among bioluminescent species, and emits light at a relatively long wavelength of 560 nm, so it is often used for in vivo imaging. However, since firefly luciferin does not occur unless cofactors such as magnesium ion and ATP are present, this point is an adverse effect when applied to in vivo imaging.

一方、ウミシイタケやオワンクラゲ由来の生物発光基質であるセレンテラジンも知られている。セレンテラジンはホタルルシフェリンと異なり、マグネシウムイオンとATP存在下でなくても発光を示すことが報告されている。しかし、セレンテラジンは最大発光波長のピークが約480nmであるため、生体内イメージングに応用するためにはその発光波長を近赤外領域まで長波長化することが求められている。   On the other hand, coelenterazine, which is a bioluminescent substrate derived from Renilla and Owan jellyfish, is also known. Unlike firefly luciferin, coelenterazine has been reported to emit light even in the absence of magnesium ions and ATP. However, since coelenterazine has a maximum emission wavelength peak of about 480 nm, in order to apply it to in vivo imaging, it is required to extend the emission wavelength to the near infrared region.

セレンテラジンの発光波長を長波長側にシフトさせるために、セレンテラジンの構造を改変したセレンテラジン-vが知られている(非特許文献1)。セレンテラジン-vでは、発光波長が40nm長波長側にシフトするが、安定性に難があり、生体内イメージングに使用するのは困難である。   Coelenterazine-v in which the structure of coelenterazine is modified in order to shift the emission wavelength of coelenterazine to the longer wavelength side is known (Non-Patent Document 1). In coelenterazine-v, the emission wavelength shifts to the 40 nm long wavelength side, but stability is difficult, and it is difficult to use for in vivo imaging.

一方、セレンテラジンを基質とする酵素であるウミシイタケルシフェラーゼ(Rluc)は、その構造が研究され、そのアミノ酸配列のうち8個のアミノ酸を置換することにより生体内安定性を高めたRluc8(非特許文献2)が開発され、その活性部位も明らかにされ(非特許文献3)、さらにRluc8中のアミノ酸配列を6個置換することによりさらに生体内安定性を高めたRluc8.6も開発された(非特許文献4)。さらにRlucの活性部位が明らかにされたので、酵素活性に影響しない領域も明らかになったことから、Rlucやその改変体に蛍光色素を結合してBRET(Bioluminescence Resonance Energy Transfer:生物発光共鳴エネルギー移動)やFRETを利用して発光波長を長波長化した例も知られている(非特許文献5)。   On the other hand, the structure of Renilla luciferase (Rluc), an enzyme using coelenterazine as a substrate, has been studied for its structure, and Rluc8 (Non-patent Document) has been improved in vivo stability by substituting 8 amino acids in its amino acid sequence. 2) was developed, and its active site was also clarified (Non-patent Document 3). Furthermore, Rluc8.6, which further improved in vivo stability by replacing 6 amino acid sequences in Rluc8, was also developed (Non-patent Document 3). Patent Document 4). Furthermore, since the active site of Rluc has been clarified, the region that does not affect the enzyme activity has also been clarified. Therefore, BRET (Bioluminescence Resonance Energy Transfer: Bioluminescence Resonance Energy Transfer) is bound by binding a fluorescent dye to Rluc and its variants. ) And FRET are also used to increase the emission wavelength (Non-Patent Document 5).

Galina. A. et al., Anal. Bioanal. Chem.,2010, 398, 1809-1817Galina. A. et al., Anal. Bioanal. Chem., 2010, 398, 1809-1817 Loening A. M., et. al., Protein Eng. Des. Sel., 2006, 19, 391Loening A. M., et. Al., Protein Eng. Des. Sel., 2006, 19, 391 Loening A. M., et. al., J. Mol. Biol., 2007, 374, 1017Loening A. M., et. Al., J. Mol. Biol., 2007, 374, 1017 Loening A. M., et. al., Nat. Methods, 2007, 4 (8), 641Loening A. M., et. Al., Nat. Methods, 2007, 4 (8), 641 Chen F. Q. et. al., J. Chem. Soc. PERKIN TRANS. 1, 1992, 1607Chen F. Q. et. Al., J. Chem. Soc. PERKIN TRANS. 1, 1992, 1607

本発明の目的は、セレンテラジンを修飾することにより、Rluc-セレンテラジン発光系による発光の波長を長波長化する技術を提供することである。   An object of the present invention is to provide a technique for extending the wavelength of light emitted by the Rluc-coelenterazine light-emitting system by modifying coelenterazine.

本願発明者らは、セレンテラジンに蛍光色素を結合することにより、BRETを引き起こし、それによって発光波長をセレンテラジンの発光波長よりも長波長化することが可能かもしれないと考えた。上記の通り、これまで酵素であるRlucに蛍光色素を結合した例は報告されているが、セレンテラジンに蛍光色素を結合した例は報告されていない。しかしながら、周知のとおり、一般に酵素の基質特異性は極めて高いため、セレンテラジンに蛍光色素のような大きな構造を結合すれば、高い基質特異性の故に酵素反応が起きなくなる可能性も予想された。実際に、セレンテラジンの2位のヒドロキシル基に蛍光色素を結合したところ、予想されたように酵素反応自体が起きなくなってしまった。しかし、これであきらめずに今度はセレンテラジンの6位のヒドロキシル基に蛍光色素を結合したところ、酵素Rlucでは酵素反応が起きなくなったが、驚くべきことに、上記したRlucの改変体であるRluc8やRluc8.6を用いれば酵素反応は十分な程度に生じ、BRETにより発光波長が長波長化することが可能であることを見出し、本発明を完成した。   The inventors of the present application considered that it may be possible to cause BRET by binding a fluorescent dye to coelenterazine, thereby making the emission wavelength longer than the emission wavelength of coelenterazine. As described above, an example in which a fluorescent dye is bound to the enzyme Rluc has been reported so far, but an example in which a fluorescent dye is bound to coelenterazine has not been reported. However, as is well known, since the substrate specificity of an enzyme is generally very high, it is expected that if a large structure such as a fluorescent dye is bound to coelenterazine, an enzyme reaction may not occur due to the high substrate specificity. In fact, when a fluorescent dye was bound to the hydroxyl group at the 2-position of coelenterazine, the enzyme reaction itself did not occur as expected. However, without giving up, this time, when a fluorescent dye was bound to the hydroxyl group at the 6-position of coelenterazine, the enzyme reaction did not occur with the enzyme Rluc. Surprisingly, Rluc8, which is a variant of Rluc described above, When Rluc8.6 was used, the enzyme reaction occurred to a sufficient extent, and it was found that the emission wavelength could be increased by BRET, and the present invention was completed.

すなわち、本発明は、下記一般式[I]で表される、蛍光色素結合セレンテラジンを提供する。   That is, the present invention provides a fluorescent dye-bound coelenterazine represented by the following general formula [I].

(式[I]中、Aは、蛍光色素を含む蛍光色素部を示す)。 (In the formula [I], A represents a fluorescent dye part including a fluorescent dye).

本発明により、Rluc-セレンテラジン系の発光反応の発光波長が長波長側にシフトした新規なRluc基質が提供された。Rlucは、分子量が小さいので生体内イメージングにおける酵素標識として適しており、また、マグネシウムイオンとATP存在下でなくても発光を示すという利点を有しており、本発明により、さらに発光波長が長波長化されたので、本発明は、生体内イメージングに大いに貢献するものと期待される。   The present invention provides a novel Rluc substrate in which the emission wavelength of the Rluc-coelenterazine-based luminescence reaction is shifted to the longer wavelength side. Rluc is suitable as an enzyme label in in vivo imaging due to its low molecular weight, and also has the advantage that it emits light even in the absence of magnesium ions and ATP. The present invention further increases the emission wavelength. Since it is wavelengthized, the present invention is expected to contribute greatly to in vivo imaging.

下記実施例で合成したセレンテラジン−FITC結合体(CTZ-6-FITC)の化学発光スペクトルを示す。The chemiluminescence spectrum of the coelenterazine-FITC conjugate (CTZ-6-FITC) synthesized in the following example is shown. 下記実施例で合成したCTZ-6-FITCの生物発光強度の測定結果をCTZ-6-azideの測定結果と比較して示す図である。It is a figure which compares the measurement result of the bioluminescence intensity of CTZ-6-FITC synthesize | combined with the following Example with the measurement result of CTZ-6-azide. 下記実施例で合成したCTZ-6-FITCおよびCTZ-6-azideの、酵素Rluc又は酵素Rluc8.6を用いた酵素反応における生物発光スペクトルを示す図である。It is a figure which shows the bioluminescence spectrum in the enzyme reaction using the enzyme Rluc or the enzyme Rluc8.6 of CTZ-6-FITC and CTZ-6-azide which were synthesize | combined in the following Example.

上記の通り、本発明の蛍光色素結合セレンテラジンは、上記一般式[I]で示される構造を有する。一般式[I]中、Aは、蛍光色素を含む蛍光色素部であり、好ましくは、吸収波長ピークが300〜600nmの範囲にある蛍光色素を含む蛍光色素部である。本発明の蛍光色素結合セレンテラジンは、Rluc8又はRluc8.6(これらをコードする組換えプラスミドがスタンフォード大学より入手可能)による酵素反応によりセレンテラジン部分に生じる蛍光エネルギーを、蛍光色素に共鳴移動させて該蛍光色素を発光させる(BRET)ことにより、セレンテラジンの発光ピーク波長(478nm)よりも発光波長を長波長化するものである。このようなBRETを起こす蛍光色素としては、吸収波長ピークが300〜600nmの範囲にある蛍光色素が好ましい。吸収波長ピークが300〜600nmの範囲にある蛍光色素の例として、以下のものを挙げることができるが、これらに限定されるものではない。   As described above, the fluorescent dye-bound coelenterazine of the present invention has a structure represented by the above general formula [I]. In the general formula [I], A is a fluorescent dye part including a fluorescent dye, and preferably a fluorescent dye part including a fluorescent dye having an absorption wavelength peak in the range of 300 to 600 nm. The fluorescent dye-coupled coelenterazine of the present invention is produced by resonance transfer of fluorescence energy generated in the coelenterazine moiety by an enzymatic reaction with Rluc8 or Rluc8.6 (a recombinant plasmid encoding these can be obtained from Stanford University) to the fluorescent dye. By emitting light (BRET), the emission wavelength is longer than the emission peak wavelength (478 nm) of coelenterazine. As the fluorescent dye that causes such BRET, a fluorescent dye having an absorption wavelength peak in the range of 300 to 600 nm is preferable. Examples of the fluorescent dye having an absorption wavelength peak in the range of 300 to 600 nm include, but are not limited to, the following.

フルオレッセイン系蛍光色素(フルオレッセインイソチオシアネート(FITC)、フルオレッセイン、カルボキシナフトフルオレッセイン等) Fluorescein fluorescent dyes (fluorescein isothiocyanate (FITC), fluorescein, carboxynaphthofluorescein, etc.)

フルオレッセインイソチオシアネート(FITC) Fluorescein isothiocyanate (FITC)

フルオレッセイン Fluorescein

カルボキシナフトフルオレッセイン Carboxynaphthofluorescein

Alexa Fluor系蛍光色素(Alexa Fluor 480(商品名)及びAlexa Fluor 568(商品名)等) Alexa Fluor fluorescent dye (Alexa Fluor 480 (trade name) and Alexa Fluor 568 (trade name), etc.)

Alexa Fluor 480(商品名) Alexa Fluor 480 (trade name)

Alexa Fluor 568(商品名) Alexa Fluor 568 (trade name)

ATTO系蛍光色素(ATTO 590等) ATTO fluorescent dyes (ATTO 590 etc.)

ATTO 590 ATTO 590

BODIPY系蛍光色素(BODIPY TR-X(商品名)等) BODIPY fluorescent dye (BODIPY TR-X (trade name), etc.)

BODIPY TR-X BODIPY TR-X

クマリン系蛍光色素(Coumarin 1(商品名)及びCoumarin 6(商品名)等) Coumarin fluorescent dyes (Coumarin 1 (trade name) and Coumarin 6 (trade name), etc.)

Coumarin 1(商品名) Coumarin 1 (product name)

Coumarin 6(商品名) Coumarin 6 (product name)

Cy系蛍光色素(Cy3等) Cy-based fluorescent dye (Cy3, etc.)

Cy3 Cy3

DY系蛍光色素(DY-405 (商品名)等) DY fluorescent dye (DY-405 (trade name), etc.)

HiLyte Fluor系蛍光色素(HiLyte Fluor 555 Labeling Kit - NH2 (商品名)等) HiLyte Fluor fluorescent dye (HiLyte Fluor 555 Labeling Kit-NH2 (trade name), etc.)

IRDye(商品名)系蛍光色素(IRDye 650 Alkyne(商品名)及びIRDye 750 Carboxylate(商品名)等) IRDye (trade name) -based fluorescent dye (IRDye 650 Alkyne (trade name) and IRDye 750 Carboxylate (trade name), etc.)

IRDye 650 Alkyne(商品名) IRDye 650 Alkyne (trade name)

Nile Brue Nile Brue

Nile Red Nile Red

PromoFluor系蛍光色素(PF-405 (商品名)等) PromoFluor fluorescent dye (PF-405 (trade name), etc.)

ローダミン系蛍光色素(ローダミンB、ローダミン101等) Rhodamine fluorescent dye (Rhodamine B, Rhodamine 101, etc.)

ローダミンB Rhodamine B

ローダミン101 Rhodamine 101

SYTO系蛍光色素(SYTO 9 Stain (商品名)等) SYTO fluorescent dye (SYTO 9 Stain (trade name), etc.)

クロロフィル系蛍光色素 Chlorophyll-based fluorescent dye

一般式[I]中のAは、上記したような蛍光色素を含む蛍光色素部である。蛍光色素部は、蛍光色素のみから成っていてもよいし、セレンテラジンに蛍光色素を結合するリンカーを含んでいてもよい。リンカーは、蛍光色素とセレンテラジンとを結合するものであるから、構造は特に限定されるものではなく、蛍光色素とセレンテラジンとを結合できてBRETに悪影響を与えない構造であれば何ら限定されるものではない。好ましくは、アルキレン基や、アルキレン基の末端に蛍光色素との結合に供した官能基の残基を有するもの等が挙げられる。下記の実施例では、FITCのイソチオシアネート基とセレンテラジンの6位のヒドロキシル基とを-NH-CH2-CH2-O-の構造を介して結合している(右端の-O-は、セレンテラジンの6位のヒドロキシル基の残基)が、これをリンカーと考えることができる。リンカーのサイズは特に限定されないが、BRETが起きるためには、蛍光色素とセレンテラジンの距離が1nm〜10nm程度であることが望まれるので、リンカーの主鎖の原子数は3〜5程度が望まれる(-NH-CH2-CH2-O-の場合には、主鎖の原子数は4)。 A in the general formula [I] is a fluorescent dye part including the fluorescent dye as described above. The fluorescent dye part may consist of only the fluorescent dye, or may include a linker that binds the fluorescent dye to coelenterazine. The linker binds the fluorescent dye and coelenterazine, so the structure is not particularly limited. Any structure that can bind the fluorescent dye and coelenterazine and does not adversely affect BRET is limited. is not. Preferable examples include alkylene groups and those having functional group residues used for bonding with fluorescent dyes at the ends of the alkylene groups. In the following example, the isothiocyanate group of FITC and the hydroxyl group at the 6-position of coelenterazine are bonded via the structure of —NH—CH 2 —CH 2 —O— (the rightmost —O— is coelenterazine). The residue of the 6-position hydroxyl group) can be considered as a linker. The size of the linker is not particularly limited, but in order for BRET to occur, the distance between the fluorescent dye and coelenterazine is desirably about 1 nm to 10 nm, so the number of atoms in the main chain of the linker is desirably about 3 to 5. (In the case of —NH—CH 2 —CH 2 —O—, the number of atoms in the main chain is 4).

セレンテラジン及びその製造方法も、蛍光色素及びその製造方法も公知であるので、本発明の蛍光色素結合セレンテラジンは、有機化学の常識に従って化学合成することが可能で有り、下記実施例にも蛍光色素がFITCであるものの合成方法が詳細に記載されている。   Since coelenterazine and its production method are also known, and the fluorescent dye and its production method are known, the fluorescent dye-bound coelenterazine of the present invention can be chemically synthesized according to common sense of organic chemistry. The synthesis method of what is FITC is described in detail.

酵素Rlucやその改変体であるRluc8やRluc8.6は周知の通り酵素標識として用いられるので、本発明の蛍光色素結合セレンテラジンは、セレンテラジンと全く同様にしてRluc8やRluc8.6の基質として生体内イメージングに用いることができる。   Since the enzyme Rluc and its modified Rluc8 and Rluc8.6 are used as enzyme labels as is well known, the fluorescent dye-conjugated coelenterazine of the present invention is used as an in vivo imaging as a substrate for Rluc8 and Rluc8.6 in exactly the same manner as coelenterazine. Can be used.

以下、本発明を実施例に基づき具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。   Hereinafter, the present invention will be specifically described based on examples. However, the present invention is not limited to the following examples.

実施例1 FITC-セレンテラジンの合成
セレンテラジン(CTZ)とFITCを結合させたモデル分子の全合成スキームを以下に示した。まず、アジド基を修飾したセレンテラミンを合成し、これとアセタール保護されたピルビンアルデヒドを反応させ、アジド基修飾のセレンテラジンを合成した。その後、水素化還元反応によりアジド基をアミン基にし、FITCのイソチオシアネートの部分と結合させた。以下のように12ステップ中すべての合成にトータル収率0.58%で成功した。各々の工程の詳細を説明する。
Example 1 Synthesis of FITC-Coelenterazine A total synthesis scheme of model molecules in which coelenterazine (CTZ) and FITC are combined is shown below. First, coelenteramine modified with an azide group was synthesized, and this was reacted with acetal-protected pyruvic aldehyde to synthesize coelenterazine modified with an azide group. Thereafter, the azide group was converted to an amine group by a hydroreduction reaction, which was combined with the isothiocyanate portion of FITC. As shown below, all syntheses in 12 steps were successful with a total yield of 0.58%. Details of each step will be described.

試薬は和光純薬、関東化学、東京化成、またはシグマアルドリッチから購入し、精製せずそのまま用いた。 NMRはJEOL社のECA500を用い、内部標準としてテトラメチルシラン(TMS、0 ppm)を用いた。   Reagents were purchased from Wako Pure Chemical, Kanto Chemical, Tokyo Kasei, or Sigma-Aldrich and used as they were without purification. NMR used ECA500 of JEOL, and tetramethylsilane (TMS, 0 ppm) as an internal standard.

窒素雰囲気下、200 ml三口フラスコに化合物(1)(2.0 g, 21.0 mmol, 1.0 eq.), THF (25 ml)を入れ攪拌した。次に、N-bromosuccinimide (8.2 g, 46.1 mmol, 2.2 eq.) をTHF (25 ml)に溶解させたものを0 ℃で滴下し、室温で20分間撹拌した。   Under a nitrogen atmosphere, Compound (1) (2.0 g, 21.0 mmol, 1.0 eq.) And THF (25 ml) were placed in a 200 ml three-necked flask and stirred. Next, N-bromosuccinimide (8.2 g, 46.1 mmol, 2.2 eq.) Dissolved in THF (25 ml) was added dropwise at 0 ° C. and stirred at room temperature for 20 minutes.

反応終了後、不純物をセライト濾過した。そして、そのろ液を酢酸エチルで抽出、H2Oとsat.NH4Cl aq.で洗浄し、Na2SO4で乾燥させ、濃縮した。得られた残渣の一部をシリカゲルカラムクロマトグラフィー(溶離液 : n -ヘキサン:酢酸エチル = 7 : 3) で分離精製、濃縮して目的化合物 (2) (3.16 g, 収率:60 %) を白色の固体として得た。 After completion of the reaction, impurities were filtered through celite. The filtrate was extracted with ethyl acetate, washed with H 2 O and sat.NH 4 Cl aq., Dried over Na 2 SO 4 and concentrated. Part of the resulting residue was separated and purified by silica gel column chromatography (eluent: n-hexane: ethyl acetate = 7: 3) and concentrated to obtain the target compound (2) (3.16 g, yield: 60%). Obtained as a white solid.

・TLC (シリカゲル):Rf = 0.53 (溶離液:n - ヘキサン/酢酸エチル = 7/3 (v/v))
1H-NMR (500 MHz, CDCl3, TMS, r.t.)
δ=8.04 (s, 1H), 5.05 (s, 2H)
・ TLC (silica gel): R f = 0.53 (eluent: n-hexane / ethyl acetate = 7/3 (v / v))
1 H-NMR (500 MHz, CDCl 3 , TMS, rt)
δ = 8.04 (s, 1H), 5.05 (s, 2H)

100 ml 三口ナスフラスコ(A)にZnCl2 (1.62 g, 11.9 mmol, 3.0 eq. )を入れて、予め真空乾燥をした。次にそのフラスコにEt2O (26.7 ml) を投入し、撹拌した。 ZnCl 2 (1.62 g, 11.9 mmol, 3.0 eq.) Was put into a 100 ml three-necked eggplant flask (A), and vacuum-dried in advance. The flask was then charged with Et 2 O (26.7 ml) and stirred.

次に、予め真空脱気した50 ml 二口ナスフラスコにTHF (5.0 ml)を入れ、そこにBenzylmagnesium Chloride 2.0M THF溶液 (4.37 ml, 8.70 mmol, 2.2 eq.)を滴下した。この溶液を、先ほどの三口ナスフラスコ(A)に滴下した。次に、100 ml 二口ナスフラスコに化合物(2) (1.0 g, 3.95 mmol, 1 eq.)を入れて真空乾燥させた。そこに、THF (7 ml)を加えて攪拌し、その溶液を三口ナスフラスコ(A)に加えた。最後に、(Ph3P)2PdCl2 (ミクロスパチュラ1杯程度)をいれ、常温で17時間攪拌を行った。Pd触媒を入れる前後では3回ずつ真空脱気を行った。 Next, THF (5.0 ml) was placed in a 50 ml two-necked eggplant flask that had been degassed in advance, and Benzylmagnesium Chloride 2.0M THF solution (4.37 ml, 8.70 mmol, 2.2 eq.) Was added dropwise thereto. This solution was added dropwise to the three-necked eggplant flask (A). Next, the compound (2) (1.0 g, 3.95 mmol, 1 eq.) Was placed in a 100 ml two-necked eggplant flask and vacuum-dried. Thereto was added THF (7 ml) and stirred, and the solution was added to the three-necked eggplant flask (A). Finally, (Ph 3 P) 2 PdCl 2 (about 1 cup of micro spatula) was added and stirred at room temperature for 17 hours. Vacuum degassing was performed three times before and after the Pd catalyst was added.

反応終了後、不純物をセライト濾過した。そしてそのろ液を酢酸エチルで抽出、H2Oとsat.NaHCO3 aq.で洗浄し、Na2SO4で乾燥させ、濃縮した。得られた残渣をシリカゲルフラッシュカラムクロマトグラフィー(溶離液 : n - ヘキサン:酢酸エチル = 9:1 → 4:1 ) で分離精製し、目的化合物(3) (0.617 g, 収率60%)を黄色液体として得た。 After completion of the reaction, impurities were filtered through celite. The filtrate was extracted with ethyl acetate, washed with H 2 O and sat. NaHCO 3 aq., Dried over Na 2 SO 4 and concentrated. The obtained residue was separated and purified by silica gel flash column chromatography (eluent: n-hexane: ethyl acetate = 9: 1 → 4: 1) to give the target compound (3) (0.617 g, 60% yield) as yellow Obtained as a liquid.

・TLC (シリカゲル):Rf = 0.25 (溶離液:n - ヘキサン/酢酸エチル = 4/1 v/v)
1H-NMR (300 MHz, CDCl3, TMS, r.t.)
δ=8.04 (s, 1H), 7.21-7.34 (m, 5H), 4.37 (s, 2H), 4.09 (s, 2H)
・ TLC (silica gel): R f = 0.25 (eluent: n-hexane / ethyl acetate = 4/1 v / v)
1 H-NMR (300 MHz, CDCl 3 , TMS, rt)
δ = 8.04 (s, 1H), 7.21-7.34 (m, 5H), 4.37 (s, 2H), 4.09 (s, 2H)

窒素雰囲気下、200 ml二口フラスコに化合物(4)(1.0 g, 4.5 mmol, 1.0 eq.), K2CO3(0.82 g, 5.9 mmol, 1.3 eq.), およびアセトン(20 ml)を入れ撹拌した。次に、1,2-dibromoethane(4.1 g, 22.7 mmol, 22.7 eq.), KI(0.02 g, 0.1 mmol, 0.02 eq.)をアセトン(20 ml)に溶解させたものを反応系に入れ、70 ℃で16時間撹拌した。 Under a nitrogen atmosphere, put compound (4) (1.0 g, 4.5 mmol, 1.0 eq.), K 2 CO 3 (0.82 g, 5.9 mmol, 1.3 eq.), And acetone (20 ml) in a 200 ml two-necked flask. Stir. Next, 1,2-dibromoethane (4.1 g, 22.7 mmol, 22.7 eq.), KI (0.02 g, 0.1 mmol, 0.02 eq.) Dissolved in acetone (20 ml) was added to the reaction system, and 70 Stir at 16 ° C. for 16 hours.

反応終了後、CH2Cl2で抽出、H2Oとsat.NaCl aq.で洗浄し、Na2SO4で乾燥させ、濃縮した。得られた残渣をシリカゲルフラッシュカラムクロマトグラフィー(溶離液 : クロロホルム)で分離精製し、目的化合物(3) (0.446 g, 収率20%)を白色個体として得た。 After completion of the reaction, the mixture was extracted with CH 2 Cl 2 , washed with H 2 O and sat. NaCl aq., Dried over Na 2 SO 4 and concentrated. The obtained residue was separated and purified by silica gel flash column chromatography (eluent: chloroform) to obtain the target compound (3) (0.446 g, yield 20%) as a white solid.

・TLC (シリカゲル):Rf = 0.85 (溶離液:クロロホルム 100%)
1H-NMR (300 MHz, CDCl3, TMS, r.t.)
δ=7.68 (d, J = 9.0 Hz, 2H), 6.92 (d, J = 8.4 Hz, 2H), 4.32 (t, J = 5.7 Hz, 2H), 3.70 (t, J = 6.0 Hz, 2H), 1.33 (s, 12H)
・ TLC (silica gel): R f = 0.85 (eluent: chloroform 100%)
1 H-NMR (300 MHz, CDCl 3 , TMS, rt)
δ = 7.68 (d, J = 9.0 Hz, 2H), 6.92 (d, J = 8.4 Hz, 2H), 4.32 (t, J = 5.7 Hz, 2H), 3.70 (t, J = 6.0 Hz, 2H), 1.33 (s, 12H)

窒素雰囲気下,50ml二口フラスコに化合物(5)(350 mg,1.07 mmol, 1.0 eq.), DMF (10 ml), NaN3(83 mg, 1.28 mmol, 1.2 eq.)を入れて、100 ℃にて1時間攪拌を行った。 In a nitrogen atmosphere, put compound (5) (350 mg, 1.07 mmol, 1.0 eq.), DMF (10 ml), NaN 3 (83 mg, 1.28 mmol, 1.2 eq.) In a 50 ml two-necked flask at 100 ° C The mixture was stirred for 1 hour.

反応終了後、トルエンで抽出、H2Oとsat.NaCl aq.で洗浄し、Na2SO4で乾燥させ、濃縮した。そして、目的化合物(6)(299 mg, 収率97%)を白色個体として得た。 After completion of the reaction, the mixture was extracted with toluene, washed with H 2 O and sat.NaCl aq., Dried over Na 2 SO 4 and concentrated. Then, the target compound (6) (299 mg, yield 97%) was obtained as a white solid.

・TLC (シリカゲル):Rf = 0.63 (溶離液:クロロホルム 100%)
1H-NMR (300 MHz, CD3OD, TMS, r.t.)
δ=7.68 (d, J = 9.0 Hz, 2H), 6.93 (d, J = 8.4 Hz, 2H), 4.18 (t, J = 4.5 Hz, 5H), 3.59 (t, J = 4.8 Hz, 2H), 1.33 (s, 12H)
・ TLC (silica gel): R f = 0.63 (eluent: chloroform 100%)
1 H-NMR (300 MHz, CD 3 OD, TMS, rt)
δ = 7.68 (d, J = 9.0 Hz, 2H), 6.93 (d, J = 8.4 Hz, 2H), 4.18 (t, J = 4.5 Hz, 5H), 3.59 (t, J = 4.8 Hz, 2H), 1.33 (s, 12H)

窒素雰囲気下、100 ml三口フラスコに化合物(3)(0.660 g, 2.50 mmol, 1.0 eq.), 化合物(6)(1.0 g, 3.46 mmol, 1.6 eq.), エタノール(5 ml), トルエン(15 ml), および1 M Na2CO3 aq.(7 ml)をいれ撹拌した。最後に、Pd(Ph3P)4 (ミクロスパチュラ1杯程度)をいれ、100 ℃20時間攪拌を行った。Pd触媒を入れる前後では3回ずつ真空脱気を行った。 Compound (3) (0.660 g, 2.50 mmol, 1.0 eq.), Compound (6) (1.0 g, 3.46 mmol, 1.6 eq.), Ethanol (5 ml), Toluene (15) in a 100 ml three-necked flask under nitrogen atmosphere ml), and 1 M Na 2 CO 3 aq. (7 ml) were added and stirred. Finally, Pd (Ph 3 P) 4 (about 1 cup of micro spatula) was added and stirred at 100 ° C. for 20 hours. Vacuum degassing was performed three times before and after the Pd catalyst was added.

反応終了後、不純物をセライト濾過した。そして、そのろ液を酢酸エチルで抽出、H2Oとsat.NaHCO3 aq.で洗浄し、Na2SO4で乾燥させ、濃縮した。得られた残渣をフラッシュカラムクロマトグラフィー(溶離液 :クロロホルム:酢酸エチル = 19 : 1 → 9 : 1) で分離精製し、目的化合物(7)(0.590 g, 収率68%)を白色個体として得た。 After completion of the reaction, impurities were filtered through celite. The filtrate was extracted with ethyl acetate, washed with H 2 O and sat. NaHCO 3 aq., Dried over Na 2 SO 4 and concentrated. The resulting residue was separated and purified by flash column chromatography (eluent: chloroform: ethyl acetate = 19: 1 → 9: 1) to obtain the target compound (7) (0.590 g, yield 68%) as a white solid. It was.

・TLC (シリカゲル):Rf = 0.24 (溶離液:クロロホルム/酢酸エチル = 19/1 v/v)
・1H-NMR (300 MHz, CDCl3, TMS, r.t.)
δ= 8.33 (s, 1H), 7.89 (d, J = 9 Hz, 2H), 7.19-7.38 (m, 5H), 7.01 (d, J = 8.7 Hz,2H), 4.37 (s,2H), 4.18-4.22 (m, 4H), 3.63 (t, J = 4.8 Hz, 2H)
・ TLC (silica gel): R f = 0.24 (eluent: chloroform / ethyl acetate = 19/1 v / v)
・ 1H-NMR (300 MHz, CDCl 3 , TMS, rt)
δ = 8.33 (s, 1H), 7.89 (d, J = 9 Hz, 2H), 7.19-7.38 (m, 5H), 7.01 (d, J = 8.7 Hz, 2H), 4.37 (s, 2H), 4.18 -4.22 (m, 4H), 3.63 (t, J = 4.8 Hz, 2H)

窒素雰囲気下、1 L三口ナスフラスコに、化合物(9)(10.0 g, 82.7 mmol, 1.0 eq.)および、t-ブチルジメチルシリルクロリド(13.64 g, 90.5 mmol, 1.1 eq.)を加え, CH2Cl2(400 mL)に溶解させ、0℃に冷却した。これにトリエチルアミン(14 mL, 99.2 mmol, 1.2 eq.)を加え、ゆっくりと室温に戻し、一晩反応させた。 Under a nitrogen atmosphere, add compound (9) (10.0 g, 82.7 mmol, 1.0 eq.) And t-butyldimethylsilyl chloride (13.64 g, 90.5 mmol, 1.1 eq.) To a 1 L three-necked eggplant flask, CH 2 Dissolved in Cl 2 (400 mL) and cooled to 0 ° C. Triethylamine (14 mL, 99.2 mmol, 1.2 eq.) Was added thereto, and the mixture was slowly returned to room temperature and allowed to react overnight.

反応終了後、反応液を一部濃縮し、CH2Cl2で抽出、H2Oとsat.NaCl aq.で洗浄し、Na2SO4で乾燥させ、濃縮した。得られた液体をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル = 9:1)で分離精製、濃縮して目的化合物(10)(18.68 g, 収率96 %)を無色の液体として得た。 After completion of the reaction, the reaction solution was partially concentrated, extracted with CH 2 Cl 2 , washed with H 2 O and sat.NaCl aq., Dried over Na 2 SO 4 and concentrated. The obtained liquid was separated and purified by silica gel column chromatography (n-hexane: ethyl acetate = 9: 1) and concentrated to obtain the target compound (10) (18.68 g, yield 96%) as a colorless liquid.

・TLC(シリカ) : Rf = 0.63 (n-ヘキサン/酢酸エチル= 4 / 1)
・1H-NMR (300 MHz, CDCl3, TMS, r.t.)
δ= 9.89 (s, 1H), 7.79 (d, J = 8.7 Hz, 2H), 6.95(d, J = 8.4 Hz, 2H), 0.96 (s, J = 23.7 Hz, 9H), 0.25 (s, 6H)
・ TLC (silica): R f = 0.63 (n-hexane / ethyl acetate = 4/1)
・ 1H-NMR (300 MHz, CDCl 3 , TMS, rt)
δ = 9.89 (s, 1H), 7.79 (d, J = 8.7 Hz, 2H), 6.95 (d, J = 8.4 Hz, 2H), 0.96 (s, J = 23.7 Hz, 9H), 0.25 (s, 6H )

窒素雰囲気下、1 L三口ナスフラスコに、化合物(10)(18.6 g, 78.7 mmol, 1.0 eq.)を加え、メタノール300 mLに溶解させた。これに水素化ホウ素ナトリウム(3.57 g, 94.3 mmol, 1.2 eq.)を加え、室温で30分間反応させた。   Under a nitrogen atmosphere, compound (10) (18.6 g, 78.7 mmol, 1.0 eq.) Was added to a 1 L three-necked eggplant flask and dissolved in 300 mL of methanol. To this, sodium borohydride (3.57 g, 94.3 mmol, 1.2 eq.) Was added and reacted at room temperature for 30 minutes.

反応終了後、反応液を濃縮し、CH2Cl2で抽出、H2Oとsat.NaCl aq.で洗浄し、Na2SO4で乾燥させ、濃縮して、目的化合物(13)(14.65 g, 収率78%)を無色の液体として得た。得られた無色の液体はそれ以上精製せず、そのまま次の反応に用いた。 After completion of the reaction, the reaction mixture was concentrated, extracted with CH 2 Cl 2 , washed with H 2 O and sat.NaCl aq., Dried over Na 2 SO 4 , concentrated, and the target compound (13) (14.65 g , Yield 78%) was obtained as a colorless liquid. The obtained colorless liquid was used for the next reaction without further purification.

・TLC (シリカゲル):Rf = 0.09(溶離液:n - ヘキサン/酢酸エチル = 9/1 v/v)
・1H-NMR (300 MHz, CDCl3, TMS, r.t.)
δ= 7.24 (d, J = 8.4 Hz, 2H), 6.83 (d, J = 8.4 Hz, 2H), 4.61 (s, 2H), 0.95 (s, 9H), 0.20 (s, 6H)
・ TLC (silica gel): R f = 0.09 (eluent: n-hexane / ethyl acetate = 9/1 v / v)
・ 1H-NMR (300 MHz, CDCl 3 , TMS, rt)
δ = 7.24 (d, J = 8.4 Hz, 2H), 6.83 (d, J = 8.4 Hz, 2H), 4.61 (s, 2H), 0.95 (s, 9H), 0.20 (s, 6H)

窒素雰囲気下、500 mL三口ナスフラスコに、化合物(13)(7.0 g, 29.3 mmol, 1.0 eq.)を加え、CH2Cl2(150 mL)に溶解させた。これを0 ℃に冷却して、トリエチルアミン(8.0 mL, 58.6 mmol, 2.0 eq.)を加え、15分間撹拌した。これを室温に戻した後、CH2Cl2(50 mL)に溶解させたメタンスルホニルクロリド(3.4 g, 44.6 mmol, 1.5 eq.)を加え、3時間反応させた。 Under a nitrogen atmosphere, compound (13) (7.0 g, 29.3 mmol, 1.0 eq.) Was added to a 500 mL three-necked eggplant flask and dissolved in CH 2 Cl 2 (150 mL). This was cooled to 0 ° C., triethylamine (8.0 mL, 58.6 mmol, 2.0 eq.) Was added, and the mixture was stirred for 15 minutes. After returning this to room temperature, methanesulfonyl chloride (3.4 g, 44.6 mmol, 1.5 eq.) Dissolved in CH 2 Cl 2 (50 mL) was added and reacted for 3 hours.

反応終了後、反応液を一部濃縮し、CH2Cl2で抽出、H2Oとsat.NaCl aq.で洗浄し、Na2SO4で乾燥させ、濃縮した。得られた液体をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル = 95:5)で分離精製、濃縮して無色液体の目的化合物(12)(5.09 g, 収率68 %で得た。 After completion of the reaction, the reaction solution was partially concentrated, extracted with CH 2 Cl 2 , washed with H 2 O and sat.NaCl aq., Dried over Na 2 SO 4 and concentrated. The obtained liquid was separated and purified by silica gel column chromatography (n-hexane: ethyl acetate = 95: 5) and concentrated to obtain the target compound (12) (5.09 g, yield 68%) as a colorless liquid.

・TLC (シリカゲル):Rf = 0.78(溶離液:n - ヘキサン/酢酸エチル = 9/1 v/v)
・1H-NMR (500 MHz, CDCl3, TMS, r.t.)
δ= 7.24 (d, J = 8.6 Hz,2H), 6.81 (d, J = 8.6 Hz, 2H), 4.55 (s,2H), 0.98 (s, 9H), 0.20 (s, 6H)
・ TLC (silica gel): R f = 0.78 (eluent: n-hexane / ethyl acetate = 9/1 v / v)
・ 1H-NMR (500 MHz, CDCl 3 , TMS, rt)
δ = 7.24 (d, J = 8.6 Hz, 2H), 6.81 (d, J = 8.6 Hz, 2H), 4.55 (s, 2H), 0.98 (s, 9H), 0.20 (s, 6H)

アルゴン雰囲気下、200 mL三口ナスフラスコに化合物(12)(4.0 g, 15.6 mmol, 1 eq.)を入れ、真空乾燥した。その後、THF(40 ml)を加え、撹拌した。次に200 mL三口ナスフラスコ(A)に、マグネシウム(775 mg, 31.9 mmol, 2.0 eq.)を加え、真空乾燥した。これにTHF(10 mL)を入れた。そして化合物(12) THF溶液を(A)に取り付けた滴下ロートに入れた。そして(A)に1,2-dibromoethane(1 mL, 触媒量)を加え、手で温めながら攪拌し、マグネシウムを活性化させた。続いて滴下ロートから10分間かけて滴下した。滴下後、反応液を50℃で1時間加熱し、その後室温に戻して、褐色溶液の化合物を得た。得られた化合物はそれ以上精製せず、すぐに次の反応に用いた。   Under an argon atmosphere, the compound (12) (4.0 g, 15.6 mmol, 1 eq.) Was placed in a 200 mL three-necked eggplant flask and vacuum dried. Then, THF (40 ml) was added and stirred. Next, magnesium (775 mg, 31.9 mmol, 2.0 eq.) Was added to a 200 mL three-necked eggplant flask (A), followed by vacuum drying. To this was added THF (10 mL). Then, the THF solution of compound (12) was put in a dropping funnel attached to (A). Then, 1,2-dibromoethane (1 mL, catalyst amount) was added to (A) and stirred while warming by hand to activate magnesium. Then, it was dripped over 10 minutes from the dropping funnel. After the dropwise addition, the reaction solution was heated at 50 ° C. for 1 hour and then returned to room temperature to obtain a brown solution compound. The obtained compound was used for the next reaction immediately without further purification.

アルゴン雰囲気下、200 mL二口ナスフラスコに、エチルジエトキシアセテート3.2 mL(15.6 mmol, 1 eq.)を加え、THF 30 mLに溶解させて-78℃に冷却した。これに、 先ほど合成した化合物のTHF溶液を20分間かけて滴下し、2時間反応させた。   Under an argon atmosphere, 3.2 mL (15.6 mmol, 1 eq.) Of ethyl diethoxyacetate was added to a 200 mL two-necked eggplant flask, dissolved in 30 mL of THF, and cooled to −78 ° C. To this, the THF solution of the compound synthesized earlier was added dropwise over 20 minutes, and reacted for 2 hours.

反応後、水を加えて反応を停止し、室温に戻した。酢酸エチルで抽出、H2Oとsat.NaHCO3 aq.で洗浄し、Na2SO4で乾燥させ、濃縮した。得られた液体を, シリカゲルフラッシュカラムクロマトグラフィー(n-ヘキサン:酢酸エチル = 95:5 )で分離精製、濃縮して目的化合物(13)(2.98 mg, 収率54%)を無色の液体として得た。 After the reaction, water was added to stop the reaction, and the temperature was returned to room temperature. Extracted with ethyl acetate, washed with H 2 O and sat. NaHCO 3 aq., Dried over Na 2 SO 4 and concentrated. The obtained liquid was separated and purified by silica gel flash column chromatography (n-hexane: ethyl acetate = 95: 5) and concentrated to obtain the target compound (13) (2.98 mg, 54% yield) as a colorless liquid. It was.

・TLC (シリカゲル):Rf = 0.56 (溶離液:n-ヘキサン:酢酸エチル= 9/1 v/v)
・1H-NMR (300 MHz, CDCl3, TMS, r.t.)
δ= 7.07 (d, J = 8.4 Hz, 2H), 6.78 (d, J = 8.4 Hz, 2H), 4.63 (s, 1H), 3.81 (s, 2H), 3.74-3.63 (m, 2H), 3.58-3.48 (m, 2H), 1.24 (t, J = 6.9 Hz, 6H), 0.98 (s, 9H), 0.18 (s, 6H)
-TLC (silica gel): R f = 0.56 (eluent: n-hexane: ethyl acetate = 9/1 v / v)
・ 1H-NMR (300 MHz, CDCl 3 , TMS, rt)
δ = 7.07 (d, J = 8.4 Hz, 2H), 6.78 (d, J = 8.4 Hz, 2H), 4.63 (s, 1H), 3.81 (s, 2H), 3.74-3.63 (m, 2H), 3.58 -3.48 (m, 2H), 1.24 (t, J = 6.9 Hz, 6H), 0.98 (s, 9H), 0.18 (s, 6H)

アルゴン気流下、30 ml 二口ナスフラスコに化合物(7) (500 mg, 1.44 mmol, 1 eq.)、化合物(13) (814 g, 2.31 mmol, 1.6 eq.)、EtOH(25 ml)、水(8 ml)に溶かし、最後に、0℃に冷却し、N2下でHCl(4 ml)をいれ、80 ℃でover nightで攪拌を行った。HClを入れる前では3回ずつ真空脱気を行った。 Compound (7) (500 mg, 1.44 mmol, 1 eq.), Compound (13) (814 g, 2.31 mmol, 1.6 eq.), EtOH (25 ml), water in a 30 ml two-necked eggplant flask under an argon stream (8 ml) and finally cooled to 0 ° C., charged with HCl (4 ml) under N 2 and stirred at 80 ° C. overnight. Before adding HCl, vacuum deaeration was performed three times.

反応後、反応液を濃縮し、得られた固体をシリカゲルカラムクロマトグラフィー(酢酸エチル/メタノール=20/1)で精製し、濃縮して、目的化合物(8)(287 mg, 収率40%)を黄色固体として得た。   After the reaction, the reaction mixture was concentrated, and the resulting solid was purified by silica gel column chromatography (ethyl acetate / methanol = 20/1) and concentrated to give the target compound (8) (287 mg, 40% yield). Was obtained as a yellow solid.

・TLC(シリカゲル): Rf=0.43(溶離液: 酢酸エチル/メタノール=20/1, v/v)
1H-NMR( 500 MHz, MeOD, TMS, r.t.)
δ= 7.55(1H, s), 7.41(2H, J = 7.5 Hz, d), 7.31(2H, J = 7.0 Hz, t), 7.23(5H, m), 7.04(2H, J = 9.0 Hz, d), 6.74(2H, J = 8.5 Hz, d), 4.39(2H, s), 4.22(2H, J = 5.0 Hz, t), 4.11(2H, s), 3.64(2H, J = 4.5 Hz, t )
・ TLC (silica gel): R f = 0.43 (eluent: ethyl acetate / methanol = 20/1, v / v)
1 H-NMR (500 MHz, MeOD, TMS, rt)
δ = 7.55 (1H, s), 7.41 (2H, J = 7.5 Hz, d), 7.31 (2H, J = 7.0 Hz, t), 7.23 (5H, m), 7.04 (2H, J = 9.0 Hz, d ), 6.74 (2H, J = 8.5 Hz, d), 4.39 (2H, s), 4.22 (2H, J = 5.0 Hz, t), 4.11 (2H, s), 3.64 (2H, J = 4.5 Hz, t )

アルゴン気流下、30 ml二口ナスフラスコに化合物(8)(19.8 mg, 0.04 mmol, 1.0 eq)、CH2Cl2(3 mL)、MeOH(5 ml)に溶かし、撹拌した。脱気を三回行った後、5% Pd/C(ミクロスパチュラ1杯程度)を入れ、ふたたび真空脱気を行った。そして、水素バルーンにつけかえた後、再び真空脱気して水素を充填し、3時間撹拌した。反応終了後、セライトろ過を行い、ろ液を濃縮した。精製をせずに次の反応をかけた。 Under an argon stream, the compound (8) (19.8 mg, 0.04 mmol, 1.0 eq), CH 2 Cl 2 (3 mL), and MeOH (5 ml) were dissolved in a 30 ml two-necked eggplant flask and stirred. After degassing three times, 5% Pd / C (about 1 cup of micro spatula) was added and vacuum degassing was performed again. Then, after replacing with a hydrogen balloon, it was vacuum degassed again, filled with hydrogen, and stirred for 3 hours. After completion of the reaction, celite filtration was performed, and the filtrate was concentrated. The following reaction was performed without purification.

・TLC (ODS-18):Rf = 0 (溶離液:水/メタノール = 1/1 v/v)
・MALDI-TOF-MS(positive mode, CHCA): m/z=467.08 [M+H]+
・ TLC (ODS-18): R f = 0 (eluent: water / methanol = 1/1 v / v)
・ MALDI-TOF-MS (positive mode, CHCA): m / z = 467.08 [M + H] +

窒素気流下、30 ml 二口ナスフラスコに化合物(14)crude、THF(3.0 ml)、MeOH(5 ml)、fluorescein isothiocyanate(7.8 mg, 0.02 mmol )に溶かし、40℃で3時間撹拌した。その後、反応液を濃縮し、逆相カラムクロマトグラフィー(溶離液:水:メタノール = 1:4)でかきとり精製を行い、次いで逆相カラムクロマトグラフィー(溶離液:水:アセトニトリル = 1:2)を行なった。その後、アセトンとヘキサンを用いて、再沈殿により精製した。精製された目的化合物(15)は(2.12 mg, 収率6%)を赤色固体として得た。   Under a nitrogen stream, the compound (14) crude, THF (3.0 ml), MeOH (5 ml), and fluorescein isothiocyanate (7.8 mg, 0.02 mmol) were dissolved in a 30 ml two-necked eggplant flask and stirred at 40 ° C. for 3 hours. Thereafter, the reaction solution is concentrated, and scraped and purified by reverse-phase column chromatography (eluent: water: methanol = 1: 4), followed by reverse-phase column chromatography (eluent: water: acetonitrile = 1: 2). I did it. Then, it refine | purified by reprecipitation using acetone and hexane. The purified target compound (15) was obtained as a red solid (2.12 mg, yield 6%).

・TLC(ODS-18): Rf=0.58 (溶離液: 水/MeOH=1/4, v/v)
1H-NMR( 500 MHz, MeOD, TMS, r.t.)
δ= 8.11(1H, J = 2.0 Hz d), 7.71(1H, J = 7.0 Hz, d), 7.59(2H, s), 7.38(2H, J = 7.5 Hz, d), 7.28(2H, J = 7.0 Hz, t), 7.22(1H, J = 7.5 Hz, t), 7.14(5H, m), 6.68(6H, m), 6.54(2H, J = 8.5 Hz q), 4.40(2H, s), 4.30(2H, J = 5.5 Hz, t), 4.60(4H, m)
・ TLC (ODS-18): R f = 0.58 (eluent: water / MeOH = 1/4, v / v)
1 H-NMR (500 MHz, MeOD, TMS, rt)
δ = 8.11 (1H, J = 2.0 Hz d), 7.71 (1H, J = 7.0 Hz, d), 7.59 (2H, s), 7.38 (2H, J = 7.5 Hz, d), 7.28 (2H, J = 7.0 Hz, t), 7.22 (1H, J = 7.5 Hz, t), 7.14 (5H, m), 6.68 (6H, m), 6.54 (2H, J = 8.5 Hz q), 4.40 (2H, s), 4.30 (2H, J = 5.5 Hz, t), 4.60 (4H, m)

実施例2 発光特性
実施例1で合成したセレンテラジン(CTZ)とFITCとの6位結合体(CTZ-6-FITC)の化学発光特性を調べた。
Example 2 Luminescent properties The chemiluminescent properties of the 6-position conjugate of coelenterazine (CTZ) and FITC synthesized in Example 1 (CTZ-6-FITC) were examined.

1-1 装置と測定条件
以下に示す装置条件にて測定を行った。測定溶媒にはメタノール、ジメチルスルホキシド(関東化学、蛍光分析用)、PBSバッファー(pH 7.4, ニッポンジーン)を用いた。化学発光スペクトルの測定においては蛍光光度計用いた。
1-1 Apparatus and measurement conditions Measurement was performed under the following apparatus conditions. Methanol, dimethyl sulfoxide (Kanto Chemical, for fluorescence analysis), and PBS buffer (pH 7.4, Nippon Gene) were used as measurement solvents. A fluorometer was used in the measurement of the chemiluminescence spectrum.

・蛍光光度計 F-7000 (Model FL-3-11, Horiba Jobin Yvon Co.,Kyoto,Japan)
測定波長:350-650 nm
波長送り幅:0.5 nm
スキャンスピード:1200 nm / min
スリット幅(検出光):25 nm
・測定試料 CTZ-6-FITC
・測定条件
・ Fluorometer F-7000 (Model FL-3-11, Horiba Jobin Yvon Co., Kyoto, Japan)
Measurement wavelength: 350-650 nm
Wavelength feed width: 0.5 nm
Scanning speed: 1200 nm / min
Slit width (detection light): 25 nm
・ Measurement sample CTZ-6-FITC
·Measurement condition

試料をメタノールに溶解させ、1 mMの溶液とした。上記のメタノール溶液を100 μL、PBSバッファーを100 μLまたは炭酸バッファー(pH 9.6)を測定容器に取り、これにDMSO 2 mLを加えて混ぜ、ただちに測定を行った。     The sample was dissolved in methanol to give a 1 mM solution. 100 μL of the above methanol solution, 100 μL of PBS buffer or carbonate buffer (pH 9.6) was placed in a measurement container, and 2 mL of DMSO was added thereto and mixed, and measurement was performed immediately.

1-2 化学発光スペクトル
図1に化学発光スペクトルを示す。スペクトルは最大発光強度を1.0として規格化した。
1-2 Chemiluminescence spectrum Figure 1 shows the chemiluminescence spectrum. The spectrum was normalized by setting the maximum emission intensity to 1.0.

1-3 CTZ-6-FITCの化学発光特性の考察
図1から最大発光波長は表1のようになった。またCTZの発光ピーク(文献値)についても併せて示した。
1-3 Consideration of chemiluminescence characteristics of CTZ-6-FITC From Table 1, the maximum emission wavelength is as shown in Table 1. The emission peak of CTZ (document values) is also shown.

図1および表1から、ドナーであるセレンテラジンからアクセプターであるFITCへのエネルギー-移動が観測でき、また、化学発光において61 nmの長波長化に成功した。このことから、セレンテラジンにFITCを結合させることにより、エネルギー移動が起きたことを確認できた。また、CTZ由来の発光ピークは、pH7.4において449 nm、pH9.6においてだと438 nmであった。一般的にCTZは、塩基の非存在下では、Phenolate anionの形態で発光することが知られている。しかし、中性条件下において、CTZ-6-FITCはそれよりもBlue-shiftしている。これはおそらくセレンテラジンの6位の水酸基をなくしてしまったことによる影響であると予想できる。また塩基性条件下において、CTZはPyrazine anionの形態をとるが、これも同様の理由により、Blue-shiftしてしまったことが予想される。   From FIG. 1 and Table 1, the energy-transfer from the donor coelenterazine to the acceptor FITC was observed, and the chemiluminescence wavelength was successfully increased to 61 nm. This confirms that energy transfer occurred by binding FITC to coelenterazine. The emission peak derived from CTZ was 449 nm at pH 7.4 and 438 nm at pH 9.6. In general, CTZ is known to emit light in the form of Phenolate anion in the absence of a base. However, under neutral conditions, CTZ-6-FITC is more blue-shifted. This is probably due to the loss of the 6-position hydroxyl group of coelenterazine. Under basic conditions, CTZ takes the form of Pyrazine anion, which is also expected to blue-shift for the same reason.

2 CTZ-6-FITCの生物発光特性
2-1 装置と測定条件
測定には以下の装置を用いた。生物発光スペクトルには蛍光分度計、生物発光強度は発光用プレートリーダーを用いた。
2 Bioluminescence properties of CTZ-6-FITC
2-1 Equipment and measurement conditions The following equipment was used for measurement. A fluorescence spectrophotometer was used for the bioluminescence spectrum, and a luminescence plate reader was used for the bioluminescence intensity.

蛍光光度計 F-7000 (Hitachi Co. Ltd., Tokyo, Japan)
測定波長 : 360-650 nm
波長送り幅 : 0.2 nm
スキャンスピード : 1200 nm / min
発光測定用プレートリーダー : Lumat LB9507 (single tube type luminometer)
測定時間 : 1 sec
Fluorometer F-7000 (Hitachi Co. Ltd., Tokyo, Japan)
Measurement wavelength: 360-650 nm
Wavelength feed width: 0.2 nm
Scanning speed: 1200 nm / min
Luminescence plate reader: Lumat LB9507 (single tube type luminometer)
Measurement time: 1 sec

・測定試料
基質 CTZ-6-azide
CTZ-6-FITC
酵素 Rluc
Rluc8
Rluc8.6
・ Measurement sample Substrate CTZ-6-azide
CTZ-6-FITC
Enzyme Rluc
Rluc8
Rluc8.6

CTZ-6-azide CTZ-6-azide

Rluc, Rluc8及びRluc8.6を発現するベクター(入手先:RlucはPromega社、Rluc8およびRluc8.6はDr. Sanjiv S. Gambhir, Stanford Univ.)を用いて、COS-7細胞にRluc, Rluc8及びRluc8.6をそれぞれ発現させ、Promega社のRenilla Luciferase Lysis Bufferを用いて細胞を溶解し、その溶出液を酵素溶液としてそのまま用いた。   Using vectors expressing Rluc, Rluc8, and Rluc8.6 (source: Rluc is Promega, Rluc8 and Rluc8.6 are Dr. Sanjiv S. Gambhir, Stanford Univ.) Rluc8.6 was expressed, cells were lysed using Promega Renilla Luciferase Lysis Buffer, and the eluate was used as an enzyme solution.

・測定条件
生物発光測定は、Promega社のRenilla Luciferase Assay System(Cat. No. E2810)のプロトコルに従って行った。基質CTZ-6-FITCおよびCTZ-6-azideを脱気したメタノールに溶解させ、1 mMとした。これをPromega社のRenilla Luciferase Lysis Bufferで10 μMに希釈し、基質溶液とした。
Measurement conditions Bioluminescence measurement was performed according to the protocol of Promega's Renilla Luciferase Assay System (Cat. No. E2810). Substrates CTZ-6-FITC and CTZ-6-azide were dissolved in degassed methanol to 1 mM. This was diluted with Promega's Renilla Luciferase Lysis Buffer to 10 μM to obtain a substrate solution.

上記の基質溶液100 μLに対し、細胞溶液(Rluc, Rluc8, Rluc8.6)各々20 μLを加え混ぜただちに測定した。また全ての基質及び酵素溶液は、調製直後のものを使用した。   Measurement was performed immediately after adding 20 μL of each of the cell solutions (Rluc, Rluc8, Rluc8.6) to 100 μL of the above substrate solution. All substrates and enzyme solutions were used immediately after preparation.

2-2 酵素認識
CTZ-6-FITCの測定結果を図2に示した。図2の結果より、CTZ-6-azideおよびCTZ-6-FITCはRluc8およびRluc8.6において、酵素によって認識されたことがわかる。また、天然のCTZとそれぞれの強度を表2で比較した。また強度の比較において、CTZ-Rlucの組み合わせを100%とした。
2-2 Enzyme recognition
The measurement result of CTZ-6-FITC is shown in FIG. The results shown in FIG. 2 indicate that CTZ-6-azide and CTZ-6-FITC were recognized by enzymes in Rluc8 and Rluc8.6. Table 2 compares the strength of natural CTZ with that of each. In the comparison of strength, the combination of CTZ-Rluc was set to 100%.

表2の結果より、CTZ-6-azideおよびCTZ-6-FITCは酵素Rluc8.6において天然のセレンテラジンとほぼ同等の発光強度を示した。このことから、6位に色素を修飾しても、Rluc8およびRluc8.6に認識されることが示唆される。   From the results in Table 2, CTZ-6-azide and CTZ-6-FITC showed almost the same luminescence intensity as natural coelenterazine in the enzyme Rluc8.6. This suggests that Rluc8 and Rluc8.6 are recognized even when the dye is modified at the 6-position.

5-2-3 生物発光スペクトル
CTZ-6-FITCおよびCTZの生物発光を図3に示す。図3より、それぞれの最大生物発光波長は表3のようになった。
5-2-3 Bioluminescence spectrum
The bioluminescence of CTZ-6-FITC and CTZ is shown in FIG. From FIG. 3, the maximum bioluminescence wavelengths are as shown in Table 3.

以上に結果より、CTZ-6-FITCは天然のものよりも約40 nm長波長化に成功した。またCTZ-6-azideおよびCTZ-6-FITCのCTZ由来の発光ピークは、約400 nm付近であることがわかる。これから、天然のセレンテラジンの6位の水酸基をなくすことによって、Neutral speciesの形態をとって発光している可能性が示唆された。   From the above results, CTZ-6-FITC succeeded in increasing the wavelength by about 40 nm compared to the natural one. It can also be seen that the CTZ-derived emission peak of CTZ-6-azide and CTZ-6-FITC is around 400 nm. This suggests the possibility of emitting light in the form of a neutral species by eliminating the 6-position hydroxyl group of natural coelenterazine.

Claims (3)

下記一般式[I]で表される、蛍光色素結合セレンテラジン。
(式[I]中、Aは、蛍光色素を含む蛍光色素部を示す)。
A fluorescent dye-bound coelenterazine represented by the following general formula [I].
(In the formula [I], A represents a fluorescent dye part including a fluorescent dye).
前記蛍光色素は、吸収波長ピークが300〜600nmの範囲にある蛍光色素である請求項1記載の蛍光色素結合セレンテラジン。   The fluorescent dye-bound coelenterazine according to claim 1, wherein the fluorescent dye is a fluorescent dye having an absorption wavelength peak in the range of 300 to 600 nm. 前記蛍光色素がフルオレッセインイソチオシアネートである請求項2記載の蛍光色素結合セレンテラジン。   The fluorescent dye-bound coelenterazine according to claim 2, wherein the fluorescent dye is fluorescein isothiocyanate.
JP2014178104A 2014-09-02 2014-09-02 Fluorochrome-coupled coelenterazine Pending JP2016050296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014178104A JP2016050296A (en) 2014-09-02 2014-09-02 Fluorochrome-coupled coelenterazine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014178104A JP2016050296A (en) 2014-09-02 2014-09-02 Fluorochrome-coupled coelenterazine

Publications (1)

Publication Number Publication Date
JP2016050296A true JP2016050296A (en) 2016-04-11

Family

ID=55658043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014178104A Pending JP2016050296A (en) 2014-09-02 2014-09-02 Fluorochrome-coupled coelenterazine

Country Status (1)

Country Link
JP (1) JP2016050296A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018158896A (en) * 2017-03-22 2018-10-11 学校法人慶應義塾 Novel coelenterazine compound and use therefor
JP2018165265A (en) * 2017-03-28 2018-10-25 国立大学法人電気通信大学 Novel coelenterazine derivative
CN109485565A (en) * 2018-11-20 2019-03-19 上海博栋化学科技有限公司 A kind of preparation method of 1- methylcyclohexylmethyl acrylate
CN112368286A (en) * 2018-06-29 2021-02-12 国际纸业公司 Synthesis of coelenterazine
CN113527231A (en) * 2020-04-15 2021-10-22 深圳华大生命科学研究院 Synthetic method of heterocyclic ring substituted coelenterazine compound
CN114080390A (en) * 2019-05-08 2022-02-22 国际纸业公司 Synthesis of coelenterazine
US11926624B2 (en) 2018-06-29 2024-03-12 International Paper Company Synthesis of coelenterazine synthesis intermediate
US11939332B2 (en) 2018-06-29 2024-03-26 International Paper Company Synthesis of coelenterazine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03137188A (en) * 1989-03-22 1991-06-11 Nippon Zoki Pharmaceut Co Ltd New lucifern derivative

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03137188A (en) * 1989-03-22 1991-06-11 Nippon Zoki Pharmaceut Co Ltd New lucifern derivative

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
星野笑美 等, 第73回分析化学討論会講演要旨集, JPN6018008019, 2013, pages 139, ISSN: 0003893188 *
生化学辞典 第3版, JPN6018039142, 1998, pages 1512 - 1516, ISSN: 0003893189 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018158896A (en) * 2017-03-22 2018-10-11 学校法人慶應義塾 Novel coelenterazine compound and use therefor
JP2018165265A (en) * 2017-03-28 2018-10-25 国立大学法人電気通信大学 Novel coelenterazine derivative
JP7036343B2 (en) 2017-03-28 2022-03-15 国立大学法人電気通信大学 New coelenterazine derivative
CN112368286A (en) * 2018-06-29 2021-02-12 国际纸业公司 Synthesis of coelenterazine
US11926624B2 (en) 2018-06-29 2024-03-12 International Paper Company Synthesis of coelenterazine synthesis intermediate
US11939332B2 (en) 2018-06-29 2024-03-26 International Paper Company Synthesis of coelenterazine
CN109485565A (en) * 2018-11-20 2019-03-19 上海博栋化学科技有限公司 A kind of preparation method of 1- methylcyclohexylmethyl acrylate
CN109485565B (en) * 2018-11-20 2021-08-06 上海博栋化学科技有限公司 Preparation method of 1-methyl cyclohexyl methacrylate
CN114080390A (en) * 2019-05-08 2022-02-22 国际纸业公司 Synthesis of coelenterazine
CN113527231A (en) * 2020-04-15 2021-10-22 深圳华大生命科学研究院 Synthetic method of heterocyclic ring substituted coelenterazine compound

Similar Documents

Publication Publication Date Title
JP2016050296A (en) Fluorochrome-coupled coelenterazine
US9618453B2 (en) Aggregation induced emission of fluorescent bioprobes and methods of using the same
JP5090731B2 (en) Fluorescent probe
JP6297035B2 (en) Novel azo compound, use thereof and process for producing the same
WO2007105529A1 (en) Chemiluminescent compound and labeling agent comprising the same
US10227366B2 (en) Bis-iridium-complexes for manufacturing of ECL-labels
US10203333B2 (en) Electronically neutral metal complexes as biological labels
KR101125057B1 (en) Compound for labeling material, intermediate therefor and process for producing the same
JPWO2006019105A1 (en) Fluorescent labeling agent
US8664410B2 (en) Fluorescent dye and use thereof
JP5515529B2 (en) Near-infrared photoluminescent compound, synthesis method thereof and luminescence method thereof
JP5319130B2 (en) Keiko solvatochromic dye and method of use thereof
JPWO2008075718A1 (en) Fluorogenic molecule
CN113831756A (en) Red fluorescent protein two-photon photosensitive dye and preparation method and application thereof
KR101125058B1 (en) Compound for labeling material, intermediate therefor and process for producing the same
JP5250010B2 (en) Novel fluorescent quencher molecules and methods and uses thereof
JP4945760B2 (en) Silicon-containing fluorescent compound and fluorescent labeling agent using the compound
JP5388004B2 (en) Near-infrared photoluminescent compounds and luminescent methods thereof
JP2015054937A (en) Organic fluorescent material
WO2023162995A1 (en) Novel coelenterazine derivatives
JP6175358B2 (en) Coumarin compound having a polymerizable group
KR100870243B1 (en) Two photon probe for real time monitoring of cells, method for preparing the same and method for real time monitoring of cells
JP2018150245A (en) Novel iridium complex, oxygen concentration measurement reagent, oxygen concentration measuring method, and synthetic intermediate
RU2725884C2 (en) Deoxyuridine triphosphates marked with zwitterionic indocyanine dyes
WO2011021581A1 (en) Selective marker for target biopolymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180313

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180712

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181009