JP2023009506A - Aluminum hydroxide powder and method for producing the same - Google Patents

Aluminum hydroxide powder and method for producing the same Download PDF

Info

Publication number
JP2023009506A
JP2023009506A JP2021112854A JP2021112854A JP2023009506A JP 2023009506 A JP2023009506 A JP 2023009506A JP 2021112854 A JP2021112854 A JP 2021112854A JP 2021112854 A JP2021112854 A JP 2021112854A JP 2023009506 A JP2023009506 A JP 2023009506A
Authority
JP
Japan
Prior art keywords
aluminum hydroxide
hydroxide powder
mass
peak
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021112854A
Other languages
Japanese (ja)
Inventor
智孝 北
Tomotaka Kita
巧介 前田
Kosuke Maeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2021112854A priority Critical patent/JP2023009506A/en
Priority to KR1020220078486A priority patent/KR20230008606A/en
Priority to TW111124927A priority patent/TW202321153A/en
Priority to CN202210785465.7A priority patent/CN115594206A/en
Publication of JP2023009506A publication Critical patent/JP2023009506A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/021After-treatment of oxides or hydroxides
    • C01F7/023Grinding, deagglomeration or disintegration
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/21Attrition-index or crushing strength of granulates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To provide an aluminum hydroxide powder that can sufficiently suppress a viscosity rise when added to resin and a method for producing the same.SOLUTION: An aluminum hydroxide powder has a density of 1.59-2.00 g/cm3 when molded at 10 MPa, in which the ratio of diffraction intensity of (002) plane to diffraction intensity of (110) plane in an XRD pattern is 2.0-7.5.SELECTED DRAWING: None

Description

本開示は水酸化アルミニウム粉末およびその製造方法に関する。 TECHNICAL FIELD The present disclosure relates to aluminum hydroxide powders and methods of making the same.

水酸化アルミニウム粉末は、樹脂成形体(封止材、サーマルインターフェース材料(Thermal Interface Material:TIM)、人工大理石等)への充填材として需要が高まっている。
例えば特許文献1には、原料水酸化アルミニウムを、圧縮能力が5~500kgf/cmであるスクリュー型捏和機で粉砕することを特徴とする、充填材用途の水酸化アルミニウムの製造方法が開示されている。
Aluminum hydroxide powder is in increasing demand as a filler for resin moldings (sealing materials, thermal interface materials (TIM), artificial marble, etc.).
For example, Patent Document 1 discloses a method for producing aluminum hydroxide for use as a filler, which comprises pulverizing raw material aluminum hydroxide with a screw kneader having a compression capacity of 5 to 500 kgf/cm 2 . It is

特開2001-322813号公報Japanese Patent Application Laid-Open No. 2001-322813

しかしながら、特許文献1に開示されるような従来技術では、水酸化アルミニウム粉末を樹脂に添加した際に増粘しやすいおそれがあることがわかった。 However, it has been found that in the prior art disclosed in Patent Document 1, the resin tends to thicken when aluminum hydroxide powder is added.

本発明はこのような状況に鑑みてなされたものであり、その目的の1つは、樹脂に添加した際に粘度上昇を十分に抑制できる水酸化アルミニウム粉末およびその製造方法を提供することである。 The present invention has been made in view of such circumstances, and one of its objects is to provide an aluminum hydroxide powder that can sufficiently suppress the increase in viscosity when added to a resin, and a method for producing the same. .

本発明の態様1は、
10MPaで成型したときの密度が1.59~2.00g/cmであり、
XRDパターンにおける(110)面の回折強度に対する(002)面の回折強度の比が、2.0~7.5である、水酸化アルミニウム粉末である。
Aspect 1 of the present invention is
The density when molded at 10 MPa is 1.59 to 2.00 g / cm 3 ,
Aluminum hydroxide powder having a ratio of the diffraction intensity of the (002) plane to the diffraction intensity of the (110) plane in an XRD pattern of 2.0 to 7.5.

本発明の態様2は、
90質量%粒子径(D90)が100μm未満である、態様1に記載の水酸化アルミニウム粉末である。
Aspect 2 of the present invention is
The aluminum hydroxide powder according to aspect 1, having a 90% by mass particle size (D90) of less than 100 μm.

本発明の態様3は、
質量基準粒度分布において1~200μmの粒径範囲に1つ又は2つのピークを有し、
ピークが1つの場合は、該ピークの頻度が4.0質量%以上であり、
ピークが2つの場合は、一方のピークの頻度が4.0質量%以上であり、他方のピークの頻度が0質量%超4.0質量%以下である、態様1または2に記載の水酸化アルミニウム粉末である。
Aspect 3 of the present invention is
Having one or two peaks in the particle size range of 1 to 200 μm in the mass-based particle size distribution,
When there is one peak, the frequency of the peak is 4.0% by mass or more,
When there are two peaks, the frequency of one peak is 4.0% by mass or more, and the frequency of the other peak is more than 0% by mass and 4.0% by mass or less, hydroxylation according to aspect 1 or 2 Aluminum powder.

本発明の態様4は、
50質量%粒子径(D50)が10~200μmであり、且つ半径0.05~1μmの細孔の累積容積が0.01~1mL/gである水酸化アルミニウム粉末を、49.0~294.0MPaの圧力で粉砕した後、92m/秒以下の衝突速度で解砕することを含む、水酸化アルミニウム粉末の製造方法である。
Aspect 4 of the present invention is
Aluminum hydroxide powder having a 50% by mass particle diameter (D50) of 10 to 200 μm and a cumulative volume of pores with a radius of 0.05 to 1 μm of 0.01 to 1 mL/g was added to 49.0 to 294.0 μm. A method for producing aluminum hydroxide powder, comprising pulverizing at a pressure of 0 MPa and then pulverizing at a collision speed of 92 m/sec or less.

本発明の実施形態によれば、樹脂に添加した際に粘度上昇を十分に抑制できる水酸化アルミニウム粉末およびその製造方法を提供することが可能である。 According to the embodiments of the present invention, it is possible to provide an aluminum hydroxide powder that can sufficiently suppress an increase in viscosity when added to a resin, and a method for producing the same.

本発明者らは、樹脂に添加した際の粘度(以下「樹脂粘度」とも称する)の上昇を十分に抑制できる水酸化アルミニウム粉末を実現するべく、様々な角度から検討した。その結果、10MPaで成型したときの密度(以下「成型密度」とも称する)およびXRDパターンにおける(110)面の回折強度に対する(002)面の回折強度の比(以下「(002)/(110)回折強度比」とも称する)を所定範囲に制御することにより、樹脂粘度の上昇を十分に抑制できることを見出した。
成型密度および(002)/(110)回折強度比を所定範囲に制御するために、原料水酸化アルミニウム粉末の粒径および細孔容積を所定範囲に制御するとともに、従来技術よりも大きな圧力(500~3000kgf/cm、すなわち49.0~294.0MPa)で粉砕し、さらに92m/秒以下という比較的弱い衝突速度で解砕することが重要であることを見出した。
The present inventors have studied from various angles in order to realize an aluminum hydroxide powder that can sufficiently suppress an increase in viscosity (hereinafter also referred to as "resin viscosity") when added to a resin. As a result, the density when molded at 10 MPa (hereinafter also referred to as "molding density") and the ratio of the diffraction intensity of the (002) plane to the diffraction intensity of the (110) plane in the XRD pattern (hereinafter "(002) / (110) It has been found that by controlling the diffraction intensity ratio" within a predetermined range, an increase in resin viscosity can be sufficiently suppressed.
In order to control the molding density and the (002)/(110) diffraction intensity ratio within a predetermined range, the particle size and pore volume of the raw aluminum hydroxide powder are controlled within a predetermined range, and a higher pressure (500 We have found that it is important to pulverize at ~3000 kgf/cm 2 , ie 49.0 to 294.0 MPa), and to crush at a relatively weak impact velocity of 92 m/sec or less.

以下に、本発明の実施形態が規定する各要件の詳細を示す。 Details of each requirement defined by the embodiments of the present invention are shown below.

<1.水酸化アルミニウム粉末>
本発明の実施形態に係る水酸化アルミニウム粉末は、10MPaで成型したときの密度が1.59~2.00g/cmであり、XRDパターンにおける(110)面の回折強度に対する(002)面の回折強度の比が、2.0~7.5である。これにより、樹脂粘度の上昇を十分に抑制できる。
<1. Aluminum hydroxide powder>
The aluminum hydroxide powder according to the embodiment of the present invention has a density of 1.59 to 2.00 g/cm 3 when molded at 10 MPa. The diffraction intensity ratio is between 2.0 and 7.5. Thereby, an increase in resin viscosity can be sufficiently suppressed.

成型密度が1.59g/cm未満であると、樹脂粘度が上昇する。成型密度の上限については特に制限されないが、例えば2.00g/cm超とするためにはより詳細な製造条件の設定が必要となり、生産性を考慮すると2.00g/cm以下にしておくことが好ましい。 If the molding density is less than 1.59 g/cm 3 , the resin viscosity increases. The upper limit of the molding density is not particularly limited, but for example, in order to exceed 2.00 g/cm 3 , it is necessary to set more detailed manufacturing conditions, and considering productivity, it is set to 2.00 g/cm 3 or less. is preferred.

なお、成型密度は以下のようにして求めるものとする。
水酸化アルミニウム粉末3.00gを内径20.0mmの円筒一軸成形用金型に入れ、万能材料試験機(例えばエー・アンド・デイ(A&D)社製、TENSILON RTG-1310)を用い、当該水酸化アルミニウム粉末を圧縮速度1mm/分で10MPaの圧力になるまで圧縮充填し、重量/体積の比を成形密度とする。
In addition, the molding density shall be calculated|required as follows.
3.00 g of aluminum hydroxide powder is placed in a cylindrical uniaxial mold with an inner diameter of 20.0 mm, and a universal material testing machine (for example, TENSILON RTG-1310 manufactured by A & D) is used to test the hydroxide. Aluminum powder is compressed and filled at a compression speed of 1 mm/min to a pressure of 10 MPa, and the weight/volume ratio is taken as the compacting density.

(002)/(110)回折強度比が7.5超であると、水酸化アルミニウム粉末が、例えば、通常球状に近い形状であり得るところ板状のように歪形状となり、樹脂粘度が上昇する。好ましくは、(002)/(110)回折強度比が6.0以下である。(002)/(110)回折強度比の下限は特に制限されないが、(002)/(110)回折強度比を2.0未満とするためにはより詳細な製造条件の設定が必要となり、生産性を考慮すると2.0以上にしておくことが好ましい。 When the (002)/(110) diffraction intensity ratio is more than 7.5, the aluminum hydroxide powder, for example, which can normally have a nearly spherical shape, becomes distorted like a plate, and the resin viscosity increases. . Preferably, the (002)/(110) diffraction intensity ratio is 6.0 or less. The lower limit of the (002)/(110) diffraction intensity ratio is not particularly limited. It is preferable to set it to 2.0 or more in consideration of the property.

なお、(002)/(110)回折強度比は以下のようにして求めるものとする。
水酸化アルミニウム粉末を測定用ガラスセルに圧密して充填した後、粉末X線回折測定装置(例えばリガク社製、RINT-2000)を用いて、ステップ幅0.02deg、スキャンスピード0.04deg/sec、加速電圧40kV、加速電流30mAにてXRDパターンを測定する。X線源としてはCu-Kαを用いる。得られたXRDパターンにおいて、2θ=18.3°の位置に現れるピークを(002)面のピークとし、2θ=20.3°の位置に現れるピークを(110)面のピークとして、(110)面のピークの回折強度(ピーク高さ)に対する(002)面のピークの回折強度(ピーク高さ)の比を、(002)/(110)回折強度比とする。
The (002)/(110) diffraction intensity ratio is obtained as follows.
After compressing and filling the aluminum hydroxide powder into a glass cell for measurement, a powder X-ray diffraction measurement device (for example, RINT-2000 manufactured by Rigaku Co., Ltd.) was used to measure a step width of 0.02 deg and a scan speed of 0.04 deg/sec. , an acceleration voltage of 40 kV and an acceleration current of 30 mA. Cu-Kα is used as the X-ray source. In the resulting XRD pattern, the peak appearing at 2θ = 18.3° is the peak of the (002) plane, and the peak appearing at 20.3° is the peak of the (110) plane. The ratio of the diffraction intensity (peak height) of the (002) plane peak to the diffraction intensity (peak height) of the plane peak is defined as the (002)/(110) diffraction intensity ratio.

本発明の実施形態に係る水酸化アルミニウム粉末は、90質量%粒子径(すなわち、質量基準粒度分布における、微粒側からの累積頻度が90質量%となる粒子径であって、D90とも称する)が100μm未満であることが好ましい。これにより、水酸化アルミニウム粉末を樹脂成形体に充填したときの外観不良を十分に抑制することができ、また樹脂成形体の強度を十分に確保しやすくなる。好ましくは、D90が90μm以下であり、より好ましくは65μm以下であり、さらに好ましくは45μm以下である。
本発明の実施形態に係る水酸化アルミニウム粉末は、D90が20μm以上であることが好ましい。これにより、水酸化アルミニウム粉末を液中に分散させる際の分散不良を抑制することができる。
The aluminum hydroxide powder according to the embodiment of the present invention has a 90% by mass particle diameter (that is, a particle diameter at which the cumulative frequency from the fine particle side is 90% by mass in the mass-based particle size distribution, and is also referred to as D90). It is preferably less than 100 μm. This makes it possible to sufficiently suppress poor appearance when the resin molded body is filled with the aluminum hydroxide powder, and makes it easy to sufficiently secure the strength of the resin molded body. The D90 is preferably 90 μm or less, more preferably 65 μm or less, even more preferably 45 μm or less.
The aluminum hydroxide powder according to the embodiment of the present invention preferably has a D90 of 20 μm or more. This makes it possible to suppress poor dispersion when dispersing the aluminum hydroxide powder in the liquid.

本発明の実施形態に係る水酸化アルミニウム粉末は、質量基準粒度分布において1~200μmの粒径範囲に1つ又は2つのピークを有することが好ましい。これにより、水酸化アルミニウム粉末を樹脂成形体に充填したときの外観不良を抑制することができ、また水酸化アルミニウム粉末を液中に分散させる際の分散不良を抑制することもできる。ピークが1つの場合は、該ピークの頻度が4.0質量%以上であり得る。ピークが2つの場合は、一方のピークの頻度が4.0質量%以上であり得、他方のピークの頻度が0質量%超4.0質量%以下であり得る。この場合、好ましくは、質量基準粒度分布において1~200μmの粒径範囲にピークを1つのみ有することである。これにより、上記樹脂成形体の外観不良および分散不良を、さらに抑制することができる。 The aluminum hydroxide powder according to the embodiment of the present invention preferably has one or two peaks in the particle size range of 1 to 200 μm in the mass-based particle size distribution. As a result, it is possible to suppress poor appearance when the aluminum hydroxide powder is filled in the resin molded body, and it is also possible to suppress poor dispersion when the aluminum hydroxide powder is dispersed in the liquid. When there is one peak, the peak frequency may be 4.0% by mass or more. When there are two peaks, the frequency of one peak may be 4.0% by mass or more, and the frequency of the other peak may be more than 0% by mass and 4.0% by mass or less. In this case, it is preferable to have only one peak in the particle size range of 1 to 200 μm in the mass-based particle size distribution. As a result, the poor appearance and poor dispersion of the resin molding can be further suppressed.

本発明の実施形態に係る水酸化アルミニウム粉末は、質量基準粒度分布において、1μm未満および200μm超の粒径範囲の一方または両方のそれぞれに1つ以上のピークを有し得、前記ピークの頻度は0質量%超0.5質量%以下であってもよく、または、1μm未満および200μm超の粒径範囲にピークを有さなくてもよい。 The aluminum hydroxide powder according to embodiments of the present invention may have one or more peaks in each of one or both of the particle size ranges of less than 1 μm and greater than 200 μm in the mass-based particle size distribution, and the frequency of said peaks is It may be more than 0% by weight and not more than 0.5% by weight, or it may have no peaks in the particle size range of less than 1 μm and more than 200 μm.

本発明の実施形態に係る水酸化アルミニウム粉末は、50質量%粒子径(すなわち、質量基準粒度分布における、微粒側からの累積頻度が50質量%となる粒子径であって、D50とも称する)が30μm以下であることが好ましい。これにより、水酸化アルミニウム粉末を樹脂成形体に充填したときの外観不良を抑制することができ、また樹脂成形体の強度を確保しやすくなる。
本発明の実施形態に係る水酸化アルミニウム粉末は、D50が7μm以上であることが好ましい。これにより、水酸化アルミニウム粉末を液中に分散させる際の分散不良を抑制することができる。
The aluminum hydroxide powder according to the embodiment of the present invention has a 50% by mass particle diameter (that is, a particle diameter at which the cumulative frequency from the fine particle side is 50% by mass in the mass-based particle size distribution, and is also referred to as D50). It is preferably 30 μm or less. This makes it possible to suppress poor appearance when the aluminum hydroxide powder is filled into the resin molded body, and to easily ensure the strength of the resin molded body.
The aluminum hydroxide powder according to the embodiment of the present invention preferably has D50 of 7 μm or more. This makes it possible to suppress poor dispersion when dispersing the aluminum hydroxide powder in the liquid.

なお、質量基準粒度分布(D50およびD90含む)は、以下のようにして求める。
水酸化アルミニウム粉末を0.2質量%ヘキサメタリン酸ナトリウム水溶液中に加え、出力25Wの超音波を120秒間照射して水酸化アルミニウム粉末を水溶液中に分散させたものに対して、レーザー散乱式粒子径分布測定装置を用いて質量基準粒度分布(D50およびD90含む)を求める。該粒度分布は、粒子径0.02μm~2000μmの範囲を対数スケールで132分割し、各区間の粒子径を有する水酸化アルミニウムの質量を測定して求めるものとする。なお、レーザー散乱式粒子径分布測定装置としては、機器間差および本実施例等との整合性を考慮すると、マイクロトラックMT-3300EXII(日機装社製)又はそれと同等の装置を使用することが好ましい。また、粒度分布測定時において、水酸化アルミニウム粉末の濃度を上記測定装置の測定可能濃度に適宜調整した上で測定するのがよい。
The mass-based particle size distribution (including D50 and D90) is obtained as follows.
Aluminum hydroxide powder was added to a 0.2% by mass sodium hexametaphosphate aqueous solution, and an ultrasonic wave with an output of 25 W was applied for 120 seconds to disperse the aluminum hydroxide powder in the aqueous solution. A mass-based particle size distribution (including D50 and D90) is determined using a distribution measuring device. The particle size distribution is determined by dividing the range of particle sizes from 0.02 μm to 2000 μm into 132 on a logarithmic scale and measuring the mass of aluminum hydroxide having a particle size in each section. As the laser scattering particle size distribution measuring device, it is preferable to use Microtrac MT-3300EXII (manufactured by Nikkiso Co., Ltd.) or an equivalent device in consideration of differences between devices and consistency with the present examples. . In addition, when measuring the particle size distribution, it is preferable to adjust the concentration of the aluminum hydroxide powder to a concentration that can be measured by the above measuring apparatus.

本発明の実施形態に係る水酸化アルミニウム粉末は、BET比表面積を2.0m/g以下とすることが好ましい。これにより、水酸化アルミニウム粉末を液中に分散させる際の分散不良を抑制することができる。なお、BET比表面積は、JIS-Z-8830:2013に規定された方法に従って、全自動比表面積測定装置(例えば、Mountech社製、Macsorb HM-1201)を用いて窒素吸着法により求めるものとする。 The aluminum hydroxide powder according to the embodiment of the present invention preferably has a BET specific surface area of 2.0 m 2 /g or less. This makes it possible to suppress poor dispersion when dispersing the aluminum hydroxide powder in the liquid. The BET specific surface area shall be determined by a nitrogen adsorption method using a fully automatic specific surface area measuring device (eg, Macsorb HM-1201 manufactured by Mountaintech) in accordance with the method specified in JIS-Z-8830:2013. .

本発明の実施形態に係る水酸化アルミニウム粉末は、不純物としてNaOを含み得る。NaOの含有量は、例えば0.13質量%以下とすることが好ましい。これにより、樹脂成形体に充填したときの樹脂の劣化および絶縁性の低下を抑制することができる。ここで、NaO含有量は、水酸化アルミニウム粉末を無機酸の水溶液に溶解させて水溶液を調製した後、ICP発光分光分析装置を用いて求めるものとする。具体的には、ナトリウムの波長(589.592nm)の強度を測定し、NaOに換算して、NaOの質量を算出し、溶解させた水酸化アルミニウム粉末の質量に対する該NaOの質量の比を、NaO含有量(質量%)とする。また、本発明の実施形態に係る水酸化アルミニウム粉末は、Al(OH)およびNaOの他、不可避不純物を含んでもよい。不可避不純物として、原料、資材、製造設備等の状況によって持ち込まれる元素等の混入が許容される。 Aluminum hydroxide powder according to embodiments of the present invention may contain Na 2 O as an impurity. The content of Na 2 O is preferably 0.13% by mass or less, for example. As a result, it is possible to suppress the deterioration of the resin and the deterioration of the insulating property when it is filled in the resin molded body. Here, the Na 2 O content is obtained by dissolving aluminum hydroxide powder in an inorganic acid aqueous solution to prepare an aqueous solution, and then using an ICP emission spectrometer. Specifically, the intensity of the wavelength of sodium (589.592 nm) is measured, converted to Na 2 O, the mass of Na 2 O is calculated, and the Na 2 O with respect to the mass of the dissolved aluminum hydroxide powder is defined as the Na 2 O content (% by mass). Moreover, the aluminum hydroxide powder according to the embodiment of the present invention may contain unavoidable impurities in addition to Al(OH) 3 and Na 2 O. As unavoidable impurities, contamination of elements brought in depending on the conditions of raw materials, materials, manufacturing equipment, etc. is allowed.

本発明の実施形態に係る水酸化アルミニウム粉末は、樹脂に添加した際に粘度上昇を十分に抑制でき、樹脂成形体(封止材、サーマルインターフェース材料(Thermal Interface Material:TIM)、人工大理石等)への充填材として好適である。適用可能な樹脂としては、例えば、不飽和ポリエステル樹脂、エポキシ樹脂、フェノール樹脂、ポリウレタン樹脂等の熱硬化性樹脂や、ポリエチレン、ポリプロピレン、エチレンとプロピレンとの共重合体、エチレン及び/又はプロピレンと例えばブテン-1、ペンテン-1、ヘキセン-1、ヘプテン-1、オクテン-1、ノネン-1、4-メチルペンテン-1、デセン-1等の他のα-オレフィンとの共重合体で代表されるポリオレフィン、スチレン(共)重合体、メタクリル酸メチル(共)重合体、ポリアミド、ポリカーボネート、エチレン-酢酸ビニル共重合体、ポリアセタール、アクリロニトリル-ブタジエン-スチレン共重合体、ポリフェニレンオキサイド、ポリエーテルサルホン、ポリアリレート、ポリエーテルエーテルケトン、ポリメチルペンテン等の熱可塑性樹脂等が挙げられる。本発明の実施形態に係る水酸化アルミニウム粉末は上記樹脂に限らず、他の合成樹脂、天然樹脂又は紙等の充填材として使用することも可能である。 The aluminum hydroxide powder according to the embodiment of the present invention can sufficiently suppress the increase in viscosity when added to a resin, and can It is suitable as a filler for Applicable resins include, for example, thermosetting resins such as unsaturated polyester resins, epoxy resins, phenolic resins, and polyurethane resins; polyethylene, polypropylene, copolymers of ethylene and propylene; Represented by copolymers with other α-olefins such as butene-1, pentene-1, hexene-1, heptene-1, octene-1, nonene-1, 4-methylpentene-1, decene-1, etc. Polyolefin, styrene (co)polymer, methyl methacrylate (co)polymer, polyamide, polycarbonate, ethylene-vinyl acetate copolymer, polyacetal, acrylonitrile-butadiene-styrene copolymer, polyphenylene oxide, polyether sulfone, poly Thermoplastic resins such as arylate, polyetheretherketone, polymethylpentene, and the like are included. The aluminum hydroxide powder according to the embodiment of the present invention is not limited to the above resins, and can be used as a filler for other synthetic resins, natural resins, paper, or the like.

<2.水酸化アルミニウム粉末の製造方法>
本発明の実施形態に係る水酸化アルミニウム粉末の製造方法は、(a)50質量%粒子径(D50)が10~200μmであり、且つ半径0.05~1μmの細孔の累積容積が0.01~1mL/gである水酸化アルミニウム粉末を用意する工程と、(b)49.0~294.0MPaの圧力で粉砕する工程と、(c)92m/秒以下の衝突速度で解砕する工程と、を含む。以下、各工程について詳述する。
<2. Method for producing aluminum hydroxide powder>
The method for producing an aluminum hydroxide powder according to an embodiment of the present invention includes (a) a 50% by mass particle diameter (D50) of 10 to 200 μm and a cumulative volume of pores having a radius of 0.05 to 1 μm of 0.05 to 1 μm. (b) pulverizing at a pressure of 49.0 to 294.0 MPa; and (c) pulverizing at a collision speed of 92 m/sec or less. and including. Each step will be described in detail below.

[(a)水酸化アルミニウム粉末を用意する工程]
まず、原料となる水酸化アルミニウム粉末(以下、「原料水酸化アルミニウム粉末」とも称する)を用意する。原料水酸化アルミニウム粉末は、50質量%粒子径(D50)が10~200μmであり、且つ半径0.05~1μmの細孔の累積容積(以下「細孔累積容積」とも称する)が0.01~1mL/gである必要がある。これにより、所望の成型密度が得やすくなる。好ましくは、細孔累積容積が0.02~1mL/gである。これにより、所望のD90を得やすくなり、また、所望の質量基準粒度分布である水酸化アルミニウム粉末を得やすくなる。
[(a) Step of preparing aluminum hydroxide powder]
First, an aluminum hydroxide powder as a raw material (hereinafter also referred to as "raw material aluminum hydroxide powder") is prepared. The raw material aluminum hydroxide powder has a 50% by mass particle diameter (D50) of 10 to 200 μm, and a cumulative volume of pores with a radius of 0.05 to 1 μm (hereinafter also referred to as “cumulative pore volume”) of 0.01. Should be ~1 mL/g. This makes it easier to obtain the desired molding density. Preferably, the cumulative pore volume is 0.02-1 mL/g. This makes it easier to obtain the desired D90, and also makes it easier to obtain an aluminum hydroxide powder having a desired mass-based particle size distribution.

D50が10μm未満もしくは200μm超、および/または細孔累積容積が0.01mL/g未満もしくは1mL/g超であると、所望の成型密度が得にくくなる。 If the D50 is less than 10 μm or more than 200 μm and/or the cumulative pore volume is less than 0.01 mL/g or more than 1 mL/g, it will be difficult to obtain the desired molding density.

なお、細孔累積容積は以下のように求める。
水酸化アルミニウム粉末を120℃で4時間乾燥を行い、吸着水分を除去する。その後、精密天秤にて0.5~0.6g程度秤量し、直径15mm、高さ24mmの測定セルに充填する。この測定セルを自動ポロシメータ(例えば、Micromeritics社製、オートポアIII9420)にセットし、低圧側(1~10000psi)、高圧側(10000~60000psi)に分けて測定する。これらの測定データを合算し、細孔半径0.002μm以上100μm以下の領域における細孔容積分布を求め、細孔半径0.05μm以上1.0μm以下の領域における累積容積を算出する。
Incidentally, the cumulative pore volume is determined as follows.
The aluminum hydroxide powder is dried at 120° C. for 4 hours to remove adsorbed moisture. After that, about 0.5 to 0.6 g is weighed with a precision balance, and filled in a measurement cell having a diameter of 15 mm and a height of 24 mm. This measurement cell is set in an automatic porosimeter (for example, Autopore III9420 manufactured by Micromeritics), and measured separately for the low pressure side (1 to 10000 psi) and the high pressure side (10000 to 60000 psi). These measurement data are summed to determine the pore volume distribution in the pore radius range of 0.002 μm to 100 μm, and the cumulative volume in the pore radius range of 0.05 μm to 1.0 μm is calculated.

原料水酸化アルミニウム粉末の結晶構造は例えばギブサイト型、バイヤライト型等であり、好ましくはギブサイト型である。 The crystal structure of the starting aluminum hydroxide powder is, for example, a gibbsite type, a bayerite type, or the like, preferably a gibbsite type.

原料水酸化アルミニウム粉末は、過飽和状態にあるアルミン酸ナトリウム溶液に種晶を添加し、攪拌しながら加水分解し、水酸化アルミニウムを析出させ、得られた水酸化アルミニウムをろ過洗浄し、乾燥する方法によって製造することができる。ここで、析出条件を適宜調整すること(及び/又は析出したものを一部溶解させること、及び/又は析出したものを粉砕または解砕すること)等により、上記粒子径および細孔累積容積を有する原料水酸化アルミニウム粉末が得られる。なお、上記粒子径および細孔累積容積を満たすものであれば、市販の水酸化アルミニウム粉末を用いてもよい。 The raw material aluminum hydroxide powder is produced by adding seed crystals to a supersaturated sodium aluminate solution, hydrolyzing the solution with stirring to precipitate aluminum hydroxide, filtering and washing the resulting aluminum hydroxide, and drying it. can be manufactured by Here, by appropriately adjusting the precipitation conditions (and/or partially dissolving the precipitated material and/or pulverizing or pulverizing the precipitated material), the particle diameter and cumulative pore volume can be determined. A raw material aluminum hydroxide powder having Commercially available aluminum hydroxide powder may be used as long as it satisfies the above particle size and pore cumulative volume.

[(b)49.0~294.0MPaの圧力で粉砕する工程]
次に、上記原料水酸化アルミニウム粉末を49.0~294.0MPaの圧力で粉砕する。ここで「粉砕」とは、ある大きさの固体粒子(例えば一次粒子)に何らかのエネルギーを加えて、元の大きさよりも小さくする操作を意味する。
[(b) Step of pulverizing at a pressure of 49.0 to 294.0 MPa]
Next, the raw material aluminum hydroxide powder is pulverized under a pressure of 49.0 to 294.0 MPa. Here, "pulverization" means an operation of applying some energy to solid particles (for example, primary particles) of a certain size to make them smaller than the original size.

粉砕時の圧力が49.0MPa未満だと、所望の成型密度が得られない。好ましくは49.0MPa超であり、より好ましくは68.6MPa以上である。粉砕時の圧力の上限は特に制限されないが、生産性を考慮すると294.0MPa以下にしておくことが好ましい。 If the pulverization pressure is less than 49.0 MPa, the desired molding density cannot be obtained. It is preferably over 49.0 MPa, more preferably 68.6 MPa or more. Although the upper limit of the pressure during pulverization is not particularly limited, it is preferably 294.0 MPa or less in consideration of productivity.

上記圧力で粉砕する粉砕機としては、例えば、コニーダー、オンレーター、セルフクリーニング型捏和機、ギヤコンパウンダー、一軸式スクリュー型捏和機、二軸式スクリュー型捏和機等が挙げられる。当該装置は1種単独で用いてもよく、又は2種以上を組合せて用いてもよい。また、粉砕機は回分式、連続式のいずれの形式も適用できるが、単位重量当りの粉砕エネルギーを低減する観点からは連続式が好ましい。連続式粉砕機を使用するとき、粉砕機内の原料水酸化アルミニウムが必ずしも全体的に粉砕されている必要はなく、例えば原料水酸化アルミニウムの移送方向(軸方向)に順次粉砕度が高くなるようにすればよい。スクリュー型捏和機の場合、圧縮能力は例えばスクリューの形状、長さや回転数、ローター(原料をスクリューに移送する作用をする。)の回転数等により調節することができる。 Examples of pulverizers for pulverizing under pressure include co-kneaders, onlators, self-cleaning kneaders, gear compounders, single-screw kneaders, and twin-screw kneaders. The device may be used singly or in combination of two or more. The grinder may be of either batch type or continuous type, but the continuous type is preferred from the viewpoint of reducing the grinding energy per unit weight. When a continuous pulverizer is used, the raw material aluminum hydroxide in the pulverizer does not necessarily have to be pulverized as a whole. do it. In the case of a screw-type kneader, the compression capacity can be adjusted, for example, by adjusting the shape, length and number of revolutions of the screw, the number of revolutions of the rotor (which functions to transfer the raw material to the screw), and the like.

粉砕機内には、固相として原料水酸化アルミニウム粉末が存在し、その他に、通常、気相として空気等、液相として水等が存在する。粉砕時における粉砕機内のそれらの状態が粉砕により得られる水酸化アルミニウム粉末の物性に影響を及ぼすことがあるので、粉砕は、固相、液相及び気相の充填形態が(i)固相及び気相が連続し液相が実質的に存在しないドライ(Dry)状態、(ii)固相及び気相が連続で液相が不連続なペンデュラー(Pendular)状態又は(iii)固相、気相及び液相が連続なファニキュラーI(Funicular I)状態で行われることが好ましい。このような充填形態は外観上、サラサラないしパサパサした混合系を構成している。 In the pulverizer, the raw material aluminum hydroxide powder exists as a solid phase, and in addition, there are usually air as a gas phase and water as a liquid phase. Since those conditions in the grinder during grinding may affect the physical properties of the aluminum hydroxide powder obtained by grinding, grinding should be performed depending on the packing form of the solid phase, liquid phase and gas phase (i) solid phase and A dry state in which the gas phase is continuous and the liquid phase is substantially absent, (ii) a pendular state in which the solid phase and the gas phase are continuous and the liquid phase is discontinuous, or (iii) the solid phase and the gas phase and the liquid phase is preferably performed in a continuous Funicular I state. Such a filling form constitutes a mixed system that is smooth or dry in appearance.

粉砕は、粉砕時においてドライ状態、ペンデュラー状態又はファニキュラーI状態が達成されるように、原料水酸化アルミニウム粉末の含液率を粉砕前に調節してから行うことが好ましい。含液率の調節は、例えば、原料水酸化アルミニウム粉末を乾燥したり又は水、アルコール等の液体を添加したりして行えばよい。好ましい含液率は、原料水酸化アルミニウムの粒度分布等によって異なり一義的ではないが、例えば、30重量%以下、より好ましくは10重量%以下であり、また1重量%以上、より好ましくは5重量%以上である。含液率が高くなり過ぎると、原料水酸化アルミニウムを効率的に粉砕することは困難となる。 Pulverization is preferably carried out after adjusting the liquid content of the raw material aluminum hydroxide powder before pulverization so that a dry state, a pendular state or a funicular I state is achieved during pulverization. The liquid content can be adjusted, for example, by drying the starting aluminum hydroxide powder or by adding a liquid such as water or alcohol. A preferable liquid content varies depending on the particle size distribution of the raw material aluminum hydroxide, and is not unambiguous. % or more. If the liquid content is too high, it becomes difficult to efficiently pulverize the starting material aluminum hydroxide.

粉砕時に水等の液体を添加したり、水等を含む原料水酸化アルミニウム粉末を粉砕したとき、粉砕後の水酸化アルミニウム粉末には、通常、乾燥が施される。乾燥は例えば、公知の乾燥機を使う方法、又は粉砕を連続式粉砕機で行うときにはこの粉砕機の一部を加熱する方法等によって行うことができる。 When a liquid such as water is added during pulverization, or when the raw material aluminum hydroxide powder containing water or the like is pulverized, the pulverized aluminum hydroxide powder is usually dried. Drying can be carried out, for example, by a method using a known dryer, or by a method of heating a part of the pulverizer when pulverization is carried out using a continuous pulverizer.

[(c)92m/秒以下の衝突速度で解砕する工程]
上記工程(b)後、92m/秒以下の衝突速度で解砕する。ここで「解砕」とは、細かい粒子が集まって一塊になっているもの(例えば二次粒子)を、ほぐして細かくする(例えば一次粒子にする)操作を意味する。
[(c) Step of pulverizing at a collision speed of 92 m / sec or less]
After the step (b), the material is pulverized at a collision speed of 92 m/sec or less. As used herein, the term “crushing” means an operation in which fine particles (for example, secondary particles) are loosened and finely divided (for example, into primary particles).

解砕時の衝突速度が92m/秒超であると、所望の(002)/(110)回折強度比が得られない。例えば衝撃式の粉砕機等を用いることで、上記衝突速度で解砕することができる。 If the collision speed during crushing exceeds 92 m/sec, the desired (002)/(110) diffraction intensity ratio cannot be obtained. For example, by using an impact pulverizer or the like, it is possible to pulverize at the above impact speed.

本発明の実施形態に係る水酸化アルミニウム粉末の製造方法は、本発明の目的が達成される範囲内で、他の工程(例えば表面処理工程等)を含んでいてもよい。 The method for producing aluminum hydroxide powder according to the embodiment of the present invention may include other steps (for example, a surface treatment step, etc.) as long as the object of the present invention is achieved.

以下、実施例を挙げて本発明の実施形態をより具体的に説明する。本発明の実施形態は以下の実施例によって制限を受けるものではなく、前述および後述する趣旨に合致し得る範囲で、適宜変更を加えて実施することも可能であり、それらはいずれも本発明の実施形態の技術的範囲に包含される。 EXAMPLES The embodiments of the present invention will be described in more detail below with reference to examples. The embodiments of the present invention are not limited by the following examples, and can be implemented with appropriate modifications within the scope that can match the spirit described above and below. It is included in the technical scope of the embodiment.

原料水酸化アルミニウム粉末(D50:81μm、細孔累積容積:0.09mL/g)を水分率5wt%に調整し、粉砕機(一軸スクリュー型捏和機)に連続的に投入して粉砕した。粉砕機の圧力は、投入速度を調節して196.0MPaとした。なお、粉砕機の圧力については、別途同じ原料水酸化アルミニウム粉末を冷間等方圧プレスにて圧縮粉砕してプレス圧とD90の関係を調査しておき、粉砕後の水酸化アルミニウム粉末のD90から粉砕機の圧力を簡易的に求めている。
得られた粉砕物を、120℃で乾燥し、衝撃粉砕機(自由粉砕機、奈良機械製)に投入して解砕し、実施例1の水酸化アルミニウム粉末を得た。衝撃粉砕機の衝突速度は、46m/秒とした。
また上記実施例1の製造方法から、以下の表1のように各条件を変更して、実施例2~4および比較例1~2の水酸化アルミニウム粉末を得た。さらに市販の水酸化アルミニウム粉末を比較例3(住友化学製、CW-308)、比較例4(住友化学製、C-305)、比較例5(住友化学製、CM-3080)とした。
A raw material aluminum hydroxide powder (D50: 81 μm, cumulative pore volume: 0.09 mL/g) was adjusted to have a moisture content of 5 wt %, and was continuously put into a pulverizer (single-screw kneader) and pulverized. The pulverizer pressure was adjusted to 196.0 MPa by adjusting the charging speed. Regarding the pressure of the pulverizer, the same raw material aluminum hydroxide powder was separately compressed and pulverized by a cold isostatic press, and the relationship between the press pressure and D90 was investigated. The pulverizer pressure is simply obtained from
The resulting pulverized material was dried at 120° C. and pulverized in an impact pulverizer (Jiyu pulverizer, manufactured by Nara Machinery Co., Ltd.) to obtain an aluminum hydroxide powder of Example 1. The impact speed of the impact crusher was 46 m/sec.
In addition, aluminum hydroxide powders of Examples 2 to 4 and Comparative Examples 1 and 2 were obtained by changing each condition from the production method of Example 1 as shown in Table 1 below. Furthermore, commercially available aluminum hydroxide powder was used as Comparative Example 3 (CW-308, manufactured by Sumitomo Chemical), Comparative Example 4 (C-305, manufactured by Sumitomo Chemical), and Comparative Example 5 (CM-3080, manufactured by Sumitomo Chemical).

Figure 2023009506000001
Figure 2023009506000001

実施例1~4および比較例1~5の水酸化アルミニウム粉末に対し、以下の方法により、成型密度、(002)/(110)回折強度比、質量基準粒度分布(D50及びD90含む)、BET比表面積およびNaO含有量を求めた。 For the aluminum hydroxide powders of Examples 1 to 4 and Comparative Examples 1 to 5, the molding density, (002)/(110) diffraction intensity ratio, mass-based particle size distribution (including D50 and D90), and BET were determined by the following methods. Specific surface area and Na 2 O content were determined.

[成型密度]
水酸化アルミニウム粉末3.00gを内径20.0mmの円筒一軸成形用金型に入れ、万能材料試験機(エー・アンド・デイ(A&D)社製、TENSILON RTG-1310)を用い、当該水酸化アルミニウム粉末を圧縮速度1mm/分で10MPaの圧力になるまで圧縮充填し、重量/体積の比を成形密度とした。
[Molding density]
3.00 g of aluminum hydroxide powder is placed in a cylindrical uniaxial mold with an inner diameter of 20.0 mm, and the aluminum hydroxide is tested using a universal material testing machine (manufactured by A & D (A & D), TENSILON RTG-1310). The powder was compression-filled at a compression rate of 1 mm/min until the pressure reached 10 MPa, and the weight/volume ratio was taken as the molding density.

[(002)/(110)回折強度比]
水酸化アルミニウム粉末を測定用ガラスセルに圧密して充填した後、粉末X線回折測定装置(リガク社製、RINT-2000)を用いて、ステップ幅0.02deg、スキャンスピード0.04deg/sec、加速電圧40kV、加速電流30mAにてXRDパターンを測定した。X線源としてはCu-Kαを用いた。得られたXRDパターンにおいて、2θ=18.3°の位置に現れるピークを(002)面のピークとし、2θ=20.3°の位置に現れるピークを(110)面のピークとして、(110)面のピークの回折強度(ピーク高さ)に対する(002)面のピークの回折強度(ピーク高さ)の比を、(002)/(110)回折強度比とした。
[(002)/(110) diffraction intensity ratio]
After compressing and filling the aluminum hydroxide powder into a glass cell for measurement, a powder X-ray diffractometer (RINT-2000 manufactured by Rigaku Co., Ltd.) was used to measure a step width of 0.02 deg, a scan speed of 0.04 deg/sec, An XRD pattern was measured at an acceleration voltage of 40 kV and an acceleration current of 30 mA. Cu-Kα was used as the X-ray source. In the resulting XRD pattern, the peak appearing at 2θ = 18.3° is the peak of the (002) plane, and the peak appearing at 20.3° is the peak of the (110) plane. The ratio of the diffraction intensity (peak height) of the (002) plane peak to the diffraction intensity (peak height) of the plane peak was taken as the (002)/(110) diffraction intensity ratio.

[質量基準粒度分布(D50及びD90含む)]
水酸化アルミニウム粉末を0.2質量%ヘキサメタリン酸ナトリウム水溶液中に加え、出力25Wの超音波を120秒間照射して水酸化アルミニウム粉末を水溶液中に分散させたものに対して、レーザー散乱式粒子径分布測定装置を用いて質量基準粒度分布(D50およびD90含む)を求めた。該粒度分布は、粒子径0.02μm~2000μmの範囲を対数スケールで132分割し、各区間の粒子径を有する水酸化アルミニウムの質量を測定して求めた。レーザー散乱式粒子径分布測定装置としては、マイクロトラックMT-3300EXII(日機装社製)を使用した。また、粒度分布測定時において、水酸化アルミニウム粉末の濃度を上記測定装置の測定可能濃度に適宜調整した上で測定した。
[Mass-based particle size distribution (including D50 and D90)]
Aluminum hydroxide powder was added to a 0.2% by mass sodium hexametaphosphate aqueous solution, and an ultrasonic wave with an output of 25 W was applied for 120 seconds to disperse the aluminum hydroxide powder in the aqueous solution. A mass-based particle size distribution (including D50 and D90) was determined using a distribution measuring device. The particle size distribution was determined by dividing the range of particle sizes from 0.02 μm to 2000 μm into 132 on a logarithmic scale and measuring the mass of aluminum hydroxide having a particle size in each section. Microtrac MT-3300EXII (manufactured by Nikkiso Co., Ltd.) was used as a laser scattering particle size distribution analyzer. In addition, when measuring the particle size distribution, the concentration of the aluminum hydroxide powder was appropriately adjusted to the measurable concentration of the above-mentioned measuring device, and then the measurement was performed.

[BET比表面積]
JIS-Z-8830:2013に規定された方法に従って、全自動比表面積測定装置(Mountech社製、Macsorb HM-1201)を用いて窒素吸着法によりBET比表面積を求めた。
[BET specific surface area]
The BET specific surface area was determined by the nitrogen adsorption method using a fully automatic specific surface area measuring device (Macsorb HM-1201 manufactured by Mountaintech) according to the method specified in JIS-Z-8830:2013.

[NaO含有量]
水酸化アルミニウム粉末を無機酸の水溶液に溶解させて水溶液を調製した後、ICP発光分光分析装置を用いてNaO含有量を求めた。具体的には、ナトリウムの波長(589.592nm)の強度を測定し、NaOに換算して、NaOの質量を算出し、溶解させた水酸化アルミニウム粉末の質量に対する該NaOの質量の比を、NaO含有量(質量%)とした。
[Na 2 O content]
After preparing an aqueous solution by dissolving aluminum hydroxide powder in an aqueous solution of an inorganic acid, the Na 2 O content was determined using an ICP emission spectrometer. Specifically, the intensity of the wavelength of sodium (589.592 nm) is measured, converted to Na 2 O, the mass of Na 2 O is calculated, and the Na 2 O with respect to the mass of the dissolved aluminum hydroxide powder was taken as the Na 2 O content (% by mass).

さらに以下の方法で樹脂粘度を求めた。
水酸化アルミニウム粉末5.59質量部とビスフェノールA型エポキシ樹脂混合物(AQ010-8140、常温硬化樹脂 53型主剤)1.86質量部を遊星式撹拌機(シンキー社製、あわとり練太郎ARV-310)を用いて1000rpmで3分間混合し、コンパウンドを得た。動的粘弾性測定装置(Rheosol-G3000)に直径30mmパラレルプレートを装着し、ここへ上記コンパウンドをセットした。パラレルプレートのギャップを0.50mm、温度100℃の条件にて10分間静置した後に、せん断速度40s-1における樹脂粘度を測定した。
結果を以下の表2にまとめる。なお、表2において、「第2のピーク」の欄の「-」は、第2のピークが存在しなかったことを意味する。
Furthermore, the resin viscosity was obtained by the following method.
5.59 parts by mass of aluminum hydroxide powder and 1.86 parts by mass of a bisphenol A type epoxy resin mixture (AQ010-8140, room temperature curing resin 53 type main agent) were added to a planetary stirrer (Awatori Mixer ARV-310, manufactured by Thinky Corporation). ) at 1000 rpm for 3 minutes to obtain a compound. A parallel plate with a diameter of 30 mm was attached to a dynamic viscoelasticity measuring device (Rheosol-G3000), and the compound was set thereon. After standing for 10 minutes under conditions of a parallel plate gap of 0.50 mm and a temperature of 100° C., the resin viscosity was measured at a shear rate of 40 s −1 .
The results are summarized in Table 2 below. In Table 2, "-" in the "second peak" column means that the second peak did not exist.

Figure 2023009506000002
Figure 2023009506000002

表2の結果より、次のように考察できる。表2の実施例1~4は、いずれも本発明の実施形態で規定する要件の全てを満足する例であり、樹脂粘度が10Pa・s以下であって樹脂粘度の上昇を十分に抑制できた。そのうち、実施例1~3は、D90が100μm未満であるため、樹脂成形体に充填したときの外観不良を十分に抑制することができ、また樹脂成形体の強度を十分に確保しやすい点で、好ましい例であった。実施例4は、原料水酸化アルミニウム粉末の細孔累積容積が0.02mL/g未満であったため、D90が100μm以上となった。
一方、比較例1~5は、本発明の実施形態で規定する要件を満たしていない例であり、樹脂粘度が10Pa・s超であって樹脂粘度の上昇を十分に抑制できなかった。
From the results in Table 2, the following can be considered. Examples 1 to 4 in Table 2 are all examples that satisfy all of the requirements defined in the embodiments of the present invention, and the resin viscosity is 10 Pa s or less, and the increase in resin viscosity can be sufficiently suppressed. . Among them, Examples 1 to 3 have a D90 of less than 100 μm, so that it is possible to sufficiently suppress appearance defects when filled in a resin molded body, and it is easy to sufficiently secure the strength of the resin molded body. was a preferred example. In Example 4, the cumulative pore volume of the starting aluminum hydroxide powder was less than 0.02 mL/g, so D90 was 100 µm or more.
On the other hand, Comparative Examples 1 to 5 are examples that do not satisfy the requirements defined in the embodiment of the present invention, and the resin viscosity exceeds 10 Pa·s, and the increase in resin viscosity could not be sufficiently suppressed.

比較例1は、解砕時の衝突速度が92m/秒超であったため、(002)/(110)回折強度比が7.5超となり、樹脂粘度が10Pa・s超となった。 In Comparative Example 1, the collision speed during crushing was over 92 m/sec, so the (002)/(110) diffraction intensity ratio was over 7.5 and the resin viscosity was over 10 Pa·s.

比較例2は、粉砕時の圧力が49.0MPa未満であったため、成型密度が1.59g/cm未満となり、樹脂粘度が10Pa・s超となった。 In Comparative Example 2, since the pulverization pressure was less than 49.0 MPa, the molding density was less than 1.59 g/cm 3 and the resin viscosity was more than 10 Pa·s.

比較例3および4は、成型密度が1.59g/cm未満であったため、樹脂粘度が10Pa・s超となった。 Comparative Examples 3 and 4 had molding densities of less than 1.59 g/cm 3 and thus resin viscosities of more than 10 Pa·s.

比較例5は、(002)/(110)回折強度比が7.5超であったため、樹脂粘度が10Pa・s超となった。 In Comparative Example 5, the (002)/(110) diffraction intensity ratio was over 7.5, so the resin viscosity was over 10 Pa·s.

Claims (4)

10MPaで成型したときの密度が1.59~2.00g/cmであり、
XRDパターンにおける(110)面の回折強度に対する(002)面の回折強度の比が、2.0~7.5である、水酸化アルミニウム粉末。
The density when molded at 10 MPa is 1.59 to 2.00 g / cm 3 ,
An aluminum hydroxide powder whose XRD pattern has a ratio of the diffraction intensity of the (002) plane to the diffraction intensity of the (110) plane of 2.0 to 7.5.
90質量%粒子径(D90)が100μm未満である、請求項1に記載の水酸化アルミニウム粉末。 2. Aluminum hydroxide powder according to claim 1, having a 90% by weight particle size (D90) of less than 100 [mu]m. 質量基準粒度分布において1~200μmの粒径範囲に1つ又は2つのピークを有し、
ピークが1つの場合は、該ピークの頻度が4.0質量%以上であり、
ピークが2つの場合は、一方のピークの頻度が4.0質量%以上であり、他方のピークの頻度が0質量%超4.0質量%以下である、請求項1または2に記載の水酸化アルミニウム粉末。
Having one or two peaks in the particle size range of 1 to 200 μm in the mass-based particle size distribution,
When there is one peak, the frequency of the peak is 4.0% by mass or more,
When there are two peaks, the frequency of one peak is 4.0% by mass or more, and the frequency of the other peak is more than 0% by mass and 4.0% by mass or less. The water according to claim 1 or 2. Aluminum oxide powder.
50質量%粒子径(D50)が10~200μmであり、且つ半径0.05~1μmの細孔の累積容積が0.01~1mL/gである水酸化アルミニウム粉末を、49.0~294.0MPaの圧力で粉砕した後、92m/秒以下の衝突速度で解砕することを含む、水酸化アルミニウム粉末の製造方法。 Aluminum hydroxide powder having a 50% by mass particle diameter (D50) of 10 to 200 μm and a cumulative volume of pores with a radius of 0.05 to 1 μm of 0.01 to 1 mL/g was added to 49.0 to 294.0 μm. A method for producing aluminum hydroxide powder, comprising pulverizing at a pressure of 0 MPa and then pulverizing at a collision speed of 92 m/sec or less.
JP2021112854A 2021-07-07 2021-07-07 Aluminum hydroxide powder and method for producing the same Pending JP2023009506A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021112854A JP2023009506A (en) 2021-07-07 2021-07-07 Aluminum hydroxide powder and method for producing the same
KR1020220078486A KR20230008606A (en) 2021-07-07 2022-06-27 Aluminum hydroxide powder and method for producing the same
TW111124927A TW202321153A (en) 2021-07-07 2022-07-04 Aluminum hydroxide powder and method for producing same
CN202210785465.7A CN115594206A (en) 2021-07-07 2022-07-04 Aluminum hydroxide powder and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021112854A JP2023009506A (en) 2021-07-07 2021-07-07 Aluminum hydroxide powder and method for producing the same

Publications (1)

Publication Number Publication Date
JP2023009506A true JP2023009506A (en) 2023-01-20

Family

ID=84842147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021112854A Pending JP2023009506A (en) 2021-07-07 2021-07-07 Aluminum hydroxide powder and method for producing the same

Country Status (4)

Country Link
JP (1) JP2023009506A (en)
KR (1) KR20230008606A (en)
CN (1) CN115594206A (en)
TW (1) TW202321153A (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4092453B2 (en) 2000-03-08 2008-05-28 住友化学株式会社 Method for producing aluminum hydroxide powder

Also Published As

Publication number Publication date
CN115594206A (en) 2023-01-13
KR20230008606A (en) 2023-01-16
TW202321153A (en) 2023-06-01

Similar Documents

Publication Publication Date Title
KR0133506B1 (en) Dispersible silica particulates and reinforcement of elastomer rubber matrices therewith
RU2170212C2 (en) Precipitated silica used as reinforced material for elastomers, and method of preparing thereof
EP1160201B1 (en) Processes for preparing precipitated calcium carbonate compositions
US9481819B2 (en) Method of manufacturing alumina-based abrasive grain and alumina-based abrasive grain manufactured thereby
US7704315B2 (en) Highly-filled, aqueous metal oxide dispersion
CN107585768B (en) Method for preparing superfine tungsten carbide powder by oxidation-reduction method
KR20160022868A (en) Component parts produced by thermoplastic processing of polymer/boron nitride compounds, polymer/boron nitride compounds for producing such component parts and use thereof
US20110315434A1 (en) Fine aluminum hydroxide powder for filling in resin and method for producing the same
CN109810294A (en) A kind of preparation method of the high-end nanometer calcium carbonate of butyl rubber product
US6382538B1 (en) Method for manufacturing aluminum hydroxide powder
US20140377561A1 (en) Material based on alumina, with a multiscale structure, comprising an aluminium phosphate binder with good mechanical strength, and process for its preparation
JP2023009506A (en) Aluminum hydroxide powder and method for producing the same
EP4084060A1 (en) Boron nitride sintered body, composite body, method for producing said boron nitride sintered body, method for producing said composite body, and heat dissipation member
JP2012121793A (en) Alumina mixed powder and alumina mixed powder-containing resin composition
JP2023009509A (en) aluminum hydroxide powder
JP4184683B2 (en) Metal oxide spherical particles and method for producing the same
JP4092453B2 (en) Method for producing aluminum hydroxide powder
JP7474221B2 (en) Manufacturing method of spherical silica powder
JP2009149713A (en) Resin molding
WO2023153353A1 (en) Inorganic powder
WO2023153352A1 (en) Inorganic powder
JP7438443B1 (en) Boron nitride aggregated particles, sheet member, and method for producing boron nitride aggregated particles
JPH08169980A (en) Resin composition containing alpha-alumina powder and rubber composition
JP6116447B2 (en) Ceramic particles and method for producing the same
JP2023147855A (en) boron nitride powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240411