JP2023007365A - Square cross section multicore insulated wire, and its manufacturing method - Google Patents

Square cross section multicore insulated wire, and its manufacturing method Download PDF

Info

Publication number
JP2023007365A
JP2023007365A JP2022028115A JP2022028115A JP2023007365A JP 2023007365 A JP2023007365 A JP 2023007365A JP 2022028115 A JP2022028115 A JP 2022028115A JP 2022028115 A JP2022028115 A JP 2022028115A JP 2023007365 A JP2023007365 A JP 2023007365A
Authority
JP
Japan
Prior art keywords
wire
twisted wire
twisted
strands
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022028115A
Other languages
Japanese (ja)
Inventor
和孝 舩田
Kazutaka FUNADA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOTOKU MAKISEN KK
Original Assignee
TOTOKU MAKISEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOTOKU MAKISEN KK filed Critical TOTOKU MAKISEN KK
Priority to PCT/JP2022/023588 priority Critical patent/WO2023276629A1/en
Priority to EP22832786.2A priority patent/EP4297046A1/en
Publication of JP2023007365A publication Critical patent/JP2023007365A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Insulated Conductors (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

To provide a square cross section multicore insulated wire of construction having a constitution excellent in insulation property, capable of applying to a coil in a non-contact charger, and combining flexibility and shape stability.SOLUTION: A square cross section multicore insulated wire 1 has a cluster of wires 2 in which an insulating layer 2b is formed on an outer periphery of a conductor 2a, and has a composite twist structure formed of a first stranded wire 21, a second stranded wire 22, a third stranded wire 23 and a fourth stranded wire 24, an insulating fiber thread 3 is wound around an outer periphery, and the cross section is formed into a rectangular shape, and a winding direction of the fiber thread 3 is the opposite direction of the twist direction of the outermost twisted wire in the cluster of wires 2.SELECTED DRAWING: Figure 1

Description

本発明は、方形断面多芯絶縁電線、及びその製造方法に関する。 TECHNICAL FIELD The present invention relates to a square cross-section multicore insulated wire and a manufacturing method thereof.

従来、素線の集合体を四角に圧縮成形して絶縁層を設けた構成が提案されている(特許文献1:特開昭59-096605号公報)。また、リッツ線を平角形状に圧縮成形し、外周にガラス糸を巻いて、合成樹脂によって素線間を結着した構成が提案されている(特許文献2:実公昭63-006815号公報)。そして、複数の素線を撚り合わせて平角状に伸線加工して絶縁層を押出被覆形成する方法が提案されている(特許文献3:特開2009-245658号公報)。 Conventionally, there has been proposed a configuration in which an assembly of strands is compression-molded into a square and provided with an insulating layer (Patent Document 1: Japanese Patent Application Laid-Open No. 59-096605). Further, a structure has been proposed in which a litz wire is compression molded into a rectangular shape, a glass thread is wound around the periphery, and the strands are bound with a synthetic resin (Patent Document 2: Japanese Utility Model Publication No. 63-006815). A method has been proposed in which a plurality of strands are twisted together and drawn into a rectangular shape to form an insulation layer by extrusion coating (Patent Document 3: Japanese Patent Application Laid-Open No. 2009-245658).

特開昭59-096605号公報Japanese Patent Application Laid-Open No. 59-096605 実公昭63-006815号公報Japanese Utility Model Publication No. 63-006815 特開2009-245658号公報JP 2009-245658 A

絶縁電線を電気機器や電動機や自動車などの非接触充電装置におけるコイルに適用する場合、所望の形状に曲げる際に追従可能な柔軟性(しなやかさ)が求められる。しかしながら、従来技術は、押出成形された絶縁層や結着樹脂の介在によって全体的に硬くなってしまい、所望の形状に曲げることが難しい。他方、多数の素線の集合体はほつれやすいため、結着樹脂などを用いなければ形状が維持し難い。 When an insulated wire is applied to a coil in a non-contact charging device such as an electric device, an electric motor, or an automobile, flexibility (suppleness) that can follow when it is bent into a desired shape is required. However, in the prior art, the insulation layer extruded and the binding resin intervening make the whole hard, and it is difficult to bend it into a desired shape. On the other hand, since an assembly of a large number of strands is likely to fray, it is difficult to maintain its shape unless a binding resin or the like is used.

本発明は、上記事情に鑑みてなされ、絶縁性能に優れた構成であるとともに、非接触充電装置におけるコイルへの適用が可能な、柔軟性と形状安定性とを兼ね備えた構成の方形断面多芯絶縁電線を提供することを目的とする。 The present invention has been made in view of the above circumstances, and has a square cross-section multi-core structure having both flexibility and shape stability that is excellent in insulation performance and can be applied to a coil in a non-contact charging device. The purpose is to provide an insulated wire.

一実施形態として、以下に開示する解決策により、前記課題を解決する。 In one embodiment, the solution disclosed below solves the above problems.

本発明に係る方形断面多芯絶縁電線は、導体の外周に絶縁層が形成されている素線の集合体を有し、前記素線の集合体は、前記素線を撚った第1撚線と前記第1撚線を撚った第2撚線と前記第2撚線を撚った第3撚線とを有する複合撚り構造であり、絶縁性の繊維糸が外周に巻かれており、横断面が平角状に成形されており、前記繊維糸の巻き方向は前記素線の集合体における最外周の撚線の撚り方向の逆方向であることを特徴とする。 A square cross-section multicore insulated wire according to the present invention has an assembly of strands in which an insulating layer is formed on the outer periphery of a conductor, and the assembly of strands is a first strand obtained by twisting the strands. It is a composite twisted structure having a wire, a second twisted wire obtained by twisting the first twisted wire, and a third twisted wire obtained by twisting the second twisted wire, and an insulating fiber yarn is wound around the outer circumference. , the cross section is formed in a rectangular shape, and the winding direction of the fiber yarn is opposite to the twisting direction of the outermost twisted wire in the assembly of the strands.

この構成によれば、第1撚線と第2撚線と第3撚線とを有する複合撚り構造によって曲げ加工に追従可能な柔軟性(しなやかさ)を得ることができる。尚且つ、繊維糸の巻き方向を素線の集合体における最外周の撚線の撚り方向の逆方向にしたことで繊維糸が素線間に食い込まずにカバーリングできる。さらに、平角状に成形する際の外力を繊維糸が受けて内部の素線の集合体を保護するとともに素線の集合体のほつれが防止できる。 According to this configuration, flexibility (suppleness) capable of following bending can be obtained by the composite twisted structure having the first, second, and third twisted wires. In addition, since the winding direction of the fiber thread is opposite to the twisting direction of the outermost twisted wire in the assembly of strands, the fiber thread can be covered without biting into between the strands. Furthermore, the fiber thread receives the external force during the rectangular shape molding, thereby protecting the internal assembly of the wire strands and preventing the assembly of the wire strands from fraying.

一例として、前記素線の数のうちの前記第1撚線を構成する第1素線数は前記素線の数のうちの前記第2撚線を構成する第2素線数と同数以上にして、前記素線の数のうちの前記第2撚線を構成する前記第2素線数は前記素線の数のうちの前記第3撚線を構成する第3素線数と同数以上にした構成である。この構成によれば、さらに高い柔軟性(しなやかさ)を得ることができる。一例として、前記素線の数のうちの前記第1撚線を構成する第1素線数は前記素線の数のうちの前記第2撚線を構成する第2素線数よりも多くて、前記素線の数のうちの前記第2撚線を構成する前記第2素線数は前記素線の数のうちの前記第3撚線を構成する第3素線数よりも多い構成である。一例として、撚りピッチは、第1撚線の第1ピッチは第2撚線の第2ピッチよりも小さくて、第2撚線の第2ピッチは第3撚線の第3ピッチよりも小さい構成である。この構成により、ほつれ難くできるので集合体の平角形状を維持することが容易にできる。 As an example, the number of first strands constituting the first twisted wire among the number of strands is equal to or greater than the number of second strands constituting the second twisted wire among the number of strands. and the number of said second strands constituting said second twisted wire out of said number of strands is equal to or greater than the number of said third strands constituting said third twisted wire out of said number of strands It is a configuration that According to this configuration, even higher flexibility (suppleness) can be obtained. As an example, the number of first strands constituting the first twisted wire among the number of strands is larger than the number of second strands constituting the second twisted wire among the number of strands. , the number of said second strands constituting said second twisted wire out of said number of strands is larger than the number of said third strands constituting said third strand out of said number of strands be. As an example, the twist pitch is such that the first pitch of the first twisted wire is smaller than the second pitch of the second twisted wire, and the second pitch of the second twisted wire is smaller than the third pitch of the third twisted wire. is. With this configuration, fraying can be prevented, so that the rectangular shape of the assembly can be easily maintained.

一例として、前記導体は銅または銅合金からなり、前記絶縁層はポリウレタンからなる。これにより、導電率が高く、はんだ付け性に優れた構成にできる。一例として、前記繊維糸はポリエステルからなる。これにより、コイルに適用して絶縁樹脂を含浸させる際に絶縁樹脂を行き渡らせ易くなり、高い接着性が得られる。一例として、前記素線の数は2000本以上である。これにより、さらに高い柔軟性が得られるとともに、高周波帯での通電特性に優れた構成にできる。一例として、前記素線の数は4000本以下である。これにより、導体の占積率を高めつつコイルに適用する際に必要な曲げ強度を確保できる。 As an example, the conductor is made of copper or a copper alloy, and the insulating layer is made of polyurethane. As a result, a structure having high conductivity and excellent solderability can be obtained. As an example, the fiber thread is made of polyester. This makes it easier to spread the insulating resin when applying it to the coil and impregnating it with the insulating resin, so that high adhesiveness can be obtained. As an example, the number of strands is 2000 or more. As a result, even higher flexibility can be obtained, and a structure having excellent current-carrying characteristics in a high frequency band can be obtained. As an example, the number of strands is 4000 or less. As a result, it is possible to ensure the necessary bending strength when applying to a coil while increasing the space factor of the conductor.

一例として、前記素線の集合体は、前記第1撚線と前記第2撚線と前記第3撚線と第4撚線とからなる複合撚り構造であり、前記第1撚線、前記第2撚線、前記第3撚線および前記第4撚線の撚り方向はいずれも第1方向であり、前記繊維糸の巻き方向は前記第1方向の逆方向である。一例として、前記方形断面多芯絶縁電線は、導体の外周に絶縁層が形成されている素線の集合体を有し、前記集合体は、前記素線を撚った第1撚線と前記第1撚線を撚った第2撚線と前記第2撚線を撚った第3撚線と前記第3撚線を撚った第4撚線とからなる複合撚り構造であり、絶縁性の繊維糸が外周に巻かれており、横断面が平角状に成形されており、前記第1撚線、前記第2撚線、前記第3撚線および前記第4撚線の撚り方向はいずれも第1方向であり、前記繊維糸の巻き方向は前記第1方向の逆方向である。この構成によれば、さらに高い柔軟性が得られる。 As an example, the assembly of the strands has a composite twist structure including the first twisted wire, the second twisted wire, the third twisted wire, and the fourth twisted wire. The twist directions of the two strands, the third strand and the fourth strand are all in the first direction, and the winding direction of the fiber yarn is opposite to the first direction. As an example, the square cross-section multicore insulated wire has an assembly of strands in which an insulating layer is formed on the outer periphery of a conductor, and the assembly includes a first twisted wire obtained by twisting the strands and the A composite twisted structure composed of a second twisted wire obtained by twisting the first twisted wire, a third twisted wire obtained by twisting the second twisted wire, and a fourth twisted wire obtained by twisting the third twisted wire, and is insulated A fiber yarn of the same type is wound around the outer circumference, and the cross section is formed into a rectangular shape, and the twisting directions of the first strand, the second strand, the third strand, and the fourth strand are Both are in the first direction, and the winding direction of the fiber thread is opposite to the first direction. This configuration provides even greater flexibility.

一例として、前記素線の集合体は、前記第1撚線と前記第2撚線と前記第3撚線と第4撚線とからなる複合撚り構造であり、前記第1撚線、前記第2撚線、前記第3撚線の撚り方向はいずれも第2方向であり、前記第4撚線の撚り方向は前記第2方向の逆方向であり、前記繊維糸の巻き方向は前記第2方向である。一例として、前記方形断面多芯絶縁電線は、導体の外周に絶縁層が形成されている素線の集合体を有し、前記集合体は、前記素線を撚った第1撚線と前記第1撚線を撚った第2撚線と前記第2撚線を撚った第3撚線と前記第3撚線を撚った第4撚線とからなる複合撚り構造であり、絶縁性の繊維糸が外周に巻かれており、横断面が平角状に成形されており、前記第1撚線、前記第2撚線、前記第3撚線の撚り方向はいずれも第2方向であり、前記第4撚線の撚り方向は前記第2方向の逆方向であり、前記繊維糸の巻き方向は前記第2方向である。この構成によれば、さらに高い形状安定性が得られる。 As an example, the assembly of the strands has a composite twist structure including the first twisted wire, the second twisted wire, the third twisted wire, and the fourth twisted wire. The twisting directions of the two twisted wires and the third twisted wire are both the second direction, the twisting direction of the fourth twisted wire is the opposite direction of the second direction, and the winding direction of the fiber yarn is the second direction. is the direction. As an example, the square cross-section multicore insulated wire has an assembly of strands in which an insulating layer is formed on the outer periphery of a conductor, and the assembly includes a first twisted wire obtained by twisting the strands and the A composite twisted structure composed of a second twisted wire obtained by twisting the first twisted wire, a third twisted wire obtained by twisting the second twisted wire, and a fourth twisted wire obtained by twisting the third twisted wire, and is insulated A flexible fiber thread is wound around the outer circumference, the cross section is formed into a rectangular shape, and the twisting directions of the first twisted wire, the second twisted wire, and the third twisted wire are all in the second direction. A twisting direction of the fourth twisted wire is opposite to the second direction, and a winding direction of the fiber thread is the second direction. This configuration provides even higher shape stability.

本発明に係る方形断面多芯絶縁電線の製造方法は、導体の外周に絶縁層が形成されている素線を用いて、前記素線を撚った第1撚線と前記第1撚線を撚った第2撚線と前記第2撚線を撚った第3撚線とを有する複合撚り構造の前記素線の集合体とし、絶縁性の繊維糸を前記素線の集合体の外周に前記素線の集合体における最外周の撚線の撚り方向の逆方向に巻いて、その後、横断面を平角状に成形することを特徴とする。前記方形断面多芯絶縁電線の製造方法は、導体の外周に絶縁層が形成されている素線を第1方向に撚って第1撚線とし、前記第1撚線を前記第1方向に撚って第2撚線とし、前記第2撚線を前記第1方向に撚って第3撚線とし、前記第3撚線を前記第1方向に撚って第4撚線として複合撚り構造の前記素線の集合体とし、絶縁性の繊維糸を前記集合体の外周に前記第1方向の逆方向に巻いて、その後、横断面を平角状に成形することを特徴とする。 A method for manufacturing a square cross-section multicore insulated wire according to the present invention uses a strand having an insulating layer formed on the outer periphery of a conductor, and a first strand made by twisting the strand and the first strand. a second twisted wire and a third twisted wire obtained by twisting the second twisted wire; first, in the direction opposite to the twisting direction of the outermost twisted wire in the assembly of the strands, and then the cross section is formed into a rectangular shape. The method for manufacturing the square cross-section multicore insulated wire includes twisting strands having an insulating layer formed on the outer periphery of a conductor to form a first strand in a first direction, and twisting the first strand in the first direction. Twisting to form a second stranded wire, twisting the second stranded wire in the first direction to form a third stranded wire, and twisting the third stranded wire in the first direction to form a fourth stranded wire is a composite twist An insulative fiber thread is wound around the outer circumference of the assembly in the direction opposite to the first direction, and then the cross section is formed into a rectangular shape.

この構成によれば、コイルに適用する際など、曲げ加工に追従可能な柔軟性(しなやかさ)を得ることができる。尚且つ、繊維糸が素線間に食い込まずにカバーリングできる。さらに、平角状に成形する際の外力から内部の素線の集合体を保護するとともに素線の集合体のほつれが防止できる。 According to this configuration, it is possible to obtain flexibility (suppleness) that can follow bending when applied to a coil. Moreover, the fiber thread can be covered without biting into between the filaments. Furthermore, it is possible to protect the assembly of the wires inside from the external force when forming into a rectangular shape and prevent the assembly of the wires from fraying.

本発明によれば、絶縁性能に優れた構成であるとともに、非接触充電装置におけるコイルへの適用が可能な、柔軟性と形状安定性とを兼ね備えた構成の方形断面多芯絶縁電線が実現できる。 According to the present invention, it is possible to realize a rectangular cross-section multi-core insulated wire that has excellent insulation performance, is applicable to a coil in a non-contact charging device, and has both flexibility and shape stability. .

図1は本発明の実施形態に係る方形断面多芯絶縁電線の構造を模式的に示す構造図である。FIG. 1 is a structural diagram schematically showing the structure of a multi-core insulated wire having a square cross section according to an embodiment of the present invention. 図2Aは図1に示す方形断面多芯絶縁電線の例における素線を模式的に示す図であり、図2Bは図2Aにおける素線を撚って第1撚線とした状態を示す図であり、図2Cは図2Bにおける第1撚線を撚って第2撚線にした状態を示す図である。2A is a diagram schematically showing strands in the example of the square cross-section multicore insulated wire shown in FIG. 1, and FIG. 2B is a diagram showing a state in which the strands in FIG. 2A are twisted to form a first stranded wire. FIG. 2C is a diagram showing a state in which the first stranded wire in FIG. 2B is twisted to form a second stranded wire. 図3Aは図2Cにおける第2撚線を撚って第3撚線にした状態を示す図であり、図3Bは図3Aにおける第3撚線を撚って第4撚線にした状態を示す図であり、図3Cは図3Bにおける第4撚線を繊維糸でカバーリングした状態を示す図である。3A is a diagram showing a state in which the second strand in FIG. 2C is twisted to form a third strand, and FIG. 3B shows a state in which the third strand in FIG. 3A is twisted to form a fourth strand. FIG. 3C is a diagram showing a state in which the fourth twisted wire in FIG. 3B is covered with fiber threads; 図4Aは図1に示す方形断面多芯絶縁電線の他の例における素線を模式的に示す図であり、図4Bは図4Aにおける素線を撚って第1撚線とした状態を示す図であり、図4Cは図4Bにおける第1撚線を撚って第2撚線にした状態を示す図である。4A is a diagram schematically showing strands in another example of the square cross-section multicore insulated wire shown in FIG. 1, and FIG. 4B shows a state in which the strands in FIG. 4A are twisted to form a first stranded wire. FIG. 4C is a diagram showing a state in which the first stranded wire in FIG. 4B is twisted to form a second stranded wire. 図5Aは図4Cにおける第2撚線を撚って第3撚線にした状態を示す図であり、図5Bは図5Aにおける第3撚線を撚って第4撚線にした状態を示す図であり、図5Cは図5Bにおける第4撚線を繊維糸でカバーリングした状態を示す図である。5A is a diagram showing a state in which the second strand in FIG. 4C is twisted to form a third strand, and FIG. 5B shows a state in which the third strand in FIG. 5A is twisted to form a fourth strand. FIG. 5C is a diagram showing a state in which the fourth twisted wire in FIG. 5B is covered with fiber threads; 図6は図1に示す方形断面多芯絶縁電線をコイル状にした状態を示す図である。FIG. 6 is a diagram showing a coiled state of the multi-core insulated wire of square cross section shown in FIG.

以下、図面を参照して、本発明の実施形態について詳しく説明する。本実施形態の方形断面多芯絶縁電線1は、一例として、電気機器や電動機や自動車などの非接触充電装置におけるコイルに適用される。なお、実施形態を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する場合がある。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The square cross-section multi-core insulated wire 1 of the present embodiment is applied, as an example, to a coil in a non-contact charging device such as an electric device, an electric motor, or an automobile. In addition, in all drawings for describing the embodiments, members having the same functions are denoted by the same reference numerals, and repeated description thereof may be omitted.

図1に示すように、方形断面多芯絶縁電線1は、導体2aの外周に絶縁層2bが形成されている素線2の集合体を有し、第1撚線21と第2撚線22と第3撚線23と第4撚線24とからなる複合撚り構造であり、絶縁性の繊維糸3が外周に巻かれており、横断面が平角状に成形されており、繊維糸3の巻き方向は、素線2の集合体における最外周の撚線の撚り方向の逆方向である。 As shown in FIG. 1, a square cross-section multicore insulated wire 1 has an assembly of strands 2 in which an insulating layer 2b is formed on the outer periphery of a conductor 2a. , a third twisted wire 23 and a fourth twisted wire 24, and an insulating fiber yarn 3 is wound around the outer circumference, and the cross section is formed into a rectangular shape, and the fiber yarn 3 The winding direction is opposite to the twisting direction of the outermost twisted wire in the assembly of the strands 2 .

素線2を構成する導体2aは、はんだ付け可能な導電性の導体であり、例えば、銅または銅合金からなる。絶縁層2bは、絶縁性に優れるとともに、はんだ付けに支障がない絶縁皮膜であり、例えば、ポリウレタンまたはポリエステルからなる。素線2はエナメル線が適用できる。絶縁性の繊維糸3は、カバーリング糸であり、例えば、ポリエステル糸、アクリル糸、ポリプロピレン糸、ポリウレタン糸から選択される。繊維糸3の材質は用途に応じて適宜設定することができる。 The conductor 2a forming the wire 2 is a solderable conductive conductor, and is made of, for example, copper or a copper alloy. The insulating layer 2b is an insulating film that has excellent insulating properties and does not interfere with soldering, and is made of, for example, polyurethane or polyester. An enameled wire can be applied to the wire 2 . The insulating fiber thread 3 is a covering thread and is selected from polyester thread, acrylic thread, polypropylene thread and polyurethane thread, for example. The material of the fiber thread 3 can be appropriately set according to the application.

方形断面多芯絶縁電線1は、素線2の集合体が繊維糸3でカバーリングされて外部から保護および絶縁されている。図1に示すように、素線2の集合体は、横断面が平角状に成形されている。図1の例では、第4撚線24の撚り方向は第1方向v1になっており、繊維糸3の巻き方向は前記撚り方向と逆の第2方向v2になっている。ここで、第1方向v1と第2方向v2とは相対的な関係を示しており、第4撚線24の撚り方向は第2方向v2になっており、繊維糸3の巻き方向は前記撚り方向と逆の第2方向v2になっている場合がある。例えば、前記撚り方向は右撚りまたはS撚りであり、前記繊維糸3の糸巻き方向は左巻きである。また例えば、前記撚り方向は左撚りまたはZ撚りであり、前記繊維糸3の糸巻き方向は右巻きである。方形断面多芯絶縁電線1の製造装置は、一例として、上流側から、撚り装置、成形装置、巻取装置の順に設置されている。 A square cross-section multicore insulated wire 1 has an assembly of strands 2 covered with fiber yarns 3 to protect and insulate from the outside. As shown in FIG. 1, the assembly of wires 2 has a rectangular cross section. In the example of FIG. 1, the twisting direction of the fourth twisted wire 24 is the first direction v1, and the winding direction of the fiber thread 3 is the second direction v2 opposite to the twisting direction. Here, the first direction v1 and the second direction v2 indicate a relative relationship. It may be the second direction v2 opposite to the direction. For example, the twisting direction is right-hand twist or S-twist, and the winding direction of the fiber thread 3 is left-hand. Further, for example, the twist direction is left-hand twist or Z-twist, and the winding direction of the fiber yarn 3 is right-hand twist. As an example, the apparatus for manufacturing the square cross-section multicore insulated wire 1 is installed in the order of a twisting apparatus, a forming apparatus, and a winding apparatus from the upstream side.

続いて、方形断面多芯絶縁電線1の第1例と、その製造手順について、以下に説明する。 Next, a first example of the square cross-section multicore insulated wire 1 and its manufacturing procedure will be described below.

[第1例]
図2Aに示すように、銅または銅合金からなる導体2aと、ポリウレタンまたはポリエステルからなる絶縁層2bとからなる素線2を用いる。そして、図2Bに示すように、素線2を7本以上21本以下で第1方向v1に撚って第1撚線21にする。素線2のうちの1番目の線が一周した長手方向の長さは第1ピッチP1である。次に、図2Cに示すように、第1撚線21を3本以上9本以下で第1方向v1に撚って第2撚線22にする。第1撚線21のうちの1番目の線が一周した長手方向の長さは第2ピッチP2である。次に、図3Aに示すように、第2撚線22を3本以上7本以下で第1方向v1に撚って第3撚線23にする。第2撚線22のうちの1番目の線が一周した長手方向の長さは第3ピッチP3である。次に、図3Bに示すように、第3撚線23を3本以上7本以下で第1方向v1に撚って第4撚線24にする。第4撚線24のうちの1番目の線が一周した長手方向の長さは第4ピッチP4である。そして、図3Cに示すように、絶縁性の繊維糸3を第4撚線24の外周に第1方向v1の逆方向の第2方向v2に巻き付ける。その後、成形装置のローラに挟んで横断面を平角状に成形することで方形断面多芯絶縁電線1にする。そして、成形した方形断面多芯絶縁電線1をドラムで巻き取る。
[First example]
As shown in FIG. 2A, a strand 2 comprising a conductor 2a made of copper or copper alloy and an insulating layer 2b made of polyurethane or polyester is used. Then, as shown in FIG. 2B, 7 or more and 21 or less strands 2 are twisted in the first direction v1 to form a first twisted wire 21 . The length in the longitudinal direction that the first wire of the strands 2 makes one round is the first pitch P1. Next, as shown in FIG. 2C, three or more and nine or less first stranded wires 21 are twisted in the first direction v1 to form a second stranded wire 22 . The length of the first wire of the first twisted wire 21 in the longitudinal direction is the second pitch P2. Next, as shown in FIG. 3A, three or more and seven or less second stranded wires 22 are twisted in the first direction v1 to form a third stranded wire 23 . The length in the longitudinal direction of the first wire of the second twisted wire 22 is the third pitch P3. Next, as shown in FIG. 3B, three or more and seven or less third twisted wires 23 are twisted in the first direction v1 to form a fourth twisted wire 24 . The length of the first wire of the fourth twisted wire 24 in the longitudinal direction is the fourth pitch P4. Then, as shown in FIG. 3C, the insulating fiber thread 3 is wound around the outer circumference of the fourth twisted wire 24 in a second direction v2 opposite to the first direction v1. After that, the multicore insulated wire 1 with a square cross section is formed by sandwiching it between rollers of a forming device and forming the cross section into a rectangular shape. Then, the molded rectangular cross-section multicore insulated wire 1 is wound on a drum.

続いて、方形断面多芯絶縁電線1の第2例と、その製造手順について、以下に説明する。 Next, a second example of the square cross-section multicore insulated wire 1 and its manufacturing procedure will be described below.

[第2例]
図4Aに示すように、銅または銅合金からなる導体2aと、ポリウレタンまたはポリエステルからなる絶縁層2bとからなる素線2を用いる。そして、図4Bに示すように、素線2を7本以上21本以下で第2方向v2に撚って第1撚線21にする。次に、図4Cに示すように、第1撚線21を3本以上9本以下で第2方向v2に撚って第2撚線22にする。次に、図5Aに示すように、第2撚線22を3本以上7本以下で第2方向v2に撚って第3撚線23にする。次に、図5Bに示すように、第3撚線23を3本以上7本以下で第1方向v1に撚って第4撚線24にする。そして、図5Cに示すように、絶縁性の繊維糸3を第4撚線24の外周に第1方向v1の逆方向の第2方向v2に巻き付ける。その後、成形装置のローラに挟んで横断面を平角状に成形することで方形断面多芯絶縁電線1にする。そして、成形した方形断面多芯絶縁電線1をドラムで巻き取る。
[Second example]
As shown in FIG. 4A, a strand 2 comprising a conductor 2a made of copper or copper alloy and an insulating layer 2b made of polyurethane or polyester is used. Then, as shown in FIG. 4B , 7 or more and 21 or less strands 2 are twisted in the second direction v2 to form a first twisted wire 21 . Next, as shown in FIG. 4C , three or more and nine or less first stranded wires 21 are twisted in the second direction v2 to form a second stranded wire 22 . Next, as shown in FIG. 5A , three or more and seven or less second twisted wires 22 are twisted in the second direction v2 to form a third twisted wire 23 . Next, as shown in FIG. 5B, three or more and seven or less third twisted wires 23 are twisted in the first direction v1 to form a fourth twisted wire 24 . Then, as shown in FIG. 5C, the insulating fiber thread 3 is wound around the outer periphery of the fourth twisted wire 24 in a second direction v2 opposite to the first direction v1. After that, the multicore insulated wire 1 with a square cross section is formed by sandwiching it between rollers of a forming device and forming the cross section into a rectangular shape. Then, the molded rectangular cross-section multicore insulated wire 1 is wound on a drum.

上述の第1例は同方向撚りであり、また、第2例はロープ撚りである。第1例および第2例では、第4撚線24の撚り方向は第1方向v1になっており、繊維糸3の巻き方向は第2方向v2になっている。ここで、第1方向v1と第2方向v2とは相対的な関係を示しており、第4撚線24の撚り方向は第2方向v2になっており、繊維糸3の巻き方向は前記撚り方向と逆の第2方向v2になっている場合がある。 The first example above is co-directional laying and the second example is rope laying. In the first and second examples, the twisting direction of the fourth twisted wire 24 is the first direction v1, and the winding direction of the fiber thread 3 is the second direction v2. Here, the first direction v1 and the second direction v2 indicate a relative relationship. It may be the second direction v2 opposite to the direction.

方形断面多芯絶縁電線1の各例を次の表1に示す。 Table 1 below shows each example of the square cross-section multicore insulated wire 1 .

Figure 2023007365000002
Figure 2023007365000002

続いて、本実施形態に係る方形断面多芯絶縁電線1の実施例について、以下に説明する。 Next, examples of the square cross-section multicore insulated wire 1 according to the present embodiment will be described below.

方形断面多芯絶縁電線1の製造方法は上述のとおりである。素線2は、導体2aと絶縁層2bとから構成される。導体2aは直径が0.1mmの銅線または銅合金線からなる。絶縁層2bは、径方向の片側厚みが9μmのポリウレタンまたはポリエステルからなる。繊維糸3は、110デシテックスで6本のポリエステル糸からなる。14本の素線2を第1ピッチP1が25mmで第1方向v1に撚って第1撚線21にする。次に、6本の第1撚線21を第2ピッチが45mmで第1方向v1に撚って第2撚線22にする。次に、5本の第2撚線22を第3ピッチが85mmで第1方向v1に撚って第3撚線23にする。次に、5本の第3撚線23を第4ピッチが115mmで第1方向v1に撚って第4撚線24にする。そして、繊維糸3を第4撚線24の外周に第2方向v2に巻き付ける。その後、成形装置のローラに挟んで横断面を平角状に成形して方形断面多芯絶縁電線1にする。ローラは複数段設ける。 The manufacturing method of the square cross-section multicore insulated wire 1 is as described above. The wire 2 is composed of a conductor 2a and an insulating layer 2b. The conductor 2a is made of copper wire or copper alloy wire with a diameter of 0.1 mm. The insulating layer 2b is made of polyurethane or polyester with a thickness of 9 μm on one side in the radial direction. The textile yarn 3 consists of 6 polyester yarns of 110 decitex. Fourteen wires 2 are twisted in the first direction v1 at a first pitch P1 of 25 mm to form a first twisted wire 21. - 特許庁Next, the six first twisted wires 21 are twisted in the first direction v1 at a second pitch of 45 mm to form a second twisted wire 22 . Next, five second twisted wires 22 are twisted in the first direction v1 at a third pitch of 85 mm to form a third twisted wire 23 . Next, five third twisted wires 23 are twisted in the first direction v1 at a fourth pitch of 115 mm to form a fourth twisted wire 24 . Then, the fiber yarn 3 is wound around the outer circumference of the fourth twisted wire 24 in the second direction v2. After that, it is clamped between rollers of a forming device and shaped into a rectangular cross-section to form a square cross-section multicore insulated wire 1 . A plurality of rollers are provided.

方形断面多芯絶縁電線1は、一例として、図6に示すように、コイル状に曲げて用いられる。また、必要に応じて所望の長さに切断し、半田付け、またはヒュージング処理、あるいは端子を取付けるなどの端末処理を行う。上述した本実施形態によれば、曲げ加工に追従可能な柔軟性(しなやかさ)と、形状安定性とを兼ね備えた構成にできる。尚且つ、繊維糸が素線間に食い込まずにカバーリングできる。さらに、平角状に成形する際の外力から内部の素線の集合体を保護するとともに素線の集合体のほつれが防止できる。 As an example, the square cross-section multicore insulated wire 1 is used by being bent into a coil shape as shown in FIG. Also, if necessary, it is cut to a desired length, and terminal processing such as soldering, fusing, or terminal attachment is performed. According to the present embodiment described above, it is possible to achieve both flexibility (suppleness) capable of following bending and shape stability. Moreover, the fiber thread can be covered without biting into between the filaments. Furthermore, it is possible to protect the assembly of the wires inside from the external force when forming into a rectangular shape and prevent the assembly of the wires from fraying.

本発明は、以上説明した実施例に限定されることなく、本発明を逸脱しない範囲において種々変更が可能である。 The present invention is not limited to the embodiments described above, and various modifications can be made without departing from the scope of the present invention.

1 方形断面多芯絶縁電線
2 素線、2a 導体、2b 絶縁層
3 繊維糸
21 第1撚線
22 第2撚線
23 第3撚線
24 第4撚線
v1 第1方向
v2 第2方向
1 square cross-section multicore insulated wire 2 element wire 2a conductor 2b insulating layer 3 fiber thread 21 first twisted wire 22 second twisted wire 23 third twisted wire 24 fourth twisted wire v1 first direction v2 second direction

Claims (6)

導体の外周に絶縁層が形成されている素線の集合体を有し、前記素線の集合体は、前記素線を撚った第1撚線と前記第1撚線を撚った第2撚線と前記第2撚線を撚った第3撚線とを有する複合撚り構造であり、絶縁性の繊維糸が外周に巻かれており、横断面が平角状に成形されており、前記繊維糸の巻き方向は前記素線の集合体における最外周の撚線の撚り方向の逆方向であること
を特徴とする方形断面多芯絶縁電線。
An assembly of wires in which an insulating layer is formed on an outer periphery of a conductor, and the assembly of wires includes a first twisted wire obtained by twisting the wires and a second twisted wire obtained by twisting the first twisted wires. It has a composite twisted structure having two twisted wires and a third twisted wire obtained by twisting the second twisted wire, an insulating fiber thread is wound around the outer periphery, and the cross section is formed into a rectangular shape, A square cross-section multicore insulated wire, wherein the winding direction of the fiber thread is opposite to the twisting direction of the outermost twisted wire in the assembly of the strands.
前記素線の集合体は、前記第1撚線と前記第2撚線と前記第3撚線と第4撚線とからなる複合撚り構造であり、前記第1撚線、前記第2撚線、前記第3撚線および前記第4撚線の撚り方向はいずれも第1方向であり、前記繊維糸の巻き方向は前記第1方向の逆方向であること
を特徴とする請求項1に記載の方形断面多芯絶縁電線。
The assembly of the strands has a composite twist structure composed of the first twisted wire, the second twisted wire, the third twisted wire, and the fourth twisted wire, and the first twisted wire and the second twisted wire 2. The twisting direction of the third twisted wire and the fourth twisted wire are both the first direction, and the winding direction of the fiber yarn is opposite to the first direction. square cross-section multi-core insulated wire.
前記素線の集合体は、前記第1撚線と前記第2撚線と前記第3撚線と第4撚線とからなる複合撚り構造であり、前記第1撚線、前記第2撚線、前記第3撚線の撚り方向はいずれも第2方向であり、前記第4撚線の撚り方向は前記第2方向の逆方向であり、前記繊維糸の巻き方向は前記第2方向であること
を特徴とする請求項1に記載の方形断面多芯絶縁電線。
The assembly of the strands has a composite twist structure composed of the first twisted wire, the second twisted wire, the third twisted wire, and the fourth twisted wire, and the first twisted wire and the second twisted wire , the twisting direction of the third twisted wire is the second direction, the twisting direction of the fourth twisted wire is opposite to the second direction, and the winding direction of the fiber yarn is the second direction. 2. The multi-core insulated wire having a rectangular cross section according to claim 1, characterized in that:
前記素線の数のうちの前記第1撚線を構成する第1素線数は前記素線の数のうちの前記第2撚線を構成する第2素線数と同数以上にして、前記素線の数のうちの前記第2撚線を構成する前記第2素線数は前記素線の数のうちの前記第3撚線を構成する第3素線数と同数以上にしたこと
を特徴とする請求項1~3のいずれか一項に記載の方形断面多芯絶縁電線。
The number of first strands constituting the first twisted wire among the number of strands is equal to or greater than the number of second strands constituting the second strand among the number of strands, and The number of said second strands constituting said second twisted wire out of the number of strands is equal to or greater than the number of third strands constituting said third twisted wire out of said number of strands. The rectangular cross-section multicore insulated wire according to any one of claims 1 to 3.
前記導体は銅または銅合金からなり、前記絶縁層はポリウレタンからなり、前記繊維糸はポリエステルからなり、前記素線の数は2000本以上であること
を特徴とする請求項1~4のいずれか一項に記載の方形断面多芯絶縁電線。
5. The conductor according to any one of claims 1 to 4, wherein the conductor is made of copper or a copper alloy, the insulating layer is made of polyurethane, the fiber thread is made of polyester, and the number of strands is 2000 or more. The square cross-section multi-core insulated wire according to item 1.
導体の外周に絶縁層が形成されている素線を用いて、前記素線を撚った第1撚線と前記第1撚線を撚った第2撚線と前記第2撚線を撚った第3撚線とを有する複合撚り構造の前記素線の集合体とし、絶縁性の繊維糸を前記素線の集合体の外周に前記素線の集合体における最外周の撚線の撚り方向の逆方向に巻いて、その後、横断面を平角状に成形すること
を特徴とする方形断面多芯絶縁電線の製造方法。
Using a strand having an insulating layer formed on the outer circumference of a conductor, a first strand made by twisting the strands, a second strand made by twisting the first strand, and the second strand are twisted. and a third twisted wire having a composite twist structure, and an insulating fiber yarn is twisted around the outer periphery of the assembly of the strands. A method for manufacturing a square cross-section multicore insulated wire, characterized by winding the wire in the opposite direction, and then forming the cross section into a rectangular shape.
JP2022028115A 2021-06-29 2022-02-25 Square cross section multicore insulated wire, and its manufacturing method Pending JP2023007365A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/023588 WO2023276629A1 (en) 2021-06-29 2022-06-13 Rectangular cross-section multi-core insulated wire, and method for manufacturing same
EP22832786.2A EP4297046A1 (en) 2021-06-29 2022-06-13 Rectangular cross-section multi-core insulated wire, and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021107425 2021-06-29
JP2021107425 2021-06-29

Publications (1)

Publication Number Publication Date
JP2023007365A true JP2023007365A (en) 2023-01-18

Family

ID=85107806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022028115A Pending JP2023007365A (en) 2021-06-29 2022-02-25 Square cross section multicore insulated wire, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2023007365A (en)

Similar Documents

Publication Publication Date Title
US10249412B2 (en) Composite cable
JP5114867B2 (en) Electric cable
JP5928305B2 (en) Shielded cable
JP2016110836A (en) Cabtyre cable and cable with connector
CA2367667A1 (en) Electrical cable
US5354954A (en) Dielectric miniature electric cable
WO2023276629A1 (en) Rectangular cross-section multi-core insulated wire, and method for manufacturing same
JP2023007365A (en) Square cross section multicore insulated wire, and its manufacturing method
US20240186033A1 (en) Rectangular cross-section multi-core insulated wire, and method for manufacturing same
CN210182094U (en) Thin-diameter anti-distortion multi-core cable
JP6713712B2 (en) Multi-core cable
JP6774462B2 (en) Multi-core communication cable
JP6766928B1 (en) Cable for moving parts
JP2021057152A (en) Cable, and manufacturing method of cable
JP6838679B2 (en) cable
CN212010428U (en) Tensile-resistant type shielding flat cable
JP7486300B2 (en) Bend-resistant insulated wire
CN111834039B (en) Super-flexible large-current cable for smart energy and preparation method thereof
CN217719054U (en) Bending-resistant electric wire
CN215600104U (en) Cable easy to store
CN212010526U (en) Flexible foamed fluororesin insulation multi-core cable
CN215577743U (en) Tensile and vibration-resistant high-temperature wire
CN213400593U (en) Conductive wire
JP7433053B2 (en) coaxial cable
JP3223576U (en) Twisted wire conductor and electric wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240401