JP2023007015A - Rotation device - Google Patents

Rotation device Download PDF

Info

Publication number
JP2023007015A
JP2023007015A JP2021109961A JP2021109961A JP2023007015A JP 2023007015 A JP2023007015 A JP 2023007015A JP 2021109961 A JP2021109961 A JP 2021109961A JP 2021109961 A JP2021109961 A JP 2021109961A JP 2023007015 A JP2023007015 A JP 2023007015A
Authority
JP
Japan
Prior art keywords
rotation
rotating
rotating body
fluid
rear portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021109961A
Other languages
Japanese (ja)
Inventor
勉 高橋
Tsutomu Takahashi
夏澄 中島
Kasumi Nakajima
翔太 仲田
Shota Namada
諒一 笠置
Ryoichi Kasaoki
靖徳 佐藤
Yasunori Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagaoka University of Technology NUC
Original Assignee
Nagaoka University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagaoka University of Technology NUC filed Critical Nagaoka University of Technology NUC
Priority to JP2021109961A priority Critical patent/JP2023007015A/en
Publication of JP2023007015A publication Critical patent/JP2023007015A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Wind Motors (AREA)

Abstract

To provide a rotation device using longitudinal vortexes, in which performance such as a rotation speed against a flow speed and power and torque associated with rotation is improved.SOLUTION: A rotation device comprises a wake flow body composed of: a rotational shaft body that rotates with a flow direction for fluid as a rotational axis; a rotation body arranged so as to rotate around the rotational shaft body; a rear part spaced apart from the rotation body and arranged on the downstream side in the flow direction for fluid between the center of rotation of the rotation body and the end part of the rotation body; and an inclined part connected to the rear part and having a projection surface inclined toward the rotation body side.SELECTED DRAWING: Figure 4

Description

本発明は回転装置に関する。 The present invention relates to rotating devices.

身近にある自然エネルギを利用した回転装置の一つに流れのエネルギを利用する方法がある。本発明の発明者らはこの方法を利用した流体発電用回転装置を開発した(特許文献1)。 One of the familiar rotating devices using natural energy is the method of using flow energy. The inventors of the present invention have developed a rotating device for hydrodynamic power generation using this method (Patent Document 1).

この回転装置は、流体の流れ方向に略平行な回転軸体と、流体の流れ方向に対して略垂直に交差する回転面内で回転軸体を中心に回転するように配設される回転体と、該回転体に対して流体の流れ方向の下流側に離間して交差する少なくとも2つの交差部を有する後流物体とを備え、回転体の回転面と、流体の流れを受ける後流物体の面とが略平行な装置である。 This rotating device includes a rotating shaft substantially parallel to the flow direction of the fluid, and a rotating body arranged to rotate about the rotating shaft within a plane of rotation that intersects substantially perpendicularly to the flow direction of the fluid. and a wake body having at least two intersecting portions spaced apart from each other on the downstream side in the direction of flow of the fluid with respect to the body of rotation, wherein the rotating surface of the body of revolution and the wake body receiving the flow of the fluid. is substantially parallel to the plane of

この回転装置は、後流物体との交差部で発生する縦渦を利用して回転体が回転するが、この原理を利用する回転装置において、流速に対する回転数及び回転に伴うパワー、トルク等の性能の向上が求められている。 In this rotating device, the rotating body rotates by utilizing the longitudinal vortex generated at the intersection with the trailing object. There is a demand for improved performance.

特許第6378366号公報Japanese Patent No. 6378366

特許文献1に記載の技術には、回転体の回転に必要な空間を確保するため、流体の流れを受ける後流物体の面は、回転体と後流物体との離間隙間が回転体の回転周方向で変化するような配置のときであっても、回転体の回転面と流体の流れを受ける後流物体の面とが交わることができず、流速に対する回転数及び回転に伴うパワー、トルク等の性能を向上することが困難になるといった課題があった。 In the technique described in Patent Document 1, in order to secure the space necessary for the rotation of the rotating body, the surface of the wake object that receives the flow of the fluid has a gap between the rotating body and the wake object so that the rotating body rotates. Even when the arrangement changes in the circumferential direction, the rotating surface of the rotating body and the surface of the trailing body receiving the fluid flow cannot intersect, and the number of rotations relative to the flow velocity and the power and torque accompanying the rotation There has been a problem that it is difficult to improve performance such as.

そこで本発明は、上記課題に鑑み、縦渦を利用する回転装置において、流速に対する回転数及び回転に伴うパワー、トルク等の性能が向上した回転装置を提供することを目的とする。 SUMMARY OF THE INVENTION In view of the above problems, it is an object of the present invention to provide a rotating device that utilizes longitudinal vortices and that has improved performance such as the number of revolutions relative to the flow velocity and the power and torque associated with the rotation.

本発明の本発明者らは、上記課題について鋭意検討を行っていたところ、流体の流れを受ける後流物体の面の一部を回転本体側に傾け、後流物体を回転本体と同様に回転させることで回転本体の回転面と後流物体の流体の流れを受ける面とが交わることができるよう配置することで、流速に対する回転数及び回転に伴うパワー、トルク等、回転装置の性能が向上することを発見し、本発明を完成させるに至った。 The inventors of the present invention have made intensive studies on the above problem, and found that a part of the surface of the wake object that receives the flow of the fluid is tilted toward the rotating body, and the wake object rotates in the same manner as the rotating main body. By arranging it so that the rotating surface of the rotating body and the surface of the trailing body that receives the fluid flow can intersect, the performance of the rotating device, such as the number of rotations relative to the flow velocity and the power and torque associated with rotation, is improved. I discovered that it does, and came to complete the present invention.

すなわち、上記課題を解決する本発明の一観点に係る回転装置は、流体の流れ方向を回転軸として回転する回転軸体と、回転軸体を中心に回転するよう配置された回転本体と、回転本体から離間して回転本体の回転中心から回転本体の端部の間において、流体の流れ方向の下流側に配置される後方部と、後方部に接続され回転本体側に傾く突出面を有する傾斜部とからなる後流物体を備える。 That is, a rotating device according to one aspect of the present invention for solving the above problems includes a rotating shaft body that rotates about the flow direction of a fluid as a rotating shaft, a rotating body arranged to rotate about the rotating shaft body, a rotating A rear part that is spaced apart from the main body and located downstream in the flow direction of the fluid between the center of rotation of the rotating body and the end of the rotating body, and an inclined surface that is connected to the rear part and has a projecting surface that inclines toward the rotating body. and a wake body comprising:

また、本観点において、限定されるわけではないが、後流物体は、回転本体の回転面と略平行な回転面内で、回転本体の回転軸と同じ回転軸を有し回転本体と同期して回転することが好ましい。 In addition, in this aspect, although not limited, the trailing body has the same rotation axis as the rotation axis of the rotation main body and is synchronized with the rotation main body within a rotation plane substantially parallel to the rotation surface of the rotation main body. preferably rotated.

また、本観点において、限定されるわけではないが、後流物体の後方部は、突出面を有することが好ましい。 In addition, in this aspect, it is preferable, but not limited, that the trailing portion of the wake body has a protruding surface.

また、本観点において、限定されるわけではないが、後流物体の後方部の流体を受ける面が、流体の流れ方向に対して略垂直であることが好ましい。 Moreover, in this aspect, although not limited, it is preferable that the surface of the trailing body that receives the fluid is substantially perpendicular to the flow direction of the fluid.

また、本観点において、限定されるわけではないが、後流物体の後方部の流体を受ける面が、流体の流れ方向上流側に傾いて配置されていることが好ましい。 Moreover, in this aspect, although not limited, it is preferable that the surface of the rear portion of the trailing body that receives the fluid is inclined toward the upstream side in the flow direction of the fluid.

また、本観点において、限定されるわけではないが、後方部の突出面幅を1とした場合に、回転本体が後方部の突出面と交差している部位から重ならないようにさらに回転本体の長手方向両側にそれぞれ1以上の長さを有することが好ましい。 In this aspect, although not limited, when the width of the protruding surface of the rear portion is set to 1, the rotating main body is further arranged so as not to overlap from the portion where the protruding surface of the rear portion intersects the rotating main body. It is preferred to have one or more lengths on each side in the longitudinal direction.

また、本観点において、限定されるわけではないが、後流物体は、回転本体から回転本体を回転方向に駆動する縦渦を発生する離間距離を有して配置されることが好ましく、離間距離は可変であることが好ましい。 In addition, in this aspect, although not limited, the trailing body is preferably arranged with a separation distance that generates a longitudinal vortex that drives the rotation body from the rotation body in the direction of rotation. is preferably variable.

また、本観点において、限定されるわけではないが、後流物体が複数設けられ、複数の後流物体は、回転本体の回転中心に対し反対側に傾斜部の突出面が突出するよう配置されることが好ましい。 Further, in this aspect, although not limited, a plurality of wake bodies are provided, and the plurality of wake bodies are arranged so that the protruding surface of the inclined portion protrudes on the side opposite to the rotation center of the rotating body. preferably.

以上、本発明によって、縦渦を利用する回転装置において、流速に対する回転数及び回転に伴うパワー、トルク等の性能が向上した回転装置を提供することができる。 As described above, according to the present invention, it is possible to provide a rotating device that utilizes longitudinal vortices and that has improved performance such as the number of revolutions relative to the flow velocity and the power and torque associated with the rotation.

縦渦発生装置の概略図Schematic diagram of longitudinal vortex generator 縦渦励振の発生状態に関する模式図Schematic diagram of longitudinal vortex-excited vibration 回転本体と後流物体との関係を示す図Diagram showing the relationship between the rotating body and the trailing body 実施形態の概略図Schematic of embodiment 実施形態の外観図External view of embodiment 回転本体と後流物体の形状の一例を示す図A diagram showing an example of the shape of the rotating main body and the trailing body 回転本体と後流物体との関係の一例を示す図A diagram showing an example of the relationship between the rotating main body and the trailing object. 後流物体の配置例Arrangement example of trailing object 後流物体の概略図Schematic of a wake object 後流物体の概略図Schematic of a wake object 後流物体の概略図Schematic of a wake object 後流物体の概略図Schematic of a wake object 実施例における風速に対する回転数を示す図The figure which shows the rotation speed with respect to the wind speed in an Example 実施例における周速比に対するパワー係数を示す図A diagram showing a power coefficient with respect to a peripheral speed ratio in an example 実施例における周速比に対するトルク係数を示す図A diagram showing a torque coefficient with respect to a peripheral speed ratio in an example

以下、本発明の実施形態について図面を用いて詳細に説明する。ただし、本発明は多くの異なる形態による実施が可能であり、以下に示す実施形態、実施例に記載される具体的な例示にのみ限定されるわけではない。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention can be embodied in many different forms, and is not limited to the specific exemplifications described in the embodiments and examples given below.

(縦渦)
図1は、流体の流れ方向に対し長手方向yが交差するように配設された柱状体20と、当該柱状体20に対して流体の流れ方向の下流側に離間して長手方向zが交差するように配設された平板30とを有する縦渦発生装置の概略図である。縦渦は柱状体20と平板30とが空間的に交差し形成する隙間において発生する。縦渦は柱状体20と平板30との離間隙間(s1)を僅かに変化させると、ネックレス渦とトレーリング渦の2種類の形態をとる。図1に記載の縦渦はネックレス渦NVの模式図である。
(longitudinal vortex)
FIG. 1 shows a columnar body 20 disposed so that the longitudinal direction y intersects the fluid flow direction, and a longitudinal direction z intersecting with the columnar body 20 at a distance downstream in the fluid flow direction. 3 is a schematic view of a longitudinal vortex generator with a flat plate 30 arranged to do so; FIG. A vertical vortex is generated in a gap formed by the spatial intersection of the columnar body 20 and the flat plate 30 . If the gap (s1) between the columnar body 20 and the flat plate 30 is slightly changed, the longitudinal vortex takes two forms of a necklace vortex and a trailing vortex. The longitudinal vortex shown in FIG. 1 is a schematic diagram of the necklace vortex NV.

ネックレス渦励振による柱状体20の平行振動は、図2のような原理に基づくものと考えられる。すなわち、図2(a)では、柱状体20と平板30の隙間において、柱状体20の中心に対して下方の領域に縦渦101が発生し、柱状体20には下向きの力102が発生する。尚、はく離点Pの下流側においては逆流が生じ、その後方に渦領域が形成されている。その後、柱状体20と平板30の隙間において、柱状体20の中心に対して上方の領域に縦渦103が発生し、柱状体20には上向きの力104が発生する。前述の場合と同様に、はく離点Pの下流側においては逆流が生じ、その後方に渦領域が形成されている。このように縦渦101、103が柱状体20の上方領域と下方領域とで交互に発生して振動力となり、縦渦励振現象が発生する。 Parallel vibration of the columnar body 20 by necklace vortex excitation vibration is considered to be based on the principle shown in FIG. That is, in FIG. 2A, in the gap between the columnar body 20 and the flat plate 30, a longitudinal vortex 101 is generated in a region below the center of the columnar body 20, and a downward force 102 is generated in the columnar body 20. . In addition, a reverse flow occurs on the downstream side of the separation point P, and a vortex region is formed behind it. After that, in the gap between the columnar body 20 and the flat plate 30 , a longitudinal vortex 103 is generated in an area above the center of the columnar body 20 , and an upward force 104 is generated in the columnar body 20 . As in the previous case, a reverse flow occurs downstream of the separation point P, forming a vortex region behind it. In this way, the longitudinal vortices 101 and 103 are alternately generated in the upper region and the lower region of the columnar body 20 to generate vibrating force, and the longitudinal vortex excitation vibration phenomenon occurs.

これに対し、図3のように柱状体20が平板30の長手(z)方向に一定速度で運動する(ここでは上向きの力200が加わる)場合に、縦渦が柱状体の片側に安定して発生する。すなわち、図3(a)のように柱状体20が上方向に一定速度で移動すると、柱状体20と平板30の離間隙間s1において、柱状体20の中心に対して下方の領域に縦渦201が発生する。この運動により流れ場が非対称となり、揚力係数にネガティブスロープが形成され、流体の流れ方向10と直交するz方向に一定の力が作用する。 On the other hand, when the columnar body 20 moves at a constant speed in the longitudinal (z) direction of the flat plate 30 (here, an upward force 200 is applied) as shown in FIG. occur. That is, when the columnar body 20 moves upward at a constant speed as shown in FIG. occurs. This motion makes the flow field asymmetric, creating a negative slope in the lift coefficient and exerting a constant force in the z-direction perpendicular to the flow direction 10 of the fluid.

これが縦渦を利用する回転装置の動作原理であり、この原理を利用することによって柱状体20が流体の流れ方向10と略並行となる回転軸を有して一定の回転速度で回転することができる。 This is the operating principle of a rotating device that utilizes longitudinal vortices, and by using this principle, the columnar body 20 can be rotated at a constant rotational speed with the axis of rotation substantially parallel to the fluid flow direction 10. can.

流体の流れ方向に対し、図3(b)のように平板30を流体の流れ方向上流側にθ傾けて配設すると、縦渦の強さは、柱状体20の表面と平板30との距離が最小となる離間隙間s1’によって変わるため、柱状体20に作用する力が柱状体20の中心に対して上下方向で非対称となる。但し、特許文献1に開示されるように、z軸からの距離が平板30の上端部と下端部で異なるように固定した場合、例えば、平板30の上端部とz軸との距離dが、平板30の下端部とz軸との距離dよりも小さくなるように固定した場合、柱状体20に作用する力が一定の方向に規定され、回転方向を特定することができるが、一方で、dを柱状体の半径未満とする必要があるため離間隙間s1’が縦渦発生に最適な距離となる位置に平板30を配置できず柱状体の回転力を高めることができない。 As shown in FIG. 3B, when the flat plate 30 is arranged with an inclination of θ toward the upstream side in the fluid flow direction with respect to the fluid flow direction, the strength of the longitudinal vortex is determined by the distance between the surface of the columnar body 20 and the flat plate 30. , the force acting on the columnar body 20 is asymmetrical in the vertical direction with respect to the center of the columnar body 20 . However, as disclosed in Patent Document 1, when the flat plate 30 is fixed such that the distance from the z-axis is different between the upper end and the lower end, for example, the distance d1 between the upper end of the flat plate 30 and the z - axis is , when the flat plate 30 is fixed so as to be smaller than the distance d2 between the lower end of the flat plate 30 and the z-axis, the force acting on the columnar body 20 is regulated in a fixed direction, and the direction of rotation can be specified. Since d1 must be less than the radius of the columnar body, the flat plate 30 cannot be placed at a position where the clearance s1' is the optimum distance for generating the longitudinal vortex, and the rotational force of the columnar body cannot be increased.

縦渦が最も強く発生する距離となる離間隙間s1’で平板30を配置するためには、柱状体20が回転する回転面に対し平板30の表面が交差する位置、すなわちdが柱状体20の半径以下となる位置に平板30を配置する必要がある。このような位置に平板30を配置しても回転本体2と同様に平板30を移動させることで、回転本体2は平板30に接触することがなく、流体の離間隙間への流入流速が向上し、柱状体20の下方向領域に発生する縦渦201が、図3(a)の平板30をz軸と並行に配設したときよりも強く発生する。 In order to dispose the flat plate 30 at the separation gap s1′ that is the distance at which the longitudinal vortex is most strongly generated, the position where the surface of the flat plate 30 intersects the plane of rotation on which the columnar body 20 rotates, that is, d1 is the position where the columnar body 20 It is necessary to arrange the flat plate 30 at a position where the radius is less than or equal to . Even if the flat plate 30 is arranged at such a position, by moving the flat plate 30 in the same manner as the rotary main body 2, the rotary main body 2 does not come into contact with the flat plate 30, and the inflow velocity of the fluid into the gap is improved. , the longitudinal vortex 201 generated in the downward region of the columnar body 20 is stronger than when the flat plate 30 of FIG. 3A is arranged in parallel with the z-axis.

(回転装置)
図4は本実施形態における回転装置の概略図であり、図5は外観図である。本実施形態の回転装置は、流体の流れ方向を回転軸として回転する回転軸体と、回転軸体を中心に回転するよう配置された回転本体と、回転本体から離間して回転本体の回転中心から回転本体の端部の間において、流体の流れ方向の下流側に配置される後方部と、後方部に接続され回転本体側に傾く突出面を有する傾斜部とからなる後流物体、を備える。
(Rotating device)
FIG. 4 is a schematic diagram of the rotating device in this embodiment, and FIG. 5 is an external view. The rotating device of this embodiment includes a rotating shaft that rotates about the direction of fluid flow, a rotating body arranged to rotate about the rotating shaft, and a center of rotation of the rotating body that is separated from the rotating body. a trailing body consisting of a rear portion arranged downstream in the direction of fluid flow between the end portion of the rotating body and an inclined portion connected to the rear portion and having a projecting surface inclined toward the rotating body. .

(回転軸体)
回転軸体1は回転本体2の回転を支持するために必要な強度を有していればどのような材質でもよく、どのような形状でもよい。また、複数の部材から構成しても良い。
(Rotating shaft)
The rotary shaft 1 may be made of any material and in any shape as long as it has the strength required to support the rotation of the rotary body 2 . Moreover, you may comprise from several members.

(回転本体)
回転本体2は、長手方向の断面(zx断面)が、真円や楕円等の円形、多角形、流線形、プロペラ翼形の形状を有する断面形状が好ましい。回転本体2の回転中心2cから回転本体2の端部の間において該断面形状が変化してもよい。回転本体2の回転中心2cから回転本体2の端部の間における断面形状は、回転中心2cを中心に点対象の形状であることが好ましいが、該断面形状は点対象でなくても回転本体2に用いられる。
(rotating body)
The rotating body 2 preferably has a longitudinal cross section (zx cross section) having a circular shape such as a perfect circle or an ellipse, a polygonal shape, a streamline shape, or a propeller blade shape. The cross-sectional shape may change between the rotation center 2 c of the rotating body 2 and the end of the rotating body 2 . The cross-sectional shape between the rotation center 2c of the rotating body 2 and the end portion of the rotating body 2 is preferably point-symmetrical with respect to the rotation center 2c. 2.

回転本体2は、流体の流れ方向の下流側に離間して交差する後流物体3との交差部近傍以外は、回転本体2よりも細径を有する支柱部21で構成してもよい(図6)。細径の支柱部21を有することで、同一の回転軸体1に複数の回転本体2を設置する場合に有利である。また、回転本体2の回転抵抗を抑えることができる。尚、支柱部21は回転本体2を支持できる強度を有していればよく、材質、構造は問わない。例えば支柱部21が柱状の場合、支柱部21の支柱径は、長手方向に一様であっても、連続的あるいは不連続的に変化していてもよい。 The rotating body 2 may be configured with a strut portion 21 having a diameter smaller than that of the rotating body 2 except for the vicinity of the intersection with the trailing body 3 that intersects with the trailing body 3 spaced apart downstream in the flow direction of the fluid (Fig. 6). Having the pillar portion 21 with a small diameter is advantageous when a plurality of rotating bodies 2 are installed on the same rotating shaft 1 . Also, the rotational resistance of the rotating body 2 can be suppressed. In addition, the support|pillar part 21 should just have the intensity|strength which can support the rotation main body 2, and the material and structure do not ask|require. For example, when the support 21 has a columnar shape, the support diameter of the support 21 may be uniform in the longitudinal direction, or may vary continuously or discontinuously.

(回転方向)
回転本体2および後流物体3は、後述する傾斜部31を回転先頭として回転する第1回転方向と、後述する後方部32を回転先頭として回転する第2回転方向のいずれの方向にも回転する。これは回転本体2が運動を開始する時点において、回転本体2の動作方向に応じて縦渦が回転本体2の長手方向中心軸(Y軸)を挟んだ上方領域と下方領域の両側で回転本体2と後流物体3との離間隙間に発生するためである。
(Direction of rotation)
The rotating main body 2 and the trailing object 3 rotate in either direction of a first rotation direction in which the rotation head is the inclined portion 31 described later, or a second rotation direction in which the rotation head is the rear portion 32 described later. . This is because when the rotating body 2 starts to move, longitudinal vortices form in both upper and lower regions of the rotating body 2 across the longitudinal central axis (Y-axis) of the rotating body 2 depending on the direction of movement of the rotating body 2 . This is because it occurs in the gap between 2 and the trailing object 3 .

(後流物体)
後流物体3は後方部32と傾斜部31からなる。後流物体は、回転本体の回転面と略平行な回転面内で、回転本体の回転軸と同じ回転軸を有し回転本体と同期して回転する。回転本体2と後流物体3が同期して回転するためには、例えば図5に示すように後流物体3を回転本体2に固定してもよい。あるいは、後流物体3を回転軸体1に固定してもよいし、回転本体2が接続する回転軸体1とは異なる回転軸体に接続し、回転本体2と同期して回転させてもよい。
(wake object)
The wake body 3 consists of a rear portion 32 and an inclined portion 31 . The trailing body has the same rotation axis as the rotation main body and rotates in synchronization with the rotation main body within a rotation plane substantially parallel to the rotation surface of the rotation main body. In order for the rotating body 2 and the wake object 3 to rotate synchronously, the wake object 3 may be fixed to the rotating body 2 as shown in FIG. 5, for example. Alternatively, the trailing body 3 may be fixed to the rotating shaft 1, or may be connected to a rotating shaft different from the rotating shaft 1 to which the rotating body 2 is connected, and rotated in synchronization with the rotating body 2. good.

(後流物体:突出面)
流体の流れの上流側から下流側に向かって流れ方向に平行に回転本体2および後流物体3を見たときに、後流物体3の一部が回転本体2から突出して流体の流れを受ける面を有する場合、以後、その突出して流体の流れを受ける面を「突出面」といい、突出面において、回転本体2の長手方向に平行な軸(y軸)に沿った長さを「突出面幅」、回転本体2の長手方向と流体の流れ方向のどちらにも垂直な軸(z軸)に沿った長さを「突出面長さ」という。
(Wake flow object: projecting surface)
When the rotating body 2 and the waken body 3 are viewed parallel to the flow direction from the upstream side to the downstream side of the fluid flow, part of the waker body 3 protrudes from the rotating body 2 to receive the fluid flow. In the case of having a surface, the surface that protrudes to receive the flow of fluid is hereinafter referred to as a "protruding surface", and the length of the protruding surface along the axis (y-axis) parallel to the longitudinal direction of the rotating body 2 is the "protruding surface". The length along the axis (z-axis) perpendicular to both the longitudinal direction of the rotating body 2 and the fluid flow direction is referred to as the "protruding surface length".

(後流物体:後方部)
後方部32は、後方部の流体を受ける面が流体の流れ方向に対して略垂直であることが好ましい。更に後方部32は、流体を受ける面が平面形状であることが好ましい。
(Wake object: rear part)
The rear portion 32 preferably has a surface that receives fluid at the rear portion substantially perpendicular to the flow direction of the fluid. Furthermore, it is preferable that the rear portion 32 has a planar surface that receives the fluid.

(後流物体:後方部突出面)
後方部は、突出面を有するとよい。後方部32が突出面を有すると、縦渦が離間隙間s1に発生する時間が長くなり、圧力勾配が形成されやすい。但し、後方部32の突出面は、流体の流れに対する抵抗となり、該抵抗の大きさは突出面の面積に比例するため、流体の流速、後方部の機械的強度などを考慮し突出面の面積の上限値を定める必要がある。
(Wake flow object: rear protruding surface)
The rear portion may have a projecting surface. If the rear portion 32 has a protruding surface, the length of time that the longitudinal vortex is generated in the clearance s1 is increased, and a pressure gradient is likely to be formed. However, the projecting surface of the rear portion 32 acts as a resistance to the flow of the fluid, and the magnitude of the resistance is proportional to the area of the projecting surface. It is necessary to determine the upper limit of

後方部は、後方部の流体を受ける面が流体の流れ方向上流側に傾いて配置してもよい。すなわち、後方部がy軸を回転軸として流体の流れ方向上流側にz軸に対し任意の角度θで傾けて配置してもよい。好ましくは、後方部が突出面を有し、該突出面がy軸を回転軸として流体の流れ方向上流側にz軸に対し任意の角度θで傾けて配置するとよい。これにより、第1回転方向への回転時、回転本体2と後方部突出面との離間隙間s1へ流れ込む流体の流速が増し、縦渦の強度が強くなる効果がある。後方部の突出面と突出面以外のθは異なってもよいが、第1回転方向への回転時に、後流物体3の回転抵抗も増すため、流体の流速、回転本体2の回転速度などを考慮し定める必要がある。 The rear portion may be arranged such that the surface of the rear portion that receives the fluid is inclined toward the upstream side in the flow direction of the fluid. That is, the rear portion may be arranged at an arbitrary angle θ with respect to the z-axis toward the upstream side in the fluid flow direction with the y-axis as the rotation axis. Preferably, the rear portion has a protruding surface, and the protruding surface is arranged at an arbitrary angle θ with respect to the z-axis toward the upstream side in the fluid flow direction with the y-axis as the rotation axis. As a result, when rotating in the first rotation direction, the flow velocity of the fluid flowing into the clearance s1 between the rotating body 2 and the rear protruding surface increases, and the strength of the longitudinal vortex increases. θ may be different from that of the protruding surface of the rear part and that of the surface other than the protruding surface. It is necessary to consider and decide.

(後流物体:後方部突出面幅)
後流物体3による回転本体2への圧力勾配形成の効果をより高めるために、後方部の突出面幅を1とした場合に、回転本体が突出面と交差している部位から重ならないようにさらに回転本体の長手方向両側にそれぞれ1以上の長さを有することが好ましい(図6)。すなわち、後方部の突出面幅がWの時、突出面と交差している部位を含んだ回転本体の長手方向の長さが3W以上であることが好ましい。
(Wake object: Width of rear protruding surface)
In order to further enhance the effect of forming a pressure gradient on the rotating body 2 by the trailing object 3, when the protruding surface width of the rear portion is set to 1, the rotating body does not overlap from the portion where it intersects the protruding surface. Furthermore, it is preferable to have one or more lengths on each side of the rotating body in the longitudinal direction (FIG. 6). That is, when the width of the projecting surface of the rear portion is W, it is preferable that the length of the rotating body in the longitudinal direction including the portion intersecting the projecting surface is 3W or more.

後方部32の流体を受ける面の幅Wは、性能向上のために回転本体2の直径Dに対して1倍から1.5倍とすることが好ましいが、制限は無い。 The width W of the surface of the rear portion 32 that receives the fluid is preferably 1 to 1.5 times the diameter D of the rotating body 2 for improved performance, but is not limited.

(後流物体:傾斜部)
傾斜部は、回転本体の回転中心から回転本体の端部の間において配設される後方部と接続され回転本体側に傾く突出面を有して配置されることが好ましい。すなわち、傾斜部31は突出面を有し、後方部との接続部においてy軸を回転軸として流体の流れ方向上流側にz軸に対し任意の角度θ傾けて配置する。θはz軸に対し0°より大きく回転本体2に接触しない角度の範囲で調整できる。好ましくは0°より大きく45°以下であり、さらに好ましくは20°以上40°以下である。傾斜部31は、流体の流れを受ける面が平面形状であってもよく、少なくとも面の一部が流体の流れに対して凹面の曲面形状であってもよい。ただし、傾斜部31の流体の流れを受ける面には、流体が通り抜ける穴や孔等がない形状が好ましい。傾斜部31の表面は平らであっても、凹凸形状であってもよく、制限はない。
(Wake object: inclined part)
It is preferable that the inclined portion is connected to a rear portion disposed between the rotation center of the rotating body and the end of the rotating body and has a protruding surface inclined toward the rotating body. That is, the inclined portion 31 has a protruding surface, and is arranged at an arbitrary angle θ with respect to the z-axis toward the upstream side in the fluid flow direction with the y-axis as the rotation axis at the connection portion with the rear portion. .theta. can be adjusted within an angle range larger than 0.degree. It is preferably greater than 0° and 45° or less, more preferably 20° or more and 40° or less. The inclined portion 31 may have a planar surface that receives the flow of the fluid, or at least a portion of the surface may have a curved surface that is concave with respect to the flow of the fluid. However, the surface of the inclined portion 31 that receives the flow of fluid preferably has a shape that does not have holes or holes through which the fluid passes. The surface of the inclined portion 31 may be flat or uneven, and there is no limitation.

(後流物体:傾斜部突出面)
傾斜部31は、突出面を有することにより、流体の流れが回転本体2と後方部32の間の離間隙間s1に導かれやすくなり回転本体2の上方領域と下方領域、すなわち回転方向に対する前後の圧力勾配を高める。圧力勾配が大きいと回転本体2は回転しやすくなる。加えて、第1回転方向への回転時、傾斜部が、流体の流れにより回転方向と同じ向きとなる動圧を受け、回転本体2の回転力を増強する。
(Wake object: Sloping part projecting surface)
Since the inclined portion 31 has a projecting surface, the flow of the fluid is easily guided to the clearance s1 between the rotating body 2 and the rear portion 32, and the upper region and the lower region of the rotating body 2, that is, front and rear with respect to the rotation direction. Increase the pressure gradient. When the pressure gradient is large, the rotating body 2 tends to rotate. In addition, when rotating in the first direction of rotation, the inclined portion receives dynamic pressure in the same direction as the direction of rotation due to the flow of fluid, thereby increasing the rotational force of the rotating body 2 .

(回転本体と後流物体の離間距離)
後流物体は、回転本体から回転本体を回転方向に駆動する縦渦を発生する離間距離を有して配置される。図7は回転本体2と後流物体3の配置例である。本実施形態における回転本体2と後流物体3の離間距離sは、回転本体2のzx断面における流体の流れ方向下流端と後方部の流体の流れを受ける面の表面との間のx軸に平行な距離とし、離間距離sは、縦渦が発生する距離であれば限定されないが、例えば回転本体2の断面幅(回転本体2が円柱の場合にはその直径D)を1とした場合に、離間距離sは回転本体2の断面幅のおおよそ1.3倍(1.3D)程度である事が好ましい。但し、最適な離間距離は、回転本体2の断面形状、傾斜部31の突出面幅、突出面長さ、突出面のz軸に対する傾きθ、又は後方部32の突出面有無、突出面幅、突出面長さ等により変動する。そのため、回転本体と後方部との離間距離は、可変であることが好ましい。離間距離sを可変にすると、任意形状の回転本体と後流物体において所望の回転数、パワー、トルクを取り出すことができる。
(Distance between rotating body and trailing object)
The wake body is positioned with a separation distance from the rotating body that generates a longitudinal vortex that drives the rotating body in a direction of rotation. FIG. 7 shows an arrangement example of the rotating body 2 and the trailing body 3 . The separation distance s between the rotating body 2 and the trailing body 3 in this embodiment is along the x-axis between the downstream end in the fluid flow direction and the surface of the rear part receiving the fluid flow in the zx cross section of the rotating body 2. The separation distance s is not limited as long as it is a distance at which longitudinal vortices are generated. , the separation distance s is preferably about 1.3 times (1.3D) the cross-sectional width of the rotating body 2 . However, the optimum separation distance is determined by the cross-sectional shape of the rotating body 2, the width of the protruding surface of the inclined portion 31, the length of the protruding surface, the inclination θ of the protruding surface with respect to the z-axis, the presence or absence of the protruding surface of the rear portion 32, the width of the protruding surface, It varies depending on the length of the protruding surface, etc. Therefore, the distance between the rotating body and the rear portion is preferably variable. If the separation distance s is made variable, desired rotation speed, power, and torque can be extracted from the rotating main body and the trailing body of arbitrary shape.

(後流物体:傾斜部と後方部の接続部)
後流物体3を構成する傾斜部31と後方部32の接続部3Bの形状は直線的であっても曲線的であってもよい。接続部3Bには流体の流れが離間隙間s1に導かれる際に邪魔となる突起物や、流体が後流物体を通り抜ける穴や孔等がないなめらかな形状が好ましい。
(Wake flow object: connecting part between inclined part and rear part)
The shape of the connection portion 3B between the inclined portion 31 and the rear portion 32 that constitute the wake object 3 may be linear or curved. The connection portion 3B preferably has a smooth shape that does not have projections that obstruct the flow of fluid when it is guided to the separation gap s1, or holes or holes through which the fluid passes through the trailing body.

接続部3Bは、回転本体2から剥離した流体の流れを受けることが可能な位置に配設することが好ましい。回転本体2から剥離した流体の流れを受けることが可能な位置とは、回転本体の厚み(z軸方向長さ)の0.5倍程度z軸両側に離れた位置である。例えば、図7に示すような回転本体2が円柱の場合、接続部3Bの位置は、おおよそ図8(a)から(e)の範囲で、回転本体2の断面中心(x軸)からz軸方向両側に厚み(直径D)程度の距離だけ離れた位置までである。接続部3Bの位置は、回転本体2から剥離した流体の流れを効率よく受ける観点から、好ましくは、突出面以外の位置(図8(b)から(d)の範囲)であり、より好ましくは、突出面以外で回転本体2の断面中心(x軸)よりも回転本体2の回転方向前方の位置(第1回転方向に回転する場合には、図8(b)から(c)の範囲)である。接続部3Bをこのような位置とすることで駆動力となる縦渦を効率的に発生できる。 The connecting portion 3B is preferably arranged at a position where it can receive the flow of the fluid separated from the rotating body 2 . The position where the flow of the fluid separated from the rotating body 2 can be received is a position away from both sides of the z-axis by about 0.5 times the thickness (length in the z-axis direction) of the rotating body. For example, when the rotary body 2 as shown in FIG. 7 is a cylinder, the position of the connecting portion 3B is approximately within the range of FIGS. It is up to a position separated by a distance of about the thickness (diameter D) on both sides in the direction. From the viewpoint of efficiently receiving the flow of the fluid separated from the rotary main body 2, the position of the connecting portion 3B is preferably a position other than the projecting surface (the range from (b) to (d) in FIG. 8), more preferably , a position in front of the center of the cross section (x-axis) of the rotating body 2 in the rotation direction of the rotating body 2 (the range from FIG. 8B to FIG. 8C when rotating in the first rotating direction) other than the projecting surface. is. By setting the connection portion 3B at such a position, it is possible to efficiently generate a longitudinal vortex that serves as a driving force.

(後流物体:傾斜部の長さ)
図7に示す傾斜部31の長さlsは、回転本体の形状、傾斜部の角度θ、回転速度などにより最適値が異なることから限定されないが、傾斜部の少なくとも一部が突出面を構成する長さ以上であり、接続部3Bから回転本体2の断面重心を通るz軸と交わるまでの長さ以下であることが好ましい。
(Wake object: length of slope)
The length ls of the inclined portion 31 shown in FIG. 7 is not limited because the optimum value differs depending on the shape of the rotating body, the angle θ of the inclined portion, the rotation speed, etc. However, at least a part of the inclined portion constitutes the projecting surface. It is preferably equal to or longer than the length and equal to or shorter than the length from the connecting portion 3B to the intersection with the z-axis passing through the cross-sectional center of gravity of the rotating body 2 .

(後流物体:後方部の長さ)
また、図7に示す後方部32の長さlbは、回転本体の形状、接続部3Bの位置、離間距離などにより最適値が異なることから限定されないが、接続部3Bから少なくとも回転本体2の厚み(回転本体2が円柱の場合にはその直径D)のおおよそ2倍(2D)の長さ以下であることが好ましい。
(Wake object: length of rear part)
Also, the length lb of the rear portion 32 shown in FIG. 7 is not limited because the optimum value differs depending on the shape of the rotating body, the position of the connecting portion 3B, the separation distance, etc., but at least the thickness of the rotating body 2 from the connecting portion 3B is It is preferable that the length is less than or equal to approximately twice (2D) (the diameter D if the rotating body 2 is a cylinder).

(後流物体:後方部の渦調整部)
図9に示すとおり、後流物体3の後方部32には、傾斜部31の突出面幅よりも長く、回転本体2から突出しない範囲内で渦調整部33を設けることができる。渦調整部33はz軸方向に回転本体2の厚み(回転本体2が円柱の場合にはその直径D)の半分以下の長さを有し、回転本体2の回転方向の前方側に配設することが好ましい。後流物体3を回転本体の回転中心を挟んで両側に複数配置する場合、渦調整部33を回転本体2の回転中心2cに対し点対称となる位置に配設する。渦調整部を設けることで縦渦の発生位置を調整することができ、回転本体2の回転方向を一定とする効果を高めることができる。回転本体2の回転方向を規制する機構や回転制御機能を回転装置に組み込む場合でも、渦調整部を設けることで回転方向の安定性を向上できる。
(Wake object: vortex adjustment part in the rear part)
As shown in FIG. 9 , the rear portion 32 of the trailing body 3 can be provided with a vortex adjusting portion 33 that is longer than the protruding surface width of the inclined portion 31 and does not protrude from the rotating body 2 . The vortex adjusting portion 33 has a length in the z-axis direction that is less than half the thickness of the rotating body 2 (the diameter D if the rotating body 2 is a cylinder), and is arranged on the front side of the rotating body 2 in the rotation direction. preferably. When a plurality of trailing bodies 3 are arranged on both sides of the rotation center of the rotating body 2, the vortex adjusting portions 33 are arranged at points symmetrical with respect to the rotation center 2c of the rotating body 2. As shown in FIG. By providing the vortex adjusting portion, the position where the longitudinal vortex is generated can be adjusted, and the effect of making the rotation direction of the rotating body 2 constant can be enhanced. Even when a mechanism for regulating the rotation direction of the rotating body 2 and a rotation control function are incorporated in the rotation device, the vortex adjustment section can improve the stability in the rotation direction.

渦調整部33のy軸方向長さは、後方部32のy軸方向長さを1とした場合に、後方部32の幅から更に両側に1以上の長さを有することが好ましい。これにより後流物体3による圧力勾配形成の効果を有したまま、渦調整部を利用して後流物体3を回転本体2に固定できる。 When the y-axis direction length of the rear portion 32 is 1, the vortex adjustment portion 33 preferably has a length of 1 or more on both sides of the width of the rear portion 32 . As a result, the trailing body 3 can be fixed to the rotating body 2 using the vortex adjustment portion while maintaining the effect of forming the pressure gradient by the trailing body 3 .

(後流物体:傾斜部と後方部の突出面幅)
傾斜部31の突出面幅は回転本体2の回転中心から端部までの範囲の任意長さにすることができる。傾斜部の突出面幅を長くすることで後方部32へ導かれる流体の流量が増し、離間隙間に発生する縦渦の強度が増す。但し、傾斜部31の突出面は、流体の流れに対する抵抗となり、該抵抗の大きさは突出面の面積に比例するため、流体の流速、傾斜部の機械的強度などを考慮し突出面の面積の上限値を定める必要がある。
(Wake flow object: Width of protruded surface of inclined part and rear part)
The width of the projecting surface of the inclined portion 31 can be set to any length within the range from the center of rotation of the rotating body 2 to the end. By increasing the width of the projecting surface of the inclined portion, the flow rate of the fluid guided to the rear portion 32 increases, and the strength of the longitudinal vortex generated in the gap increases. However, the protruding surface of the inclined portion 31 acts as a resistance to the flow of the fluid, and the magnitude of the resistance is proportional to the area of the protruding surface. It is necessary to determine the upper limit of

後方部32の幅は、傾斜部31の幅以下であることが好ましい(図10)。これにより縦渦の発生位置を特定・制御できる効果がある。 The width of the rear portion 32 is preferably less than or equal to the width of the inclined portion 31 (FIG. 10). This has the effect of specifying and controlling the generation position of the longitudinal vortex.

後方部32は回転本体2の回転中心から端部までの範囲に複数配設してもよい。複数の後方部32により縦渦の発生箇所を増やす効果がある(図11)。 A plurality of rear portions 32 may be arranged in the range from the rotation center to the end portion of the rotating body 2 . The plurality of rear portions 32 have the effect of increasing the number of locations where longitudinal vortices are generated (FIG. 11).

後方部32は、1つの傾斜部31に複数を設けても良い(図12)。複数の後方部にはそれぞれ別の突出面を設けても良い。これにより複数の縦渦発生を誘起し流体力が増加する効果等がある。 A plurality of rear portions 32 may be provided on one inclined portion 31 (FIG. 12). A plurality of rear portions may be provided with different protruding surfaces, respectively. This has the effect of inducing a plurality of vertical vortices and increasing the fluid force.

(後流物体の数)
回転本体の回転中心を挟んで後流物体が複数設けられる場合、複数の後流物体は、回転本体の回転中心に対し反対側に傾斜部の突出面が配置される事が好ましい。すなわち、第1回転方向に回転するときには、少なくとも2つの傾斜部31が回転先頭に、第2回転方向に回転するときには、少なくとも2つの後方部32が回転先頭になるように配設する事が好ましく、図4~図6および図9~図12に示すように、複数の傾斜部31を回転本体2の長手方向(y軸)に沿って直線的に配置する場合、傾斜部31の突出面が回転中心2cに対し点対称の位置に配置すると効率的に回転可能であるが、複数の後流物体3が回転本体2の回転中心から異なる距離にて配置してもよい。
(Number of wake objects)
When a plurality of wake bodies are provided with the rotation center of the rotating body interposed therebetween, it is preferable that the plurality of wake bodies have a protruding surface of the inclined portion on the opposite side of the rotation center of the rotating body. That is, it is preferable that at least two inclined portions 31 are positioned at the leading edge of rotation when rotating in the first rotational direction, and at least two rear portions 32 are positioned at the leading edge of rotation when rotating in the second rotational direction. As shown in FIGS. 4 to 6 and 9 to 12, when a plurality of inclined portions 31 are linearly arranged along the longitudinal direction (y-axis) of the rotating body 2, the projecting surfaces of the inclined portions 31 are Although it is possible to rotate efficiently by arranging them at point-symmetrical positions with respect to the rotation center 2 c , a plurality of wakers 3 may be arranged at different distances from the rotation center of the rotating body 2 .

以上、本回転装置によって流速に対する回転数及び回転に伴うパワー、トルク等の性能が向上した縦渦を利用する回転装置を提供することができる。 As described above, the present rotating device can provide a rotating device utilizing longitudinal vortices with improved performance such as the number of revolutions relative to the flow velocity and the power and torque associated with the rotation.

以下、本発明に係る縦渦を利用する回転装置について具体的に説明する。 Hereinafter, a rotation device using longitudinal vortices according to the present invention will be specifically described.

回転軸体を中心に回転できる全長220mmの回転本体に回転本体の回転中心を挟んで両側に1つずつ計2つの後流物体を取り付けた。回転軸体は回転本体の全長を等分する位置に配設した。後流物体の流体の流れを受ける面の幅は、傾斜部と後方部で等しく30mmとした。後流物体は、後方部の流体の流れを受ける面が流体の流れに対して略垂直であり、傾斜部の角度θが流体の流れ方向上流側に向かって0度(比較例)、20度(実施例1)、40度(実施例2)としたものを使用した。回転本体と後流物体後方部との離間距離s1は7mmとした。 A total of two trailing bodies were attached to a rotating body having a total length of 220 mm, which can rotate around a rotating shaft, one on each side of the rotating body with the center of rotation of the rotating body interposed therebetween. The rotary shaft was arranged at a position that equally divided the entire length of the rotary body. The width of the surface of the trailing body that receives the flow of the fluid was set to 30 mm equally at the inclined portion and the rear portion. In the trailing body, the surface receiving the flow of the fluid at the rear part is substantially perpendicular to the flow of the fluid, and the angle θ of the inclined part is 0 degrees (comparative example) or 20 degrees toward the upstream side in the flow direction of the fluid. (Example 1) and 40 degrees (Example 2) were used. A distance s1 between the rotating body and the rear part of the trailing object was set to 7 mm.

風速Uに対する回転数n、パワー係数Cp、トルク係数Cqは、回転装置を風洞実験機内に設置し回転本体が定速回転となった時の値とした(測定器はUnipulse社製、UTMII-0.2Nm)。パワー係数Cpとトルク係数Cqは、それぞれ式(1)および式(2)で算出し、風速Uに対する回転本体の角速度ωの比である周速比λとの関係を比較した。ここで、Tはトルク、ρは流体の密度、Aは回転時の円柱の回転面の投影面積、Rは回転本体の回転中心から回転本体の端部までの距離である。 The rotation speed n, power coefficient Cp, and torque coefficient Cq with respect to the wind speed U were the values when the rotating device was installed in the wind tunnel test machine and the rotating main body was rotating at a constant speed (the measuring device is manufactured by Unipulse, UTMII-0 .2 Nm). The power coefficient Cp and the torque coefficient Cq were calculated by the equations (1) and (2), respectively, and the relationship with the peripheral speed ratio λ, which is the ratio of the angular velocity ω of the rotating body to the wind speed U, was compared. Here, T is the torque, ρ is the density of the fluid, A is the projected area of the rotating surface of the cylinder during rotation, and R is the distance from the center of rotation of the rotating body to the end of the rotating body.

Figure 2023007015000002
Figure 2023007015000002

Figure 2023007015000003
Figure 2023007015000003

図13に示すとおり風速6m/sにおいて、比較例に対して実施例1が1.6倍、実施例2が2.7倍となった。また風速15m/sにおいて、比較例に対して実施例1が1.8倍、実施例2が2.5倍となった。 As shown in FIG. 13, at a wind speed of 6 m/s, Example 1 was 1.6 times and Example 2 was 2.7 times that of Comparative Example. At a wind speed of 15 m/s, Example 1 was 1.8 times and Example 2 was 2.5 times that of Comparative Example.

図14は、風速10m/sにおける周速比とパワー係数の関係を測定した結果である。パワー係数の極大は、比較例が0.003(λ=0.12)、実施例1が0.007(λ=0.23)、実施例2が0.014(λ=0.36)であり、比較例に対して実施例1が2.1倍、実施例2が4.3倍となった。 FIG. 14 shows the results of measuring the relationship between the peripheral speed ratio and the power coefficient at a wind speed of 10 m/s. The maximum power coefficient is 0.003 (λ=0.12) in Comparative Example, 0.007 (λ=0.23) in Example 1, and 0.014 (λ=0.36) in Example 2. 2.1 times in Example 1 and 4.3 times in Example 2 as compared to Comparative Example.

図15は、風速10m/sにおける周速比とパワー係数の関係を測定した結果である。トルク係数の最大値は、比較例に対して実施例1が1.2倍、実施例2が1.7倍となった。 FIG. 15 shows the results of measuring the relationship between the peripheral speed ratio and the power coefficient at a wind speed of 10 m/s. The maximum value of the torque coefficient was 1.2 times higher in Example 1 and 1.7 times higher in Example 2 than the comparative example.

本発明の回転装置によれば、大きさは特に限定されないため、大型、中型、小型、マイクロサイズの全ての風車または水車に適用でき、発電用モータを設けることで発電機として使用可能となる。 According to the rotating device of the present invention, since the size is not particularly limited, it can be applied to all large, medium, small, and micro-sized wind turbines or water turbines, and can be used as a generator by providing a power generation motor.

1 回転軸体
2 回転本体
3 後流物体
10 流体の流れ方向
20 柱状体
21 支持部
30 平板
31 傾斜部
32 後方部
33 渦調整部
100 回転装置
101,103,201 縦渦
s1,s1’ 離間隙間
s 離間距離

REFERENCE SIGNS LIST 1 rotating shaft 2 rotating main body 3 trailing object 10 fluid flow direction 20 columnar body 21 support portion 30 flat plate 31 inclined portion 32 rear portion 33 vortex adjusting portion 100 rotating device 101, 103, 201 longitudinal vortex s1, s1' clearance s Separation distance

Claims (9)

流体の流れ方向を回転軸として回転する回転軸体と、
前記回転軸体を中心に回転するよう配置された回転本体と、
前記回転本体から離間して前記回転本体の回転中心から前記回転本体の端部の間において、前記流体の流れ方向の下流側に配置される後方部と、前記後方部に接続され前記回転本体側に傾く突出面を有する傾斜部とからなる後流物体、を備える回転装置。
a rotating shaft body that rotates about the flow direction of the fluid as a rotating shaft;
a rotating body arranged to rotate about the rotating shaft;
a rear portion spaced apart from the rotating body and disposed downstream in the flow direction of the fluid between the center of rotation of the rotating body and an end of the rotating body; and a side of the rotating body connected to the rear portion. a wake body comprising a ramp having a projecting surface that slopes downward.
前記後流物体は、前記回転本体の回転面と略平行な回転面内で、前記回転本体の回転軸と同じ回転軸を有し前記回転本体と同期して回転する請求項1に記載の回転装置。 2. The rotation according to claim 1, wherein the trailing body has the same rotation axis as that of the rotation body and rotates in synchronization with the rotation body within a rotation plane substantially parallel to the rotation plane of the rotation body. Device. 前記後方部は、突出面を有する請求項1または2に記載の回転装置。 3. A rotating device according to claim 1 or 2, wherein the rear portion has a projecting surface. 前記後方部の流体を受ける面が、前記流体の流れ方向に対して略垂直である請求項1から3のいずれか一項に記載の回転装置。 4. The rotating device according to any one of claims 1 to 3, wherein the surface of the rear portion that receives the fluid is substantially perpendicular to the flow direction of the fluid. 前記後方部の流体を受ける面が、前記流体の流れ方向上流側に傾いて配置されている請求項1から3のいずれか一項に記載の回転装置。 4. The rotating device according to any one of claims 1 to 3, wherein the surface of the rear portion that receives the fluid is inclined toward the upstream side in the flow direction of the fluid. 前記後方部の突出面幅を1とした場合に、前記回転本体が前記後方部の突出面と交差している部位から重ならないようにさらに前記回転本体の長手方向両側にそれぞれ1以上の長さを有する請求項3に記載の回転装置。 Assuming that the width of the protruding surface of the rear portion is 1, a length of 1 or more is added to each side of the rotating body in the longitudinal direction so that the portion where the rotating body intersects with the protruding surface of the rear portion does not overlap. 4. The rotating device of claim 3, comprising: 前記後流物体は、前記回転本体から前記回転本体を回転方向に駆動する縦渦を発生する離間距離を有して配置される、請求項1に記載の回転装置。 2. The rotating device according to claim 1, wherein the wake object is arranged with a separation distance from the rotating body that generates a longitudinal vortex that drives the rotating body in a rotational direction. 前記離間距離は、可変である請求項7に記載の回転装置。 8. The rotating device according to claim 7, wherein the separation distance is variable. 前記後流物体が複数設けられ、
複数の前記後流物体は、前記回転本体の前記回転中心に対し反対側に前記傾斜部の突出面が配置される請求項1に記載の回転装置。

A plurality of wake objects are provided,
2. The rotating device according to claim 1, wherein the plurality of wake objects have a projecting surface of the inclined portion arranged on the opposite side of the center of rotation of the rotating body.

JP2021109961A 2021-07-01 2021-07-01 Rotation device Pending JP2023007015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021109961A JP2023007015A (en) 2021-07-01 2021-07-01 Rotation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021109961A JP2023007015A (en) 2021-07-01 2021-07-01 Rotation device

Publications (1)

Publication Number Publication Date
JP2023007015A true JP2023007015A (en) 2023-01-18

Family

ID=85108135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021109961A Pending JP2023007015A (en) 2021-07-01 2021-07-01 Rotation device

Country Status (1)

Country Link
JP (1) JP2023007015A (en)

Similar Documents

Publication Publication Date Title
JP5090023B2 (en) Eddy current generating cyclic propeller
Vandenberghe et al. On unidirectional flight of a free flapping wing
JPH03253794A (en) Fluid circulator and its manufacture
Heathcote et al. Jet switching phenomenon for a periodically plunging airfoil
Shinde et al. Flexibility in flapping foil suppresses meandering of induced jet in absence of free stream
JPH1159594A (en) Airfoil having stall suppressing function due to forcing vibration
US9744563B2 (en) Undulatory structures
Miau et al. Experiment on smooth, circular cylinders in cross-flow in the critical Reynolds number regime
EP2920470B1 (en) Pump
JP2023007015A (en) Rotation device
JP2006242169A (en) Rotary wing and power generating device using it
KR20100096126A (en) An apparatus for generating power from a fluid stream
JP2002358743A (en) Head arm of magnetic disk device
EP3244059B1 (en) Rotary device for power generation from fluid
Pasa et al. Influence of Strouhal number and phase difference on the flow behavior of a synthetic jet array
Liu et al. Theoretical analysis of a contactless transportation system for cylindrical objects based on ultrasonic levitation
Eastman et al. Analysis of three-dimensional attributes and flow intake for an oscillating cantilever
JP2006183786A (en) Fluid thrust bearing
Brücker et al. Streaming and mixing induced by a bundle of ciliary vibrating micro-pillars
JP2019105213A (en) Rotor
JPH04321794A (en) Flow generator
JP6508252B2 (en) Sliding structure
JPH05174507A (en) Magnetic head support
Isobe et al. Motion error correction for non-contact ultrasonic motor driven by multi-layered piezoelectric actuators
Zhu et al. Probability of self-oscillation induced by vortex shedding from a thin cambered blade