JPH04321794A - Flow generator - Google Patents

Flow generator

Info

Publication number
JPH04321794A
JPH04321794A JP17783591A JP17783591A JPH04321794A JP H04321794 A JPH04321794 A JP H04321794A JP 17783591 A JP17783591 A JP 17783591A JP 17783591 A JP17783591 A JP 17783591A JP H04321794 A JPH04321794 A JP H04321794A
Authority
JP
Japan
Prior art keywords
plate
fluid
current
flow
plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17783591A
Other languages
Japanese (ja)
Other versions
JP3057166B2 (en
Inventor
Masayasu Negishi
根岸 政恭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissho Giken KK
Original Assignee
Nissho Giken KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissho Giken KK filed Critical Nissho Giken KK
Priority to JP3177835A priority Critical patent/JP3057166B2/en
Publication of JPH04321794A publication Critical patent/JPH04321794A/en
Application granted granted Critical
Publication of JP3057166B2 publication Critical patent/JP3057166B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To improve the performance of a flow generator to the utmost limits and reduce noise. CONSTITUTION:Many flow generating plates P, P1, P1a, P1b, P2, and P3 arranged in parallel with each other are rotated around an axis O-O to generate the movement of fluid such as air. In order to most efficiently move fluid by only sticking of the fluid to flow generating plates, the clearance between flow generating plates is set as follows. That is, the aforementioned clearance is set so as to be twice the middle value (c) of the distance between the flow generating plate surface which contacts with a part (a) of the nearest fluid boundary layer which moves almost together with a flow generating plate and a part of a fluid boundary layer which is hardly affected by the centrifugal force caused by the rotation of the flow generating plates. In the case of air fluid, the clearance is about 0.5mm. In order to improve the efficiency of flow generation, the surface of the flow generating plates is made in the shape of wave 10. In addition, a part of the wave shaped surface is provided with straightening parts 13 each consisting of a ring-like flat plate, and a straightening auxiliary plate 14 is provided between the straightening 13 when required.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、送風機、ポンプ等の流
体を送る起流機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blower, a pump, or the like for supplying fluid.

【0002】0002

【従来の技術】回転軸線に直交する方向に複数枚の環状
起流プレートを配列し、これら起流プレートを回転軸線
まわりで回転させ、起流プレートの表面と流体(空気)
との摩擦によって流体を送る円板型起流機は、特公昭5
8−17359号公報等によって公知である。
[Prior Art] A plurality of annular current plates are arranged in a direction perpendicular to the axis of rotation, and these plates are rotated around the axis of rotation, so that the surface of the current plate and the fluid (air)
The disc-type current generator that sends fluid by friction with the
This method is known from Japanese Patent No. 8-17359 and the like.

【0003】0003

【発明が解決しようとする課題】この形式の起流機は、
構造が簡単であるために安価に得られる利点があるが、
流量等に関して十分な性能が得られない、という問題が
ある。一方、起流機の駆動の為には誘導モーターを使用
することが多いが、誘導モーターの最大回転数は電源周
波数により定まるので起流機回転数の上限が決ってしま
う。この制限は軸受等の耐久性によっても起る。このよ
うに最大回転数が制限されると、より大きな流量が必要
な場合、回転数の増大に代えて起流機のスペース効率の
向上(同じ寸法で流量を増大させる)をはかる必要があ
る。
[Problem to be solved by the invention] This type of drafter is
It has the advantage of being inexpensive due to its simple structure, but
There is a problem in that sufficient performance cannot be obtained in terms of flow rate, etc. On the other hand, an induction motor is often used to drive the current generator, but since the maximum rotation speed of the induction motor is determined by the power supply frequency, the upper limit of the rotation speed of the current generator is determined. This limitation also occurs due to the durability of bearings, etc. When the maximum rotational speed is thus limited, if a larger flow rate is required, it is necessary to improve the space efficiency of the drafter (increase the flow rate with the same dimensions) instead of increasing the rotational speed.

【0004】また、この形式の起流機は、従来の起流機
に比し発生騒音が低いが、それでも起流プレートの起流
力を大きくするために起流プレートに起流促進用突部を
設けると風切り音が発生し易い。本発明の目的は、この
形式の起流機の性能を極限にまで高め、しかも風切り等
による騒音を極限にまで低減することにある。
[0004] Although this type of current generator generates lower noise than conventional current generators, it still has a protrusion for promoting current flow on the current flow plate in order to increase the current flow force of the current flow generator. If installed, wind noise is likely to occur. An object of the present invention is to maximize the performance of this type of draft generator and to reduce noise caused by wind blowing and the like to the utmost.

【0005】[0005]

【課題を解決するための手段】本発明の起流は、回転軸
線にほぼ直交する方向に間隙をおいて配列した複数枚の
起流プレートと、これらの起流プレートを回転軸線まわ
りで回転駆動する手段とを備え、起流プレートは、それ
に接する流体との付着現象のみによって流体を移動させ
る表面を有し、この表面は、それに沿って付着現象によ
り移動させられる流体が起流プレートを最後に離れる起
流プレート外縁まで径方向に形成され、起流プレートの
表面には起流促進用突部が設けられ、隣接する起流プレ
ートの間隙は、起流プレートへの付着力が強くて起流プ
レートと殆ど一緒に回転移動する至近流体境界層部分に
接する起流プレート表面と、起流プレートへの付着力が
弱く起流プレートの回転による遠心力の影響が殆どない
流体境界層部分との距離の中間の値の2倍に設定され、
流体に遠心力が最も効果的に作用し易い間隙とされてお
り、起流プレートの半径方向に関しての一部には、前記
起流促進用突部を除いて環状平板からなる整流部が設け
られている。
[Means for Solving the Problems] The current generating system of the present invention includes a plurality of current generating plates arranged at intervals in a direction substantially perpendicular to the rotational axis, and these current generating plates are driven to rotate around the rotational axis. and a means for displacing the fluid solely by the phenomenon of adhesion with the fluid in contact therewith, the surface having a surface along which the fluid moved by the phenomenon of adhesion finally leaves the current plate. It is formed in the radial direction up to the outer edge of the separating plate, and the surface of the plate is provided with a protrusion for promoting drafting, and the gap between adjacent drafting plates has a strong adhesion to the drafting plate, so that the drafting plate is formed in a radial direction. Distance between the surface of the current plate that is in contact with the closest fluid boundary layer that rotates almost together with the plate and the fluid boundary layer that has weak adhesion to the current plate and is hardly affected by centrifugal force due to the rotation of the current plate. is set to twice the intermediate value of
The gap is considered to be the gap in which centrifugal force is most likely to act on the fluid most effectively, and a rectifying section made of an annular flat plate is provided in a part of the flow-starting plate in the radial direction, excluding the flow-stimulating protrusion. ing.

【0006】[0006]

【作  用】本発明の起流機においては、起流プレート
が回転駆動されると、起流プレートの表面に接している
至近流体境界層部分は、その起流プレートへの付着力に
より起流プレートと共に回転し、それに伴い発生する遠
心力と付着力との合力により半径方向外方へ送られる。 また、至近層部分に隣接する流体もズレ応力で至近流体
境界層部分の移動に引きずられるようにしてそれより少
し遅れて半径方向外方へ送られる。至近流体境界層部分
から離れるにつれ、流体の流れは至近流体境界層部分か
らの遅れが大きくなる。このような遅れが大きくなる流
体層部分が存在しないように、起流プレートの間隙を定
めることによって、起流機の流量等の性能は極限まで向
上する。起流プレートの流体に対する付着力の影響が及
ぶ流体境界層では、起流プレートへの付着現象により、
起流プレートの回転に伴って遠心力が作用する。この遠
心力は起流プレートの面よりの距離が大きい程小さく、
起流プレートの面近傍で最大となる。起流作用は遠心力
と付着力の合力により生じる。起流プレートの面近傍で
は遠心力が大きいが付着力も大きい。
[Function] In the current generator of the present invention, when the current generation plate is rotationally driven, the nearby fluid boundary layer portion that is in contact with the surface of the current generation plate causes the current generation to flow due to the adhesion force to the current generation plate. It rotates together with the plate, and is sent radially outward by the resultant force of centrifugal force and adhesive force generated accordingly. Further, the fluid adjacent to the closest layer portion is also dragged by the movement of the closest fluid boundary layer portion due to shear stress, and is sent radially outward with a little delay. As the distance from the nearest fluid boundary layer section increases, the fluid flow lags behind the nearest fluid boundary layer section. By determining the gap between the draft plates so that there is no fluid layer portion where such a delay becomes large, the performance of the draft generator, such as the flow rate, is improved to the utmost. In the fluid boundary layer, where the adhesion force of the drafting plate to the fluid affects the fluid, due to the phenomenon of adhesion to the drafting plate,
Centrifugal force acts as the current plate rotates. The larger the distance from the surface of the current plate, the smaller this centrifugal force becomes.
It is maximum near the surface of the current plate. The current action is caused by the resultant force of centrifugal force and adhesion force. Near the surface of the current plate, the centrifugal force is large, but the adhesion force is also large.

【0007】起流プレートに接している個所では付着力
は無限大とみてよい。従って、起流プレートの面上およ
び至近部では遠心力が付着力により減殺される。起流プ
レート面上では実際上流体は付着したままである。一方
、起流プレート面から離れると、付着力が弱い為に遠心
力が弱くなり起流が起こりにくい。従って、中間部に、
付着力が程々にあって遠心力も作用し、この遠心力が付
着力に打勝って最も効率よく起流を生じる箇所が存在す
るはずである。本発明は、この箇所を利用して起流機の
流量等の性能を高めるものである。
[0007] The adhesion force can be considered to be infinite at the point in contact with the current plate. Therefore, the centrifugal force on the surface of the current plate and in the vicinity thereof is reduced by the adhesive force. The fluid actually remains attached on the surface of the current plate. On the other hand, when moving away from the current plate surface, the centrifugal force becomes weak due to weak adhesion, making it difficult to generate current. Therefore, in the middle part,
There must be a location where the adhesion force is moderate and the centrifugal force acts, and where this centrifugal force overcomes the adhesion force and generates current most efficiently. The present invention utilizes this location to improve the performance of the flow generator, such as the flow rate.

【0008】また、起流プレートに設けられた環状平板
の整流部は、起流促進用突部により乱された流体の流れ
を整流し、騒音の発生を迎える。
[0008]Furthermore, the annular flat plate rectifier provided on the current flow plate rectifies the flow of fluid disturbed by the flow promotion protrusion, leading to the generation of noise.

【0009】[0009]

【実施例】本発明の実施例の説明に先立ち、本発明の基
本原理を説明する。図1および図2に於て,O−Oは起
流機の回転軸線であって、この回転軸線に直交するよう
に複数枚の環状板状起流プレートPが一体的に配設され
ている。起流プレートPは互いに平行に間隙CLをおい
て配列されており、中央部に円形開口2を備えている。 起流プレートPに間隙CLを保つ為にスペーサ3が設け
られており、また起流プレートPを回転可能にするため
に、図2に示すように両端の起流プレートPに回転軸4
a、4bが固定され、一方の回転4bにモータMが連結
されている。回転軸4a、4bは図示しない軸受により
支持される。図3に示すように、起流プレートPは吐出
口6をもつケーシング5内に収容することができる。な
お、一方の回転軸4aとその軸受はなくてもよい。
[Embodiments] Prior to describing embodiments of the present invention, the basic principle of the present invention will be explained. In FIGS. 1 and 2, O-O is the rotation axis of the current generator, and a plurality of annular plate-shaped current generation plates P are integrally arranged perpendicular to this rotation axis. . The current plates P are arranged parallel to each other with a gap CL between them, and have a circular opening 2 in the center. A spacer 3 is provided on the current plate P to maintain a gap CL, and in order to make the current plate P rotatable, a rotating shaft 4 is provided on the current current plate P at both ends as shown in FIG.
a and 4b are fixed, and a motor M is connected to one rotation 4b. The rotating shafts 4a and 4b are supported by bearings (not shown). As shown in FIG. 3, the current plate P can be housed in a casing 5 having a discharge port 6. Note that one rotating shaft 4a and its bearing may be omitted.

【0010】いま、これらの起流プレートPを回転軸線
O−Oのまわりで一緒に回転させると、起流プレートの
表面7(図2)が空気のような流体に接しているとすれ
ば、間隙CL中の流体は矢印で示すように起流プレート
の半径方向外方へ向かう成分をもって送られ、これに伴
い、間口2を経て回転軸線O−Oの方向に流体が吸引さ
れる。このような原理で作動する起流機の一例は、特公
昭58−17359号公報に記載されている。
Now, when these current generation plates P are rotated together around the rotational axis OO, assuming that the surface 7 (FIG. 2) of the current generation plates is in contact with a fluid such as air, The fluid in the gap CL is sent with a component directed outward in the radial direction of the current plate as shown by the arrow, and as a result, the fluid is sucked through the opening 2 in the direction of the rotational axis OO. An example of a draft generator operating on this principle is described in Japanese Patent Publication No. 17359/1983.

【0011】このようにして空気が起流プレートPの表
面7に引きずられて送られるのは、固体表面に接触して
いる流体は固体に付着しており、付着に基づいて固体の
回転で発生した遠心力と付着力との合力で流体の移動が
発生するからである。付着現象を図4について説明する
。同図で、固体P’の表面に隣接している流体が、図中
左方へ流れていると仮定する。この場合、流体の分子は
固体P’の表面に近付く程固体の付着力の影響を強く受
けて流速は遅くなる。この現象はズレ応力で説明される
。矢印の長さは流速を示す。固体に直接接触している流
体分子は固体に付着して移動することがなく、固体の至
近領域のきわめて薄い境界層部分Aでは流体の粘性によ
る上記ズレ応力の作用で流体は固体の影響を大きく受け
る。境界層部分Aの外側の領域Bでも連続的にいくらか
ズレ応力が作用しているが、流体は固体P’の影響を殆
ど受けない。この現象は、固体の表面の材質が何であっ
ても生じる。以上の相対速度の関係は、流体が停止し、
固体が移動する場合にも存在する。空気中で回転する平
円板の場合には、回転により発生する遠心力の影響を大
きく受ける境界層部分の厚さは、後述のように1mmよ
りかなり小さい。
The reason why the air is dragged and sent to the surface 7 of the current plate P in this way is that the fluid in contact with the solid surface is attached to the solid, and this occurs due to the rotation of the solid based on the adhesion. This is because fluid movement occurs due to the resultant force of the centrifugal force and the adhesive force. The adhesion phenomenon will be explained with reference to FIG. In the figure, it is assumed that the fluid adjacent to the surface of the solid P' is flowing to the left in the figure. In this case, the closer the fluid molecules are to the surface of the solid P', the more they are influenced by the adhesive force of the solid, and the flow rate becomes slower. This phenomenon is explained by shear stress. The length of the arrow indicates the flow velocity. Fluid molecules that are in direct contact with a solid adhere to the solid and do not move, and in the extremely thin boundary layer part A in the area close to the solid, the fluid is greatly influenced by the solid due to the action of the above-mentioned shear stress due to the viscosity of the fluid. receive. Although some shear stress is continuously acting in the region B outside the boundary layer portion A, the fluid is hardly affected by the solid P'. This phenomenon occurs regardless of the material of the solid surface. The above relative velocity relationship means that when the fluid stops,
It also exists when solids move. In the case of a flat disk rotating in air, the thickness of the boundary layer portion, which is largely affected by the centrifugal force generated by rotation, is considerably smaller than 1 mm, as described below.

【0012】いま、起流プレートPは、図5に示すよう
に矢印D方向に回転させたとすると、起流プレートPの
片側の表面のみで生起される空気流は、矢印で示すよう
に起流プレートPの外周縁に接線方向に放出され、その
流量Qは、Q=k・R・Nで表わされる。ここでRは起
流プレート外周縁の半径、Nは回転数、kは定数である
。即ち、流量は半径と回転数(即ち、起流プレートの周
速)に比例して定まる。
Now, if the current plate P is rotated in the direction of arrow D as shown in FIG. 5, the airflow generated only on one surface of the current plate P will be caused by It is discharged tangentially to the outer peripheral edge of the plate P, and its flow rate Q is expressed as Q=k・R・N. Here, R is the radius of the outer periphery of the current plate, N is the number of rotations, and k is a constant. That is, the flow rate is determined in proportion to the radius and the rotational speed (ie, the circumferential speed of the flow-starting plate).

【0013】このように、起流プレートの片側表面のみ
について考えると、流量を決める要素としての半径と回
転数が定められれば、流量は定数kを大きくする以外に
増加の途がない。いま、定数kの増加については後述す
るとして、起流機の規定半径および規定長さ(軸方向)
の範囲内で起流機の能力の向上をはかるとすれば、それ
は規定長さの範囲内でのスペース効率の向上以外にない
。本発明の主目的はこのスペース効率の向上にある。
[0013] Thus, considering only one surface of the current plate, if the radius and rotational speed are determined as the factors that determine the flow rate, the flow rate can only be increased by increasing the constant k. Now, the increase in the constant k will be described later, but the specified radius and specified length (axial direction) of the draft generator
The only way to improve the performance of a draft generator within this range is to improve space efficiency within the specified length. The main purpose of the present invention is to improve this space efficiency.

【0014】一定の軸方向長さの範囲内に収める起流プ
レートの厚みは薄い程よい。なんとなれば、流体の送り
に関与するのは起流プレートの表面のみで、板厚は起流
に何ら寄与していないからである。従って、起流プレー
トは必要な機械的強度の要求に耐えればよい。この場合
機械的強度は、この形式の起流機では主として起流プレ
ートの面内の固定部を中心に発生する板の平面張力と遠
心力に対するものだけでよく、ねじれ、曲げ等の他の力
の作用はない。従って、起流プレートはポリエチレンテ
レフタレート(PET)等のプラスチック製でも充分耐
えられる。
[0014] The thinner the thickness of the current plate is within a certain axial length range, the better. This is because only the surface of the current plate is involved in the feeding of fluid, and the thickness of the plate does not contribute to the current flow. Therefore, the current plate only needs to withstand the required mechanical strength requirements. In this case, the mechanical strength of this type of draft generator is mainly limited to the plane tension and centrifugal force of the plate generated around the in-plane fixed part of the draft plate, and other forces such as twisting, bending, etc. There is no effect. Therefore, even if the current plate is made of plastic such as polyethylene terephthalate (PET), it is sufficiently durable.

【0015】このように、起流プレートを極限まで薄く
できるとなると、回転軸方向、即ち起流板厚み方向に関
しての、流量に対するスペース効率は、起流プレート間
の隙間寸法のみにより定まることになる。
[0015] In this way, if the current plate can be made as thin as possible, the space efficiency with respect to the flow rate in the rotational axis direction, that is, in the thickness direction of the current plate, will be determined only by the gap size between the current plate. .

【0016】そこで、最適の隙間寸法を定める為に、次
のような実験を行った。図6および図7に示すような2
枚の平らな中空環状板  P”を両者の間隙CLを調節
可能に回転軸9に固定し、円周縁近傍に小さな孔8を形
成し、この孔8から空気に比し充分に軽く、環状板  
P”に対し腐食性を有する気体を矢印で示すように放出
しつつ空気中で環状板をその中心を通る軸線まわりで回
転させた。腐食性気体は環状板P”の遠心力付与作用を
受ける空気の流れに乗って流動したので、その腐食軌跡
を観察した。なお、気体は図7に示すように回転軸9を
経由して孔8に送った。
[0016] Therefore, in order to determine the optimum gap size, the following experiment was conducted. 2 as shown in Figures 6 and 7.
A flat hollow annular plate P" is fixed to a rotating shaft 9 so that the gap CL between the two can be adjusted, a small hole 8 is formed near the circumferential edge, and the annular plate is
The annular plate was rotated in air around an axis passing through its center while releasing a corrosive gas toward P'' as shown by the arrow.The corrosive gas was subjected to the centrifugal force exerted by the annular plate P''. As it flowed with the air currents, we observed its corrosion trajectory. Note that the gas was sent to the hole 8 via the rotating shaft 9 as shown in FIG.

【0017】この軌跡の観察結果によれば、環状板  
P”の間隙が大きい程、環状板P”の回転方向Eとは逆
の円周方向へ気体が矢印fで示すように回り込んだ。こ
の「回り込み」の程度は図6の角度θで表すことができ
る。気体の軌跡は図8に示すように濃淡になって現れ、
軌跡の濃い部分が流量が多く、薄い部分が流量が少ない
ことになる。回り込みの角度θが大きい流れが多く見ら
れるということは、環状板  P”の付着力の影響の少
ない部分が多いことを意味し、環状板  P”の転のエ
ネルギーが充分に利用されていないことになる。一方、
回り込みの角度θが小さい流れが多いことは、環状板 
 P”の付着力が強く、発生した遠心力が付着力により
減殺されて流れが少なくなっていることを意味している
According to the observation results of this trajectory, the annular plate
The larger the gap P'' is, the more gas flows around the annular plate P'' in the circumferential direction opposite to the rotational direction E, as shown by the arrow f. The degree of this "wrapping" can be expressed by the angle θ in FIG. The trajectory of the gas appears in shading as shown in Figure 8,
The darker parts of the locus have a higher flow rate, and the thinner parts have a lower flow rate. The fact that there are many flows with a large wraparound angle θ means that there are many areas where the influence of the adhesive force of the annular plate P'' is small, and the rolling energy of the annular plate P'' is not fully utilized. become. on the other hand,
The fact that there are many flows with a small wraparound angle θ indicates that the annular plate
This means that the adhesive force of P'' is strong, and the generated centrifugal force is attenuated by the adhesive force, resulting in less flow.

【0018】このような「回り込み」の観察から次のよ
うな分析結果が得られた。環状板の間隙0.13〜0.
25mm間の空気層、即ち各環状板の表面からそれぞれ
0.13/2〜0.25/2mmの厚さの空気層が環状
板の表面に殆ど付着していると考えられる空気層であり
、この空気層は図4に於いて、aで示される部分の層で
ある。
The following analytical results were obtained from the observation of such "wrapping". Gap between annular plates 0.13~0.
An air layer between 25 mm, that is, an air layer with a thickness of 0.13/2 to 0.25/2 mm from the surface of each annular plate, which is considered to be mostly attached to the surface of the annular plate, This air layer is the layer indicated by a in FIG. 4.

【0019】また、間隙1.0mmを超える部分の空気
,即ち、各環状板の表面からそれぞれ1.0/2mmを
超える距離を離れている空気は、環状板の付着力と遠心
力の影響が少ない空気であり、この空気は図4でcで示
す領域外の空気である。また、上記aの部分の空気層の
厚さに相当する間隙では付着力が強すぎて、遠心力によ
っても起流しにくい状態にある。この空気層、即ち至近
流体境界層部分aは前述のようにきわめて薄いから厚さ
としては、殆ど無視することができる。また、上記cを
超える部分の空気は環状板の作用を受けにくいので、上
記aとcの間に、遠心力の影響を受け易くスペース効率
が最大になるbの領域(図4)があるはずである。その
領域は0.38/2〜0.5/2mm辺りであろう。
[0019] Furthermore, the air in the portion where the gap exceeds 1.0 mm, that is, the air that is separated from the surface of each annular plate by a distance exceeding 1.0/2 mm, is affected by the adhesive force and centrifugal force of the annular plates. This air is outside the area indicated by c in FIG. 4. Further, in the gap corresponding to the thickness of the air layer in the above part a, the adhesion force is so strong that even centrifugal force makes it difficult to flow. This air layer, ie, the closest fluid boundary layer portion a, is extremely thin as described above, so its thickness can be almost ignored. Also, since the air in the area beyond c is less susceptible to the action of the annular plate, there must be an area b (Figure 4) between a and c above where it is easily affected by centrifugal force and has maximum space efficiency. It is. The area would be around 0.38/2 to 0.5/2 mm.

【0020】一方、内径50mm、外径74mmの起流
プレートを軸方向長さ21mmに重ね合わせて構成した
送風機について、その間隙を変えて流量および静圧を測
定したところ、図9に示す結果が得られた。この結果と
、前記分析結果は大体符合する。よって、流体が空気で
ある場合には、起流機の起流プレートの間隙は約0.5
mm、即ち、対向する起流プレートの表面からそれらの
中間点までの距離が約0.5/2mmである場合に、最
大のスペース効率が得られることが判明した。
On the other hand, when the flow rate and static pressure of a blower constructed by superimposing flow plates with an inner diameter of 50 mm and an outer diameter of 74 mm and an axial length of 21 mm were measured while changing the gap between them, the results shown in FIG. 9 were obtained. Obtained. This result and the analysis result described above generally agree. Therefore, when the fluid is air, the gap between the draft plates of the draft generator is approximately 0.5
It has been found that maximum space efficiency is obtained if the distance from the surfaces of the opposing flow plates to their midpoint is approximately 0.5/2 mm.

【0021】他の流体の場合にも、それぞれ最適の起流
プレート間隙があることは前述したところから明かであ
り、最適間隙は前述したと同じ手順によって定めること
ができる。よって、起流機の最終的なスペース効率は、
定められた軸方向長さ内に、起流板の一表面当りの最大
スペース効率をもつ面を何面持ち得るかにより定まるこ
とになる。
It is clear from the foregoing that in the case of other fluids, there are respective optimum flow plate gaps, and the optimum gaps can be determined by the same procedure as described above. Therefore, the final space efficiency of the drafter is
It is determined by the number of surfaces that can have the maximum space efficiency per surface of the current plate within a predetermined axial length.

【0022】既に述べたように、起流プレートにより生
起される流量Qは、Q=k・R・Nで表される(Rは起
流プレート外径、Nは回転数)。従って、Qを増加させ
るには定数kを増加させるのが得策である。以下定数k
を増加させる実施例を説明する。
As already mentioned, the flow rate Q generated by the current plate is expressed as Q=k·R·N (R is the outer diameter of the current plate and N is the rotational speed). Therefore, in order to increase Q, it is a good idea to increase the constant k. The following constant k
An example of increasing the amount of

【0023】定数kに含まれる因子の一つとしては、起
流プレートの表面積がある。この表面積を増加させるこ
とによって定数kを大きくし流量Qを増加させることが
できると考えられる。起流プレートの内周縁半径および
外周縁半径が規制されるとすれば、その表面積の増大は
凹凸の形成により達成することができる。起流プレート
の表面積を増大させるといっても、単に表面積を増大さ
せればよいのではない。既に述べたように、起流プレー
トの表面から約0.5/2mmの距離までにある流体(
空気の場合)が最も起流プレートの影響を受けて移動し
易いわけであるから、起流プレートの表面から約0.5
/2mmの位置における表面積の増加が最も効率がよい
と考えられる。
One of the factors included in the constant k is the surface area of the current plate. It is considered that by increasing this surface area, the constant k can be increased and the flow rate Q can be increased. If the inner and outer radii of the flow-starting plate are regulated, the surface area can be increased by forming unevenness. Increasing the surface area of the current plate does not mean simply increasing the surface area. As already mentioned, the fluid (
In the case of air), it is most likely to move due to the influence of the current plate, so the distance from the surface of the current plate to about 0.5
The increase in surface area at the /2 mm position is considered to be the most efficient.

【0024】これを実現するには、起流プレートの表面
にほぼ半径方向に波頭が向く波形を形成するのがよいと
考えられる。その一例を図10に示す。同図に示す環状
起流プレートP1は矢印で示す回転方向と逆の方向に半
径線に対して傾いている波形10を有している。この波
形の断面は例えば頂角が60°の三角形断面をなしてい
る。このように頂角が60°の正三角形断面の波形を形
成すると、起流プレートの表面積は平板の起流プレート
の場合の2倍になる。しかし、図11に示すように、正
三角形波形が小さいと、その波形の表面から0.5/2
mm(0.25mm)の距離にある点の軌跡11は、同
図に示すように極めて低い孤状波形になり0.25mm
位置までの起流プレートの影響を最も受ける至近境界層
部分の形態は平板の起流プレートの場合と余り変わらず
、定数kの増大の効果は少ない。
[0024] In order to realize this, it is considered that it is best to form a waveform on the surface of the current plate with the wave crest facing approximately in the radial direction. An example is shown in FIG. The annular flow generating plate P1 shown in the figure has a waveform 10 that is inclined with respect to the radial line in a direction opposite to the rotational direction indicated by the arrow. The cross section of this waveform is, for example, a triangular cross section with an apex angle of 60°. When a waveform having an equilateral triangular cross section with an apex angle of 60° is formed in this way, the surface area of the current plate becomes twice that of a flat current plate. However, as shown in Figure 11, if the equilateral triangular waveform is small, 0.5/2 from the surface of the waveform
The locus 11 of a point located at a distance of mm (0.25 mm) becomes an extremely low arcuate waveform as shown in the same figure, and the distance is 0.25 mm.
The shape of the closest boundary layer portion, which is most affected by the current plate up to the position, is not much different from the case of a flat current plate, and the effect of increasing the constant k is small.

【0025】これに対し、図12に示すように正三角形
波形が大きいと、その波形の表面から0.25mm位置
までの起流プレートの影響を最も受ける至近境界層部分
の形態は、同図の12で示すようにかなり大きく変化し
、0.25mmと対比して大きな波状を呈することにな
る。これは、後述の乱流境界層の形成を促しこれにより
、起流プレートの影響を受ける流体層の厚さの増大をも
たらして流量の増大を可能にするのであろうとの結論を
得ている。なお、凹凸が0.25mmに比較してかなり
小さい場合、例えば細かい梨地面やフエルト状の面は起
流プレートの表面積の増加には役立たない。
On the other hand, when the equilateral triangular waveform is large as shown in FIG. 12, the shape of the closest boundary layer part that is most affected by the current plate up to a position 0.25 mm from the surface of the waveform is as shown in the figure. As shown by 12, it changes considerably and exhibits a large wavy shape compared to 0.25 mm. It has been concluded that this promotes the formation of a turbulent boundary layer, which will be described later, and thereby increases the thickness of the fluid layer affected by the draft plate, making it possible to increase the flow rate. Note that if the unevenness is considerably smaller than 0.25 mm, for example, a fine satin surface or a felt surface will not be useful for increasing the surface area of the drafting plate.

【0026】このようにかなり大きな波形表面を形成す
ることにより、流量の増大をはかることができるが、こ
れは、1枚の起流プレートの一表面についての話である
Although it is possible to increase the flow rate by forming a considerably large corrugated surface in this way, this is only for one surface of a single current plate.

【0027】ところで、理論的に計算してみるに、頂角
が60°の三角形をなす波形表面をもつ起流プレートを
三角断面の斜面同志が、斜面に直交する方向に0.5m
mの間隙をおいて対向するように配置すると、両起流プ
レートは回転軸線方向に0.5mm/sin30°、即
ち1mmの間隔を於て対向することになり、起流プレー
トの軸線方向間隔が0.5mmの2倍になり、一定の軸
線方向寸法内に設置できる起流プレートの枚数が平板起
流プレートの場合の半分になる。従って、理論的には、
起流プレートの各表面の面積が2倍になって流量が増え
ても、それは枚数の半減によって打消されてしまうこと
になる。この事実は三角形波形の頂角が60°以外の場
合でも同様である。
[0027] By the way, theoretical calculations show that the slopes of a current plate with a triangular waveform surface with an apex angle of 60° have a distance of 0.5 m in the direction perpendicular to the slopes.
If they are arranged to face each other with a gap of m, the two current plates will face each other with an interval of 0.5 mm/sin 30°, that is, 1 mm, in the direction of the rotational axis, and the axial distance between the current plates will be This is twice 0.5 mm, and the number of flow plates that can be installed within a certain axial dimension is half that of a flat flow plate. Therefore, theoretically,
Even if the area of each surface of the current plate is doubled and the flow rate is increased, this increase will be canceled out by the reduction in the number of plates by half. This fact holds true even when the apex angle of the triangular waveform is other than 60°.

【0028】しかしながら、この理論計算による結果は
実験結果とは符合しない。実験結果によれば、波形が大
きいと、流量増大の効果がある。以下、実験結果を次の
表1に示す。
However, the results of this theoretical calculation do not match the experimental results. According to experimental results, a large waveform has the effect of increasing the flow rate. The experimental results are shown in Table 1 below.

【0029】[0029]

【表1】[Table 1]

【0030】表1の結果は、理論計算の結果と異なって
いる。特に、起流プレート間隙(波形の斜面に直交する
方向に測定した値)は実験III、IV(中波)の場合
には最適値0.5mmとかなり異なり、それぞれ1.2
3mm、1.0mmとなっている。IIIの場合は波形
の頂部が丸くなっているので、さきの理論値は関係ない
とみても、波形の頂部が正三角形の頂点をなしているI
Vの場合は、理論値がmmでなければならないスペーサ
厚さが実験では2.0mmになっている。
The results in Table 1 are different from the results of theoretical calculations. In particular, the current plate gap (value measured in the direction perpendicular to the slope of the waveform) was considerably different from the optimum value of 0.5 mm in Experiments III and IV (medium wave), and was 1.2 mm for each.
3mm and 1.0mm. In the case of III, the top of the waveform is rounded, so even if the previous theoretical value is considered irrelevant, the top of the waveform forms the vertex of an equilateral triangle.
In the case of V, the spacer thickness, which should be theoretically mm, was experimentally 2.0 mm.

【0031】この理由は、乱流境界層によるものと考え
ることができる。板の表面に沿って流体が流れている場
合、板表面に高さhの粗さを一様に分布させたとし、板
の流れ方向長さがdであったとした場合、h/dの値が
ある値を越えると、層流境界層が乱流境界層に変化する
ことが流体力学上知られている。そして、乱流境界層の
厚さは、流速がある値を越えた領域では急速に増大する
。表1の実験の条件では、波形の形成により起流プレー
トの表面を流れる流体が上記条件を満たして、起流プレ
ートの表面に、程々の付着力をもち効果的な遠心力を受
ける乱流境界層が生じ、その厚さが、平板起流プレート
の場合に生じる層流境界層の厚さを越えたものと考えら
れる。
The reason for this can be considered to be the turbulent boundary layer. When fluid is flowing along the surface of a plate, if the roughness of height h is uniformly distributed on the plate surface, and the length of the plate in the flow direction is d, then the value of h/d is It is known from fluid mechanics that when the value exceeds a certain value, the laminar boundary layer changes to a turbulent boundary layer. The thickness of the turbulent boundary layer increases rapidly in a region where the flow velocity exceeds a certain value. Under the experimental conditions shown in Table 1, the fluid flowing on the surface of the drafting plate satisfies the above conditions due to the formation of a waveform, and the turbulent flow boundary has a moderate adhesion force to the surface of the drafting plate and is subjected to an effective centrifugal force. It is believed that a layer is formed whose thickness exceeds the thickness of the laminar boundary layer that occurs in the case of a flat draft plate.

【0032】いずれにしても、波形の形成により起流プ
レート間を流れる流体の流量が増大したことが認められ
る。また、小波より中波の方が流量の増大がみられるこ
とが認められ、さらに頂部が丸く不完全な小波より頂部
が三角形状をなす中波の方が、流量および静圧が増大す
ることも認められる。流量増加の状態は、図13にも示
されている。このように、波形を起流プレートに形成す
ることにより総流量等が増大するうえに最適間隙も増加
するので、起流プレートの必要枚数も少なくてすむよう
になり、その組付けが容易になり、起流機が軽量ですむ
ようになる。
In any case, it is recognized that the formation of the waveform increases the flow rate of the fluid flowing between the flow-starting plates. It was also observed that the flow rate increased more with medium waves than with small waves, and furthermore, with medium waves having a triangular top, the flow rate and static pressure increased more than with small waves with a rounded and incomplete top. Is recognized. The state of increased flow rate is also shown in FIG. In this way, by forming the waveform on the current plate, the total flow rate etc. increases and the optimum gap also increases, so the number of required current plates becomes smaller, and their assembly becomes easier. The drafter can now be lightweight.

【0033】起流プレートP1に前述のように半径方向
成分をもつ方向に波形を形成すると、図14に示すよう
に(この例では波形10は完全に半径方向を向いている
)各波形10の内周縁部の山形が外周縁部の山形より小
さくなる。従って、隣接する2枚の起流プレートP1の
回転軸線方向の間隙が、内周縁側で外周縁側より大きく
なり、それだけ流体吸入口が大きくなる。これは、それ
だけ起流の可能性量の制限が少なくなることを意味する
When waveforms are formed on the current plate P1 in a direction having a radial component as described above, each waveform 10 has a radial direction as shown in FIG. The chevron at the inner peripheral edge is smaller than the chevron at the outer peripheral edge. Therefore, the gap between the two adjacent flow plates P1 in the rotational axis direction becomes larger on the inner circumferential edge side than on the outer circumferential edge side, and the fluid suction port becomes larger accordingly. This means that there are fewer restrictions on the amount of possible currents.

【0034】尚、図10の例では波形は回転方向と逆の
方向へ回り込んでおり、また、図14の例では波形は半
径方向を向いているが、波形の向きは回転方向へ湾曲さ
せることもある。いずれの場合でも、起流プレートの回
転時には、内周縁から外周縁へ向かって流れる流体は波
形の溝に沿ってすべてが流れるのでなく、波形を越えて
流れる流体もある。
Note that in the example of FIG. 10, the waveform wraps around in the opposite direction to the rotation direction, and in the example of FIG. 14, the waveform is oriented in the radial direction, but the waveform is curved in the rotation direction Sometimes. In either case, when the current plate rotates, the fluid that flows from the inner circumferential edge toward the outer circumferential edge does not all flow along the corrugated grooves, but some fluid flows beyond the corrugated grooves.

【0035】起流に最も寄与するのは、起流プレートP
の外周縁付近である。それは、外周縁では周速度が最も
大きいからである。このように起流に最も寄与する外周
縁付近で最適実効間隙が形成されるように起流プレート
組立体を設計するのが望ましい。
The most contributing factor to the current flow is the current flow plate P.
It is near the outer periphery of. This is because the peripheral speed is highest at the outer periphery. As described above, it is desirable to design the current flow plate assembly so that the optimum effective gap is formed near the outer periphery that contributes most to the current flow.

【0036】以上に述べたように、起流プレートに半径
方向成分をもつ波形を形成することは、流量の増大には
非常に望ましいことである。尚、以上に流量の増大につ
いて主に言及してきたが、この起流プレート型起流機は
元来、高回転大静圧型であって、流量の増大に工夫を施
すことがより重要であるからである。
As described above, it is highly desirable to form a waveform with a radial component in the flow plate to increase the flow rate. Although we have mainly mentioned increasing the flow rate above, this current plate type current generator is originally a high rotation, high static pressure type, so it is more important to take measures to increase the flow rate. It is.

【0037】一方、起流機は誘導モータで駆動する場合
が多いことを考えると、なるべく低い回転で大きい流量
を出せることが、この形式の起流機に最も望まれるとこ
ろである。
On the other hand, considering that the current generator is often driven by an induction motor, it is most desirable for this type of current generator to be able to produce a large flow rate at as low a rotation as possible.

【0038】以上に説明してきた起流機は従来の起流機
に比し発生騒音が低いが、それでも、起流プレートの外
周縁の波形部が吐出流体(空気)を切ることにより風切
り音が発生する。本発明は、この風切り音の発生を抑え
る手段をもつ起流機を提供するものであり、その例を図
15ないし図18に示す。
Although the draft generator described above generates lower noise than conventional draft generators, it still produces wind noise due to the corrugated portion on the outer periphery of the draft plate cutting the discharged fluid (air). Occur. The present invention provides a draft generator having means for suppressing the generation of wind noise, examples of which are shown in FIGS. 15 to 18.

【0039】図15および図16に示す本発明の実施例
では、各起流プレートP1aは図10に示す起流プレー
ト1の外周縁に沿って平坦な環状の平板状整流13を一
体的に備えている。整流板13は半径方向外方へ突出し
ており、半径方向内側の波形部10で生成された流体の
乱流は、平板状整流部13に沿って流れる間に整流され
る。このようにして整流された流体流は起流プレートの
外部にある静止流体を余り乱すことなく外部へ放出され
る。整流部13の幅は、流体の粘性、起流プレートの波
形部の状態、起流プレートの間隙等に応じて、乱流の圧
力等の変動を減衰させるに必要な幅に決められる。
In the embodiment of the present invention shown in FIGS. 15 and 16, each current plate P1a is integrally provided with a flat annular flat rectifier 13 along the outer periphery of the current current plate 1 shown in FIG. ing. The rectifying plate 13 protrudes outward in the radial direction, and the turbulent flow of fluid generated in the radially inner corrugated portion 10 is rectified while flowing along the flat rectifying portion 13 . The thus rectified fluid stream is discharged to the outside without significantly disturbing the stationary fluid outside the current plate. The width of the rectifier 13 is determined to be a width necessary to attenuate fluctuations in the pressure of the turbulent flow, etc., depending on the viscosity of the fluid, the state of the corrugated portion of the current plate, the gap between the current plates, and the like.

【0040】環状板状整流部13と同様な整流部は、必
要により起流プレートの内周縁に形成することもできる
。図17に示す実施例では、起流板P1bは波形部の半
径方向途中部分にも環状の平板状整流部13aを有して
おり、さらに外周縁部にも図16に示す整流部と同様な
整流部13を備えている。中間の整流部13aは波形部
に沿って流れる流体を途中部分で整流する。中間整流部
13aの間には環状の整流補助板14を設けて、整流状
態をさらに改善することもできる。また、図18に示す
ように、外周縁の整流部13の間に環状整流補助板14
を設けてもよい。内周縁の整流部の間に整流補助板を設
けることもできる。
A flow straightening section similar to the annular plate-shaped flow straightening section 13 may be formed on the inner peripheral edge of the current flow plate if necessary. In the embodiment shown in FIG. 17, the current plate P1b has an annular flat rectifying section 13a in the radial middle part of the corrugated section, and also has a rectifying section similar to the rectifying section shown in FIG. 16 on the outer peripheral edge. A rectifying section 13 is provided. The intermediate rectifier 13a rectifies the fluid flowing along the corrugated portion in the middle. An annular rectifying auxiliary plate 14 may be provided between the intermediate rectifying portions 13a to further improve the rectifying state. In addition, as shown in FIG.
may be provided. A rectifying auxiliary plate may also be provided between the rectifying portions on the inner peripheral edge.

【0041】以上に述べた実施例では、起流機は通常の
遠心式であったが、本発明の起流機の原理は、クロスフ
ローファンにも利用することができる。
[0041] In the embodiments described above, the current generator was a normal centrifugal type, but the principle of the current generator according to the present invention can also be used in a cross-flow fan.

【0042】[0042]

【発明の効果】本発明によれば、起流プレートが流体に
対して最も効果的に作用して起流を行うように起流プレ
ートの間隙を定め、しかも起流プレートに起流促進用突
部を設けることによって起流を最も生起し易くすること
により、最も効率よく流体の流れを起すことができ、ま
た環状平板整流部により流れを整えて騒音の発生を防止
することができる。
Effects of the Invention According to the present invention, the gap between the drafting plates is determined so that the drafting plate acts most effectively on the fluid to create a flow, and the drafting plate has a protrusion for promoting drafting. By providing the section to make it easier to generate a current, the fluid flow can be generated most efficiently, and the annular flat plate rectifying section can regulate the flow and prevent the generation of noise.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の起流機の原理的構成を示す斜視図。FIG. 1 is a perspective view showing the basic configuration of a current generator of the present invention.

【図2】同じく回転軸線方向断面図。FIG. 2 is a sectional view in the direction of the rotation axis.

【図3】同じく回転軸線に直交する方向の断面図。FIG. 3 is a cross-sectional view taken in a direction perpendicular to the axis of rotation.

【図4】境界層の説明図。FIG. 4 is an explanatory diagram of a boundary layer.

【図5】起流プレートの回転時の現象の説明図。FIG. 5 is an explanatory diagram of a phenomenon during rotation of a current plate.

【図6】本発明の基礎となった実験に用いた起流プレー
トの平面図。
FIG. 6 is a plan view of a current plate used in the experiment that formed the basis of the present invention.

【図7】図6の断面図。FIG. 7 is a cross-sectional view of FIG. 6.

【図8】実験結果を示す斜視図。FIG. 8 is a perspective view showing experimental results.

【図9】実験結果を示す線図。FIG. 9 is a diagram showing experimental results.

【図10】波形起流プレートの一例の平面図。FIG. 10 is a plan view of an example of a corrugated current plate.

【図11】波形起流プレートの表面積増大の対比説明図
FIG. 11 is a diagram illustrating a comparison of the increase in surface area of the wave-formed current plate.

【図12】波形起流プレートの表面積増大の他の対比説
明図。
FIG. 12 is another comparative explanatory diagram of the increase in surface area of the corrugated current plate.

【図13】流量についての実験結果を示すグラフ。FIG. 13 is a graph showing experimental results regarding flow rate.

【図14】起流プレートの波形の説明図。FIG. 14 is an explanatory diagram of the waveform of the current plate.

【図15】本発明で用いる起流プレートの実施例を示す
平面図。
FIG. 15 is a plan view showing an example of a current plate used in the present invention.

【図16】図15の起流プレートの側面図。FIG. 16 is a side view of the drafting plate of FIG. 15.

【図17】本発明で用いる起流プレートの他の実施例と
整流補助板を示す側面図。
FIG. 17 is a side view showing another embodiment of the current flow plate and a flow rectification auxiliary plate used in the present invention.

【図18】本発明で用いる起流プレートの更に他の実施
例と整流補助を示す側面図。
FIG. 18 is a side view showing still another embodiment of the current flow plate used in the present invention and rectification assistance.

【符号の説明】[Explanation of symbols]

P      起流プレート P1    起流プレート P1a    起流プレート P1b    起流プレート CL    間隙 M      モータ 4a    回転軸 4b    回転軸 0      回転軸線 10    波形(起流促進用突部) 13      環状の平板整流部 13a    環状の平板整流部 14      環状整流補助板 P Current plate P1 Flow plate P1a Flow plate P1b Current plate CL Gap M Motor 4a Rotation axis 4b Rotation axis 0 Rotation axis 10 Waveform (protrusion for promoting flow) 13 Annular flat plate rectifier 13a Annular flat plate rectifier 14 Annular rectifying auxiliary plate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】      回転軸線にほぼ直交する方向
に間隙をおいて配列した複数枚の起流プレートと、これ
らの起流プレートを回転軸線まわりで回転駆動する手段
とを備え、起流プレートは、それに接する流体との付着
現象のみによって流体を移動させる表面を有し、この表
面は、それに沿って付着現象により移動させられる流体
が起流プレートを最後に離れる起流プレート外縁まで径
方向に形成され、起流プレートの表面には起流促進用突
部が設けられ、隣接する起流プレートの間隙は、起流プ
レートへの付着力が強くて起流プレートと殆ど一緒に回
転移動する至近流体境界層部分に接する起流プレート表
面と、起流プレートへの付着力が弱く起流プレートの回
転による遠心力の影響が殆どない流体境界層部分との距
離の中間の値の2倍に設定され、流体に遠心力が最も効
果的に作用し易い間隙とされており、起流プレートの半
径方向に関しての一部には、前記起流促進用突部を除い
て環状平板からなる整流部が設けられている起流機。
1. The current generating plate comprises a plurality of current generating plates arranged at intervals in a direction substantially perpendicular to the rotational axis, and means for rotationally driving these current generating plates around the rotational axis, the current generating plate comprising: It has a surface along which the fluid is moved only by adhesion with the fluid in contact with it, and this surface is formed radially up to the outer edge of the buff plate along which the fluid to be moved by the adhesion phenomenon finally leaves the buff plate. , a protrusion for promoting flow generation is provided on the surface of the flow generation plate, and the gap between adjacent flow generation plates is a close fluid boundary that has a strong adhesion force to the flow generation plate and rotates almost together with the flow generation plate. It is set to twice the intermediate value of the distance between the surface of the drafting plate in contact with the layer portion and the fluid boundary layer portion where the adhesion force to the drafting plate is weak and there is almost no influence of centrifugal force due to the rotation of the drafting plate, The gap is considered to be the gap in which centrifugal force is most likely to act on the fluid most effectively, and a rectifying section made of an annular flat plate is provided in a part of the flow-starting plate in the radial direction, excluding the flow-stimulating protrusion. The current flow machine.
【請求項2】      隣接する起流プレートの整流
部の間に整流補助板が整流部に平行に設けられている請
求項1記載の起流機。
2. The current generator according to claim 1, wherein a rectifying auxiliary plate is provided between the rectifying portions of adjacent current generating plates in parallel to the rectifying portions.
JP3177835A 1991-04-18 1991-04-18 Current generator Expired - Lifetime JP3057166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3177835A JP3057166B2 (en) 1991-04-18 1991-04-18 Current generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3177835A JP3057166B2 (en) 1991-04-18 1991-04-18 Current generator

Publications (2)

Publication Number Publication Date
JPH04321794A true JPH04321794A (en) 1992-11-11
JP3057166B2 JP3057166B2 (en) 2000-06-26

Family

ID=16037950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3177835A Expired - Lifetime JP3057166B2 (en) 1991-04-18 1991-04-18 Current generator

Country Status (1)

Country Link
JP (1) JP3057166B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109989928A (en) * 2017-12-22 2019-07-09 台达电子工业股份有限公司 Fan
CN111321571A (en) * 2018-12-17 2020-06-23 青岛海尔智能技术研发有限公司 Clothes drying equipment
CN111321570A (en) * 2018-12-17 2020-06-23 青岛海尔智能技术研发有限公司 Clothes drying device
CN112030494A (en) * 2019-06-03 2020-12-04 青岛海尔智能技术研发有限公司 Automatic ironing and drying equipment
US10920790B2 (en) 2017-12-22 2021-02-16 Delta Electronics, Inc. Fan

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211525179U (en) * 2019-12-09 2020-09-18 中山宜必思科技有限公司 Backward centrifugal impeller and fan applying same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109989928A (en) * 2017-12-22 2019-07-09 台达电子工业股份有限公司 Fan
US10920790B2 (en) 2017-12-22 2021-02-16 Delta Electronics, Inc. Fan
US11209019B2 (en) 2017-12-22 2021-12-28 Delta Electronics, Inc. Fan
CN111321571A (en) * 2018-12-17 2020-06-23 青岛海尔智能技术研发有限公司 Clothes drying equipment
CN111321570A (en) * 2018-12-17 2020-06-23 青岛海尔智能技术研发有限公司 Clothes drying device
CN111321571B (en) * 2018-12-17 2022-07-26 青岛海尔智能技术研发有限公司 Clothes drying equipment
CN111321570B (en) * 2018-12-17 2022-08-23 青岛海尔智能技术研发有限公司 Clothes drying device
CN112030494A (en) * 2019-06-03 2020-12-04 青岛海尔智能技术研发有限公司 Automatic ironing and drying equipment

Also Published As

Publication number Publication date
JP3057166B2 (en) 2000-06-26

Similar Documents

Publication Publication Date Title
AU2009203471B2 (en) Propeller fan
WO1991013257A1 (en) Device for generating fluid flow and method of manufacture thereof
KR101764430B1 (en) Radial- or diagonal-fan impeller
US7748954B2 (en) Centrifugal fan
EP1304445B1 (en) Structure of radial turbine scroll and blades
US7789627B2 (en) Centrifugal impeller
KR101981922B1 (en) Pre-Tip Axial Fan Assembly
JP2012072735A (en) Centrifugal compressor
EP2920470B1 (en) Pump
US7794198B2 (en) Centrifugal fan and apparatus using the same
JPH04321794A (en) Flow generator
JP2002106494A (en) Axial flow type fan
JP2005016315A (en) Centrifugal fan and its application
US9523370B2 (en) Blower with curved blades
JPH09100795A (en) Air conditioner
CN209892505U (en) Axial fan and air conditioner with same
JP6768628B2 (en) Centrifugal compressor and turbocharger
KR100405207B1 (en) Micro fan
JPH09296799A (en) Impeller of centrifugal compressor
US7399155B2 (en) Fluid flow guide element and fluid flow apparatus equipped therewith
US11953020B2 (en) Turbofan
CN114754015B (en) Fan and cleaning equipment
JP7235996B2 (en) Blower and air conditioning system provided with the same
KR100437019B1 (en) A high thrust axial fan
US20240084813A1 (en) Fan