JP2023004698A - Electric furnace and electric furnace steel making method - Google Patents

Electric furnace and electric furnace steel making method Download PDF

Info

Publication number
JP2023004698A
JP2023004698A JP2021106562A JP2021106562A JP2023004698A JP 2023004698 A JP2023004698 A JP 2023004698A JP 2021106562 A JP2021106562 A JP 2021106562A JP 2021106562 A JP2021106562 A JP 2021106562A JP 2023004698 A JP2023004698 A JP 2023004698A
Authority
JP
Japan
Prior art keywords
electrode
electric furnace
carbon material
oxygen
carbonaceous material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021106562A
Other languages
Japanese (ja)
Inventor
言生 佐藤
Tokio Sato
紀史 浅原
Akifumi Asahara
直人 佐々木
Naoto Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2021106562A priority Critical patent/JP2023004698A/en
Publication of JP2023004698A publication Critical patent/JP2023004698A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

To provide an electric furnace and an electric furnace steel making method capable of improving a carburization speed while using an inexpensive carbonaceous material and realizing carburization to molten iron without elongating a cycle time.SOLUTION: An electric furnace 1 has a graphite electrode 2 and a carbonaceous material addition device 3. Regarding an intersection point (electrode center point 22) between a vertical line passing through a figure center of gravity of an electrode lower end viewed from below in a vertical direction and a molten iron stationary face, and an arrival position (carbonaceous material arrival point 23) from the carbonaceous material addition device 3 to the molten iron stationary face of a carbonaceous material, a position and an angle of the carbonaceous material addition device are set so that a distance between the carbonaceous material arrival point 23 and the electrode center point 22 falls within a range within an electrode radius r, and further, even when the electric furnace has an oxygen lance 8 feeding oxygen into the furnace, an oxygen arrival point 24 of the oxygen lance 8 is not positioned at a position within the double of the electrode radius r from the electrode center position 22.SELECTED DRAWING: Figure 1

Description

本発明は、電気炉および電気炉製鋼法に関するものである。 The present invention relates to an electric furnace and an electric furnace steelmaking method.

電気炉を用いた電気炉製鋼法においては、原料の溶解、また脱ガス、還元処理のため溶鉄に炭素源を供給して溶解する加炭が必要である。特に低窒素の高級鋼を製造する場合には、後工程での脱炭による脱窒促進を図るため、加炭により電気炉出鋼時の溶鉄中炭素濃度を高濃度に保つ必要がある。 In the electric furnace steelmaking method using an electric furnace, it is necessary to melt the raw material, and to supply a carbon source to the molten iron for degassing and reduction treatment. In particular, when producing low-nitrogen high-grade steel, it is necessary to maintain a high carbon concentration in the molten iron during electric furnace tapping by carburizing in order to promote denitrification by decarburization in the post-process.

溶鉄への加炭における炭素源としては特許文献1のようなコークスや黒鉛などの炭材、特許文献2のようなフェロクロム、フェロマンガン、銑鉄などの高炭合金、さらには特許文献3のようにこれらを含有する加炭材が用いられることが知られている。特許文献1には、助燃バーナー先端部のノズルから、酸素と圧縮空気とともに圧送されてきた粉状コークスを噴出させ、未燃焼粉状コークスを溶鋼に対する加炭材及び酸化物の還元剤として用いる方法が記載されている。特許文献2には、真空脱ガス設備にて溶鋼中の炭素濃度を低下させた後、溶鋼に炭素含有物質を添加して溶鋼の炭素濃度を成分範囲内に調整する溶鋼の溶製方法が記載されている。特許文献3には、電気炉精錬におけるスラグの計算密度よりも見かけ密度が高い加炭材を溶鉄に投入する電気炉精錬方法が記載されている。 As a carbon source for carburizing molten iron, carbon materials such as coke and graphite as in Patent Document 1, high carbon alloys such as ferrochromium, ferromanganese, and pig iron as in Patent Document 2, and further as in Patent Document 3 It is known that recarburizers containing these are used. Patent Document 1 discloses a method of ejecting powdered coke that has been pressure-fed together with oxygen and compressed air from a nozzle at the tip of a stabilizing burner, and using unburned powdered coke as a recarburizing agent for molten steel and a reducing agent for oxides. is described. Patent Document 2 describes a molten steel smelting method in which a carbon-containing substance is added to the molten steel to adjust the carbon concentration of the molten steel within the composition range after reducing the carbon concentration in the molten steel with a vacuum degassing facility. It is Patent Document 3 describes an electric furnace refining method in which a recarburizing material having an apparent density higher than the calculated density of slag in electric furnace refining is added to molten iron.

本発明において、電気炉精錬中の溶鉄中に炭材を添加した後、溶鉄中の炭素濃度の上昇速度を「加炭速度」と呼ぶ。 In the present invention, the rate of increase of the carbon concentration in the molten iron after the carbonaceous material is added to the molten iron during electric furnace refining is called "carburization rate".

溶鉄中に添加する炭材である炭素源として、コークス等の通常の炭材を用いた場合の加炭速度は小さいためサイクルタイムの延長につながり、生産性が低下する。また、高炭合金は高価であるためコストの増加につながる。 When a normal carbonaceous material such as coke is used as a carbon source, which is a carbonaceous material added to molten iron, the carburization rate is low, which leads to an extension of cycle time and a decrease in productivity. Also, the high carbon alloy is expensive, which leads to an increase in cost.

従来、電気炉の溶融物表面に炭材を投入して加炭を行うための炭材の供給方法としては、例えば投入シュートや、特許文献4に記載されているようなランスを用いて炭材を吹き付ける方法が知られている。特許文献4において、炭材添加方向はアーク加熱領域から外れた方向としている。 Conventionally, as a method of supplying a carbon material for recarburizing by charging the carbon material onto the surface of the molten material of an electric furnace, for example, a charging chute or a carbon material using a lance as described in Patent Document 4 has been used. is known. In Patent Document 4, the direction of addition of the carbonaceous material is the direction away from the arc heating region.

特開昭60-174813号公報JP-A-60-174813 特開2003-27128号公報Japanese Patent Application Laid-Open No. 2003-27128 特開2017-186607号公報JP 2017-186607 A 特開2020-94247号公報JP 2020-94247 A

上記従来のいずれの投入方法を用いても、加炭速度は炭材種および溶鋼の温度によって決定するため、安価な炭材を用いる場合に加炭速度を向上させ、サイクルタイムを短縮するには至っていないのが現状である。 Since the carburizing rate is determined by the type of carbonaceous material and the temperature of the molten steel in any of the above conventional charging methods, in order to improve the carburizing rate and shorten the cycle time when inexpensive carbonaceous materials are used, The current situation is that this has not yet been achieved.

本発明は、安価な炭材を使用しながら加炭速度を向上し、サイクルタイムを延長することなく溶鉄への加炭を実現することのできる、電気炉および電気炉製鋼法を提供することを目的とする。 An object of the present invention is to provide an electric furnace and an electric furnace steelmaking method that can improve the rate of carburization while using inexpensive carbonaceous materials and realize carburization of molten iron without extending the cycle time. aim.

即ち、本発明の要旨とするところは以下のとおりである。
[1]黒鉛電極を用いた電気炉において、鉛直下方から見た前記黒鉛電極下端の図形重心を通る鉛直線と溶鉄静止面との交点を「電極中心点」と呼び、前記電気炉は炭材添加装置を有し、当該炭材添加装置からの炭材の溶鉄静止面への到達位置を「炭材到達点」と呼び、前記炭材到達点と前記電極中心点との距離が電極半径以内の範囲となるよう、炭材添加装置の位置と角度が設定されており、さらに前記電気炉が酸素を炉内に供給する酸素ランスを有する場合には、前記電極中心点から電極半径の2倍以内の位置に前記酸素ランスの軸中心が向けられていないことを特徴とする電気炉。
[2]前記炭材添加装置が、吹き付けランス又は投入シュートであることを特徴とする[1]記載の電気炉。
[3]前記炭材添加装置が、炭材の添加方向を変更可能であることを特徴とする[1]または[2]記載の電気炉。
[4]前記黒鉛電極は中空電極であり、前記炭材添加装置に代えて、又は前記炭材添加装置とともに、前記中空電極の中空部を経由して炭材を添加することを特徴とする[1]~[3]のいずれか1つに記載の電気炉。
[5]酸素を炉内に供給する前記酸素ランスを有し、前記電極中心点から電極半径の2倍以上離れた位置に前記酸素ランスの軸中心が向いて設置されていることを特徴とする[1]~[4]のいずれか1つに記載の電気炉。
That is, the gist of the present invention is as follows.
[1] In an electric furnace using a graphite electrode, the intersection of a vertical line passing through the center of gravity of the lower end of the graphite electrode viewed vertically from below and the stationary surface of the molten iron is called an "electrode center point". An addition device is provided, and the position at which the carbon material from the carbon material addition device reaches the molten iron stationary surface is called a "carbon material arrival point", and the distance between the carbon material arrival point and the electrode center point is within the electrode radius. The position and angle of the carbon material addition device are set so that the range of The electric furnace characterized in that the axial center of the oxygen lance is not directed to a position within the range.
[2] The electric furnace according to [1], wherein the carbon material addition device is a blowing lance or an injection chute.
[3] The electric furnace according to [1] or [2], wherein the carbon material addition device is capable of changing the addition direction of the carbon material.
[4] The graphite electrode is a hollow electrode, and the carbonaceous material is added through the hollow portion of the hollow electrode instead of or together with the carbonaceous material addition device [ 1] The electric furnace according to any one of [3].
[5] The oxygen lance is provided to supply oxygen into the furnace, and the oxygen lance is installed at a position at least twice the electrode radius away from the center point of the electrode, with the axial center of the oxygen lance facing. The electric furnace according to any one of [1] to [4].

[6]黒鉛電極を用いた電気炉において溶鉄に加炭する電気炉製鋼法であって、鉛直下方から見た前記黒鉛電極下端の図形重心を通る鉛直線と溶鉄静止面との交点を「電極中心点」と呼び、前記電気炉は炭材添加装置を有し、当該炭材添加装置によって前記電極中心点から電極半径と同じ半径以内の範囲に炭材を供給し、さらに酸素を炉内に供給する酸素ランスを有する場合には、前記電極中心点から電極半径の2倍以内の位置に酸素を供給しないことを特徴とする電気炉製鋼法。
[7]前記炭材添加装置が、吹き付けランス又は投入シュートであることを特徴とする[6]記載の電気炉製鋼法。
[8]前記炭材添加装置が、炭材の添加方向を変更可能であることを特徴とする[6]または[7]記載の電気炉製鋼法。
[9]前記黒鉛電極は中空電極であり、前記炭材添加装置に代えて、又は前記炭材添加装置とともに、前記中空電極の中空部を経由して炭材を添加することを特徴とする[6]~[8]のいずれか1つに記載の電気炉製鋼法。
[10]炭材添加とともに前記酸素ランスを用いて酸素を炉内に供給し、前記電極中心点から電極半径の2倍以上離れた位置に酸素を供給することを特徴とする[6]~[9]のいずれか1つに記載の電気炉製鋼法。
[6] An electric furnace steelmaking method in which molten iron is carburized in an electric furnace using a graphite electrode, wherein the intersection of a vertical line passing through the center of gravity of the lower end of the graphite electrode viewed from vertically below and the stationary surface of the molten iron is defined as "electrode The electric furnace has a carbon material addition device, and the carbon material addition device supplies the carbon material to a range within the same radius as the electrode radius from the electrode center point, and further oxygen is introduced into the furnace. An electric furnace steelmaking method, wherein oxygen is not supplied to a position within twice the electrode radius from the center point of the electrode when an oxygen lance for supplying oxygen is provided.
[7] The electric furnace steelmaking method according to [6], wherein the carbon material addition device is a blowing lance or an injection chute.
[8] The electric furnace steelmaking method according to [6] or [7], wherein the carbon material addition device is capable of changing the addition direction of the carbon material.
[9] The graphite electrode is a hollow electrode, and the carbonaceous material is added through the hollow portion of the hollow electrode instead of or together with the carbonaceous material addition device [ 6] The electric furnace steelmaking method according to any one of [8].
[10] Oxygen is supplied into the furnace using the oxygen lance along with the addition of the carbonaceous material, and is supplied to a position at least twice the electrode radius from the electrode center point [6]-[ 9], the electric furnace steelmaking method according to any one of the above.

アークスポットの高温場活用により、安価な炭材を使用しながら加炭速度を向上し、サイクルタイムを延長することなく溶鉄への加炭を実現した。 By utilizing the high temperature field of the arc spot, we have improved the carburization speed while using inexpensive carbon material, and realized carburization of molten iron without extending the cycle time.

本発明の電気炉の一例を示す図である。It is a figure which shows an example of the electric furnace of this invention. 炭材の吹き付けランス、酸素ランスの配置と、炭材到達点、酸素到達点の関係について示す概略図である。FIG. 4 is a schematic diagram showing the relationship between the arrangement of a carbon material blowing lance and an oxygen lance, and the carbon material reaching point and oxygen reaching point.

本発明者は安価な炭材による溶鉄への高速加炭を実現するため、電気炉におけるアークスポットの高温場を活用することを着想した。 In order to realize high-speed carburization of molten iron using an inexpensive carbonaceous material, the inventor of the present invention came up with the idea of utilizing the high-temperature field of the arc spot in an electric furnace.

溶鉄中に添加された炭材の溶鉄への溶解は、炭素濃度の一次反応式として式(1)のように表されることが報告されている。

Figure 2023004698000002

ここでt:時間、A:反応界面積、V:溶鉄体積、k:総括反応速度定数、[C]:飽和炭素濃度、[C]:溶鉄の炭素濃度である。 It has been reported that the dissolution of the carbonaceous material added to the molten iron into the molten iron is represented by Equation (1) as a first-order reaction equation of the carbon concentration.
Figure 2023004698000002

Here, t : time, A: reaction interfacial area, V: molten iron volume, kt: overall reaction rate constant, [C] s : saturated carbon concentration, [C] b : carbon concentration of molten iron.

総括反応速度定数kは、炭材と溶鉄の界面における溶解反応速度定数kと溶鉄中炭素原子の物質移動係数kを用いて式(2)のように表される。炭材の溶解は上記界面での溶解と物質移動の混合律速であることが報告されている。

Figure 2023004698000003
The overall reaction rate constant kt is expressed by Equation (2) using the dissolution reaction rate constant kr at the interface between the carbonaceous material and the molten iron and the mass transfer coefficient km of carbon atoms in the molten iron. It has been reported that carbonaceous dissolution is controlled by a mixture of dissolution and mass transfer at the interface.
Figure 2023004698000003

したがって、kあるいはkのいずれかまたは両方を大きくすることができれば総括反応速度定数kも大きくなり、式(1)の反応速度を増大させることが可能である。これらのうち溶解反応速度定数kは反応の活性化エネルギーEと温度Tを用いて式(3)のように表される。

Figure 2023004698000004

ここでA:原子の衝突頻度に関する係数である。式(3)より温度Tを高くすることでkが増大する。また、kも高温ほど大きくなることが知られているため、温度Tを高くすることによりkを増大せしめる。 Therefore, if one or both of kr and km can be increased, the overall reaction rate constant kt will also increase, and it is possible to increase the reaction rate of equation (1). Of these, the dissolution reaction rate constant kr is expressed by the equation (3) using the reaction activation energy Ea and the temperature T.
Figure 2023004698000004

Here, A is a coefficient relating to the collision frequency of atoms. According to equation (3), increasing the temperature T increases kr . Also, since it is known that km increases as the temperature increases, increasing the temperature T increases kt.

上記に基づき本発明者は、炭材を溶解させる位置における溶鉄の温度を上昇する手段として、電気炉の電極直下に生じるアークスポットの活用を着想した。通常電気炉内の溶鉄温度は高々1700℃程度であるが、電極から電極直下の溶鉄表面にかけて生じるアークは内部の温度が5000℃以上であり、溶鉄表面のアークスポットにおいても2000℃程度となる。したがって加炭の際に炭材をアークスポットに供給すれば、アークスポット以外の溶鉄に投入する場合に比べ高い温度で炭材を溶解することが可能である。このとき、例えば活性化エネルギーEが300~480kJ/mol程度のコークスにおいて、溶鉄温度が1700℃に比較して2000℃になると溶解反応速度定数kは11~47倍大きくなり、結果として加炭速度を大幅に増大せしめる。 Based on the above, the present inventor conceived of utilizing the arc spot generated directly under the electrode of the electric furnace as a means for raising the temperature of the molten iron at the position where the carbonaceous material is melted. Normally, the temperature of molten iron in an electric furnace is about 1700°C at most, but the internal temperature of the arc generated from the electrode to the molten iron surface directly below the electrode is 5000°C or higher, and the arc spot on the molten iron surface is also about 2000°C. Therefore, if the carbonaceous material is supplied to the arc spot during carburization, it is possible to melt the carbonaceous material at a higher temperature than when the carbonaceous material is supplied to molten iron other than the arc spot. At this time, for example, in coke with an activation energy Ea of about 300 to 480 kJ/mol, when the molten iron temperature is 2000 ° C. compared to 1700 ° C., the dissolution reaction rate constant k r increases by 11 to 47 times, resulting in an increase. Greatly increases charcoal velocity.

以下、図1、図2に基づいて本発明の説明を行う。
電気炉1内の溶鉄20への炭材供給方法として、炭材添加装置3を用いることができる。炭材添加装置3としては、吹き付けランス4を用いて吹き付けガスとともに炭材を吹き付ける方法が考えられる。また、投入シュート7による添加など他の供給方法を用いることもできる。炭材添加装置3における炭材の添加方向が固定または可動式(変更可能)とすることができる。黒鉛電極が中空電極である場合には、前記炭材添加装置に代えて、又は前記炭材添加装置とともに、中空電極の中空部を経由して添加することもできる。いずれの供給方法においても、炭材の供給位置が電極下部のアークスポットとなるよう設計することで、高温のアークスポットを活用することができる。なお本実施例では電気炉に備えている電極は1本であるが、電極を複数本備える電気炉においても、いずれかの電極直下のアークスポットに炭材を供給して高温のアークスポットを活用することが可能である。
The present invention will be described below with reference to FIGS. 1 and 2. FIG.
As a method of supplying the carbon material to the molten iron 20 in the electric furnace 1, the carbon material addition device 3 can be used. As the carbon material adding device 3, a method of blowing the carbon material together with the blowing gas using the blowing lance 4 is conceivable. Also, other supply methods such as addition by the injection chute 7 can be used. The addition direction of the carbon material in the carbon material addition device 3 can be fixed or movable (changeable). When the graphite electrode is a hollow electrode, it can be added through the hollow portion of the hollow electrode instead of the carbon material addition device or together with the carbon material addition device. In any supply method, a high-temperature arc spot can be utilized by designing the supply position of the carbonaceous material to be the arc spot under the electrode. In this embodiment, the electric furnace has one electrode, but even in an electric furnace with a plurality of electrodes, the hot arc spot is utilized by supplying the carbon material to the arc spot directly below one of the electrodes. It is possible to

以下、黒鉛電極を用いた電気炉において、鉛直下方から見た電極下端の図形重心を通る鉛直線と溶鉄静止面21との交点を「電極中心点22」と呼ぶ(図2(A)参照)。また、炭材添加装置3からの炭材の溶鉄静止面21への到達位置を「炭材到達点23」と呼ぶ。炭材到達点23については、事前に炭材添加装置3を用いて炭材の添加を行うことにより、位置を定めることができる。あるいは、炭材添加装置3の吐出部における炭材の速度から計算される炭材の軌跡25に基づいて炭材の溶鉄静止面21への到達位置として定めることができる(図2(A)参照)。電極直下のアークスポットに炭材を供給するためには、炭材到達点23と電極中心点22との距離が電極半径r以内の範囲となるよう、炭材添加装置3の位置と角度が設定されていればよい。 Hereinafter, in an electric furnace using a graphite electrode, the intersection of a vertical line passing through the figure center of gravity of the lower end of the electrode and the molten iron stationary surface 21 is referred to as an "electrode center point 22" (see FIG. 2(A)). . Further, the position at which the carbon material from the carbon material adding device 3 reaches the molten iron stationary surface 21 is called a "carbon material arrival point 23". The position of the carbon material arrival point 23 can be determined by adding the carbon material in advance using the carbon material adding device 3 . Alternatively, the arrival position of the carbon material on the molten iron stationary surface 21 can be determined based on the trajectory 25 of the carbon material calculated from the speed of the carbon material at the discharge part of the carbon material addition device 3 (see FIG. 2A). ). In order to supply the carbon material to the arc spot directly under the electrode, the position and angle of the carbon material addition device 3 are set so that the distance between the carbon material arrival point 23 and the electrode center point 22 is within the range of the electrode radius r. It is good if it is.

電気炉においては脱珪、脱りんなどの酸化精錬を目的として、酸素ランス8を用いて酸素ガスを炉内の溶鉄20に向けて供給することがある。供給した酸素ガスが未溶解の炭材と反応すると加炭の障害となる。したがって加炭を目的とする炭材と酸素ガスとは離れた位置に供給する必要がある。本発明では、電気炉が酸素を炉内に供給する酸素ランス8を有する場合には、換言すれば電気炉が酸素を炉内に供給する酸素ランス8を有する場合であっても、電極中心点22から電極半径rの2倍以内の位置に酸素ランス8の軸中心26が向けられていないことを特徴とする(図2(B)参照)。酸素を炉内に供給する酸素ランス8を有する場合は、電極中心点22から電極半径rの2倍以上離れた位置に酸素ランス8の軸中心26が向いて設置されている。これにより、加炭を目的とする炭材と酸素ガスとを離れた位置に供給することができる。以下、溶鉄静止面21上で酸素ランス8の軸中心26が向けられている方向を「酸素到達点24」ともいう。 In an electric furnace, an oxygen lance 8 may be used to supply oxygen gas toward molten iron 20 in the furnace for the purpose of oxidative refining such as desiliconization and dephosphorization. If the supplied oxygen gas reacts with the undissolved carbonaceous material, it hinders carburization. Therefore, it is necessary to supply the carbonaceous material for the purpose of carburization and the oxygen gas to separate positions. In the present invention, if the electric furnace has an oxygen lance 8 that supplies oxygen into the furnace, in other words, even if the electric furnace has an oxygen lance 8 that supplies oxygen into the furnace, the electrode center point It is characterized in that the axial center 26 of the oxygen lance 8 is not directed to a position within twice the electrode radius r from 22 (see FIG. 2(B)). When the furnace has an oxygen lance 8 for supplying oxygen into the furnace, the axial center 26 of the oxygen lance 8 faces a position away from the electrode center point 22 by two times the electrode radius r or more. As a result, the carbonaceous material to be carburized and the oxygen gas can be supplied to separate positions. Hereinafter, the direction in which the axial center 26 of the oxygen lance 8 is directed on the molten iron stationary surface 21 is also referred to as the "oxygen reaching point 24".

炉殻が内径で6.5m、出鋼量が105t、出鋼時に種湯15tを炉内に残す電気炉1において、本発明を実施した場合の例を、比較例とともに以下の表に示す。電気炉1において溶鋼の浴深は、炉内の溶鋼量が120tのとき1250mm、炉内の溶鋼量が15tのとき400mmとなり、原料の溶解や出鋼に伴ってこの範囲内で増減する。黒鉛電極2として、直径が24インチ、すなわち609.6mm(半径rが304.8mm)である黒鉛電極1本を備えている。 The following table shows an example in which the present invention is carried out in an electric furnace 1 having a furnace shell with an inner diameter of 6.5 m, a steel output of 105 tons, and leaving 15 tons of seed metal in the furnace at the time of tapping, together with comparative examples. The molten steel bath depth in the electric furnace 1 is 1250 mm when the amount of molten steel in the furnace is 120 tons, and 400 mm when the amount of molten steel in the furnace is 15 tons. As the graphite electrode 2, one graphite electrode having a diameter of 24 inches, that is, 609.6 mm (radius r is 304.8 mm) is provided.

電気炉1は、炭材添加装置3として、炭材のみを投入する投入シュート7、炭材を炉内に供給できる壁に固定された吹き付けランス4(固定ランス5)が3本(固定ランスA(5A)、固定ランスB(5B)、固定ランスC(5C))と、可動式の吹き付けランス4(可動ランス6)を備えたマニピュレータ11を有している。吹き付けランス4についてはいずれも、炭材を供給するときのキャリアガスとしてアルゴンガスを用いている。このうち壁に固定された3本の吹き付けランス4(固定ランス5)は位置や角度を変更できない構造である。 The electric furnace 1 has, as a carbon material adding device 3, a charging chute 7 for charging only the carbon material, and three blowing lances 4 (fixed lances 5) fixed to the wall capable of supplying the carbon material into the furnace (fixed lance A (5A), fixed lance B (5B), fixed lance C (5C)), and a manipulator 11 having a movable blowing lance 4 (movable lance 6). All of the blowing lances 4 use argon gas as a carrier gas when supplying the carbonaceous material. Of these, the three blowing lances 4 (fixed lances 5) fixed to the wall are structured such that their positions and angles cannot be changed.

前記壁に固定された吹き付けランス4(固定ランス5)においては、炭材供給用のノズルと酸素供給用のノズルを有しており、両者はその軸中心が51mm離れて設置されている。炭材供給用のノズル部分が、壁に固定された吹き付けランス4(固定ランス5)3本(固定ランスA、固定ランスB、固定ランスC)として機能する。また、酸素供給用のノズル部分が、酸素を炉内に供給する酸素ランス8(固定酸素ランス9)3本(固定酸素ランスA、固定酸素ランスB、固定酸素ランスC)として機能する。 The blowing lance 4 (fixed lance 5) fixed to the wall has a nozzle for supplying carbon material and a nozzle for supplying oxygen. A nozzle portion for supplying carbon material functions as three blowing lances 4 (fixed lances 5) fixed to the wall (fixed lance A, fixed lance B, and fixed lance C). Further, the nozzle portion for supplying oxygen functions as three oxygen lances 8 (fixed oxygen lances 9) (fixed oxygen lance A, fixed oxygen lance B, fixed oxygen lance C) for supplying oxygen into the furnace.

マニピュレータ11は、前記可動式の吹き付けランス4(炭材を供給する可動ランス6)とともに、酸素ランス8(可動酸素ランス10)を有している。可動ランス6と可動酸素ランス10はそれぞれ、炭材と酸素を独立して炉内に供給できる。 The manipulator 11 has an oxygen lance 8 (movable oxygen lance 10) together with the movable blowing lance 4 (movable lance 6 for supplying carbon material). The movable lance 6 and the movable oxygen lance 10 can independently supply carbon material and oxygen into the furnace.

投入シュート7は投入方向を変更することができ、投入シュート7から投入された炭材の炭材到達点23と電極中心点22との距離を変更することができる。マニピュレータ11も、可動ランス6(炭材吹き付け)と可動酸素ランス10の方向を変更することができる。 The throwing chute 7 can change the throwing direction, and the distance between the carbon material arrival point 23 of the carbon material thrown from the throwing chute 7 and the electrode center point 22 can be changed. The manipulator 11 can also change the directions of the movable lance 6 (carbon material spraying) and the movable oxygen lance 10 .

固定された吹き付けランス4のうち、1本(固定ランスA(5A))は溶鉄の浴深が1250mmのときの溶鉄静止面21において、電極中心点22(鉛直下方から見た電極下端の図形重心を通る鉛直線と溶鉄静止面21との交点)から水平方向に100mm離れた位置が炭材到達点23(炭材添加装置3からの炭材の溶鉄静止面21への到達位置)になるように、ほかの2本(固定ランスB(5B)、固定ランスC(5C))は電極中心点22から635mm離れた位置が炭材到達点23となるように、炭材を供給できる位置と角度で設置されている。また、固定ランス5(炭材吹き付け用)と固定酸素ランス9は、前述のようにその軸中心が51mm離れて設置されており、固定酸素ランス9の軸中心26が向けられている方向(酸素到達点24)は、溶鉄静止面21上で、固定酸素ランスA(9A)は電極中心点22から250mm、固定酸素ランスB(9B)、固定酸素ランスC(9C)は電極中心点22から785mmの位置である。従って、同一位置の固定ランス5と固定酸素ランス9から炭材と酸素を同時に吹く場合の炭材到達点23と酸素到達点24(酸素の供給位置)は150mm離れている。 One of the fixed blowing lances 4 (fixed lance A (5A)) is positioned at the electrode center point 22 (the figure center of gravity of the lower end of the electrode as seen from the vertically downward direction) on the molten iron stationary surface 21 when the bath depth of the molten iron is 1250 mm. 100 mm in the horizontal direction from the intersection of the vertical line passing through and the molten iron stationary surface 21) is the carbon material arrival point 23 (the arrival position of the carbon material from the carbon material addition device 3 to the molten iron stationary surface 21). In addition, the other two (fixed lance B (5B) and fixed lance C (5C)) are positioned and angled so that the carbon material reaching point 23 is 635 mm away from the center point 22 of the electrode. is installed in In addition, the fixed lance 5 (for carbon material spraying) and the fixed oxygen lance 9 are installed with their axial centers separated by 51 mm as described above, and the direction in which the axial center 26 of the fixed oxygen lance 9 is directed (oxygen The arrival point 24) is on the molten iron stationary surface 21, the fixed oxygen lance A (9A) is 250 mm from the electrode center point 22, the fixed oxygen lance B (9B) and the fixed oxygen lance C (9C) are 785 mm from the electrode center point 22. is the position of Therefore, when carbon material and oxygen are simultaneously blown from the fixed lance 5 and the fixed oxygen lance 9 at the same position, the carbon material reaching point 23 and the oxygen reaching point 24 (oxygen supply position) are separated by 150 mm.

本発明例、比較例ともにスクラップを原料とし、炭材としては無煙炭を用いた。また炭材供給に吹き付けランス4(固定ランス5、可動ランス6)を用いた場合はいずれの場合も、炭材のノズル出口における初速は平均で70m/sとした。また、酸素ランス8から酸素を供給する場合の酸素噴流の線流速は500m/sとした。 In both the present invention examples and the comparative examples, scrap was used as a raw material, and anthracite coal was used as the carbonaceous material. Also, in any case where the blowing lance 4 (fixed lance 5, movable lance 6) was used to supply the carbon material, the average initial velocity of the carbon material at the nozzle exit was 70 m/s. Further, the linear flow velocity of the oxygen jet when supplying oxygen from the oxygen lance 8 was set to 500 m/s.

試験においてはまず通電によりスクラップを溶解し、その後に通電を継続しながら前記吹き付けランス4から合計40kg/minで15分間炭材を添加し、または投入シュート7から炭材を投入し、炭材添加の前後で採取したメタルサンプルの炭素濃度を評価した。炭材添加前後の溶鋼中[C]濃度を分析するためのサンプリングは、炭材添加開始1分前と炭材添加終了から1分後に行っている。なお、表1に示す実施例はすべて、溶鉄の浴深が1100mmに達した時点で炭材の供給を開始した。したがって炭材の供給中に湯面が150mm上昇し、炭材の供給位置を変更しない場合は電極中心点から炭材到達点までの距離も変化した。炭材添加終了の5分後に溶鋼を電気炉より出鋼した。ここで供給される炭材がすべて炭素分であると仮定した場合溶鉄には合計で600kgの炭素分が供給されることとなる。本試験においては供給した炭素分のうち50質量%以上が溶鉄に加炭された、すなわち炭材の供給前後で溶鉄中[C]濃度が0.25質量%以上上昇した場合に、溶鉄は良好に加炭されたと評価した。 In the test, the scrap was first melted by energization, and then the carbon material was added from the blowing lance 4 at a total rate of 40 kg/min for 15 minutes while the energization was continued, or the carbon material was added from the charging chute 7, and the carbon material was added. We evaluated the carbon concentration of the metal samples collected before and after . Sampling for analyzing the [C] concentration in the molten steel before and after the addition of the carbon material was performed 1 minute before the start of the addition of the carbon material and 1 minute after the end of the addition of the carbon material. In addition, in all the examples shown in Table 1, the supply of the carbonaceous material was started when the molten iron bath depth reached 1100 mm. Therefore, the molten metal surface rose by 150 mm during the supply of the carbonaceous material, and the distance from the center point of the electrode to the carbonaceous material arrival point also changed when the supply position of the carbonaceous material was not changed. Molten steel was tapped from the electric furnace 5 minutes after the end of the carbon material addition. Assuming that all the carbonaceous material supplied here is carbon content, a total of 600 kg of carbon content is supplied to the molten iron. In this test, if 50% by mass or more of the carbon content supplied was carburized into the molten iron, that is, if the [C] concentration in the molten iron increased by 0.25% by mass or more before and after the carbon material was supplied, the molten iron was good. It was evaluated that it was carburized to.

表1に示す炭材供給条件、酸素吹き付け条件を採用して、電気炉製鋼を行った。電極中心点22と炭材到達点23の間の距離を「炭材-電極間距離」に記載し、電極中心点22と酸素到達点24との間の距離を「酸素-電極間距離」に記載している。浴深が1100mmと1250mmのそれぞれの場合について記載している。結果を表1に示す。なお、電極中心点22から見て、炭材到達点23と吹き付けランス4、酸素到達点24と酸素ランス8がそれぞれ異なった側に位置する場合、表1の数値右端に「*」を付している。表1において、本発明範囲から外れる数値に下線を付している。 Electric furnace steelmaking was performed using the carbon material supply conditions and oxygen blowing conditions shown in Table 1. The distance between the electrode center point 22 and the carbon material arrival point 23 is described in the "carbon material-electrode distance", and the distance between the electrode center point 22 and the oxygen arrival point 24 is described in the "oxygen-electrode distance". described. The descriptions are for bath depths of 1100 mm and 1250 mm, respectively. Table 1 shows the results. When the carbon material reaching point 23 and the blowing lance 4, and the oxygen reaching point 24 and the oxygen lance 8 are positioned on different sides from the electrode center point 22, "*" is attached to the right end of the numerical values in Table 1. ing. In Table 1, numerical values outside the scope of the present invention are underlined.

Figure 2023004698000005
Figure 2023004698000005

表1の本発明例1~7が本発明例である。
本発明例1~4は酸素吹き付けなし、炭材-電極間距離がいずれも黒鉛電極半径r(304.8mm)以内であって本発明の条件を満たし、加炭状況は良好であった。本発明例3、4は炭材添加にマニピュレータ11を使用し、このうち本発明例3では供給位置を固定とし、本発明例4では操業中の湯面の上昇に合わせて、溶鉄の浴深によらず炭材を電極中心点22に供給するようにマニピュレータ11の可動ランス6を操作した(表1の*2)。
本発明例5~8は酸素吹き付け有りの場合であり、炭材-電極間距離がいずれも黒鉛電極半径r(304.8mm)以内、かつ酸素-電極間距離は黒鉛電極半径rの2倍(609.6mm)を超えており、本発明の条件を満たし、加炭状況は良好であった。
Inventive Examples 1 to 7 in Table 1 are inventive examples.
In Examples 1 to 4 of the present invention, oxygen was not blown, and the distance between the carbon material and the electrode was within the radius r (304.8 mm) of the graphite electrode. In Invention Examples 3 and 4, the manipulator 11 is used to add the carbonaceous material. Among them, in Inventive Example 3, the supply position is fixed, and in Inventive Example 4, the molten iron bath depth is changed according to the rise of the molten iron surface during operation. The movable lance 6 of the manipulator 11 was operated so as to supply the carbonaceous material to the electrode center point 22 (*2 in Table 1).
Inventive Examples 5 to 8 are cases with oxygen blowing, the carbon material-electrode distance is within the graphite electrode radius r (304.8 mm), and the oxygen-electrode distance is twice the graphite electrode radius r ( 609.6 mm), satisfying the conditions of the present invention, and the state of carburization was good.

表1の比較例1~7が比較例である。
比較例1~3は酸素吹き付けなし、炭材-電極間距離がいずれも黒鉛電極半径r(304.8mm)を超えて本発明の条件を満足せず、加炭状況は不良であった。
比較例4~7は酸素吹き付け有りの場合であり、比較例4~6は炭材-電極間距離がいずれも黒鉛電極半径r(304.8mm)以内であったものの、酸素-電極間距離は黒鉛電極半径rの2倍(609.6mm)以内となり、本発明の条件を満足せず、加炭状況は不良であった。比較例7は炭材-電極間距離と酸素-電極間距離のいずれも本発明の条件を満足せず、加炭状況は不良であった。
Comparative Examples 1 to 7 in Table 1 are comparative examples.
In Comparative Examples 1 to 3, no oxygen was blown, and the distance between the carbon material and the electrode exceeded the graphite electrode radius r (304.8 mm), which did not satisfy the conditions of the present invention, and the carburization conditions were unsatisfactory.
Comparative Examples 4 to 7 are cases with oxygen blowing, and in Comparative Examples 4 to 6, the carbon material-electrode distance was within the graphite electrode radius r (304.8 mm), but the oxygen-electrode distance was It was within twice the graphite electrode radius r (609.6 mm), did not satisfy the conditions of the present invention, and was unsatisfactory in the state of carburization. In Comparative Example 7, neither the carbon material-electrode distance nor the oxygen-electrode distance satisfied the conditions of the present invention, and the state of carburization was unsatisfactory.

1 電気炉
2 黒鉛電極
3 炭材添加装置
4 吹き付けランス
5 固定ランス
5A 固定ランスA
5B 固定ランスB
5C 固定ランスC
6 可動ランス
7 投入シュート
8 酸素ランス
9 固定酸素ランス
9A 固定酸素ランスA
9B 固定酸素ランスB
9C 固定酸素ランスC
10 可動酸素ランス
11 マニピュレータ
20 溶鉄
21 溶鉄静止面
22 電極中心点
23 炭材到達点
24 酸素到達点
25 炭材の軌跡
26 軸中心
r 電極半径
1 Electric Furnace 2 Graphite Electrode 3 Carbon Material Addition Device 4 Blowing Lance 5 Fixed Lance 5A Fixed Lance A
5B Fixed lance B
5C Fixed lance C
6 movable lance 7 injection chute 8 oxygen lance 9 fixed oxygen lance 9A fixed oxygen lance A
9B Fixed oxygen lance B
9C fixed oxygen lance C
10 Movable oxygen lance 11 Manipulator 20 Molten iron 21 Molten iron stationary surface 22 Electrode center point 23 Carbon material arrival point 24 Oxygen arrival point 25 Carbon material trajectory 26 Axis center r Electrode radius

Claims (10)

黒鉛電極を用いた電気炉において、鉛直下方から見た前記黒鉛電極下端の図形重心を通る鉛直線と溶鉄静止面との交点を「電極中心点」と呼び、前記電気炉は炭材添加装置を有し、当該炭材添加装置からの炭材の溶鉄静止面への到達位置を「炭材到達点」と呼び、前記炭材到達点と前記電極中心点との距離が電極半径以内の範囲となるよう、炭材添加装置の位置と角度が設定されており、さらに前記電気炉が酸素を炉内に供給する酸素ランスを有する場合には、前記電極中心点から電極半径の2倍以内の位置に前記酸素ランスの軸中心が向けられていないことを特徴とする電気炉。 In an electric furnace using a graphite electrode, the intersection of a vertical line passing through the center of gravity of the lower end of the graphite electrode viewed vertically from below and the stationary surface of the molten iron is called an "electrode center point", and the electric furnace includes a carbon material addition device. The position at which the carbon material from the carbon material addition device reaches the stationary surface of the molten iron is called a "carbon material arrival point", and the distance between the carbon material arrival point and the electrode center point is within the radius of the electrode. The position and angle of the carbon material addition device are set so that The electric furnace characterized in that the axial center of the oxygen lance is not directed toward. 前記炭材添加装置が、吹き付けランス又は投入シュートであることを特徴とする請求項1記載の電気炉。 2. The electric furnace according to claim 1, wherein said carbon material adding device is a blowing lance or an injection chute. 前記炭材添加装置が、炭材の添加方向を変更可能であることを特徴とする請求項1または請求項2記載の電気炉。 3. The electric furnace according to claim 1, wherein said carbon material addition device is capable of changing the addition direction of the carbon material. 前記黒鉛電極は中空電極であり、前記炭材添加装置に代えて、又は前記炭材添加装置とともに、前記中空電極の中空部を経由して炭材を添加することを特徴とする請求項1~請求項3のいずれか1項に記載の電気炉。 The graphite electrode is a hollow electrode, and the carbonaceous material is added through the hollow portion of the hollow electrode instead of or together with the carbonaceous material addition device. The electric furnace according to claim 3. 酸素を炉内に供給する前記酸素ランスを有し、前記電極中心点から電極半径の2倍以上離れた位置に前記酸素ランスの軸中心が向いて設置されていることを特徴とする請求項1~請求項4のいずれか1項に記載の電気炉。 2. A furnace according to claim 1, wherein said oxygen lance is provided for supplying oxygen into the furnace, and the axial center of said oxygen lance faces a position at least twice the electrode radius from said electrode center point. The electric furnace according to any one of claims 4 to 4. 黒鉛電極を用いた電気炉において溶鉄に加炭する電気炉製鋼法であって、鉛直下方から見た前記黒鉛電極下端の図形重心を通る鉛直線と溶鉄静止面との交点を「電極中心点」と呼び、前記電気炉は炭材添加装置を有し、当該炭材添加装置によって前記電極中心点から電極半径と同じ半径以内の範囲に炭材を供給し、さらに酸素を炉内に供給する酸素ランスを有する場合には、前記電極中心点から電極半径の2倍以内の位置に酸素を供給しないことを特徴とする電気炉製鋼法。 An electric furnace steelmaking method for recarburizing molten iron in an electric furnace using graphite electrodes, wherein the intersection of a vertical line passing through the center of the figure of the lower end of the graphite electrode viewed from the vertical downward direction and the stationary surface of the molten iron is the "electrode center point" The electric furnace has a carbonaceous material addition device, the carbonaceous material is supplied from the center point of the electrode to a range within the same radius as the electrode radius by the carbonaceous material addition device, and further oxygen is supplied into the furnace. An electric furnace steelmaking method characterized in that, when a lance is provided, oxygen is not supplied to a position within twice the electrode radius from the center point of the electrode. 前記炭材添加装置が、吹き付けランス又は投入シュートであることを特徴とする請求項6記載の電気炉製鋼法。 7. The electric furnace steelmaking method according to claim 6, wherein said carbon material adding device is a blowing lance or an injection chute. 前記炭材添加装置が、炭材の添加方向を変更可能であることを特徴とする請求項6または請求項7記載の電気炉製鋼法。 8. The electric furnace steelmaking method according to claim 6, wherein said carbon material adding device is capable of changing the adding direction of the carbon material. 前記黒鉛電極は中空電極であり、前記炭材添加装置に代えて、又は前記炭材添加装置とともに、前記中空電極の中空部を経由して炭材を添加することを特徴とする請求項6~請求項8のいずれか1項に記載の電気炉製鋼法。 The graphite electrode is a hollow electrode, and the carbonaceous material is added through the hollow portion of the hollow electrode instead of or together with the carbonaceous material addition device. The electric furnace steelmaking method according to claim 8 . 炭材添加とともに前記酸素ランスを用いて酸素を炉内に供給し、前記電極中心点から電極半径の2倍以上離れた位置に酸素を供給することを特徴とする請求項6~請求項9のいずれか1項に記載の電気炉製鋼法。 Oxygen is supplied into the furnace using the oxygen lance along with the addition of the carbonaceous material, and the oxygen is supplied to a position at least twice the electrode radius from the center point of the electrode. The electric furnace steelmaking method according to any one of claims 1 to 3.
JP2021106562A 2021-06-28 2021-06-28 Electric furnace and electric furnace steel making method Pending JP2023004698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021106562A JP2023004698A (en) 2021-06-28 2021-06-28 Electric furnace and electric furnace steel making method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021106562A JP2023004698A (en) 2021-06-28 2021-06-28 Electric furnace and electric furnace steel making method

Publications (1)

Publication Number Publication Date
JP2023004698A true JP2023004698A (en) 2023-01-17

Family

ID=85101192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021106562A Pending JP2023004698A (en) 2021-06-28 2021-06-28 Electric furnace and electric furnace steel making method

Country Status (1)

Country Link
JP (1) JP2023004698A (en)

Similar Documents

Publication Publication Date Title
KR101418125B1 (en) Manufacture of ferroalloys
WO2013057927A1 (en) Powder injection lance and method of refining molten iron using said powder injection lance
JP2008531840A (en) Method and melting apparatus for producing high manganese low carbon steel
KR101018535B1 (en) Refining ferroalloys
JP5867520B2 (en) Hot metal pretreatment method
JP5928094B2 (en) Method for refining molten iron
WO2022270226A1 (en) Method for refining molten steel
JP2023004698A (en) Electric furnace and electric furnace steel making method
JP5915568B2 (en) Method of refining hot metal in converter type refining furnace
JP6726777B1 (en) Method for producing low carbon ferromanganese
JP2020125541A (en) Converter refining method
JP6544531B2 (en) How to smelt molten metal
JP5949627B2 (en) Method of refining hot metal in converter
JP5928095B2 (en) Method for refining molten iron
US3793001A (en) Process for manufacturing steel
JP7180821B1 (en) Molten steel refining method
JP7099657B1 (en) Refining method of molten iron and manufacturing method of molten steel using it
JP2005139529A (en) Method for dephosphorization-refining molten pig iron
JP5870868B2 (en) Method of refining hot metal in converter
JP5870771B2 (en) Manufacturing method of molten steel
KR20020005741A (en) Method of decarburisation and dephosphorisation of a melten metal
US3374088A (en) Method for producing low silicon ferromanganese alloys
JP2001152234A (en) Carbon adding method to molten steel in ladle
RU2346059C1 (en) Smelting method of rail steel
JPS62247014A (en) Carburizing, melting and refining method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240215