JP2023004677A - Continuous liquid-liquid separator and continuous liquid-liquid separation method - Google Patents

Continuous liquid-liquid separator and continuous liquid-liquid separation method Download PDF

Info

Publication number
JP2023004677A
JP2023004677A JP2021106528A JP2021106528A JP2023004677A JP 2023004677 A JP2023004677 A JP 2023004677A JP 2021106528 A JP2021106528 A JP 2021106528A JP 2021106528 A JP2021106528 A JP 2021106528A JP 2023004677 A JP2023004677 A JP 2023004677A
Authority
JP
Japan
Prior art keywords
liquid
light
heavy
separator
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021106528A
Other languages
Japanese (ja)
Inventor
孝之 石坂
Takayuki Ishizaka
哲 宮沢
Satoru Miyazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2021106528A priority Critical patent/JP2023004677A/en
Publication of JP2023004677A publication Critical patent/JP2023004677A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Extraction Or Liquid Replacement (AREA)

Abstract

To provide a continuous liquid-liquid separator capable of performing various solution-based phase separations with simple construction.SOLUTION: A continuous liquid-liquid separator has a structure which introduces a biphase liquid comprising at least two or more components which do not mix completely with each other to separate into two phases of light and heavy liquids from an input port provided on one side of a chamber and discharge the light and heavy liquids from respective discharge ports provided on the other side. The separator comprises a boundary face adjustment mechanism adjusting the boundary face of the light and heavy liquids between the input port and discharge ports. The mechanism comprises: two mesh plates having a vertical interval diminishing progressively from an upstream side toward a downstream side and separating the biphase liquid into vertical two layers; and a vertical layer separator neighboring to the downstream end parts of two mesh plates to form a Y-shaped cross section together with two mesh plates. Height of the boundary face of vertical two layers fixed by the vertical layer separator is same as that of the discharge ports of the light and heavy liquids.SELECTED DRAWING: Figure 1

Description

本発明は、互いに完全に混和せず、軽液と重液の二相に分離する少なくとも二種類以上の成分からなる二相液体を、それぞれの比重に応じて連続的に分離する、連続液液分離器及び連続液液分離方法に関する。 The present invention is a continuous liquid that continuously separates a two-phase liquid consisting of at least two or more components that are completely immiscible with each other and separate into two phases, a light liquid and a heavy liquid, according to their specific gravities. It relates to separators and continuous liquid-liquid separation methods.

化学品の合成プロセスにおいて、従来は反応と分離・精製を多段階に繰り返すバッチ法による製造が行われていたが、この製造方法では、多量の廃棄物が生じるとともに、生成物の収量が低かった。そこで、近年では、環境負荷の低減と、コスト競争力の向上のために、多段階の反応と反応生成物の分離・精製とを連続的に行うことで、廃棄物の減少と高い収量を両立し、さらに自動運転、コンパクト化を目指すフロー法への転換が図られてきた。
フロー法における生成物の分離・精製手段として、生成物を含む被抽出液を該被抽出液と混和しない抽出液剤と接触させ、生成物を含む抽出液と被抽出液とからなる二相液体を、それぞれの比重に応じて液液分離する先行技術が知られている。
In the process of synthesizing chemicals, conventionally, production was carried out by a batch method that repeats reactions, separation, and purification in multiple stages. . Therefore, in recent years, in order to reduce the environmental load and improve cost competitiveness, we have achieved both a reduction in waste and a high yield by continuously conducting multi-stage reactions and separating and refining reaction products. In addition, there has been a shift to the flow method, which aims for automatic operation and compactness.
As a means for separating and purifying the product in the flow method, a liquid to be extracted containing the product is brought into contact with an extracting liquid agent immiscible with the liquid to be extracted, and a two-phase liquid consisting of the liquid containing the product and the liquid to be extracted is formed. , are known in the prior art for liquid-liquid separation according to their respective specific gravities.

例えば、特許文献1には、液体流入部からチャンバー内に流入した比重が異なる液体の混合液体を層分離した後、上層の液体及び下層の液体を上側流出部及び下側流出部からそれぞれ流出させる連続分液装置であって、チャンバー内の界面の位置を界面検出手段により監視し、この界面の位置を所定位置に保持するように、流出経路の少なくとも一方に設けた流量調整手段を制御することが記載されている。 For example, in Patent Document 1, after layer-separating a liquid mixture of liquids having different specific gravities that flowed into a chamber from a liquid inflow section, the liquid in the upper layer and the liquid in the lower layer are discharged from the upper outflow section and the lower outflow section, respectively. In the continuous liquid separation apparatus, the position of the interface in the chamber is monitored by the interface detection means, and the flow rate adjustment means provided in at least one of the outflow paths is controlled so as to maintain the position of the interface at a predetermined position. is described.

また、特許文献2には、軽液と重液に分離する二相液体を、軽液は上部の軽液排出口から、重液は下部の重液排出口から排出する連続液液分離器であって、重液排出口には、重液透過用多孔質膜が設置され、前記重液透過用多孔質膜が、前記重液透過用多孔質膜の上流と下流の間の差圧によっても、軽液の透過を妨げる重液保持力を発生させる材質、孔径を有し、軽液排出口には、前記重液透過用多孔質膜の上流の圧力が前記重液保持力を超えない孔径、膜面積を有する軽液透過用多孔質膜が設置されている分離器が記載されている。 In addition, Patent Document 2 discloses a continuous liquid-liquid separator that separates a two-phase liquid into a light liquid and a heavy liquid, in which the light liquid is discharged from the upper light liquid outlet and the heavy liquid is discharged from the lower heavy liquid outlet. A heavy liquid-permeable porous membrane is installed at the heavy liquid outlet, and the heavy liquid-permeable porous membrane is even affected by the differential pressure between the upstream and downstream of the heavy liquid-permeable porous membrane. , a material and a pore size that generate a heavy liquid retention force that prevents permeation of the light liquid, and the light liquid discharge port has a pore size that does not allow the pressure upstream of the heavy liquid permeation porous membrane to exceed the heavy liquid retention force. , describes a separator provided with a light liquid permeable porous membrane having a membrane area.

特開2008-6387号公報Japanese Patent Application Laid-Open No. 2008-6387 特開2019-130484号公報JP 2019-130484 A

従来の連続液液分離器では、特許文献1に記載のように、層分離した上層と下層の界面位置を一定に保つため、界面監視装置や流量調整手段等の送液量や送液速度条件を調整するための付帯デバイスが必要であった。
一方、特許文献2に記載された連続液液分離器においては、重液、軽液のどちらか一方のみを透過させ、もう一方を透過させない多孔質膜を用いることで、重液と軽液を分離しているため、界面の監視や流量の調整を行う付帯デバイスを必要としない。しかしながら、特許文献2では、異なる液種に対する多孔質膜の透過、非透過の選択性を利用しているから、重液、軽液それぞれの濡れ性に応じて多孔膜の材質や孔径を調整する必要があり、汎用性に乏しい。
In a conventional continuous liquid-liquid separator, as described in Patent Document 1, in order to keep the position of the interface between the separated upper layer and lower layer constant, the liquid feeding amount and liquid feeding speed conditions such as an interface monitoring device and flow rate adjusting means An accessory device was required to adjust the
On the other hand, in the continuous liquid-liquid separator described in Patent Document 2, the heavy liquid and the light liquid are separated by using a porous membrane that allows only one of the heavy liquid and the light liquid to pass through and does not allow the other to pass through. The isolation eliminates the need for ancillary devices to monitor interfaces or regulate flow rates. However, in Patent Document 2, since the permeation and non-permeation selectivity of the porous membrane for different liquid types is used, the material and pore size of the porous membrane are adjusted according to the wettability of each heavy liquid and light liquid. necessary and lacks versatility.

本発明は、こうした現状を鑑みてなされたものであって、界面の監視や流量の調整を行う付帯デバイスを必要とせず、簡単な構成で種々の溶液系の相分離を行うことができる連続液液分離器を提供することを課題とする。 The present invention has been made in view of the current situation, and does not require an auxiliary device for monitoring the interface or adjusting the flow rate, and can perform phase separation of various solution systems with a simple configuration. The object is to provide a liquid separator.

本発明者は、上記課題を解決すべく鋭意、検討したところ、互いに完全に混和しない軽液と重液の二相に分離する二相液体が連続的に流入するチャンバー内に二相の界面の高さを固定する界面調整機構を設け、かつ、該界面、軽液排出口及び重液排出口のそれぞれの高さを同じにすることで、上記の課題を解決し得ることを見出した。 As a result of earnest investigations in order to solve the above problems, the present inventors found that a two-phase liquid separated into two phases, a light liquid and a heavy liquid, which are completely immiscible with each other, continuously flows into a chamber where the interface between the two phases is formed. The inventors have found that the above problem can be solved by providing an interface adjustment mechanism for fixing the height, and by making the heights of the interface, the light liquid discharge port, and the heavy liquid discharge port the same.

本発明は、上記課題を解決するために、前記知見に基づいて、以下の手段を採用するものである。
(1)互いに完全に混和せず、軽液と重液の二相に分離する少なくとも二種類以上の成分からなる二相液体を、チャンバーの一の側面に設けた流入口から導入して、他の側面に設けた軽液排出口及び重液排出口から、軽液及び重液をそれぞれ排出する構造を有する連続液液分離器であって、前記流入口と前記両排出口の間に軽液と重液の界面を調整する界面調整機構を備え、前記界面調整機構は、上流側から下流側に向けて上下間隔が漸減し、前記二相液体を上下二層に分離する2枚のメッシュ板、及び、前記2枚のメッシュ板の下流側の端部に隣接し、前記2枚のメッシュ板とともに断面Y字状を形成する上下層セパレーターからなり、前記上下層セパレーターにより固定される上下二層の界面の高さと、前記軽液排出口及び前記重液排出口の高さが同じである、連続液液分離器。
(2)前記2枚のメッシュ板の前記両排出口側の端部には、気泡を抜くための微小間隙を有する前記(1)の連続液液分離装置。
(3)互いに完全に混和せず、軽液、重液の二相に分離する少なくとも二種類以上の成分からなる二相液体を連続的に分離する方法であって、一の側面に流入口を、他の側面に高さが同じ軽液排出口及び重液排出口を有するチャンバーに前記二相液体を連続的に導入し、前記流入口と前記両排出口の間で、上流側から下流側に向けて上下間隔が漸減して設置され、重液の透過を抑制し、浮遊してくる軽液を透過させる2枚のメッシュ板により前記二相液体を上下二層に分離し、前記2枚のメッシュ板とともに断面Y字状を形成し、前記両排出口と高さが同じ上下層セパレーターにより前記上下二層の界面を固定し、前記軽液排出口及び前記重液排出口から、軽液及び重液をそれぞれ排出する、連続液液分離方法。
In order to solve the above problems, the present invention employs the following means based on the above findings.
(1) A two-phase liquid composed of at least two components that are completely immiscible with each other and separated into two phases, a light liquid and a heavy liquid, is introduced from an inlet provided on one side of the chamber, and A continuous liquid-liquid separator having a structure for discharging the light liquid and the heavy liquid respectively from the light liquid discharge port and the heavy liquid discharge port provided on the side surface of the and an interface adjustment mechanism that adjusts the interface between the two-phase liquid and the heavy liquid. The interface adjustment mechanism has two mesh plates that gradually decrease in vertical spacing from the upstream side to the downstream side and separate the two-phase liquid into two upper and lower layers. , and an upper and lower layer separator adjacent to the downstream end of the two mesh plates and forming a Y-shaped cross section together with the two mesh plates, and is fixed by the upper and lower layer separators. and the heights of the light liquid outlet and the heavy liquid outlet are the same.
(2) The continuous-liquid-liquid separator according to (1) above, wherein the ends of the two mesh plates on both outlet sides have minute gaps for removing air bubbles.
(3) A method for continuously separating a two-phase liquid consisting of at least two components that are completely immiscible with each other and separated into two phases, a light liquid and a heavy liquid, wherein an inlet is provided on one side. , the two-phase liquid is continuously introduced into a chamber having a light liquid outlet and a heavy liquid outlet with the same height on the other side, and between the inlet and the outlet, from the upstream side to the downstream side The two-phase liquid is separated into upper and lower layers by two mesh plates that are installed with a gradually decreasing vertical interval toward , suppress the permeation of the heavy liquid, and allow the light liquid that floats to permeate. A Y-shaped cross section is formed together with the mesh plate, the interface between the upper and lower layers is fixed by the upper and lower layer separators having the same height as the both discharge ports, and the light liquid is discharged from the light liquid discharge port and the heavy liquid discharge port. and a continuous liquid-liquid separation method, respectively discharging the heavy liquid.

本発明によれば、界面の監視や調整を行う付帯デバイスを必要とせず、種々の溶液系の相分離を行うことができる汎用性の高い連続液液分離器及び連続液液分離方法を提供することができる。 According to the present invention, there is provided a continuous liquid-liquid separator and a continuous liquid-liquid separation method with high versatility that can perform phase separation of various solution systems without requiring an accessory device for monitoring and adjusting the interface. be able to.

本発明に係る連続液液分離器の概要を模式的に示す側面図BRIEF DESCRIPTION OF THE DRAWINGS A side view schematically showing the outline of a continuous liquid-liquid separator according to the present invention. 従来の軽液排出口及び重液排出口がそれぞれ上下に設けられているセトラーにおいて、両排出口の高さが違う場合の説明図Explanatory diagram of a conventional settler with a light liquid discharge port and a heavy liquid discharge port provided at the top and bottom, respectively, when the heights of both discharge ports are different 同セトラーにおいて、両排出口の高さが同じで界面の高さが違う場合の説明図Explanatory diagram for the same settler with the same discharge port height and different interface height 同セトラーにおいて、両排出口と界面の高さが同じ場合の説明図Explanatory drawing of the same settler when the height of both outlets and the interface are the same 重液が水相でメッシュ板が親水性で水相からメッシュ板へかかる圧力がない場合の毛管力の概略図Schematic diagram of capillary force when the heavy liquid is the aqueous phase, the mesh plate is hydrophilic, and there is no pressure from the aqueous phase to the mesh plate. 重液が水相でメッシュ板が親水性で水相からメッシュ板へかかる圧力がある場合の毛管力の概略図Schematic diagram of capillary force when the heavy liquid is in the aqueous phase, the mesh plate is hydrophilic, and there is pressure from the aqueous phase to the mesh plate. 本発明に係る分離器内の重液量の方が多い場合(実施例1)と軽液量の方が多い場合(実施例2)の送液状態を示す写真Photographs showing liquid feeding states when the amount of heavy liquid in the separator according to the present invention is larger (Example 1) and when the amount of light liquid is larger (Example 2)

本発明は、互いに完全に混和せず、軽液と重液の二相に分離する少なくとも二種類以上の成分からなる二相液体を、混合状態で流入させつつ、一定の界面高さの上下層に分離し、前記界面高さと同じ高さの軽液排出口及び重液排出口から各相をそれぞれ排出することができる連続液液分離装置、及び連続液液分離方法に関し、上下層に分離した液液界面を両排出口と同じ高さに固定するために、2枚のメッシュ板及び上下層セパレーターよりなる界面調整機構を設置する点に特徴を有する。
本発明の実施形態(以下、「本実施形態」という。)に係る連続液液分離器の概要を図1に模式的に示した。
以下、本実施形態の各構成について詳述するが、これらは、この発明を説明するためのものであって、本発明の範囲を限定するものではない。
なお、本明細書において数値範囲を示す「~」は、その前後に記載される数値を下限値及び上限値として含む意味として使用される。
In the present invention, a two-phase liquid composed of at least two components that are completely immiscible with each other and separated into two phases, a light liquid and a heavy liquid, is flowed in a mixed state, and the upper and lower layers have a constant interface height. A continuous liquid-liquid separation device and a continuous liquid-liquid separation method that can separate into two layers and discharge each phase from a light liquid discharge port and a heavy liquid discharge port at the same height as the interface height, and a continuous liquid-liquid separation method. In order to fix the liquid-liquid interface at the same height as both outlets, it is characterized by installing an interface adjustment mechanism consisting of two mesh plates and upper and lower layer separators.
An outline of a continuous liquid-liquid separator according to an embodiment of the present invention (hereinafter referred to as "this embodiment") is schematically shown in FIG.
Each configuration of the present embodiment will be described in detail below, but these are for the purpose of explaining the present invention and do not limit the scope of the present invention.
In this specification, "-" indicating a numerical range is used to include the numerical values before and after it as a lower limit and an upper limit.

<軽液排出口、重液排出口、及び軽液と重液の界面の高さ>
最初に、軽液排出口と重液排出口の高さを軽液と重液の界面と同じ高さにする必要性について述べる。
図2に示すように、軽液排出口及び重液排出口がそれぞれ上下に設けられているセトラーである場合、両排出口が液体から受ける圧力に差があると、下相の重液排出口から優先的に排出されてしまうので、界面監視装置や排出制御弁等が必要になる。
また、図3に示すように、両排出口を同じ高さにした場合、界面が両排出口より低いときは、軽液が優先的に排出され、界面が両排出口より高いときは、重液が優先的に排出されてしまう。
そこで、図4に示すように軽液排出口と重液排出口の両排出口の高さと、液液界面の高さを同じにした場合、上下相の排出口からバランスよく流出される。しかし、液液界面は常に一定とは限らないので、液液界面の高さを両排出口の高さと同じになるように固定することが必要となる。
<Heights of light liquid outlet, heavy liquid outlet, and interface between light liquid and heavy liquid>
First, the necessity of making the heights of the light liquid outlet and the heavy liquid outlet equal to the interface between the light liquid and the heavy liquid will be described.
As shown in FIG. 2, in the case of a settler in which a light liquid discharge port and a heavy liquid discharge port are respectively provided above and below, if there is a difference in pressure received from the liquid at both discharge ports, the heavy liquid discharge port of the lower phase Therefore, an interface monitoring device, a discharge control valve, etc. are required.
Also, as shown in FIG. 3, when both discharge ports are at the same height, when the interface is lower than both discharge ports, the light liquid is preferentially discharged, and when the interface is higher than both discharge ports, the heavy liquid is discharged. Liquid is preferentially discharged.
Therefore, as shown in FIG. 4, when the height of both the light liquid outlet and the heavy liquid outlet is the same as the height of the liquid-liquid interface, the upper and lower phases are discharged from the outlets in a well-balanced manner. However, since the liquid-liquid interface is not always constant, it is necessary to fix the height of the liquid-liquid interface to be the same as the height of both outlets.

本発明では、二相液体を上下層に分離し、液液界面を両排出口と同じ高さに固定するために、2枚のメッシュ板及び上下層セパレーターよりなる界面調整機構を設置する点に特徴を有する。 In the present invention, in order to separate the two-phase liquid into upper and lower layers and fix the liquid-liquid interface at the same height as both outlets, an interface adjustment mechanism consisting of two mesh plates and upper and lower layer separators is installed. It has characteristics.

なお、実際には、各排出口は上下方向に有限の大きさを有するから、同じ高さとは、より正確には、軽液排出口の下端及び重液排出口の上端と、上下層セパレーターが固定する液液界面とが同じ高さであることを意味する。 In fact, since each outlet has a finite size in the vertical direction, the same height means that the lower end of the light liquid outlet, the upper end of the heavy liquid outlet, and the upper and lower layer separators. It means that the fixed liquid-liquid interface is at the same height.

<メッシュ板>
本実施形態における2枚のメッシュ板は、重液をメッシュ板に固定する力(毛管力)を有する開口を有する。メッシュ板における毛管力、すなわち濡れ性の制御は、重液に対してのみで良い。
開口の形は、角形でも丸形でもよいが、角形の場合は半径rの円形に換算した開口径を有するものとする。
半径rの開口における重液の毛管圧Pcは、以下の式1で表されるから、毛管力は、開口径rに依存する。
(式1)
Pc=2γcosθ/r
(γ:重液と軽液の界面張力、θ:重液の接触角)
<Mesh plate>
The two mesh plates in this embodiment have openings that have a force (capillary force) that fixes the heavy liquid to the mesh plates. Capillary force in the mesh plate, that is, control of wettability is only required for heavy liquids.
The shape of the opening may be rectangular or circular, but in the case of a rectangular shape, the opening diameter is converted to a circular shape with a radius of r.
Since the capillary pressure Pc of the heavy liquid in the opening of radius r is represented by Equation 1 below, the capillary force depends on the opening diameter r.
(Formula 1)
Pc=2γ cos θ/r
(γ: interfacial tension between heavy liquid and light liquid, θ: contact angle of heavy liquid)

図5は、重液が水相であり、メッシュ板の素材が親水性であり、メッシュ板にかかる水相の圧力がない場合の毛管力を示しているが、図6は、重液が水相であり、メッシュ板の素材が親水性であり、メッシュ板にかかる水相の圧力がある場合の毛管力を説明する図である。メッシュ板が、重液(水相)に対して親和性があれば、水相からの圧力があってもなくても、メッシュ板の開口の毛管力により、重液(水相)はメッシュ板に固定される。
なお、重液が油相である場合は、軽液が油相、水相のいずれであっても、疎水性のメッシュ板を使用できる。
FIG. 5 shows the capillary force when the heavy liquid is the aqueous phase, the material of the mesh plate is hydrophilic, and there is no pressure of the aqueous phase on the mesh plate. It is a phase, the material of the mesh plate is hydrophilic, and it is a figure explaining the capillary force when there is pressure of the aqueous phase applied to the mesh plate. If the mesh plate has an affinity for the heavy liquid (aqueous phase), the heavy liquid (aqueous phase) will flow through the mesh plate due to the capillary force at the openings of the mesh plate, regardless of whether there is pressure from the aqueous phase or not. fixed to
When the heavy liquid is the oil phase, a hydrophobic mesh plate can be used regardless of whether the light liquid is the oil phase or the water phase.

メッシュ板の開口径は、0.2~5.0mm程度であることが好ましく、より好ましくは0.75~2.0mm程度であれば、種々の組み合わせによる二相溶液の分離を行うことができる。 The opening diameter of the mesh plate is preferably about 0.2 to 5.0 mm, more preferably about 0.75 to 2.0 mm. .

本実施形態においてメッシュ板の材質は、特に限定されないが、例えば、親水性の材質としては、親水化ポリテトラフルオロエチレン、アクリル樹脂、ポリアミド、ポリイミド、ポリエステル、ポリカーボネート、ポリエーテル、ポリウレタン、セラミックス、金属などが挙げられる。特にポリメタクリレートが好ましい。
また、疎水性の材質としては、ポリテトラフルオロエチレン(PTFE)、ポリオレフィン、ポリスチレン、ポリフェニレンビニレン、ポリ塩化ビニルなどが挙げられる。
In the present embodiment, the material of the mesh plate is not particularly limited, but examples of hydrophilic materials include hydrophilic polytetrafluoroethylene, acrylic resin, polyamide, polyimide, polyester, polycarbonate, polyether, polyurethane, ceramics, and metals. etc. Polymethacrylate is particularly preferred.
Examples of hydrophobic materials include polytetrafluoroethylene (PTFE), polyolefin, polystyrene, polyphenylene vinylene, and polyvinyl chloride.

このような2枚のメッシュ板は、チャンバー内の上流側では、流路を上側、中間、下側に三分割しているが、下流側に向けて上下間隔が漸減するように配置されていることにより、中間流路は徐々に狭まり、下流側では上側流路、下側流路のみとなる。
二相液体中の重液のチャンバー内の液量がセパレーター高さを上回る場合、軽液はメッシュ板の上流側端部の空隙を流れることで上側流路に集約され、重液は下側流路と中間流路に集約されるが、中間流路は徐々に狭まるから、二相液体は2枚のメッシュ板の下流側端部において、軽液と重液の上下二層に分離される。
重液のチャンバー内の液量がセパレーター高さを下回る場合は、軽液は上側流路と中間流路を流れるが、中間流路は徐々に狭まるから、上記と同様に2枚のメッシュ板の下流側端部において、軽液と重液の上下二層に分離される。
These two mesh plates divide the channel into three parts, upper, middle, and lower, on the upstream side in the chamber, but are arranged so that the vertical interval gradually decreases toward the downstream side. As a result, the intermediate channel is gradually narrowed, and only the upper channel and the lower channel are formed on the downstream side.
When the liquid volume in the chamber of the heavy liquid in the two-phase liquid exceeds the height of the separator, the light liquid flows through the gap at the upstream edge of the mesh plate and is concentrated in the upper channel, while the heavy liquid flows downward. The two-phase liquid is concentrated in the channel and the intermediate channel, but since the intermediate channel gradually narrows, the two-phase liquid is separated into upper and lower layers of light liquid and heavy liquid at the downstream end of the two mesh plates.
When the liquid volume in the heavy liquid chamber is below the height of the separator, the light liquid flows through the upper channel and the intermediate channel, but the intermediate channel gradually narrows. At the downstream end, the liquid is separated into upper and lower two layers of a light liquid and a heavy liquid.

本発明の実施形態において使用可能な二相液体は、互いに完全に混和せず、軽液、重液の二相に分離する少なくとも二種類の成分からなる二相液体であり、例えば、水/ペンタン、水/ヘキサン、水/ヘプタン、水/オクタン、水/ノナン、水/デカン、水/シクロヘキサン、水/デカリン、水/ベンゼン、水/トルエン、水/キシレン、水/ニトロベンゼン、水/アニリン、水/フェノール、水/酢酸メチル、水/酢酸エチル、水/酢酸プロピル、水/酢酸ブチル、水/ジエチルエーテル、水/ジプロピルエーテル、水/ジブチルエーテル、水/ジフェニルエーテル、水/ブタノール、水/ヘキサノール、水/ヘプタノール、水/オクタノール、水/ノナノ-ル、水/デカノール、水/ブトキシエタノール、水/トリエチルアミン、水/クロロホルム、水/四塩化炭素、フロリナート/水、メタノール/ヘキサン、メタノール/シクロヘキサン、N,N-ジメチルホルムアミド/ヘキサン、N-メチル-2-ピロリドン/ヘキサンなどが挙げられる。 Two-phase liquids usable in embodiments of the present invention are two-phase liquids composed of at least two components that are completely immiscible with each other and separate into two phases, a light liquid and a heavy liquid, such as water/pentane , water/hexane, water/heptane, water/octane, water/nonane, water/decane, water/cyclohexane, water/decalin, water/benzene, water/toluene, water/xylene, water/nitrobenzene, water/aniline, water /phenol, water/methyl acetate, water/ethyl acetate, water/propyl acetate, water/butyl acetate, water/diethyl ether, water/dipropyl ether, water/dibutyl ether, water/diphenyl ether, water/butanol, water/hexanol , Water/heptanol, Water/octanol, Water/nonanol, Water/decanol, Water/butoxyethanol, Water/triethylamine, Water/chloroform, Water/carbon tetrachloride, Fluorinert/water, Methanol/hexane, Methanol/cyclohexane, Examples include N,N-dimethylformamide/hexane and N-methyl-2-pyrrolidone/hexane.

また、前記二成分からなる二相液体に無機塩や有機化合物を溶解させた三成分以上の二相液体が挙げられ、また、水/アセトン、水/ホルムアルデヒド、水/テトラヒドロフラン、水/N,N´-ジメチルホルムアミド、水/ジメチルスルホキシド、水/メタノール、水/エチレンカーボネート、水/酢酸などの混和した液体に、無機塩や有機化合物を溶解させて、軽液、重液の二相に分離したものが挙げられる。 In addition, two-phase liquids with three or more components, in which an inorganic salt or an organic compound is dissolved in the above two-component two-phase liquid, may also be mentioned. Inorganic salts and organic compounds are dissolved in mixed liquids such as ´-dimethylformamide, water/dimethyl sulfoxide, water/methanol, water/ethylene carbonate, water/acetic acid, and separated into two phases: light liquid and heavy liquid. things are mentioned.

<上下層セパレーター>
本実施形態における上下層セパレーターは、2枚のメッシュ板の下流側端部に隣接し、前記2枚のメッシュ板とともに断面Y字状を形成しているから、軽液と重液の界面高さを維持、固定する作用を有する。
そして、最初に述べたように、軽液排出口及び重液排出口の高さを軽液と重液の界面高さと同じにすることにより、それぞれの排出口からバランスよく軽液及び重液を流出させることができる。
<Upper and lower layer separator>
The upper and lower layer separators in this embodiment are adjacent to the downstream ends of the two mesh plates and form a Y-shaped cross section together with the two mesh plates. It has an action to maintain and fix the
As described at the beginning, by making the height of the light liquid outlet and the heavy liquid outlet equal to the height of the interface between the light liquid and the heavy liquid, the light liquid and the heavy liquid are discharged from the respective outlets in a well-balanced manner. can be drained.

なお、流入する液体には気泡が巻き込まれている場合、目詰まりを起こす恐れがあるから、前記2枚のメッシュ板の前記下流側の端部と前記上下層セパレーターの間には、気泡を逃がすための微小間隙を有していてもよい。 If air bubbles are involved in the inflowing liquid, clogging may occur. Air bubbles should be allowed to escape between the downstream ends of the two mesh plates and the upper and lower layer separators. It may have a minute gap for

(実施例1)
アクリル系モノマーを用いて、光造形方式の3Dプリンター(製品名:formlabs社製form3)で、図1に示す液液分離器を作製した。
この液液分離器は、流入口、軽液排出口、重液排出口を有する13×50×10mmの透明チャンバー内に、上流側の2枚のメッシュ板及び下流側の上下層セパレーターからなる界面調整部を有する
2枚のメッシュ板(13×15×0.5mm、角形の開口の目開き 2mm)は、流入側のチャンバー側面から20mm離れた位置を上流側の端部とし、上下間隔が6mmから下流側の端部に向けて対称的に漸減するように設置され、上下層セパレーター(13×15×1mm)は、2枚のメッシュ板の下流側の端部と排出口側のチャンバー側面を、前記軽液排出口及び重液排出口と同じ高さで結合するように設置されている。
前記軽液排出口及び重液排出口の管内径を2mm、長さを5cmとした。
前記液液分離器の流入口から、シクロヘキサン(軽液)と食紅で着色した水(重液)の二相液体を軽液:1.0mL/min、重液:0.5mL/minの流量で30分間送液した。
軽液排出口からはシクロヘキサン、重液排出口からは食紅で着色した水のみが排出された。
(Example 1)
Using an acrylic monomer, a liquid-liquid separator shown in FIG. 1 was produced with a stereolithographic 3D printer (product name: form3 manufactured by formlabs).
This liquid-liquid separator has an interface consisting of two mesh plates on the upstream side and an upper and lower layer separator on the downstream side in a transparent chamber of 13 x 50 x 10 mm having an inlet, a light liquid outlet, and a heavy liquid outlet. Two mesh plates (13 × 15 × 0.5 mm, square opening opening 2 mm) having an adjustment part have an upstream end at a position 20 mm away from the chamber side surface on the inflow side, and a vertical interval of 6 mm The upper and lower layer separators (13 × 15 × 1 mm) are installed so as to gradually decrease symmetrically from the downstream end to the downstream end of the two mesh plates and the side of the chamber on the outlet side. , are installed to be connected at the same height as the light liquid outlet and the heavy liquid outlet.
The light liquid discharge port and the heavy liquid discharge port had an inner diameter of 2 mm and a length of 5 cm.
From the inlet of the liquid-liquid separator, a two-phase liquid of cyclohexane (light liquid) and water colored with food coloring (heavy liquid) was introduced at a flow rate of 1.0 mL/min for light liquid and 0.5 mL/min for heavy liquid. The liquid was sent for 30 minutes.
Cyclohexane was discharged from the light liquid outlet, and only water colored with food coloring was discharged from the heavy liquid outlet.

(実施例2)
軽液排出口の管内径を1mm、長さ45cmと変更した以外は、実施例1と同じ液液分離器を用い、シクロヘキサン(軽液)と食紅で着色した水(重液)の二相液体を軽液:1.0mL/min、重液0.5mL/minの流量で30分間送液した。軽液排出口からはシクロヘキサン、重液排出口からは食紅で着色した水のみが排出された。
(Example 2)
A two-phase liquid consisting of cyclohexane (light liquid) and water colored with food coloring (heavy liquid) was prepared using the same liquid-liquid separator as in Example 1, except that the tube inner diameter of the light liquid outlet was changed to 1 mm and the length to 45 cm. was sent at a flow rate of 1.0 mL/min for the light liquid and 0.5 mL/min for the heavy liquid for 30 minutes. Cyclohexane was discharged from the light liquid outlet, and only water colored with food coloring was discharged from the heavy liquid outlet.

(実施例3)
二枚のメッシュ板の角形の開口の目開きを1mmと変更した以外は、実施例1と同じ液液分離器を用い、実施例1と同じ条件で送液を行った。軽液排出口からはシクロヘキサン、重液排出口からは食紅で着色した水のみが排出された。
(Example 3)
The same liquid-liquid separator as in Example 1 was used and the liquid was fed under the same conditions as in Example 1, except that the square openings of the two mesh plates had a mesh size of 1 mm. Cyclohexane was discharged from the light liquid outlet, and only water colored with food coloring was discharged from the heavy liquid outlet.

(実施例4)
二相液体の流量を軽液:1mL/min、重液:1mL/minと変更した以外は、実施例1と同様にして送液を行った。軽液排出口からはシクロヘキサン、重液排出口からは食紅で着色した水のみが排出された。
(Example 4)
Liquid transfer was performed in the same manner as in Example 1, except that the flow rate of the two-phase liquid was changed to light liquid: 1 mL/min and heavy liquid: 1 mL/min. Cyclohexane was discharged from the light liquid outlet, and only water colored with food coloring was discharged from the heavy liquid outlet.

(実施例5)
二相液体の流量を軽液:4mL/min、重液:4mL/minと変更した以外は、実施例1と同様にして送液を行った。軽液排出口からはシクロヘキサン、重液排出口からは食紅で着色した水のみが排出された。
(Example 5)
Liquid transfer was performed in the same manner as in Example 1, except that the flow rate of the two-phase liquid was changed to light liquid: 4 mL/min and heavy liquid: 4 mL/min. Cyclohexane was discharged from the light liquid outlet, and only water colored with food coloring was discharged from the heavy liquid outlet.

(実施例6)
軽液を1-ブタノール80vol%/水20vol%の混合溶液、重液を水90vol%/1-ブタノール10vol%の混合溶液、軽液排出口及び重液排出口の管内径を1mm、長さ45cm、二相液体の流量を軽液:1mL/min、重液:1mL/minと変更した以外は、実施例1と同様にして送液を行った。軽液排出口からは軽液、重液排出口からは重液が排出された。
(Example 6)
A mixed solution of 80 vol% 1-butanol/20 vol% water for the light liquid, and a mixed solution of 90 vol% water/10 vol% 1-butanol for the heavy liquid. , Liquid transfer was performed in the same manner as in Example 1, except that the flow rate of the two-phase liquid was changed to 1 mL/min for light liquid and 1 mL/min for heavy liquid. A light liquid was discharged from the light liquid outlet, and a heavy liquid was discharged from the heavy liquid outlet.

(実施例7)
ポリアミド粉体を用いて、レーザー焼結造形方式の3Dプリンター(製品名:Sinterit社製LISA-PRO)で、軽液排出口及び重液排出口の管内径を1mm、開口の目開き1mmとした以外は実施例1と同じサイズの液液分離器を作製した。軽液を酢酸エチル、重液を水、二相液体の流量を軽液:1mL/min、重液:1mL/minと変更し、実施例1と同様にして送液を行った。軽液排出口からは軽液、重液排出口からは重液が排出された。
(Example 7)
Using polyamide powder, a laser sintering 3D printer (product name: LISA-PRO manufactured by Sinterit) was used to set the inner diameter of the light liquid outlet and the heavy liquid outlet to 1 mm and the opening to 1 mm. A liquid-liquid separator having the same size as in Example 1 was produced except for the above. The light liquid was ethyl acetate, the heavy liquid was water, and the flow rate of the two-phase liquid was changed to light liquid: 1 mL/min and heavy liquid: 1 mL/min. A light liquid was discharged from the light liquid outlet, and a heavy liquid was discharged from the heavy liquid outlet.

(実施例8)
ポリアミド粉体を用い、実施例7と同じ3Dプリンターで、重液排出口の管内径を1mm、長さを45cm、開口の目開き1mmとした以外は実施例1と同じサイズの液液分離器を作製した。軽液をメタノール10vol%/n-ヘキサン90vol%の混合溶液、重液をメタノール40vol%/n-ヘキサン60vol%の混合溶液とし、二相液体の流量を軽液:1mL/min、重液:1mL/minと変更した以外は、実施例1と同様にして送液を行った。軽液排出口からは軽液、重液排出口からは重液が排出された。
(Example 8)
Using polyamide powder, using the same 3D printer as in Example 7, the liquid-liquid separator of the same size as in Example 1 except that the heavy liquid discharge port had a tube inner diameter of 1 mm, a length of 45 cm, and an opening opening of 1 mm. was made. The light liquid is a mixed solution of 10 vol% methanol/90 vol% n-hexane, and the heavy liquid is a mixed solution of 40 vol% methanol/60 vol% n-hexane. /min was changed, the liquid was sent in the same manner as in Example 1. A light liquid was discharged from the light liquid outlet, and a heavy liquid was discharged from the heavy liquid outlet.

(実施例9)
ポリアミド粉体を用い、実施例7と同じ3Dプリンターで、軽液排出口及び重液排出口の管内径を1mm、開口の目開き1mmと変更した以外は実施例1と同じサイズの液液分離器を作製した。軽液をN,N-ジメチルホルムアミド5vol%/n-ヘキサン95vol%の混合溶液、重液をN,N-ジメチルホルムアミド90vol%/ヘキサン10vol%の混合溶液とし、実施例1と同様にして送液を行った。軽液排出口からは軽液、重液排出口からは重液が排出された。
(Example 9)
Using polyamide powder, using the same 3D printer as in Example 7, liquid-liquid separation of the same size as in Example 1 except that the tube inner diameter of the light liquid outlet and the heavy liquid outlet was changed to 1 mm and the aperture opening was changed to 1 mm. I made a vessel. A mixed solution of 5 vol% N,N-dimethylformamide/95 vol% n-hexane was used as the light liquid, and a mixed solution of 90 vol% N,N-dimethylformamide/10 vol% hexane was used as the heavy liquid. did A light liquid was discharged from the light liquid outlet, and a heavy liquid was discharged from the heavy liquid outlet.

以上の実施例1~9の液液分離器の構成、及び送液条件を以下の表1にまとめた。
また、実施例1、2の結果を図7の写真に示した。
The configurations of the liquid-liquid separators of Examples 1 to 9 and the liquid feeding conditions are summarized in Table 1 below.
Also, the results of Examples 1 and 2 are shown in the photographs of FIG.

Figure 2023004677000002
Figure 2023004677000002

図7で重液は濃いグレーで表示されている。チャンバー内の重液量の方が多い実施例1(左図)とチャンバー内の軽液量の方が多い実施例2(右図)のいずれの場合も、軽液排出口からは軽液が、重液排出口からは重液のみが排出され、上下層の界面は常に一定の高さに保たれることがわかった。
したがって、実施例1,2からは、軽液及び重液の液量がバランスしない場合であっても、上下層の界面は常に一定の高さに保たれ、軽液排出口と重液排出口とが同じ高さであるから、精密な液液分離を自動的に行うことができることがわかった。
The heavy liquid is shown in dark gray in FIG. In both Example 1 (left figure), in which the amount of heavy liquid in the chamber is larger, and Example 2 (right figure), in which the amount of light liquid in the chamber is larger, the light liquid is discharged from the light liquid outlet. , it was found that only the heavy liquid was discharged from the heavy liquid outlet, and the interface between the upper and lower layers was always kept at a constant height.
Therefore, from Examples 1 and 2, even when the liquid amounts of the light liquid and the heavy liquid are not balanced, the interface between the upper and lower layers is always kept at a constant height, and the light liquid discharge port and the heavy liquid discharge port and are of the same height, it has been found that accurate liquid-liquid separation can be performed automatically.

実施例3~5からは、メッシュ板の開口の目開きや、二相液体の流量がある程度の幅を有する範囲であっても、本発明の効果が十分に得られることがわかった。
実施例6~9からは、メッシュ板の素材や、二相液体の組み合わせを変更しても、連続的な相分離を効果的に行えることがわかった。
また、実施例2及び実施例8は、軽液排出口と重液排出口との管内径がバランスせず、排出後の軽液又は重液のいずれかにより負荷がかかる場合であるが、この程度の管内径の差であれば、界面高さが移動することなくそれぞれの排出口から相分離された液体が得られることがわかった。
以上により、本発明は、厳密なサイズ設定や送液条件を必要とせず、種々の二相液体の液液分離に汎用することができることが実証された。
From Examples 3 to 5, it was found that the effect of the present invention can be sufficiently obtained even when the openings of the mesh plate and the flow rate of the two-phase liquid have a certain width.
From Examples 6 to 9, it was found that continuous phase separation can be effectively performed even if the material of the mesh plate and the combination of the two-phase liquids are changed.
In Examples 2 and 8, the pipe inner diameters of the light liquid discharge port and the heavy liquid discharge port are not balanced, and a load is applied by either the light liquid or the heavy liquid after discharge. It was found that if the difference in the inner diameters of the pipes is small, phase-separated liquids can be obtained from the respective outlets without the interfacial height moving.
From the above, it was demonstrated that the present invention can be used for liquid-liquid separation of various two-phase liquids without requiring strict size setting and liquid transfer conditions.

本発明によれば、簡単な構成を有する連続液液分離器を用いて、種々の溶液系の相分離が可能であるから、多様な化学品の連続精密生産プロセスに利用することができる。 INDUSTRIAL APPLICABILITY According to the present invention, a continuous liquid-liquid separator having a simple configuration can be used for phase separation of various solution systems, so that it can be used for continuous precision production processes for various chemical products.

Claims (3)

互いに完全に混和せず、軽液と重液の二相に分離する少なくとも二種類以上の成分からなる二相液体を、チャンバーの一の側面に設けた流入口から導入して、他の側面に設けた軽液排出口及び重液排出口から、軽液及び重液をそれぞれ排出する構造を有する連続液液分離器であって、
前記流入口と前記両排出口の間に軽液と重液の界面を調整する界面調整機構を備え、
前記界面調整機構は、
上流側から下流側に向けて上下間隔が漸減し、前記二相液体を上下二層に分離する2枚のメッシュ板、及び、
前記2枚のメッシュ板の下流側の端部に隣接し、前記2枚のメッシュ板とともに断面Y字状を形成する上下層セパレーターからなり、
前記上下層セパレーターにより固定される上下二層の界面の高さと、前記軽液排出口及び前記重液排出口の高さが同じである、連続液液分離器。
A two-phase liquid consisting of at least two components that are completely immiscible with each other and separate into two phases, a light liquid and a heavy liquid, is introduced from an inlet provided on one side of the chamber and introduced into the other side. A continuous liquid-liquid separator having a structure for discharging a light liquid and a heavy liquid respectively from the light liquid discharge port and the heavy liquid discharge port provided,
An interface adjustment mechanism for adjusting an interface between the light liquid and the heavy liquid is provided between the inlet and the outlet,
The interface adjustment mechanism is
two mesh plates for separating the two-phase liquid into upper and lower layers by gradually decreasing the vertical spacing from the upstream side to the downstream side;
Consisting of upper and lower layer separators adjacent to the downstream ends of the two mesh plates and forming a Y-shaped cross section together with the two mesh plates,
A continuous liquid-liquid separator, wherein the height of the interface between the upper and lower layers fixed by the upper and lower separators is the same as the height of the light liquid outlet and the heavy liquid outlet.
前記2枚のメッシュ板の前記下流側の端部と前記上下層セパレーターの間には、気泡を逃がすための微小間隙を有する請求項1に記載の連続液液分離装置。 2. The continuous liquid-liquid separator according to claim 1, wherein a minute gap is provided between said downstream end of said two mesh plates and said upper and lower layer separators to allow air bubbles to escape. 互いに完全に混和せず、軽液、重液の二相に分離する少なくとも二種類以上の成分からなる二相液体を連続的に分離する方法であって、
一の側面に流入口を、他の側面に高さが同じ軽液排出口及び重液排出口を有するチャンバーに前記二相液体を連続的に導入し、
前記流入口と前記両排出口の間で、上流側から下流側に向けて上下間隔が漸減して設置され、重液の透過を抑制し、浮遊してくる軽液を透過させる2枚のメッシュ板により前記二相液体を上下二層に分離し、
前記2枚のメッシュ板とともに断面Y字状を形成し、前記両排出口と高さが同じ上下層セパレーターにより前記上下二層の界面を固定し、
前記軽液排出口及び前記重液排出口から、軽液及び重液をそれぞれ排出する、連続液液分離方法。
A method for continuously separating a two-phase liquid consisting of at least two components that are completely immiscible with each other and separate into two phases, a light liquid and a heavy liquid, comprising:
continuously introducing the two-phase liquid into a chamber having an inlet on one side and a light liquid outlet and a heavy liquid outlet at the same height on the other side;
Between the inflow port and both the outflow ports, two meshes are installed with the vertical interval gradually decreasing from the upstream side to the downstream side to suppress permeation of heavy liquids and permeate floating light liquids. separating the two-phase liquid into upper and lower layers by a plate;
Together with the two mesh plates, a Y-shaped cross section is formed, and the interface between the upper and lower two layers is fixed by an upper and lower layer separator having the same height as the both discharge ports,
A continuous liquid-liquid separation method, wherein a light liquid and a heavy liquid are discharged from the light liquid discharge port and the heavy liquid discharge port, respectively.
JP2021106528A 2021-06-28 2021-06-28 Continuous liquid-liquid separator and continuous liquid-liquid separation method Pending JP2023004677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021106528A JP2023004677A (en) 2021-06-28 2021-06-28 Continuous liquid-liquid separator and continuous liquid-liquid separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021106528A JP2023004677A (en) 2021-06-28 2021-06-28 Continuous liquid-liquid separator and continuous liquid-liquid separation method

Publications (1)

Publication Number Publication Date
JP2023004677A true JP2023004677A (en) 2023-01-17

Family

ID=85100721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021106528A Pending JP2023004677A (en) 2021-06-28 2021-06-28 Continuous liquid-liquid separator and continuous liquid-liquid separation method

Country Status (1)

Country Link
JP (1) JP2023004677A (en)

Similar Documents

Publication Publication Date Title
Yamada et al. Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics
US6149817A (en) Shell-less hollow fiber membrane fluid contactor
US20090001019A1 (en) Fluid Treating Apparatus
JPH04247283A (en) Liquid purging device
EP3524358B1 (en) Vortex separator and separation method
CA2533957C (en) Cylindrical mixer-settler apparatus and method
WO2017096414A1 (en) Microfluidic chips and uses thereof
US20030173289A1 (en) Self diluting feedwell including a vertical eduction mechanism and method of dilution employing same
US20150285387A1 (en) Pressure control in fluidic systems
JP2023004677A (en) Continuous liquid-liquid separator and continuous liquid-liquid separation method
AU2004296266B2 (en) Flotation separator
JP3874442B2 (en) Liquid component continuous separator
CA2671897C (en) Method for separating an aqueous phase from an oil phase
de Jong et al. Porous microfluidic devices–fabrication and applications
JP2023004718A (en) Continuous liquid-liquid separator and continuous liquid-liquid separation method
WO2020217393A1 (en) Fluid mixing unit and fluid mixing method
RU2672452C1 (en) Membrane contactor for cleaning natural and technological gases from acid components
JP4437436B2 (en) Separation apparatus, separation system provided with the same, and method of using the separation apparatus
WO2009129586A1 (en) Centrifugal separator
KR101248124B1 (en) Methods and systems for filtration
JP2005270925A (en) Microchannel system
JP2023013439A (en) Continuous separation device of slag flow and continuous separation method
KR101915653B1 (en) Oil-water separator
Kobayashi et al. Bubble-based continuous separation system in microfluidic device
JP2019130484A (en) Continuous liquid liquid content separator and continuous liquid liquid content separation method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210708

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240311