JP2023003776A - Fe-Ni ALLOY AND METHOD FOR PRODUCING THE SAME - Google Patents

Fe-Ni ALLOY AND METHOD FOR PRODUCING THE SAME Download PDF

Info

Publication number
JP2023003776A
JP2023003776A JP2021105054A JP2021105054A JP2023003776A JP 2023003776 A JP2023003776 A JP 2023003776A JP 2021105054 A JP2021105054 A JP 2021105054A JP 2021105054 A JP2021105054 A JP 2021105054A JP 2023003776 A JP2023003776 A JP 2023003776A
Authority
JP
Japan
Prior art keywords
alloy
less
hot
voids
alloy according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021105054A
Other languages
Japanese (ja)
Other versions
JP6961121B1 (en
Inventor
富高 韋
Fu Gao Wei
統樹 吉田
Toki Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP2021105054A priority Critical patent/JP6961121B1/en
Application granted granted Critical
Publication of JP6961121B1 publication Critical patent/JP6961121B1/en
Priority to TW111121170A priority patent/TW202307232A/en
Priority to KR1020220076038A priority patent/KR20230000441A/en
Priority to CN202210722186.6A priority patent/CN115522119A/en
Publication of JP2023003776A publication Critical patent/JP2023003776A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/30Stress-relieving
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/773Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material under reduced pressure or vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Child & Adolescent Psychology (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

To provide an Fe-Ni alloy that enables small and uniform residual stress during a process of annealing, particularly cooling, and can achieve fine precision in complicated processing of die frame material and the like.SOLUTION: An Fe-Ni alloy contains, in mass%, C: 0.01-0.05%, Ni: 30-45%, Si: 0.01-0.4%, Cr: 0.03-0.5%, Mn: 0.10-1.0%, Al: 0.001-0.10% or less, P: 0.005% or less, S: 0.005% or less, Mo: 0.01-0.1%, Cu: 0.01-0.5%, Ti: 0.1% or less, Co: 0.01-0.5%, Sn: 0.001-0.05%, and N: 0.001-0.005% as its key components, satisfying the relational expression (1), with the balance being Fe and inevitable impurities. 50≤-212×Si-140×Cr-578×Al-569×Ti+254×Mn+262×Mo+1550×Sn+14 (1).SELECTED DRAWING: Figure 1

Description

有機ELパネル製造時の金型フレームとして使用されるFe-Ni合金に関するものであり、複雑な加工と表面研磨仕上げを施した後も変形が小さく精度確保が容易で、これにより、パネルの品質、歩留り向上に資するFe-Ni合金が対象である。 It relates to the Fe-Ni alloy used as a mold frame in the manufacture of organic EL panels. Even after complex processing and surface polishing, it is easy to ensure precision with little deformation. The target is an Fe--Ni alloy that contributes to yield improvement.

Niを30~50%含有するFe-Ni系合金は、電子材料の分野で用いられる材料として一般的であり、その化学組成により熱膨張係数を制御できることが特徴である。36%のNiを含有するFe-Ni系合金は、熱膨張係数が小さく、靱性に優れることから、有機ELパネル製造時の金型フレームとして使用される。フレーム材は複雑な切削加工と表面研磨仕上げにより精密に仕上げてあり、パネルの品質、歩留りを左右する加工精度の管理は厳しく行われている。つまり、切削、研磨による寸法変化を最小限にしなければならない。 An Fe—Ni alloy containing 30 to 50% Ni is generally used as a material in the field of electronic materials, and is characterized by being able to control the thermal expansion coefficient by its chemical composition. An Fe—Ni alloy containing 36% Ni has a small coefficient of thermal expansion and excellent toughness, and is therefore used as a mold frame for manufacturing an organic EL panel. The frame material is precisely finished by complicated cutting and surface polishing, and strict management of processing accuracy, which affects the quality and yield of the panel, is carried out. In other words, dimensional changes due to cutting and polishing must be minimized.

この変形は素材製造工程で起因する残留応力によることが大きい。残留応力はいろいろな工程で生じるが、その中でも焼鈍工程で生じる残留応力が大きくこれを小さくすることが重要となる。 This deformation is largely due to residual stress caused in the material manufacturing process. Residual stress occurs in various processes, among which the residual stress generated in the annealing process is large and it is important to reduce it.

これまでの発明では、金型用に適した合金やその製造方法に関する先行技術は数多く報告されているが、金型加工時に生じる変形を改善した報告は少ない。特許文献1においては、電子表示部品の金型用途として、強度・特性を保持したマルテンサイト鋼およびその製法の報告がなされている。しかしながら、これは高強度鋼板についての発明であり、Ni、Cr、Mnなどの成分範囲が本発明の対象であるFe-Ni合金とは大きく異なる。 Many previous inventions have been reported on alloys suitable for molds and their manufacturing methods, but there have been few reports on improvements in deformation that occurs during mold working. Patent Literature 1 reports a martensitic steel that retains strength and characteristics and a method for producing the same for use in molds for electronic display parts. However, this is an invention about a high-strength steel sheet, and the range of components such as Ni, Cr, and Mn is significantly different from that of the Fe—Ni alloy, which is the object of the present invention.

また、特許文献2においては、金型の熱処理方法について報告されているが、これもCr、Mnなどの成分範囲がFe-Ni合金とは大きく異なる。 Further, Patent Document 2 reports a method of heat-treating a mold, but this also differs greatly from the Fe—Ni alloy in terms of component ranges such as Cr and Mn.

このように、Fe-Ni合金を用いた金型に関する報告はない。Fe-Ni合金については、熱膨張特性や低温特性について検討したものはあるが、製造工程、とくに焼鈍工程で生じる残留応力の低減、解消できる合金やその方法に関し検討した例はない。 Thus, there is no report on molds using Fe--Ni alloys. Regarding Fe--Ni alloys, there are studies on thermal expansion characteristics and low-temperature characteristics, but there are no examples of studies on alloys and methods that can reduce or eliminate residual stress generated in the manufacturing process, especially the annealing process.

特開2012-528943号公報JP 2012-528943 A 特開2012-11619号公報JP 2012-11619 A

本発明の目的は、焼鈍工程、特に冷却時に生じる残留応力を小さく均一にでき、金型フレーム材等の複雑な加工を施す用途において精緻な加工精度が得られるFe-Ni合金を提供することにある。 An object of the present invention is to provide an Fe—Ni alloy that can reduce and uniformize the residual stress generated during the annealing process, especially during cooling, and that can obtain precise processing accuracy in applications where complex processing such as mold frame materials is performed. be.

従来技術が抱えている上述した課題を解決するために、本発明は、主として焼鈍時に生成する酸化皮膜と冷却挙動について、酸化被膜の成分組成の影響に着目して鋭意研究を重ねた。 In order to solve the above-mentioned problems faced by the prior art, the present invention focused mainly on the oxide film formed during annealing and cooling behavior, focusing on the effect of the component composition of the oxide film.

この端緒は次の様な現象が認められことによる。Fe-36%Ni合金を量産、製造していたところ、同じサイズの板を同じ温度、同じ水冷条件で焼鈍処理を行ってもそりが明らかに異なるものが散見された。板のサイズは30mmt×2000mm×10000mmである。そりの大きな板は矯正を強く実施するため残留応力が大きく、複雑となり、結果としてフレーム材へ加工とした場合の形状維持が難しくなる。そりが小さいことは重要である。これら板から30mmt×2000mm×100mmの試験片を切り出した。小片としたため、この段階で両者のそりに違いはない。これをフライス盤で表面を6mm研削し、材料端部を原点として100mm間隔で全長にわたり変位(そり)を測定した。もっとも大きな変位はほぼ幅中央部であり、そりの大きな板は9mm、小さな板は5mmであった。これの中間程度までであれば、矯正も軽度であり、明らかな良化と判断できる。 This is due to the fact that the following phenomenon has been observed. When Fe-36% Ni alloys were mass-produced and manufactured, it was found that even if the same size plate was annealed at the same temperature and under the same water cooling conditions, the warpage was clearly different. The size of the plate is 30mmt x 2000mm x 10000mm. A plate with a large warp needs to be corrected strongly, resulting in a large residual stress and complication. Small warpage is important. Test pieces of 30 mmt x 2000 mm x 100 mm were cut from these plates. Since they were made into small pieces, there is no difference in warpage between the two at this stage. The surface of this was ground by a milling machine by 6 mm, and the displacement (warping) was measured over the entire length at intervals of 100 mm with the end of the material as the origin. The largest displacement was in the center of the width, 9 mm for the plate with large warp and 5 mm for the small plate. If it is up to the intermediate level of this, the correction is mild and can be judged to be a clear improvement.

続いて、そりの良い板について調査したところ、いずれも特定の造塊チャージであることが判った。そりの大小と無関係に主成分は同じであるため、それ以外の成分が影響を及ぼしていると推定するに至った。さらに、そりの小さな板と大きな板の加熱-均熱-冷却の挙動をよく観察したところ、水冷時に生じる水蒸気の粒に違いがあり、そりの小さな板は粒が細かく均一であることが判った。これがそりに違いを生じさせているものと考えた。 Subsequently, when a plate with good warpage was investigated, it was found that all of them were a specific ingot-making charge. Since the principal component is the same regardless of the magnitude of the warp, we have come to presume that other components have an effect. Furthermore, when we closely observed the behavior of heating, soaking, and cooling of a plate with small warp and a plate with large warp, we found that there was a difference in the grains of water vapor generated during water cooling, and that the grains of the plate with small warp were fine and uniform. . I figured this was what made the sled different.

この水蒸気粒の違いは、何によるものであるか、これを明らかにするために、次の様な酸化実験を行い、スケールの形態、組成などの比較を行った。供試材は前述するそりの小さな板と大きな板の2種から切り出したものを使用した。これらの表面を6面すべて♯240で200μm以上研磨、酸化スケールを完全に除去、水洗、脱脂、乾燥を行い酸化試験に供した。試験温度は960℃×10min、大気雰囲気中で保持、その後、放冷し断面の観察を行った。その結果、いずれにもFeとNiを主成分とした酸化皮膜が観察されたが、その形態が異なることが判った。この熱処理実験後の断面観察結果を図1に示す。(a)はそりが小さなチャージのものであり、(b)はそりが大きなチャージのものである。そりの小さな方は、酸化スケールがやや厚く、空隙があること、そりの大きな方はかなり密であった。組成を比較すると良好なチャージはMn、Snの含有量が高いものであった。 In order to clarify what is the cause of this difference in water vapor droplets, the following oxidation experiments were carried out to compare the morphology and composition of scales. The test materials were cut out from two kinds of plates, a small warp plate and a large warp plate, as described above. All six surfaces were polished with #240 to a thickness of 200 μm or more, the oxide scale was completely removed, washed with water, degreased and dried, and subjected to an oxidation test. The test temperature was 960° C.×10 min, held in an air atmosphere, then allowed to cool, and the cross section was observed. As a result, although an oxide film containing Fe and Ni as main components was observed in both cases, it was found that the morphology was different. FIG. 1 shows the cross-sectional observation results after this heat treatment experiment. (a) with a small sled charge and (b) with a large sled charge. The small warp showed that the oxide scale was a little thick and had voids, while the large warp was fairly dense. When the composition was compared, good charges had high contents of Mn and Sn.

酸化形態をポーラスにすることができれば、水冷により生じる残留応力を軽減し均一にできるものと考え、酸化形態におよぼす元素の影響を調査することとした。Fe-36%Ni合金に種々添加元素を添加し10kgの実験室溶解を行った。添加元素としては、Si、Mn、Cr、Mo、Cu、Co、Al、Ti、Snを選択した。それぞれの組成範囲は表1に示す通りとした。0.00とは無添加を意味している。単位はwt%である。 Considering that if the oxidized form can be made porous, the residual stress caused by water cooling can be reduced and made uniform, we investigated the effects of elements on the oxidized form. Various additive elements were added to the Fe-36% Ni alloy, and 10 kg of the alloy was melted in the laboratory. Si, Mn, Cr, Mo, Cu, Co, Al, Ti, and Sn were selected as additive elements. Each composition range was as shown in Table 1. 0.00 means no addition. The unit is wt %.

Figure 2023003776000002
Figure 2023003776000002

得られた合金塊を熱間鍛造により10mmtとし、その後1100℃で焼鈍、その後冷間圧延により4mmtとした。これから供試材を切り出し、♯240で全面を研磨し、1000℃×10min、放冷の酸化試験に供した。温度を1000℃としたのは、酸化スケールの違いをより明確にするためである。その後、切断、埋め込みを行い、断面の酸化被膜の形態を観察し空隙の個数を観察した。空隙は、電解放出型-走査電子顕微鏡(JSM-7001F)にて1000~3000倍にて観察を行い、50μm長さにわたって評価し、組成像とTOPO像、それぞれの観察を行い確実に空隙であるものをカウントし評価した。試料調整によりスケールが割れている部分があったが、その部分は避け安定して評価できる部分を選択し観察した。その結果、Snが増加すると空隙数が増加すること、Alを増加させると空隙数が減少することが判った。この酸化スケールの空隙個数におよぼすSn、Al量の影響を図2のグラフに示す。図1で観察したそりが良好であったものを同じ方法で空隙の個数を計測したところ、45個であった。空隙をこの程度導入すれば良化するものと考える。また、同じ様に評価し、空隙数を増加させる元素はMn、Moであること、減少させる元素はSi、Cr、Tiであることが判った。 The obtained alloy ingot was hot forged to 10 mmt, then annealed at 1100° C., and then cold rolled to 4 mmt. A test material was cut out from this, the entire surface thereof was polished with #240, and subjected to an oxidation test at 1000° C. for 10 minutes while being allowed to cool. The reason for setting the temperature to 1000° C. is to clarify the difference in oxide scale. After that, cutting and embedding were performed, and the shape of the oxide film on the cross section was observed, and the number of voids was observed. Voids are observed with a field emission scanning electron microscope (JSM-7001F) at a magnification of 1000 to 3000, evaluated over a length of 50 μm, and observed for each composition image and TOPO image to ensure that they are voids. counted and evaluated. There was a portion where the scale was cracked due to the preparation of the sample. As a result, it was found that the number of voids increased as Sn increased, and the number of voids decreased as Al increased. The graph of FIG. 2 shows the effects of the amounts of Sn and Al on the number of voids in the oxide scale. When the number of voids was measured by the same method for the sample with good warpage observed in FIG. 1, 45 voids were found. It is thought that the introduction of voids to this extent will improve the performance. Further, it was found from the same evaluation that the elements that increase the number of voids are Mn and Mo, and the elements that decrease the number of voids are Si, Cr, and Ti.

この様に酸化スケールの空隙個数は組成の影響を受けることが明らかとなったが、元素毎に正負の効果があり包括的に理解することが品質を安定させるためには重要となる。そこで、これら結果について重回帰分析を行うことで、空隙個数と化学組成の関係式(A)を求めた。
空隙個数(n)=
-212×Si -140×Cr -578×Al -569×Ti +254×Mn +262×Mo +1550×Sn +14 …(A)
In this way, it has been clarified that the number of pores in oxide scale is affected by the composition, but it is important to comprehensively understand the positive and negative effects of each element in order to stabilize the quality. Therefore, the relational expression (A) between the number of voids and the chemical composition was determined by performing multiple regression analysis on these results.
Number of voids (n) =
-212 x Si -140 x Cr -578 x Al -569 x Ti +254 x Mn +262 x Mo +1550 x Sn +14 (A)

図3に式(A)の値と測定した空隙個数の関係を示す。個数が小さいところでのバラツキがやや大きいが、直線性は良好と判断する。含有量が少ない範囲でも空隙個数は大きく変化するため、安定した管理を行うにはバラツキの下限を考慮した値で管理すると良いと考えた。形状が良好な板の空隙個数45であり、同じレベルとするのであれば、回帰式では70以上になる。空隙個数45で良化していたことから、もう少し小さな値でも十分であろうと推定する。この式の妥当性、閾値については、後述する実施例から70ではなく50以上十分であることを確認しており、これで修正すると式(1)となる。
50 ≦ -212×Si -140×Cr -578×Al -569×Ti +254×Mn +262×Mo +1550×Sn +14
…(1)
FIG. 3 shows the relationship between the value of formula (A) and the measured number of voids. Although the variation is somewhat large when the number is small, the linearity is judged to be good. Since the number of voids changes greatly even when the content is small, we thought that it would be better to manage with a value that considers the lower limit of variation for stable management. If the number of voids in a plate with a good shape is 45 and the same level is assumed, the regression formula will be 70 or more. Since improvement was achieved with the number of voids of 45, it is presumed that a slightly smaller value would be sufficient. Regarding the validity and threshold value of this formula, it has been confirmed from an embodiment described later that 50 or more, not 70, is sufficient.
50 ≤ -212 x Si -140 x Cr -578 x Al -569 x Ti +254 x Mn +262 x Mo +1550 x Sn +14
…(1)

さらに、B添加の影響を最大0.0050%までの範囲で調べたところ、Bも効果的に空隙を導入することが判った。同じく回帰式へ組み入れ、式は(2)と修正した。Bを含有する場合は式(2)を適用することとなる。
50 ≦ -212×Si -140×Cr -578×Al -569×Ti +254×Mn +262×Mo +1550×Sn
+68000×B +14 …(2)
Furthermore, when the influence of B addition was investigated in the range up to 0.0050%, it was found that B also effectively introduces voids. It was also incorporated into the regression equation, and the equation was modified to (2). When B is contained, formula (2) is applied.
50 ≤ -212 x Si -140 x Cr -578 x Al -569 x Ti +254 x Mn +262 x Mo +1550 x Sn
+68000×B +14 …(2)

このように酸化スケールの空隙を制御すると添加元素の効果により熱膨張係数が僅かではあるが大きくなるが、フレーム材への適用を考えると避ける方が好ましい。ほとんどの元素の影響は既知で添加すると熱膨張係数を大きくするが、Snの影響は不明であった。このため前記の実験室溶解材を用い測定したところ、30~100℃の熱膨張係数を大きくし、添加単位%あたりの変化量は、0.98であった。これより、30~100℃の熱膨張係数の増加量Δα30~100℃(×10-6)は、次式で予測でき、フレーム材としての適用を考えると増加量は0.8以下とすることが適当である。
0.8 ≧ 0.89×Si +1.1×Cr +1.5×Al +0.86×Ti +0.7×Mn +0.53×Mo +0.98×Sn
+0.26×Nb+29.5×B …(3)
If the pores of the oxide scale are controlled in this way, the coefficient of thermal expansion will increase, though slightly, due to the effect of the additive element, but it is preferable to avoid this in consideration of its application to the frame material. The effects of most elements are known and increase the coefficient of thermal expansion when added, but the effect of Sn was unknown. For this reason, when the above laboratory melting material was used for measurement, the coefficient of thermal expansion at 30 to 100° C. was increased, and the amount of change per unit % of addition was 0.98. From this, the increase Δα 30 to 100°C (×10 -6 ) of the coefficient of thermal expansion at 30 to 100°C can be predicted by the following formula, and considering the application as a frame material, the increase should be 0.8 or less. is appropriate.
0.8 ≥ 0.89 x Si + 1.1 x Cr + 1.5 x Al + 0.86 x Ti + 0.7 x Mn + 0.53 x Mo + 0.98 x Sn
+0.26×Nb+29.5×B …(3)

本願発明の合金は、上記の通り実験を通して成し得たものであり、具体的には以下の通りである。本願発明の合金は、以下質量%にて、C:0.001~0.05%、Ni: 30~45%、Si:0.01~0.4%、Cr:0.03~0.5%、Mn:0.10~1.0%、Al:0.001~ 0.10%、P:0.005%以下、S:0.005%以下、Mo:0.01~0.1%、Cu:0.01~0.5%、Ti:0.1%以下、Co:0.01~0.5%、Sn:0.001~0.05%、N:0.001~0.005%を主要成分として含有し、関係式(1)を満足し、残部がFeおよび不可避的不純物からなることを特徴とするFe-Ni合金である。
50 ≦ -212×Si -140×Cr -578×Al -569×Ti +254×Mn +262×Mo +1550×Sn +14
…(1)
The alloy of the present invention was made through experiments as described above, and specifically, it is as follows. The alloys of the present invention are C: 0.001 to 0.05%, Ni: 30 to 45%, Si: 0.01 to 0.4%, Cr: 0.03 to 0.5 %, Mn: 0.10 to 1.0%, Al: 0.001 to 0.10%, P: 0.005% or less, S: 0.005% or less, Mo: 0.01 to 0.1% , Cu: 0.01-0.5%, Ti: 0.1% or less, Co: 0.01-0.5%, Sn: 0.001-0.05%, N: 0.001-0. 005% as a main component, satisfies the relational expression (1), and the balance is composed of Fe and unavoidable impurities.
50 ≤ -212 x Si -140 x Cr -578 x Al -569 x Ti +254 x Mn +262 x Mo +1550 x Sn +14
…(1)

また、Nb:0.02~0.75%、B:0.0005~0.0035%のいずれか1種、あるいは2種を含有し関係式(2)を満足し、残部がFeおよび不可避的不純物からなるFe-Ni合金であるとより良い。
50 ≦ -212×Si -140×Cr -578×Al -569×Ti +254×Mn +262×Mo +1550×Sn
+68000×B +14 …(2)
In addition, Nb: 0.02 to 0.75%, B: 0.0005 to 0.0035%, any one or two of these satisfy the relational expression (2), and the balance is Fe and unavoidable An Fe—Ni alloy containing impurities is better.
50 ≤ -212 x Si -140 x Cr -578 x Al -569 x Ti +254 x Mn +262 x Mo +1550 x Sn
+68000×B +14 …(2)

さらに、本願発明の合金において、30~100℃の熱膨張係数の増加を示す式(3)を満たすFe-Ni合金であるとより望ましい。
0.8 ≧ 0.89×Si +1.1×Cr +1.5×Al +0.86×Ti +0.7×Mn +0.53×Mo +0.98×Sn
+0.26×Nb+29.5×B …(3)
Furthermore, it is more desirable that the alloy of the present invention be an Fe--Ni alloy that satisfies the formula (3) showing an increase in the thermal expansion coefficient from 30 to 100.degree.
0.8 ≥ 0.89 x Si + 1.1 x Cr + 1.5 x Al + 0.86 x Ti + 0.7 x Mn + 0.53 x Mo + 0.98 x Sn
+0.26×Nb+29.5×B …(3)

さらに、本願発明の合金から製造した12.5mm以上の厚みを持つFe-Ni合金板も提供する。 Further provided is an Fe--Ni alloy plate having a thickness of 12.5 mm or more produced from the alloy of the present invention.

さらに、Fe-Ni合金の製造方法も提供する。スラブを熱間圧延した後、熱延板とし、熱延板に熱処理を行い、続けて、ローラーハース式の冷却槽でスプレー水冷を施すことで、生じる残留応力を軽減しかつ均一にすることを特徴とするFe-Ni合金の製造方法である。 Further provided is a method for producing an Fe—Ni alloy. After hot-rolling the slab, it is made into a hot-rolled sheet, and the hot-rolled sheet is heat-treated and then spray-water cooled in a roller hearth-type cooling tank to reduce the residual stress and make it uniform. A method for producing an Fe—Ni alloy characterized by the following.

本発明の製造方法においては、熱処理は、熱処理温度:900~1000℃、保持時間:1~60minの条件であることが好ましい。 In the production method of the present invention, the heat treatment is preferably performed at a heat treatment temperature of 900 to 1000° C. and a holding time of 1 to 60 minutes.

本発明の製造方法においては、スプレー冷却のローラーハース式の冷却槽においては、スプレーは上下面にそれぞれ縦横複数配してあり、長手方向および幅方向のいずれにも200~400mm間隔で前記熱延板の全長、全幅を十分カバーする様なノズル配置としたことが好ましい。 In the manufacturing method of the present invention, in the roller hearth type cooling tank for spray cooling, a plurality of sprays are arranged vertically and horizontally on the upper and lower surfaces, and the hot rolling is performed at intervals of 200 to 400 mm in both the longitudinal direction and the width direction. It is preferable to arrange the nozzles so as to sufficiently cover the entire length and width of the plate.

熱処理実験後の断面写真図であり、(A)はそりが小さなチャージ、(B)はそりが大きなチャージである。It is a cross-sectional photograph after heat treatment experiment, (A) is a charge with a small warp, (B) is a charge with a large warp. 本発明のFe-Ni合金における酸化スケールの空隙個数に及ぼすSn、Al量の影響を示すグラフである。4 is a graph showing the effect of the amounts of Sn and Al on the number of voids in oxide scale in the Fe—Ni alloy of the present invention. 本発明のFe-Ni合金における酸化スケールの空隙個数と予測回帰式の関係を示すグラフである。4 is a graph showing the relationship between the number of pores in oxide scale and a prediction regression equation in the Fe—Ni alloy of the present invention.

本発明に係るFe-Ni合金は上述したように、以下質量%にて、C:0.001~0.05%、Ni: 30~45%、Si:0.01~0.4%、Cr:0.03~0.5%、Mn:0.10~1.0%、Al:0.001~ 0.10%、P:0.005%以下、S:0.005%以下、Mo:0.01~0.1%、Cu:0.01~0.5%、Ti:0.1%以下、Co:0.01~0.5%、Sn:0.001~0.05%、N:0.001~0.005%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有するものである。以下に各成分組成を上記のように限定した理由を説明する。 As described above, the Fe—Ni alloy according to the present invention contains C: 0.001 to 0.05%, Ni: 30 to 45%, Si: 0.01 to 0.4%, Cr : 0.03-0.5%, Mn: 0.10-1.0%, Al: 0.001-0.10%, P: 0.005% or less, S: 0.005% or less, Mo: 0.01 to 0.1%, Cu: 0.01 to 0.5%, Ti: 0.1% or less, Co: 0.01 to 0.5%, Sn: 0.001 to 0.05%, N: 0.001 to 0.005%, the balance being Fe and unavoidable impurities. The reasons for limiting each component composition as described above will be described below.

C:0.001~0.05%
Cは、固溶強化に寄与する元素であり、また、組織の低温安定性にも寄与する元素である。0.001% 未満では金型として十分な強度が得られない。しかし、0.05% を超え過剰に含有すると、多量の炭化物を生成して、靭性、耐疲労特性が劣化する。また、熱膨張係数も大きくなる。特に、優れた強度、低温特性、耐疲労特性、熱膨張係数を得るためには、このC の含有量を厳しく制限する必要があり、本発明では、0.001~ 0.05%とした。好ましくは0.001~0.045%、より好ましくは0.001~0.040%とする。
C: 0.001-0.05%
C is an element that contributes to solid-solution strengthening and also contributes to low-temperature stability of the structure. If it is less than 0.001%, sufficient strength as a mold cannot be obtained. However, if the content exceeds 0.05%, a large amount of carbides are formed, resulting in deterioration of toughness and fatigue resistance. Also, the coefficient of thermal expansion is increased. In particular, in order to obtain excellent strength, low-temperature properties, fatigue resistance and coefficient of thermal expansion, it is necessary to strictly limit the content of C. In the present invention, it is set to 0.001 to 0.05%. It is preferably 0.001 to 0.045%, more preferably 0.001 to 0.040%.

Ni:30~45%
Niは、Fe-Ni系合金の熱膨張係数を制御する上で重要な合金化元素である。そのNi含有量は30~45% の範囲とすることが必要で、この範囲を外れると熱膨張係数が増大し使用できなくなる。好ましくは34~39%で、35~37%とする。
Ni: 30-45%
Ni is an important alloying element in controlling the thermal expansion coefficient of Fe—Ni alloys. The Ni content must be in the range of 30 to 45%. If the Ni content is out of this range, the coefficient of thermal expansion increases and the product becomes unusable. It is preferably 34-39%, preferably 35-37%.

Si:0.01~0.4%
Siは、脱酸剤として、さらには良好な溶接性を維持するために有効な元素であり、少なくとも0.01%の添加は必要である。しかしながら、安定な酸化皮膜を形成する元素であり、焼鈍により酸化物層の緻密化を促進する元素で冷却を不均一にする傾向がある。また、熱膨張係数を大きくするため上限は0.4%とする。これより、本発明においては、Si含有量を0.01~0.4% とし、好ましくは0.02~0.38%、より好ましくは0.05~0.35%とする。
Si: 0.01-0.4%
Si is an element effective as a deoxidizing agent and also for maintaining good weldability, and should be added in an amount of at least 0.01%. However, it is an element that forms a stable oxide film, and is an element that promotes densification of the oxide layer by annealing, and tends to make cooling uneven. Also, the upper limit is set to 0.4% in order to increase the coefficient of thermal expansion. Accordingly, in the present invention, the Si content is set to 0.01 to 0.4%, preferably 0.02 to 0.38%, more preferably 0.05 to 0.35%.

Cr:0.03~0.5%
Crは、固溶強化元素で強度確保に寄与し、さらに耐食性を良化させる元素である。このため、0.03%以上の添加が必要である。一方、 その添加量が0.5% を超えると熱膨張係数が高くなり本来の低熱膨張特性を失う。また、このCrは、Siと同様に、酸化皮膜を安定化する元素でもあり、表面にSiと一緒になって複合酸化物皮膜を生成することで、酸化皮膜の緻密化を促進させ均一冷却に悪影響を及ぼす。このため、本発明においては、このCrの含有量を0.03~0.5%を添加することとし、好ましくは、0.04~0.40%、より好ましくは、0.05~0.35%する。
Cr: 0.03-0.5%
Cr is a solid-solution strengthening element that contributes to securing strength and further improves corrosion resistance. Therefore, addition of 0.03% or more is required. On the other hand, if the addition amount exceeds 0.5%, the coefficient of thermal expansion becomes high and the inherent low thermal expansion characteristic is lost. In addition, like Si, Cr is an element that stabilizes the oxide film. By forming a complex oxide film together with Si on the surface, Cr promotes the densification of the oxide film and promotes uniform cooling. Adversely affect. Therefore, in the present invention, the Cr content is added to 0.03 to 0.5%, preferably 0.04 to 0.40%, more preferably 0.05 to 0.5%. 35%.

Mn:0.10~1.0%
Mnは、固溶強化元素であると共に脱酸剤としても有効な元素である。また、MnSを形成してSの固定を促進し、熱間加工性と耐溶接割れ性を向上させる。さらに、酸化スケールに空隙を生じさせ均一冷却を促進する重要な役割を担う元素である。このような効果を得るためには0.10% 以上の添加が必要である。しかし、1.0% を超える過剰のMnを含有すると、表面性状が悪化、介在物が増加し耐食性を劣化させ、さらに熱膨張係数が増大する。そのため、本発明においては、Mn含有量を0.10~1.0% に限定する。好ましくは、0.12~0.7%、より好ましくは0.13~0.5%とする。
Mn: 0.10-1.0%
Mn is a solid-solution strengthening element and is also an effective element as a deoxidizing agent. In addition, MnS is formed to promote fixation of S, thereby improving hot workability and weld crack resistance. Furthermore, it is an element that plays an important role in generating voids in the oxide scale and promoting uniform cooling. In order to obtain such effects, addition of 0.10% or more is necessary. However, if the Mn content exceeds 1.0%, the surface properties deteriorate, inclusions increase, the corrosion resistance deteriorates, and the thermal expansion coefficient increases. Therefore, in the present invention, the Mn content is limited to 0.10-1.0%. Preferably, it is 0.12-0.7%, more preferably 0.13-0.5%.

Al:0.001~0.10%
Alは、脱酸剤として使用され、適正な量を合金中に残留させると、防錆性を有する複合酸化物皮膜を効果的に形成させ大気中での耐食性を確保するのに役立つ。このためには0.001% 以上の添加が必要である。一方、添加量が増えると熱膨張係数が高くなり、溶接の溶け込み性が劣化する。さらに、酸化スケールの緻密化を促進し均一冷却に悪影響を及ぼすため、適正量とすることが重要である。このため、上限は0.10%と規制する。好ましくは0.002~0.050%、より好ましくは0.003~0.020%とする。
Al: 0.001-0.10%
Al is used as a deoxidizing agent, and when it is left in the alloy in an appropriate amount, it effectively forms a complex oxide film with antirust properties and helps ensure corrosion resistance in the atmosphere. For this purpose, addition of 0.001% or more is necessary. On the other hand, if the addition amount increases, the coefficient of thermal expansion increases and the weld penetration deteriorates. Furthermore, it promotes densification of oxide scale and adversely affects uniform cooling, so it is important to set the amount to an appropriate level. Therefore, the upper limit is regulated to 0.10%. It is preferably 0.002 to 0.050%, more preferably 0.003 to 0.020%.

P:0.005%以下
Pは、耐銹性と溶接性を劣化させるので、できるだけ低減させることが望ましい。従って、0.005%以下に限定した。好ましくは0.003%以下、より好ましくは0.002%以下とする。
P: 0.005% or less P deteriorates rust resistance and weldability, so it is desirable to reduce it as much as possible. Therefore, it is limited to 0.005% or less. The content is preferably 0.003% or less, more preferably 0.002% or less.

S:0.005%以下
Sは、0.005% を超えると熱間加工性を阻害し、耐溶接割れ性も劣化する。そのため、S含有量は0.005% 以下に限定した。好ましくは0.002%以下、より好ましくは0.001%以下とする。
S: 0.005% or less If S exceeds 0.005%, hot workability is impaired and weld crack resistance is also deteriorated. Therefore, the S content is limited to 0.005% or less. It is preferably 0.002% or less, more preferably 0.001% or less.

Mo:0.01~0.1%
Moは、耐食性の向上に寄与するだけでなく、焼鈍時の酸化皮膜中に空隙を導入する重要な元素である。このため、少なくとも0.01%以上の添加は必要である。しかしながら、過剰な添加はコスト増を招き、熱膨張係数を大きくするため0.1%以下とする必要がある。好ましくは0.02~0.09%、より好ましくは0.02~0.07%とする。
Mo: 0.01-0.1%
Mo is an important element that not only contributes to the improvement of corrosion resistance, but also introduces voids into the oxide film during annealing. Therefore, it is necessary to add at least 0.01% or more. However, excessive addition leads to an increase in cost and increases the coefficient of thermal expansion, so the content should be 0.1% or less. It is preferably 0.02 to 0.09%, more preferably 0.02 to 0.07%.

Cu:0.01~0.5%
Cuは、F.C.C.相の安定度向上に寄与する元素で少なくとも0.01%の添加が必要である。しかしながら、0.5%を超えると、熱膨張係数が高くなり、品質が劣化する。そのため、本発明においてCuは、0.01~0.50% の範囲に規制する。好ましくは0.02~0.40% 、より好ましくは0.03~0.30%とする。
Cu: 0.01-0.5%
Cu is F.C. C. C. It is an element that contributes to the improvement of phase stability and should be added in an amount of at least 0.01%. However, if it exceeds 0.5%, the coefficient of thermal expansion increases and the quality deteriorates. Therefore, in the present invention, Cu is regulated within the range of 0.01 to 0.50%. It is preferably 0.02 to 0.40%, more preferably 0.03 to 0.30%.

Ti:0.1%以下
Tiは、非添加元素であるが、原料から混入する場合がある。従って、Tiの混入を極力抑えることが必要である。0.1% を超えると、析出物が増加することで耐食性の劣化を招き、熱膨張係数が高くなり品質が劣化する。さらに、酸化皮膜の緻密化を促進するため、均一冷却に悪影響を及ぼす。このため、この本発明においては、Tiの含有量をできる限り少なくし、その上限を0.1% に規定した。好ましくは0.03%以下、より好ましくは0.02%以下とする。
Ti: 0.1% or less Ti is a non-additive element, but may be mixed from raw materials. Therefore, it is necessary to suppress the contamination of Ti as much as possible. If it exceeds 0.1%, the increase in precipitates will lead to deterioration of corrosion resistance, and the coefficient of thermal expansion will increase, resulting in deterioration of quality. Furthermore, it promotes densification of the oxide film, which adversely affects uniform cooling. Therefore, in the present invention, the content of Ti is made as small as possible, and its upper limit is set at 0.1%. It is preferably 0.03% or less, more preferably 0.02% or less.

Co:0.01~0.5%
Coは、Niと同じくFe-Ni系合金の熱膨張係数を低く維持しF.C.C.相を安定化する合金化元素である。酸化スケールに空隙を導入するため元素を添加すると熱膨張係数が大きくなるが、Niと同様にこれを抑制するために有効な元素である。よって、少なくとも0.01%の含有は必須である。しかしながら、0.5%を超えると切削性が低下し、残留応力を抑制したとしても表面加工時の品質維持が難しくなる。そのため、本発明においてCoは、0.5%以下に規制する。好ましくは0.01~0.40%以下、より好ましくは0.02~0.35%とする。
Co: 0.01-0.5%
Co, like Ni, keeps the thermal expansion coefficient of the Fe—Ni alloy low. C. C. It is an alloying element that stabilizes the phase. When an element is added to introduce voids into the oxide scale, the coefficient of thermal expansion increases, but like Ni, it is an effective element for suppressing this. Therefore, the content of at least 0.01% is essential. However, if it exceeds 0.5%, the machinability deteriorates, and even if the residual stress is suppressed, it becomes difficult to maintain quality during surface processing. Therefore, Co is regulated to 0.5% or less in the present invention. It is preferably 0.01 to 0.40% or less, more preferably 0.02 to 0.35%.

Sn:0.001~0.05%
Snは、酸化皮膜に空隙を生じさせ冷却を均一にする重要な元素である。このため、少なくとも0.001%の添加が必要である。しかしながら、0.05%を超えると、耐食性の低下、熱間加工性を低下させる。このため、Snは0.001~0.05%の範囲に規制する。好ましくは0.002~0.040%、より好ましくは0.005~0.035%とする。
Sn: 0.001-0.05%
Sn is an important element that creates voids in the oxide film and uniforms cooling. Therefore, an addition of at least 0.001% is necessary. However, if it exceeds 0.05%, it lowers corrosion resistance and hot workability. Therefore, Sn is regulated within the range of 0.001 to 0.05%. It is preferably 0.002 to 0.040%, more preferably 0.005 to 0.035%.

N:0.001~0.005%
Nは固溶強化元素であり強度確保に寄与する元素であり、その効果を得るためには少なくとも0.001%以上の添加が必要である。しかしながら、過剰に添加すると窒化物を形成し表面欠陥の発生、溶接部する場合の欠陥発生を助長する。よって上限は0.005%とする。好ましくは0.001~0.004%、より好ましくは0.001~0.003%とする。
N: 0.001 to 0.005%
N is a solid-solution-strengthening element that contributes to ensuring strength, and in order to obtain this effect, it is necessary to add at least 0.001% or more. However, if it is added excessively, it forms nitrides, which promotes the occurrence of surface defects and the occurrence of defects when welding. Therefore, the upper limit is set to 0.005%. It is preferably 0.001 to 0.004%, more preferably 0.001 to 0.003%.

B:0.0005~0.0035%
Bは、熱間加工性を改善する有用な元素であり、酸化皮膜をポーラスとして均一冷却に寄与する元素である。この効果を得るには少なくとも0.0005%の添加が必要である。しかしながら、過剰な添加は、溶接ビードや製造工程における凝固割れが生じやすくなるため上限は0.0035%とする必要がある。そのため、本発明においては、B含有量は0.0005~0.0035%と厳しく制限する必要がある。好ましくは0.0008~0.0030%、より好ましくは0.0010~0.025%とする。
B: 0.0005 to 0.0035%
B is a useful element that improves hot workability and contributes to uniform cooling by making the oxide film porous. Addition of at least 0.0005% is necessary to obtain this effect. However, an excessive addition tends to cause weld beads and solidification cracks in the manufacturing process, so the upper limit must be 0.0035%. Therefore, in the present invention, the B content must be strictly limited to 0.0005-0.0035%. It is preferably 0.0008 to 0.0030%, more preferably 0.0010 to 0.025%.

Nb:0.02~0.75%
Nbは、Fe-Ni合金の強度を効果的に上昇させる元素であり、フレーム材においては高剛性化、薄肉化が図れる有用な元素である。このためには少なくとも0.02%の添加が必要である。しかしながら、過剰な添加は、熱膨張係数が高くなり、さらには溶接割れの発生を助長する。このため上限は0.75%とする。好ましくは0.10~0.70%、より好ましくは0.20~0.65%とする。
Nb: 0.02-0.75%
Nb is an element that effectively increases the strength of the Fe--Ni alloy, and is a useful element for increasing the rigidity and reducing the thickness of the frame material. This requires an addition of at least 0.02%. However, excessive addition increases the coefficient of thermal expansion and promotes the occurrence of weld cracks. Therefore, the upper limit is set to 0.75%. It is preferably 0.10 to 0.70%, more preferably 0.20 to 0.65%.

本発明のFe-Ni合金では、上記成分以外の残部は、鉄(Fe)および不可避的な不純物である。本発明のFe-Ni合金では、主成分としてFeが含有されている。 In the Fe—Ni alloy of the present invention, the balance other than the above components is iron (Fe) and unavoidable impurities. The Fe—Ni alloy of the present invention contains Fe as a main component.

50 ≦ -212×Si -140×Cr -578×Al -569×Ti +254×Mn +262×Mo +1550×Sn +14
酸化スケールの空隙の個数は組成の影響を受けるが、元素毎に正負の効果があり包括的に理解することが品質を安定させるためには重要となる。この式は各元素の影響を重回帰分析し、寄与の程度を整理したものである。耐食性や脱酸処理のため必須の元素であるが、一定量以上含有すると酸化スケールが緻密化してしまう。この場合、空隙を導入する様な元素を一定量添加し、50以上となる様にする必要がある。好ましくは、75以上、より好ましくは95以上とする。また、Bを含有する場合、Bの評価(上記式に+68000×Bの項)を追加した式を用いることで効果が得られる。その場合の閾値は同じ50で問題ない。
50 ≤ -212 x Si -140 x Cr -578 x Al -569 x Ti +254 x Mn +262 x Mo +1550 x Sn +14
The number of voids in the oxide scale is affected by the composition, but there are positive and negative effects for each element, and comprehensive understanding is important for stabilizing the quality. This formula is obtained by performing multiple regression analysis of the influence of each element and sorting out the degree of contribution. Although it is an essential element for corrosion resistance and deoxidation treatment, if it is contained in a certain amount or more, the oxide scale becomes dense. In this case, it is necessary to add a certain amount of an element that introduces voids so that the value becomes 50 or more. It is preferably 75 or more, more preferably 95 or more. Moreover, when B is contained, an effect can be obtained by using a formula in which the evaluation of B (a term of +68000×B in the above formula) is added. In that case, the same threshold value of 50 is no problem.

0.8 ≧ 0.89×Si +1.1×Cr +1.5×Al +0.86×Ti +0.7×Mn +0.53×Mo +0.98×Sn +0.26×Nb+29.5×B
熱膨張係数の増加量Δα(×10-6)を予測する式であり、フレーム材として必要な30~100℃の熱膨張係数を対象としている。酸化スケールの空隙を制御すると熱膨張係数が僅かに大きくなるが、フレーム材への適用を考えると避ける方が好ましい。これにより、ある元素の影響を他の元素で緩和することも可能となる。このためには、組成よりΔαを計算し0.8以下とすることで制御できる。好ましくは0.6以下、より好ましくは0.5以下、さらに好ましくは0.4以下とすると適当である。
0.8 ≥ 0.89 x Si + 1.1 x Cr + 1.5 x Al + 0.86 x Ti + 0.7 x Mn + 0.53 x Mo + 0.98 x Sn + 0.26 x Nb + 29.5 x B
This formula predicts the amount of increase Δα (×10 -6 ) in the coefficient of thermal expansion, and is intended for the coefficient of thermal expansion of 30 to 100° C. required for the frame material. Controlling the voids in the oxide scale slightly increases the coefficient of thermal expansion, but it is preferable to avoid it when considering application to the frame material. This makes it possible to mitigate the influence of a certain element with another element. This can be controlled by calculating Δα from the composition and making it 0.8 or less. It is appropriate to set it to preferably 0.6 or less, more preferably 0.5 or less, and still more preferably 0.4 or less.

本発明のFe-Ni合金は、低熱膨張係数を維持しつつ、合金板の加工性、生産効率にも優れていることから、金型・フレームの材料に好適である。 The Fe—Ni alloy of the present invention is suitable as a material for molds and frames because it maintains a low coefficient of thermal expansion and is excellent in workability and production efficiency of alloy plates.

熱処理温度:900~1000℃、保持時間:1~60min
熱処理の目的は、熱間圧延により硬化した材料を軟化するためである。900℃未満の温度では軟化が十分でなく、1000℃以上では酸化ロスが大きく歩留り低下を招く。さらに、酸化スケールが厚くなり均一性が低下し、結果とし均一な冷却が難しくなる。よって、熱処理温度は900~1000℃とする。好ましくは、920~980℃、より好ましきくは。930~970℃である。
Heat treatment temperature: 900-1000°C, holding time: 1-60min
The purpose of the heat treatment is to soften the material hardened by hot rolling. If the temperature is less than 900° C., the softening is not sufficient, and if it is 1000° C. or more, the oxidation loss is large and the yield is reduced. In addition, the oxide scale becomes thicker and less uniform, resulting in difficulty in uniform cooling. Therefore, the heat treatment temperature is set to 900 to 1000.degree. Preferably 920-980°C, more preferably. It is 930-970°C.

保持時間は板厚によって適時選択でき、軟化のためにはすくなくとも1min以上の保持が必要である。これに対し保持時間が60minを超える場合、酸化スケールが厚くなり均一性が低下する。このため、1~60minとする。好ましくは、3~45min、より好ましくは5~30minである。 The holding time can be appropriately selected according to the plate thickness, and holding for at least 1 minute is required for softening. On the other hand, if the holding time exceeds 60 minutes, the oxide scale becomes thicker and the uniformity is lowered. Therefore, it is set to 1 to 60 minutes. Preferably, it is 3-45 min, more preferably 5-30 min.

次に、本発明の実施例を説明するが、本発明はその趣旨を超えない限り、これらの実施例に限定されるものではない。
(1.諸特性の評価に及ぼす合金成分の影響)
Fe-Ni合金の製造はスクラップ、Niなどの原料を電気炉で溶解し、AOD(Argon Oxygen Decarburization)および/またはVOD(Vacuum Oxygen Decarburization)にて酸素吹精して脱炭を行う。その後、Alと石灰石を投入してCr還元を行い、さらに石灰石と蛍石を投入し、溶融合金上にCaO-SiO-Al-MgO-F系スラグを形成して脱酸、脱硫を行い得られた溶融合金を、連続鋳造機にて鋳造しスラブを製造した。その組成を表2に示す。その後、スラブは熱間圧延し30mmtの熱延板とした。この段階でのサイズは30mmt×2000mm×5000mmである。これを960℃×10minの熱処理を行い、続けてローラーハース式の冷却槽でスプレー水冷を施すことで製品とした。
Next, examples of the present invention will be described, but the present invention is not limited to these examples as long as the gist of the present invention is not exceeded.
(1. Influence of Alloy Components on Evaluation of Properties)
The Fe—Ni alloy is produced by melting raw materials such as scrap and Ni in an electric furnace, and decarburizing the melt by blowing oxygen with AOD (Argon Oxygen Decarburization) and/or VOD (Vacuum Oxygen Decarburization). After that, Al and limestone are added for Cr reduction, and then limestone and fluorite are added to form CaO-- SiO.sub.2 --Al.sub.2O.sub.3--MgO--F system slag on the molten alloy for deoxidation and desulfurization. A slab was manufactured by casting the molten alloy obtained by performing the above with a continuous casting machine. Its composition is shown in Table 2. After that, the slab was hot-rolled into a 30 mmt hot-rolled sheet. The size at this stage is 30mmt x 2000mm x 5000mm. This was subjected to heat treatment at 960° C.×10 min, followed by spray water cooling in a roller hearth type cooling tank to obtain a product.

このローラーハース式の冷却槽は、鋼板を水平面内で長手方向に移送するための複数のローラーを備えたローラーテーブルと、鋼板の上面と下面に対して冷却を行う複数のスプレーノズルを備えている。鋼板上面側の冷却用スプレーノズルは、鋼板上面に対向させて冷却水を噴射するよう縦横に複数個が配置され、横方向(鋼板幅方向)にあっては鋼板全幅を十分にカバーする個数が配置され、縦方向(鋼板長手方向)にあっては鋼板全長を十分にカバーする個数が配置されている。鋼板下面側のスプレーノズルも、上面同様に、鋼板下面に対向させて縦横に複数配置されている。鋼板下面においてはローラーが配置されており干渉するので、スプレーノズルとローラーの配置間隔を調整することで、上面同様にスプレーノズルが所望の間隔で縦横に配置されている。個々のスプレーノズルの間隔は、ムラなく必要十分に冷却を行うため、幅方向においても長手方向においても200~400mm間隔が好ましく、特に250~350mm間隔が好ましい。本実施例においては300mm間隔で実施した。スプレーノズルは水用で、水量はノズル1本あたり32リットル/minとした。速やかにスプレー下まで移動し、スプレー開始後は揺動しながら、水流を切らさない様に冷却するプロセスで実施した。得られた合金の評価は次の様に行った。 This roller hearth-type cooling tank is equipped with a roller table equipped with multiple rollers for transporting the steel plate in the horizontal plane in the longitudinal direction, and multiple spray nozzles for cooling the upper and lower surfaces of the steel plate. . The cooling spray nozzles on the upper surface side of the steel plate are arranged vertically and horizontally to spray cooling water facing the upper surface of the steel plate. In the vertical direction (longitudinal direction of the steel sheet), the number is arranged so as to sufficiently cover the entire length of the steel sheet. A plurality of spray nozzles on the lower surface of the steel plate are also arranged vertically and horizontally so as to face the lower surface of the steel plate, similarly to the upper surface. Since the rollers are arranged on the lower surface of the steel plate and interfere with each other, by adjusting the arrangement intervals between the spray nozzles and the rollers, the spray nozzles are arranged vertically and horizontally at desired intervals as on the upper surface. The distance between the individual spray nozzles is preferably 200 to 400 mm, more preferably 250 to 350 mm, in both the width direction and the longitudinal direction, in order to perform necessary and sufficient cooling evenly. In this example, the intervals were 300 mm. The spray nozzles were for water, and the amount of water was 32 liters/min per nozzle. It was carried out in a process of quickly moving to the bottom of the spray, and cooling after the start of spraying while rocking so as not to cut off the water flow. The obtained alloys were evaluated as follows.

(1)酸化被膜の空隙個数
製品焼鈍後に試験片を採取し、これを♯240で酸化スケールが完全に除去できるまで200μm以上全面研磨し、水洗、脱脂を行い1000℃×10min、放冷の酸化試験に供した。その後、切断、埋め込みを行い、断面の酸化被膜中の空隙の個数を測定した。測定は、電解放出型-走査電子顕微鏡(JSM-7001F)にて1000~3000倍にて観察し、組成像とTOPO像、それぞれの観察を行い確実に空隙であるものをカウントし評価した。評価長さは50μmとし、×:空隙個数30個未満、△:空隙個数30個以上60個未満、〇:空隙個数60個以上95個未満、◎:空隙個数95個以上、と評価して、表2に併記した。
(1) Number of voids in oxide film
After the product was annealed, a test piece was taken, polished with #240 to 200 μm or more until the oxide scale was completely removed, washed with water and degreased, and subjected to an oxidation test at 1000° C. for 10 minutes and allowed to cool. After that, cutting and embedding were performed, and the number of voids in the oxide film on the cross section was measured. The measurement was carried out by observation with a field emission scanning electron microscope (JSM-7001F) at a magnification of 1000 to 3000. The composition image and the TOPO image were observed, and voids were counted and evaluated. The evaluation length is 50 μm, ×: less than 30 voids, Δ: 30 to less than 60 voids, ◯: 60 to less than 95 voids, ◎: 95 or more voids, They are also shown in Table 2.

(2)残留応力の評価
製品焼鈍後の材料から30mmt×2000mm×100mmの試験片を切り出し評価に供した。これをフライス盤で表面を6mm研削し、材料端部を原点として100mm間隔で2000mm全幅にわたり変位(そり)を測定した。研削量は1パスで1mm一定とした。幅方向における最大変位量で評価した。6mm研削後の最大変位量(そり)は、×:7mm以上、△:7mm以上4mm未満、〇:4mm以上1mm未満、◎:1mm以下、と評価して表2に併記した。
(2) Evaluation of residual stress A test piece of 30 mmt x 2000 mm x 100 mm was cut out from the material after product annealing and used for evaluation. The surface of this was ground by a milling machine by 6 mm, and the displacement (warp) was measured over the entire width of 2000 mm at intervals of 100 mm with the end of the material as the origin. The grinding amount was constant at 1 mm per pass. It was evaluated by the maximum amount of displacement in the width direction. The maximum displacement (warp) after 6 mm grinding was evaluated as ×: 7 mm or more, Δ: 7 mm or more and less than 4 mm, ◯: 4 mm or more and less than 1 mm, and ◎: 1 mm or less.

(3)強度
製品焼鈍後の表面を湿式で研磨し酸化スケールを完全に除去した後、ビッカース硬さを測定し、表2に併記した。
(3) Strength After the surface of the annealed product was wet-polished to completely remove the oxide scale, the Vickers hardness was measured.

(4)熱膨張係数
製品焼鈍後の材料から採取した供試材から8mmφ×30mmlの試験片を採取し、これに真空中で960℃×10minの歪とり焼鈍を施した後、熱膨張係数の測定を行った。30~100℃の熱膨張係数α30~100℃が、基準値(α基準=1.35×10-6)との比(α30~100℃/α基準)で評価し、増加が小さいものが良好である。×:1.6以上、△:1.4以上1.6未満、〇:1.3以上1.4未満、◎:1.3未満、と評価して、表2に併記した。なお、本評価と比較して(1)~(3)の評価が優先されるため、本評価において×である例14は発明例として許容される。
(4) Thermal expansion coefficient A test piece of 8 mmφ x 30 mm was sampled from the test material sampled from the material after product annealing. I made a measurement. Thermal expansion coefficient α 30 to 100°C at 30 to 100°C is evaluated by the ratio (α 30 to 100°Cstandard ) to the standard value (α standard = 1.35 × 10 -6 ), and the increase is small. is good. ×: 1.6 or more, Δ: 1.4 or more and less than 1.6, ◯: 1.3 or more and less than 1.4, ⊙: less than 1.3. In addition, since the evaluations (1) to (3) are prioritized in comparison with this evaluation, Example 14, which is x in this evaluation, is acceptable as an invention example.

Figure 2023003776000003
Figure 2023003776000003

評価結果を表2に示す。発明例であるNo.1~19は酸化スケールの空隙数は、いずれも測定結果で30個を越えており良化が確認された。空隙の測定個数とそりは良い相関関係があり、閾値の設定も妥当であったと考える。Nbを添加したNo.15~17は他より硬さが10~20HV程度大きい。これにより金型の剛性が大きくなり薄肉化が期待される。また、B添加のNo.17~19の効果は顕著であり微量でも大きな効果が得られる。 Table 2 shows the evaluation results. No. 1, which is an example of the invention. 1 to 19, the number of voids in the oxide scale exceeded 30 in the measurement results, confirming the improvement. There is a good correlation between the measured number of voids and warpage, and it is considered that the threshold setting was appropriate. No. 1 to which Nb was added. Nos. 15-17 are about 10-20 HV higher in hardness than others. This is expected to increase the rigidity of the mold and make it thinner. Moreover, No. of B addition. The effect of Nos. 17 to 19 is remarkable, and a large effect can be obtained even with a very small amount.

Si量が範囲上限を越えているNo.20、同じくCr、Al量が範囲を越えているNo.21、22は、それぞれの元素の影響で酸化スケールが緻密なため所定の効果が得られない。よって、そりが大きい。No.23は、それぞれの元素は所定の含有量であるが、空隙式(1)を満たしておらず、結果として空隙の導入が少なく所定の効果が得られなかった。また、No.24~26は、Mn、Mo、Snの含有量が少ないため効果が不十分であり、結果としてそりを抑制できていない。 No. in which the amount of Si exceeds the upper limit of the range. 20, and No. 20, in which the amounts of Cr and Al also exceed the range. In Nos. 21 and 22, the oxide scale is dense under the influence of each element, so the desired effect cannot be obtained. Therefore, warpage is large. No. In No. 23, the content of each element was specified, but the gap formula (1) was not satisfied, and as a result, the introduction of gaps was small, and the specified effect was not obtained. Also, No. In Nos. 24 to 26, since the contents of Mn, Mo and Sn are small, the effect is insufficient, and as a result the warpage cannot be suppressed.

(2.熱間圧延後の熱処理の検討)
次に、熱間圧延を施したNo.3、17について、上記実験での960℃×10minの熱処理に代えて、以下の条件に変更して熱処理を施し、上記と同じくそりの評価を行った、その結果を表3に示す。
(2. Examination of heat treatment after hot rolling)
Next, No. 1 subjected to hot rolling. For Nos. 3 and 17, instead of the heat treatment at 960° C.×10 min in the above experiment, the heat treatment was performed under the following conditions, and warpage was evaluated in the same manner as above. Table 3 shows the results.

Figure 2023003776000004
Figure 2023003776000004

熱処理温度、時間のいずれか一方が本発明外であるNo.3-2、No.3-3、No.17-2、No.17-3は、結果としてそりが大きくなってしまった。 No. in which either the heat treatment temperature or time is outside the scope of the present invention. 3-2, No. 3-3, No. 17-2, No. As a result, 17-3 had a large warpage.

本発明は、冷却によって生じる残留応力を軽減することができるFe-Ni系合金に関するものであり、とくに、焼鈍工程の際に表面に特徴的な酸化皮膜を形成させることで冷却時に生じる残留応力を小さく均一にすることができるFe-Ni合金板についての提案である。


The present invention relates to Fe—Ni alloys capable of reducing residual stress caused by cooling.In particular, the residual stress caused by cooling is reduced by forming a characteristic oxide film on the surface during the annealing process. This is a proposal for an Fe—Ni alloy plate that can be made small and uniform.


Claims (7)

以下質量%で、C:0.01~0.05%、Ni:30~45%、Si:0.01~ 0.4% Cr:0.03~0.5%、Mn:0.10~1.0%、Al:0.001~0.10%以下、P:0.005%以下、S:0.005%以下、Mo:0.01~ 0.1%、Cu:0.01~0.5%、Ti:0.1%以下、Co:0.01~0.5%、Sn:0.001~0.05%、N:0.001~0.005%を主要成分として含有し、関係式(1)を満足し、残部がFeおよび不可避的不純物からなることを特徴とするFe-Ni合金。
50≦-212×Si -140×Cr -578×Al -569×Ti +254×Mn +262×Mo +1550×Sn +14…(1)
In the following mass%, C: 0.01 to 0.05%, Ni: 30 to 45%, Si: 0.01 to 0.4% Cr: 0.03 to 0.5%, Mn: 0.10 to 1.0%, Al: 0.001 to 0.10% or less, P: 0.005% or less, S: 0.005% or less, Mo: 0.01 to 0.1%, Cu: 0.01 to 0.5%, Ti: 0.1% or less, Co: 0.01-0.5%, Sn: 0.001-0.05%, N: 0.001-0.005% as main components and satisfying the relational expression (1), the balance being Fe and unavoidable impurities.
50≦-212×Si-140×Cr-578×Al-569×Ti+254×Mn+262×Mo+1550×Sn+14 (1)
Nb:0.02~0.75%、B:0.0005~0.0035%のいずれか1種、あるいは2種を含有し、関係式(2)を満足し、残部がFeおよび不可避的不純物からなることを特徴とする請求項1に記載のFe-Ni合金。
50≦-212×Si -140×Cr -578×Al -569×Ti +254×Mn +262×Mo +1550×Sn +68000×B +14 …(2)
Nb: 0.02 to 0.75%, B: 0.0005 to 0.0035%, containing either one or two, satisfying the relational expression (2), and the balance being Fe and unavoidable impurities The Fe—Ni alloy according to claim 1, characterized in that it consists of:
50≦-212×Si-140×Cr-578×Al-569×Ti+254×Mn+262×Mo+1550×Sn+68000×B+14 (2)
30~100℃の熱膨張係数の増加を示す関係式(3)を満たすことを特徴とする請求項1または2に記載のFe-Ni合金。
0.8≧0.89×Si +1.1×Cr +1.5×Al +0.86×Ti +0.7×Mn +0.53×Mo +0.98×Sn +0.26×Nb+29.5×B …(3)
3. The Fe—Ni alloy according to claim 1, wherein the Fe—Ni alloy satisfies the relational expression (3) showing an increase in thermal expansion coefficient from 30 to 100.degree.
0.8 ≥ 0.89 x Si + 1.1 x Cr + 1.5 x Al + 0.86 x Ti + 0.7 x Mn + 0.53 x Mo + 0.98 x Sn + 0.26 x Nb + 29.5 x B … (3)
請求項1~3のいずれかに記載の合金から製造した12.5mm以上の厚みを持つFe-Ni合金板。 An Fe—Ni alloy plate having a thickness of 12.5 mm or more, produced from the alloy according to any one of claims 1 to 3. 請求項1~3のいずれかに記載のFe-Ni合金の製造方法であって、スラブを熱間圧延した後、熱延板とし、前記熱延板に熱処理を行い、続けて、ローラーハース式の冷却槽でスプレー水冷を施すことで生じる残留応力を軽減しかつ均一にすることを特徴とするFe-Ni合金の製造方法。 The method for producing an Fe—Ni alloy according to any one of claims 1 to 3, wherein the slab is hot-rolled to form a hot-rolled sheet, and the hot-rolled sheet is heat-treated, followed by a roller hearth type A method for producing an Fe—Ni alloy characterized by reducing and uniformizing residual stress generated by applying spray water cooling in a cooling tank. 前記熱処理は、熱処理温度:900~1000℃、保持時間:1~60minの条件であることを特徴とする請求項5に記載のFe-Ni合金の製造方法。 6. The method for producing an Fe—Ni alloy according to claim 5, wherein the heat treatment is performed under conditions of a heat treatment temperature of 900 to 1000° C. and a holding time of 1 to 60 minutes. 前記スプレー冷却のローラーハース式の冷却槽においては、スプレーは上下面にそれぞれ縦横複数配してあり、長手方向および幅方向のいずれにも200~400mm間隔で前記熱延板の全長、全幅を十分カバーする様なノズル配置としたことを特徴とする請求項5または6に記載のFe-Ni合金の製造方法。


In the roller hearth-type cooling tank for spray cooling, a plurality of sprays are arranged vertically and horizontally on the upper and lower surfaces, respectively, and the entire length and width of the hot-rolled sheet are sufficiently covered at intervals of 200 to 400 mm in both the longitudinal direction and the width direction. 7. The method for producing an Fe--Ni alloy according to claim 5 or 6, characterized in that the nozzles are arranged so as to cover.


JP2021105054A 2021-06-24 2021-06-24 Fe-Ni alloy and its manufacturing method Active JP6961121B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021105054A JP6961121B1 (en) 2021-06-24 2021-06-24 Fe-Ni alloy and its manufacturing method
TW111121170A TW202307232A (en) 2021-06-24 2022-06-08 Fe-Ni alloy and preparation method thereof
KR1020220076038A KR20230000441A (en) 2021-06-24 2022-06-22 Fe-Ni ALLOY AND METHOD FOR MANUFACTURING THE SAME
CN202210722186.6A CN115522119A (en) 2021-06-24 2022-06-24 Fe-Ni alloy and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021105054A JP6961121B1 (en) 2021-06-24 2021-06-24 Fe-Ni alloy and its manufacturing method

Publications (2)

Publication Number Publication Date
JP6961121B1 JP6961121B1 (en) 2021-11-05
JP2023003776A true JP2023003776A (en) 2023-01-17

Family

ID=78409779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021105054A Active JP6961121B1 (en) 2021-06-24 2021-06-24 Fe-Ni alloy and its manufacturing method

Country Status (4)

Country Link
JP (1) JP6961121B1 (en)
KR (1) KR20230000441A (en)
CN (1) CN115522119A (en)
TW (1) TW202307232A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0873935A (en) * 1994-09-01 1996-03-19 Nkk Corp Production of alloy strip of iron-nickel alloy
JPH10204541A (en) * 1997-01-17 1998-08-04 Nkk Corp Production of low-thermal-expansion alloy sheet excellent in sheet shape and heat shrinkage resistance
JP2000017399A (en) * 1998-07-02 2000-01-18 Nippon Yakin Kogyo Co Ltd MATERIAL FOR Fe-Ni SERIES LEAD FRAME EXCELLENT IN PUNCHING WORKABILITY, Fe-Ni SERIES PRESS-PUNCHED ARTICLE AND METHOD FOR PUNCHING Fe-Ni SERIES MATERIAL
JP2003183774A (en) * 2001-08-23 2003-07-03 Nippon Mining & Metals Co Ltd Strip for shadow mask having satisfactory shape after being etched
JP2020190018A (en) * 2019-05-23 2020-11-26 日鉄ステンレス株式会社 Invar alloy sheet and its manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8557059B2 (en) 2009-06-05 2013-10-15 Edro Specialty Steels, Inc. Plastic injection mold of low carbon martensitic stainless steel
JP2012011619A (en) 2010-06-30 2012-01-19 Kojima Press Industry Co Ltd Clip coupling structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0873935A (en) * 1994-09-01 1996-03-19 Nkk Corp Production of alloy strip of iron-nickel alloy
JPH10204541A (en) * 1997-01-17 1998-08-04 Nkk Corp Production of low-thermal-expansion alloy sheet excellent in sheet shape and heat shrinkage resistance
JP2000017399A (en) * 1998-07-02 2000-01-18 Nippon Yakin Kogyo Co Ltd MATERIAL FOR Fe-Ni SERIES LEAD FRAME EXCELLENT IN PUNCHING WORKABILITY, Fe-Ni SERIES PRESS-PUNCHED ARTICLE AND METHOD FOR PUNCHING Fe-Ni SERIES MATERIAL
JP2003183774A (en) * 2001-08-23 2003-07-03 Nippon Mining & Metals Co Ltd Strip for shadow mask having satisfactory shape after being etched
JP2020190018A (en) * 2019-05-23 2020-11-26 日鉄ステンレス株式会社 Invar alloy sheet and its manufacturing method

Also Published As

Publication number Publication date
JP6961121B1 (en) 2021-11-05
CN115522119A (en) 2022-12-27
TW202307232A (en) 2023-02-16
KR20230000441A (en) 2023-01-02

Similar Documents

Publication Publication Date Title
JP6428970B1 (en) Hot-pressed member and manufacturing method thereof
JP6704995B2 (en) Aluminum-iron alloy plated steel sheet for hot forming excellent in hydrogen delayed fracture resistance, peeling resistance, and weldability, and hot forming member using the same
US11274357B2 (en) Plated steel sheet for hot press forming having excellent impact property, hot press formed part, and manufacturing method thereof
JP6437635B2 (en) HPF molded member having excellent powdering resistance during press molding and method for producing the same
JP5472531B2 (en) Steel sheet for hot stamp member and manufacturing method thereof
KR101638719B1 (en) Galvanized steel sheet and method for manufacturing the same
KR20170133495A (en) Heat treated steel sheet member and method for manufacturing the same
JP2005126733A (en) Steel sheet for hot press having excellent hot workability, and automotive member
JP2017048412A (en) Hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet and production methods therefor
US20170073792A1 (en) Hot-formed steel sheet member
KR101766550B1 (en) Lean duplex stainless steel and method for manufacturing the same
JP6052145B2 (en) Bake-hardening hot-dip galvanized steel sheet
JP6835046B2 (en) Thin steel sheet and its manufacturing method
JPH0747797B2 (en) Steel plate for enamel having excellent scabbing resistance, bubble resistance, black spot defect resistance and press formability, and method for producing the same
JP2008308732A (en) Hardened steel plate member, steel plate for hardening, and their manufacturing methods
KR20210078277A (en) Aluminium alloy coated steel sheet, hot formed parts and method of manufacturing thereof
JP5929556B2 (en) Method for producing continuous cast slab and method for producing high-strength cold-rolled steel sheet
JPH10251794A (en) Hot rolled steel plate for structural purpose, excellent in press formability and surface characteristic, and its production
JP2023003776A (en) Fe-Ni ALLOY AND METHOD FOR PRODUCING THE SAME
JP2013127101A (en) HIGH-STRENGTH STEEL MATERIAL HAVING EXCELLENT MECHANICAL DESCALING PROPERTY AND TENSILE STRENGTH OF 600 MPa OR MORE, AND METHOD FOR PRODUCING THE SAME
JP2010174293A (en) Steel sheet to be die-quenched superior in hot-punchability
JP7029570B1 (en) Precipitation hardening martensitic stainless steel and its manufacturing method
KR20110046681A (en) Continuous casting method for rolled steel products
KR20240025381A (en) Ferritic stainless steel with improved ridging resistance and its manufacturing method
JP5316027B2 (en) Die quench steel plate with excellent hot punchability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210804

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211012

R150 Certificate of patent or registration of utility model

Ref document number: 6961121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150