JP2022544735A - Construction method and application of nanocellulose-based cell growth factor sustained release anisotropic stent - Google Patents

Construction method and application of nanocellulose-based cell growth factor sustained release anisotropic stent Download PDF

Info

Publication number
JP2022544735A
JP2022544735A JP2021573348A JP2021573348A JP2022544735A JP 2022544735 A JP2022544735 A JP 2022544735A JP 2021573348 A JP2021573348 A JP 2021573348A JP 2021573348 A JP2021573348 A JP 2021573348A JP 2022544735 A JP2022544735 A JP 2022544735A
Authority
JP
Japan
Prior art keywords
nanocellulose
growth factor
anisotropic
cell growth
sustained release
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021573348A
Other languages
Japanese (ja)
Other versions
JP7190217B2 (en
Inventor
ジュン リウ
ル チョン
イーフェイ シー
シュエチュウ ルー
スウジエ ユィ
ハイシン ジャオ
チェンチェン ワン
ジェンジョン スン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Publication of JP2022544735A publication Critical patent/JP2022544735A/en
Application granted granted Critical
Publication of JP7190217B2 publication Critical patent/JP7190217B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/227Other specific proteins or polypeptides not covered by A61L27/222, A61L27/225 or A61L27/24
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/412Tissue-regenerating or healing or proliferative agents
    • A61L2300/414Growth factors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/602Type of release, e.g. controlled, sustained, slow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/12Nanosized materials, e.g. nanofibres, nanoparticles, nanowires, nanotubes; Nanostructured surfaces
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/02Cellulose; Modified cellulose

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dermatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Materials For Medical Uses (AREA)
  • Medicinal Preparation (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

【課題】本発明は、生体医用材料技術分野に関し、特に、ナノセルロースに基づく細胞成長因子徐放異方性ステントの構築方法及び応用に関する。【解決手段】当該方法は、(1)パルプ繊維を製造するステップと、(2)パルプ繊維を洗浄してろ過するステップと、(3)きれいに洗浄されたパルプ繊維を用いて高純度ナノセルロースヒドロゲルを作製するステップと、(4)ナノセルロースヒドロゲルを用いてナノセルロースフィルムを作製するステップと、(5)線維芽細胞成長因子及び複合セルラーゼを溶解した溶液にナノセルロースフィルムを浸漬し、4℃でin situ吸着して膨潤し、異方性3次元立体ステントを同期的に形成するステップと、(6)作製された線維芽細胞成長因子及び複合セルラーゼが担持されたナノセルロースヒドロゲルステントを滅菌水で洗浄し、必要に応じて異なる形状やサイズに切断し、凍結乾燥して、ナノセルロースに基づく細胞成長因子徐放異方性ステントを作製するステップと、を含む。【選択図】図1Kind Code: A1 The present invention relates to the field of biomedical material technology, and more particularly to the construction method and application of nanocellulose-based cell growth factor sustained release anisotropic stents. The method includes the steps of (1) producing pulp fibers, (2) washing and filtering the pulp fibers, and (3) using the cleanly washed pulp fibers to prepare a high-purity nanocellulose hydrogel. (4) preparing a nanocellulose film using the nanocellulose hydrogel; (5) immersing the nanocellulose film in a solution of fibroblast growth factor and complex cellulase; (6) synchronously forming an anisotropic three-dimensional stent by in situ adsorption and swelling; washing, cutting into different shapes and sizes as required, and freeze-drying to fabricate nanocellulose-based cell growth factor sustained release anisotropic stents. [Selection drawing] Fig. 1

Description

本発明は、生体医用材料技術分野に関し、具体的には細胞成長因子徐放性ステントの分野に関する。 The present invention relates to the field of biomedical material technology, specifically to the field of cell growth factor sustained release stents.

細胞成長因子は、細胞の増殖を刺激し、細胞の分化と成熟を促進し、細胞の様々な活動と機能を調整可能な活性タンパク質又はペプチド物質である。例えば、塩基性線維芽細胞成長因子(bFGFs)は線維芽細胞の増殖を促進し、損傷した細胞や組織を修復することができ、血小板由来成長因子(PDGF)は血管新生に重要な役割を果たしており、形質転換成長因子(TGF)は胚発生、創傷治癒、走化性及び細胞周期の制御を促進する生物学的効果を有する。細胞成長因子は、組織工学、創傷治癒、血管新生、神経系などの疾患の臨床治療において非常に大きな潜在力を示している。ところが、遊離細胞成長因子は体内で生物活性の半減期が短く、代謝が速く、酵素分解されやすいという特性があるため、体内注射又は体外培養添加では、成長因子の利用率が低く、予期される目的を達成するために複数回の投与と添加が必要となり、患者の苦痛や経済的負担を増加させる。従って、臨床治療においても、科学的研究においても、成長因子の活性を維持し、標的化及び放出を制御可能な製品の開発が切望されている。 Cell growth factors are active protein or peptide substances that can stimulate cell proliferation, promote cell differentiation and maturation, and regulate various activities and functions of cells. For example, basic fibroblast growth factors (bFGFs) can promote fibroblast proliferation and repair damaged cells and tissues, and platelet-derived growth factor (PDGF) plays an important role in angiogenesis. Transforming growth factors (TGFs) have biological effects that promote embryonic development, wound healing, chemotaxis and cell cycle control. Cell growth factors show enormous potential in the clinical treatment of diseases such as tissue engineering, wound healing, angiogenesis, and the nervous system. However, free cell growth factors have a short half-life of biological activity in the body, are rapidly metabolized, and are easily decomposed by enzymes. Multiple administrations and additions are required to achieve the purpose, which increases the patient's pain and economic burden. Therefore, there is a strong need in both clinical therapy and scientific research to develop products that maintain growth factor activity and that are capable of being targeted and released in a controlled manner.

細胞成長因子の徐放は、科学的研究及び臨床治療のために、生物活性を有する種々の細胞成長因子を生体適合性の材料又は担体と複合することにより、細胞成長因子の活性を維持するとともにその放出速度を制御可能な製品を製造する。 Sustained release of cell growth factors can be used for scientific research and clinical treatment by complexing various biologically active cell growth factors with biocompatible materials or carriers while maintaining the activity of cell growth factors. Manufacture a product whose release rate can be controlled.

例えば、特許CN105288749Aは、成長因子をキトサン、ポリ乳酸、ゼラチンなどの生体材料と混合し、凍結乾燥することにより、成長因子を放出する生体材料ステントを作製し、特許CN102172418Aは、血管新生成長因子と無細胞マトリックス、及びポリグリコリドラクチド、ポリカプロラクトンなどの分解可能な疎水性ポリマーを乳化して凍結乾燥することにより、成長因子を長期間で安定的に放出可能な無細胞マトリックスを作製し、また、例えば、特許CN101279104Bは、表皮成長因子及び塩基性線維芽細胞成長因子を動物の皮又は結合組織に由来するコラーゲンと複合し、凍結乾燥した後に、成長因子を含むコラーゲンスポンジを作製して慢性で治癒困難な創傷の治癒の促進に用いる。 For example, patent CN105288749A mixes growth factors with biomaterials such as chitosan, polylactic acid, gelatin and freeze-dries to make biomaterial stents that release growth factors; A cell-free matrix capable of stably releasing a growth factor for a long period of time is prepared by emulsifying and freeze-drying a cell-free matrix and a degradable hydrophobic polymer such as polyglycolide lactide or polycaprolactone, and For example, patent CN101279104B discloses that epidermal growth factor and basic fibroblast growth factor are combined with collagen derived from animal skin or connective tissue, freeze-dried, and then made into a collagen sponge containing the growth factors for chronic healing. Used to promote healing of difficult wounds.

ところが、既存の報告及び関連する発明により製造される材料は、細胞因子とマトリックス材料との結合が簡単で、マトリックス材料が分解されにくく、又は分解が制御できないため、その放出速度を正確に制御できず、急速又は過剰な放出により活性の喪失と生物学的安全の問題が発生されることがまだ存在している。 However, in the materials produced by the existing reports and related inventions, the cell factors and the matrix material are easily bound, and the matrix material is difficult to decompose or its degradability cannot be controlled, so the release rate can be precisely controlled. However, rapid or excessive release may still result in loss of activity and biological safety issues.

また、動物由来のマトリックス材料には、免疫応答とバッチ間のバラツキなどの欠陥や不足があり、細胞成長因子の適用範囲と治療効果が制限され、臨床応用及び科学的研究において多くの不都合が発生される。 In addition, animal-derived matrix materials have defects and deficiencies such as immune response and batch-to-batch variation, which limit the application range and therapeutic efficacy of cell growth factors, causing many inconveniences in clinical applications and scientific research. be done.

ナノセルロースは製造中に、ヒドロゲルを形成しやすく、その高く水和された3次元ネットワーク構造は、ヒト臓器組織における細胞外マトリックスをうまくシミュレーションすることができるため、細胞の接着、成長、繁殖のために良好な3次元微小環境が提供される。生体適合性に優れ、物理的及び化学的特性を正確に制御可能で、且つ免疫アレルギーと拒絶反応がないため、現在、国内外で、ナノセルロースに基づく生体医用材料の開発は、人工臓器、組織工学、創傷修復などの臨床治療及び科学的研究において、ますます広く適用されている。 Nanocellulose is prone to form hydrogels during fabrication, and its highly hydrated three-dimensional network structure can well simulate the extracellular matrix in human organ tissues, making it suitable for cell adhesion, growth and proliferation. provides a good three-dimensional microenvironment for Due to its excellent biocompatibility, precise controllable physical and chemical properties, and no immune allergy and rejection reaction, the development of biomedical materials based on nanocellulose is now widely used at home and abroad for artificial organs and tissues. It is more and more widely applied in clinical treatment and scientific research, such as engineering, wound repair.

組織工学的ステント材料のネットワーク構造及びトポロジー形態、特にミクロンからナノスケールで異方的に配列されたステント又はマトリックス構造は、細胞形態と細胞挙動に直接影響することができ、細胞の優位性を維持して細胞の有向分化を誘導する強力なツールである。しかしながら、現在、通常のナノセルロースを含むヒドロゲルのほとんどは、その3次元ネットワーク骨格が本質的に等方性でランダムに配列した構造であり、筋肉、軟骨、心臓弁などの天然の組織の微視的スケールでの異方性構造及び優れた力学特性が欠けている。動物の基底膜に由来するマトリゲル(Matrigel)ネットワーク構造は、組織工学的培養の研究に良好なプラットフォームを提供することもできるが、そのバッチ間のバラツキにより力学特性とネットワーク構造の制御が困難になるとともに、潜在的に保有された病原体や抗原は感染や免疫反応を引き起こしやすい。従来のナノセルロースステント、例えば、市販の製品であるUPM GrowDexヒドロゲルなどは、細胞の成長と繁殖のために理想的な3次元ネットワーク環境を提供することができるが、ステントネットワークはランダムな構造であり、天然の組織の微視的スケールでの異方性構造が欠けているので、細胞の優位性を維持して細胞の有向分化を誘導する役割を効果的に果たすことができない。 The network structure and topological morphology of tissue-engineered stent materials, especially stents or matrix structures that are anisotropically aligned at the micron to nanoscale, can directly influence cell morphology and cell behavior, preserving cellular dominance. is a powerful tool for inducing directed differentiation of cells. However, at present, most of the usual nanocellulose-containing hydrogels are essentially isotropic and randomly arranged structures with their three-dimensional network scaffolds, which are microscopically similar to natural tissues such as muscle, cartilage, and heart valves. It lacks an anisotropic structure and good mechanical properties on a large scale. Matrigel network structures derived from animal basement membranes can also provide a good platform for tissue-engineered culture studies, but their batch-to-batch variability makes it difficult to control mechanical properties and network structures. Together, potentially harbored pathogens and antigens are susceptible to infection and immune responses. Conventional nanocellulose stents, such as the commercial product UPM GrowDex hydrogel, can provide an ideal three-dimensional network environment for cell growth and propagation, but the stent network is a random structure. , which lack the anisotropic structure at the microscopic scale of native tissues, cannot effectively play a role in maintaining cellular dominance and inducing directed cell differentiation.

従って、生体適合性の観点から組織工学的ステント材料の構造と機能に関する二重の要件を満たすために、異方性構造ネットワークを有する細胞成長因子徐放性ステント材料を構築することは、生体医用材料の研究と開発の重要な内容であり、現在差し迫って克服する必要がある難問である。 Therefore, in order to meet the dual requirements regarding the structure and function of tissue-engineered stent materials from a biocompatibility point of view, constructing a cell growth factor sustained-release stent material with an anisotropic structural network is a biomedical application. It is an important content of materials research and development, and a difficult problem that needs to be overcome urgently at present.

本発明の目的は、ナノセルロースに基づく異方性構造ネットワークを有する細胞成長因子徐放性ステント及びその構築方法と応用を提供することにより、現在、細胞成長因子徐放性材料の上記欠陥を解消するとともに、異方性ステントを構築することで、細胞と組織に構造的及び機械的サポートを動的に提供し、成長因子の活性を維持して標的化及び放出を制御可能な製品を開発する目標を達成することである。 The object of the present invention is to provide a cell growth factor sustained release stent with an anisotropic structural network based on nanocellulose, its construction method and application, thereby overcoming the above defects of current cell growth factor sustained release materials. and constructing anisotropic stents to dynamically provide structural and mechanical support to cells and tissues to maintain the activity of growth factors to develop products that can be targeted and controlled for release. Achieving the goal.

本発明において、まず、TEMPOの触媒酸化を高圧均質化処理と組み合わせることにより、超高純度のナノセルロース及びそのフィルムを作製し、そして、ナノセルロースフィルムが細胞成長因子及びセルロース分解酵素をin situ吸着し、3次元立体ステント材料を同期的に形成し、最後に、凍結乾燥して、ナノセルロースに基づく細胞成長因子徐放異方性ステントを作製する。 In the present invention, first, by combining the catalytic oxidation of TEMPO with high-pressure homogenization treatment, ultra-pure nanocellulose and its film are prepared, and the nanocellulose film adsorbs cell growth factors and cellulolytic enzymes in situ. and synchronously forming a three-dimensional three-dimensional stent material, and finally freeze-drying to fabricate a nanocellulose-based cell growth factor sustained release anisotropic stent.

具体的に、本発明は以下の技術案を提供する。 Specifically, the present invention provides the following technical solutions.

以下のステップを含む、ナノセルロースに基づく細胞成長因子徐放異方性ステントの構築方法である。
(1)パルプ繊維の製造:トウヒ溶解パルプ繊維1kgを滅菌水30Lに分散し、攪拌して均一に分散させ、水酸化ナトリウム50~100g及び30%の過酸化水素20~40mLを加え、均一に攪拌し、120℃、高圧で60分間滅菌する。
(2)パルプ繊維の洗浄及びろ過:ステップ(1)でのパルプ繊維をろ液のpHが中性になるように滅菌水でろ過して洗浄する。
(3)高純度ナノセルロースヒドロゲルの作製:きれいに洗浄されたパルプ繊維を滅菌水50Lに分散して攪拌し、2,2,6,6-テトラメチルピペリジン1-オキシル10~15g、臭化ナトリウム50~100g、10%の次亜塩素酸ナトリウム3~5Lを加え、pH10.5に調整して維持し、室温下で3~6時間攪拌して反応させ、1.0MのHClでシステムをpH7.0に調整し、300メッシュのナイロンメッシュでろ過し、ろ液の導電率が5μS/cmよりも低くなるまで滅菌水で洗浄し、きれいに洗浄されたパルプ繊維を滅菌水30~50Lに分散し、均一に攪拌し、それぞれ300barと1000barの圧力で高圧ホモジナイザーを通過し、高純度ナノセルロースヒドロゲルを作製する。
(4)作製されたナノセルロースヒドロゲルを濃度が0.1%になるように滅菌水で希釈し、PVDFろ過膜付きの真空フィルタに入れて、真空ろ過し、ろ過ケーキを収集し、ホットプレス乾燥機に移転し、80℃、2.3barの圧力で20分間ホットプレス乾燥し、紫外線で30分間照射し、ナノセルロースフィルムを作製する。
(5)線維芽細胞成長因子及び複合セルラーゼを溶解した溶液にナノセルロースフィルムを浸漬し、4℃でin situ吸着して膨潤し、異方性3次元立体ステントを同期的に形成する。
(6)作製された線維芽細胞成長因子及び複合セルラーゼが担持されたナノセルロースヒドロゲルステントを滅菌水で洗浄し、表面に残留した線維芽細胞成長因子及び複合セルラーゼを除去し、必要に応じて異なる形状やサイズに切断し、凍結乾燥して、ナノセルロースに基づく細胞成長因子徐放異方性ステントを作製する。
A method for constructing a nanocellulose-based cell growth factor sustained release anisotropic stent, comprising the following steps.
(1) Production of pulp fiber: Disperse 1 kg of spruce dissolving pulp fiber in 30 L of sterilized water, stir to uniformly disperse, add 50 to 100 g of sodium hydroxide and 20 to 40 mL of 30% hydrogen peroxide, and homogenize. Stir and sterilize at 120° C. and high pressure for 60 minutes.
(2) Washing and filtering pulp fibers: The pulp fibers in step (1) are filtered and washed with sterilized water so that the pH of the filtrate is neutral.
(3) Preparation of high-purity nanocellulose hydrogel: Cleanly washed pulp fibers are dispersed in 50 L of sterilized water and stirred, 2,2,6,6-tetramethylpiperidine 1-oxyl 10-15 g, sodium bromide 50 Add ˜100 g, 3-5 L of 10% sodium hypochlorite, adjust and maintain pH 10.5, stir at room temperature for 3-6 hours to react, bring system to pH 7.0 with 1.0 M HCl. adjusted to 0, filtered through a 300-mesh nylon mesh, washed with sterile water until the conductivity of the filtrate was lower than 5 μS / cm, dispersed the cleanly washed pulp fibers in 30-50 L of sterile water, Stir uniformly and pass through a high-pressure homogenizer at pressures of 300 bar and 1000 bar respectively to produce high-purity nanocellulose hydrogels.
(4) Dilute the prepared nanocellulose hydrogel with sterile water to a concentration of 0.1%, put it in a vacuum filter with a PVDF filtration membrane, vacuum filter, collect the filter cake, and hot press dry. It is transferred to a machine, hot-press dried at 80° C. and a pressure of 2.3 bar for 20 minutes, and irradiated with ultraviolet rays for 30 minutes to produce a nanocellulose film.
(5) The nanocellulose film is immersed in a solution of fibroblast growth factor and complex cellulase, and swelled by in situ adsorption at 4°C to synchronously form an anisotropic three-dimensional stent.
(6) Wash the prepared nanocellulose hydrogel stent carrying fibroblast growth factor and complex cellulase with sterile water to remove fibroblast growth factor and complex cellulase remaining on the surface, and use different Cut to shape and size and freeze-dry to fabricate nanocellulose-based cell growth factor sustained release anisotropic stents.

ここで、前記ステップ(4)において、PVDFろ過膜の孔径は0.22ミクロンであり、真空ろ過の時間は8~12時間である。 Here, in step (4), the pore size of the PVDF filtration membrane is 0.22 microns, and the vacuum filtration time is 8-12 hours.

ここで、前記ステップ(4)において、ろ過ケーキの上面にPVDFろ過膜を覆い、3層の吸収ろ紙を両面にパディングした後、ホットプレス乾燥機に移転する。 Here, in the above step (4), the upper surface of the filter cake is covered with a PVDF filter membrane, padded with three layers of absorbent filter paper on both sides, and then transferred to a hot press dryer.

ここで、前記ステップ(5)において、線維芽細胞成長因子の濃度は500~1000ng/mlであり、複合セルラーゼの濃度は20~100U/mlである。 Here, in step (5), the concentration of fibroblast growth factor is 500-1000 ng/ml and the concentration of complex cellulase is 20-100 U/ml.

ここで、前記ステップ(6)において、凍結乾燥の条件は-50℃、0.1mbarの真空度であり、凍結乾燥の時間は72時間である。 Here, in step (6), the freeze-drying conditions are −50° C., a vacuum of 0.1 mbar, and the freeze-drying time is 72 hours.

また、本発明は人工臓器、組織工学、創傷修復材料における、本発明にかかるナノセルロースに基づく細胞成長因子徐放異方性ステントの応用を提供する。 The present invention also provides applications of the nanocellulose-based sustained-release anisotropic stents of the present invention in artificial organs, tissue engineering, and wound repair materials.

従来技術に比べると、本発明は下記の有益な効果を有する。 Compared with the prior art, the present invention has the following beneficial effects.

本発明は、構造の生体模倣及び機能の生体模倣の観点から、他の細胞成長因子徐放性材料マトリックスと成長因子との結合が簡単であるため、その放出速度を正確に制御できず、急速又は過剰な放出により活性の喪失と生物学的安全の問題が発生されることが解決され、動物由来のマトリックス材料における免疫応答及びバッチ間のバラツキなどの欠陥や不足が解決され、成長因子をin situ吸着し、異方性構造ネットワークを有する細胞成長因子徐放性ステント材料を同期的に形成することにより、生体適合性の観点から組織工学的ステント材料の構造と機能に関する二重の要件が満たされる。 From the viewpoint of biomimicry of structure and biomimicry of function, the present invention is based on the fact that the binding of other cell growth factor sustained-release material matrices to the growth factor is simple, so that the release rate cannot be precisely controlled, and the release rate is rapid. or to solve the problem of loss of activity and biological safety caused by excessive release; By in situ adsorption and synchronous formation of cell growth factor sustained-release stent materials with anisotropic structural networks, the dual requirements for structure and function of tissue-engineered stent materials are met from a biocompatibility perspective. be

本発明により作製されたナノセルロースに基づく細胞成長因子徐放異方性ステント材料は、良い生体適合性を有し、細胞毒性がなく、生分解可能性があり、天然の組織の細胞外マトリックスにおける細胞成長因子とヘパリンなどのアニオン多糖類との緊密な結合をシミュレーションしており、得られたステント材料は、成長因子を安定的に貯蔵し、成長因子を必要に応じて放出し、ステントマトリックス材料の分解を制御可能であるといった利点を有し、その高く水和された3次元立体ネットワーク構造は、本物の細胞外マトリックスの微小環境と構造を最大限にシミュレーションして復元し、細胞の接着、成長、繁殖、分化のために理想的な微小環境を提供することができる。 The nanocellulose-based sustained-release anisotropic stent material made according to the present invention has good biocompatibility, no cytotoxicity, biodegradability, and can be used in natural tissue extracellular matrix. We have simulated the tight binding of cell growth factors with anionic polysaccharides such as heparin, and the resulting stent materials stably store growth factors, release growth factors on demand, and act as stent matrix materials. Its highly hydrated three-dimensional network structure maximizes the simulation of the microenvironment and structure of the real extracellular matrix and restores it. It can provide an ideal microenvironment for growth, reproduction and differentiation.

実施例3にかかる塩基性線維芽細胞の徐放曲線である。3 is a sustained release curve of basic fibroblasts according to Example 3. FIG. 実施例3にかかる塩基性線維芽細胞の徐放による細胞の増殖への促進の様子である。FIG. 10 shows promotion of cell growth by sustained release of basic fibroblasts according to Example 3. FIG. 実施例3にかかる線維芽細胞の成長因子徐放異方性ステント材料おける分布である。Fig. 3 shows the distribution of fibroblasts in the growth factor sustained release anisotropic stent material according to Example 3; 実施例1で作製されたナノセルロースに基づく細胞成長因子徐放異方性ステントの凍結乾燥製品の写真である。1 is a photograph of a freeze-dried product of a nanocellulose-based cell growth factor sustained release anisotropic stent made in Example 1. FIG. 実施例2にかかる成長因子をin situ吸着し、異方性構造ネットワークを有するステントを同期的に形成した顕微鏡写真である。FIG. 10 is a microscopic photograph of synchronous formation of a stent having an anisotropic structural network by in situ adsorption of a growth factor according to Example 2. FIG.

以下、本発明の実施例における図面と合わせて、本発明の実施例における技術案を明らかで完全に説明するが、無論、説明される実施例は、単に本発明の実施例の一部であり、全ての実施例ではない。本発明の実施例に基づき、当業者が創造的な工夫をせずに得られた他の実施例の全ては、本発明の請求範囲に属する。 The following clearly and completely describes the technical solutions in the embodiments of the present invention in conjunction with the drawings in the embodiments of the present invention, but of course the described embodiments are merely part of the embodiments of the present invention. , but not all examples. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts belong to the scope of the present invention.

実施例1
以下のステップを含む、ナノセルロースに基づく細胞成長因子徐放異方性ステントの構築方法である。
(1)トウヒ溶解パルプ繊維1kgを滅菌水30Lに分散し、攪拌して均一に分散させ、水酸化ナトリウム50~100g及び30%の過酸化水素20~40mLを加え、均一に攪拌し、120℃、高圧で60分間滅菌する。
(2)ステップ(1)でのパルプ繊維をろ液のpHが中性になるように滅菌水でろ過して洗浄する。
(3)ステップ(2)でのきれいに洗浄されたパルプ繊維を滅菌水50Lに分散して攪拌し、TEMPO(2,2,6,6-テトラメチルピペリジン1-オキシル)10~15g、臭化ナトリウム50~100g、10%の次亜塩素酸ナトリウム3~5Lを加え、pH10.5に調整して維持し、室温下で3~6時間攪拌して反応させ、1.0MのHClでシステムをpH7.0に調整する。300メッシュのナイロンメッシュでろ過し、ろ液の導電率が5μS/cmよりも低くなるまで滅菌水で洗浄する。きれいに洗浄されたパルプ繊維を滅菌水30~50Lに分散し、均一に攪拌し、それぞれ300barと1000barの圧力で高圧ホモジナイザーを通過し、高純度ナノセルロースヒドロゲルを作製する。
(4)ステップ(4)で作製されたナノセルロースを適量取り、濃度が0.1%になるように滅菌水で希釈し、孔径が0.22ミクロンのPVDFろ過膜付きの真空フィルタに入れる。8~12時間真空ろ過し、ろ過ケーキを収集し、上層にPVDFろ過膜を覆い、3層の吸収ろ紙を両面にパディングする。ホットプレス乾燥機に移転し、80℃、2.3barの圧力で20分間ホットプレス乾燥し、紫外線で30分間照射し、ナノセルロースフィルムを作製する。
(5)500~1000ng/mlの線維芽細胞成長因子及び20~100U/mlの複合セルラーゼを溶解した溶液1~5mlに、ステップ(4)で作製されたナノセルロースフィルムを浸漬し、4℃でin situ吸着して膨潤し、異方性構造を有する3次元立体ステントを同期的に形成する。
(6)ステップ(5)で作製された細胞成長因子及びセルラーゼが担持されたナノセルロースヒドロゲルステントを滅菌水で洗浄し、表面に残留した成長因子及びセルラーゼを除去し、必要に応じて異なる形状やサイズに切断し、-50℃、0.1mbarの真空度で72時間凍結乾燥して、低電荷密度のナノセルロースに基づく細胞成長因子徐放性ステントを作製し、製品の写真を図4に示す。
Example 1
A method for constructing a nanocellulose-based cell growth factor sustained release anisotropic stent, comprising the following steps.
(1) Disperse 1 kg of spruce dissolving pulp fiber in 30 L of sterilized water, stir to uniformly disperse, add 50 to 100 g of sodium hydroxide and 20 to 40 mL of 30% hydrogen peroxide, stir uniformly, and heat to 120 ° C. , high pressure for 60 minutes.
(2) Filter and wash the pulp fibers from step (1) with sterilized water so that the pH of the filtrate is neutral.
(3) Disperse and stir the cleanly washed pulp fibers from step (2) in 50 L of sterile water, add 10-15 g of TEMPO (2,2,6,6-tetramethylpiperidine 1-oxyl), sodium bromide. Add 50-100 g, 3-5 L of 10% sodium hypochlorite, adjust and maintain pH 10.5, stir at room temperature for 3-6 hours to react, and adjust the system to pH 7 with 1.0 M HCl. .0. Filter through a 300-mesh nylon mesh and wash with sterile water until the conductivity of the filtrate is less than 5 μS/cm. The cleanly washed pulp fibers are dispersed in 30-50 L of sterilized water, stirred uniformly, and passed through a high-pressure homogenizer at pressures of 300 bar and 1000 bar, respectively, to produce high-purity nanocellulose hydrogel.
(4) Take an appropriate amount of nanocellulose prepared in step (4), dilute with sterilized water to a concentration of 0.1%, and put it into a vacuum filter with a PVDF filtration membrane with a pore size of 0.22 microns. Vacuum filter for 8-12 hours, collect the filter cake, cover the PVDF filter membrane on top, and pad 3 layers of absorbent filter paper on both sides. Transfer to a hot press dryer, hot press dry at 80° C. and 2.3 bar pressure for 20 minutes, and irradiate with ultraviolet rays for 30 minutes to produce a nanocellulose film.
(5) The nanocellulose film prepared in step (4) is immersed in 1-5 ml of a solution in which 500-1000 ng/ml of fibroblast growth factor and 20-100 U/ml of complex cellulase are dissolved at 4°C. It adsorbs in situ, swells, and synchronously forms a three-dimensional stent with an anisotropic structure.
(6) Wash the nanocellulose hydrogel stent carrying cell growth factors and cellulase prepared in step (5) with sterilized water to remove the growth factors and cellulase remaining on the surface, Cut to size and freeze-dried at −50° C. and 0.1 mbar vacuum for 72 hours to fabricate nanocellulose-based cell growth factor sustained release stents with low charge density, the product picture is shown in FIG. .

実施例2
以下のステップを含む、ナノセルロースに基づく細胞成長因子徐放異方性ステントの構築方法である。
(1)トウヒ溶解パルプ繊維1kgを滅菌水30Lに分散し、攪拌して均一に分散させ、水酸化ナトリウム50~100g及び30%の過酸化水素20~40mLを加え、均一に攪拌し、120℃、高圧で60分間滅菌する。
(2)ステップ(1)でのパルプ繊維をろ液のpHが中性になるように滅菌水でろ過して洗浄する。
(3)ステップ(2)でのきれいに洗浄されたパルプ繊維を滅菌水50Lに分散して攪拌し、TEMPO(2,2,6,6-テトラメチルピペリジン1-オキシル)10~15g、臭化ナトリウム50~100g、10%の次亜塩素酸ナトリウム5~10Lを加え、pH10.5に調整して維持し、室温下で12~24時間攪拌して反応させ、1.0MのHClでシステムをpH7.0に調整する。300メッシュのナイロンメッシュでろ過し、ろ液の導電率が5μS/cmよりも低くなるまで滅菌水で洗浄する。きれいに洗浄されたパルプ繊維を滅菌水30~50Lに分散し、均一に攪拌し、それぞれ500barと1500barの圧力で高圧ホモジナイザーを通過し、高純度ナノセルロースヒドロゲルを作製する。
(4)ステップ(4)で作製されたナノセルロースを適量取り、濃度が0.1%になるように滅菌水で希釈し、孔径が0.22ミクロンのPVDFろ過膜付きの真空フィルタに入れる。12~24時間真空ろ過し、ろ過ケーキを収集し、上層にPVDFろ過膜を覆い、3層の吸収ろ紙を両面にパディングする。ホットプレス乾燥機に移転し、80℃、2.3barの圧力で20分間ホットプレス乾燥し、紫外線で30分間照射し、ナノセルロースフィルムを作製する。
(5)500~1000ng/mlの線維芽細胞成長因子及び20~100U/mlの複合セルラーゼを溶解した溶液5~10mlに、ステップ(4)で作製されたナノセルロースフィルムを浸漬し、4℃でin situ吸着して膨潤し、異方性構造を有する3次元立体ステントを同期的に形成する。
(6)ステップ(5)で作製された細胞成長因子及びセルラーゼが担持されたナノセルロースヒドロゲルステントを滅菌水で洗浄し、表面に残留した成長因子及びセルラーゼを除去し、必要に応じて異なる形状やサイズに切断し、-50℃、0.1mbarの真空度で72時間凍結乾燥して、高電荷密度のナノセルロースに基づく細胞成長因子徐放性ステントを作製する。
Example 2
A method for constructing a nanocellulose-based cell growth factor sustained release anisotropic stent, comprising the following steps.
(1) Disperse 1 kg of spruce dissolving pulp fiber in 30 L of sterilized water, stir to uniformly disperse, add 50 to 100 g of sodium hydroxide and 20 to 40 mL of 30% hydrogen peroxide, stir uniformly, and heat to 120 ° C. , high pressure for 60 minutes.
(2) Filter and wash the pulp fibers from step (1) with sterilized water so that the pH of the filtrate is neutral.
(3) Disperse and stir the cleanly washed pulp fibers from step (2) in 50 L of sterile water, add 10-15 g of TEMPO (2,2,6,6-tetramethylpiperidine 1-oxyl), sodium bromide. Add 50-100 g, 5-10 L of 10% sodium hypochlorite, adjust and maintain pH 10.5, stir at room temperature for 12-24 hours to react, adjust the system to pH 7 with 1.0 M HCl. .0. Filter through a 300-mesh nylon mesh and wash with sterile water until the conductivity of the filtrate is less than 5 μS/cm. The cleanly washed pulp fibers are dispersed in 30-50 L of sterilized water, stirred uniformly, and passed through a high-pressure homogenizer at pressures of 500 bar and 1500 bar, respectively, to produce high-purity nanocellulose hydrogels.
(4) Take an appropriate amount of nanocellulose prepared in step (4), dilute with sterilized water to a concentration of 0.1%, and put it into a vacuum filter with a PVDF filtration membrane with a pore size of 0.22 microns. Vacuum filter for 12-24 hours, collect the filter cake, cover the upper layer with PVDF filter membrane, and pad with 3 layers of absorbent filter paper on both sides. Transfer to a hot press dryer, hot press dry at 80° C. and 2.3 bar pressure for 20 minutes, and irradiate with ultraviolet rays for 30 minutes to produce a nanocellulose film.
(5) The nanocellulose film prepared in step (4) is immersed in 5-10 ml of a solution of 500-1000 ng/ml of fibroblast growth factor and 20-100 U/ml of complex cellulase, at 4°C. It adsorbs in situ, swells, and synchronously forms a three-dimensional stent with an anisotropic structure.
(6) Wash the nanocellulose hydrogel stent carrying cell growth factors and cellulase prepared in step (5) with sterilized water to remove the growth factors and cellulase remaining on the surface, It is cut to size and lyophilized at −50° C. and a vacuum of 0.1 mbar for 72 hours to fabricate cell growth factor sustained release stents based on nanocellulose with high charge density.

実施例3 ナノセルロースに基づく細胞成長因子徐放異方性ステントの性能の検証
(1)実施例1及び2で作製された成長因子徐放性ステントによる細胞成長因子の放出制御を検証するために、マウスb-FGF/FGF-2 ABC-ELISA酵素結合免疫測定キットを使用して、ステント材料のDMEM細胞培地における細胞成長因子の放出状況を検出した。
Example 3 Verification of Performance of Nanocellulose-Based Cell Growth Factor Sustained-Release Anisotropic Stent (1) To verify cell growth factor release control by the growth factor-sustained-release stents fabricated in Examples 1 and 2 , mouse b-FGF/FGF-2 ABC-ELISA enzyme-linked immunoassay kit was used to detect the release of cell growth factors in the DMEM cell culture medium of the stent material.

実施例1及び2における成長因子徐放性ステント(3mm×3mm×50μm)を1枚取り、1mlのDMEM完全培地に入れ、それぞれ0.5時間、1.0時間、3.0時間、6.0時間、12.0時間、1日、3日、7日で上清を取って成長因子の濃度を測定し、放出曲線を描いた。その結果、図1に示すように、細胞成長因子はステント材料から徐々に放出することができ、放出時間が7日にも達し、且つ徐放中に、ステント材料はセルラーゼ加水分解の作用下で徐々に分解され、成長因子の生物学的利用率がさらに向上し、細胞成長と自身の細胞外マトリックスの分泌にスペースが提供される。 Take one growth factor sustained-release stent (3 mm x 3 mm x 50 μm) in Examples 1 and 2, put it in 1 ml of DMEM complete medium, and incubate it for 0.5 hours, 1.0 hours, 3.0 hours, respectively. Supernatants were taken at 0 hours, 12.0 hours, 1 day, 3 days, and 7 days to measure growth factor concentrations and draw release curves. As a result, the cell growth factor can be gradually released from the stent material, as shown in FIG. It is gradually degraded, further increasing the bioavailability of growth factors and providing space for cell growth and secretion of its own extracellular matrix.

また、ナノセルロースの表面電荷密度が低いステント材料の方は、より速く、より多くの成長因子を放出することができる。それに対し、高電荷密度ナノセルロースステント材料は、細胞成長因子がステントネットワークと緊密に結合しているため、成長因子をより緩く放出することができるので、成長因子の速すぎて過剰な放出及び活性の喪失が効果的に回避されることで、ナノセルロース表面の電荷密度を制御することにより細胞成長因子の放出速度を制御することができる。 Also, stent materials with lower nanocellulose surface charge densities can release more growth factors faster. In contrast, high charge density nanocellulose stent materials can release growth factors more loosely due to the tight association of cell growth factors with the stent network, resulting in excessive release and activation of growth factors too quickly. Effectively avoiding the loss of , it is possible to control the release rate of cell growth factors by controlling the charge density on the nanocellulose surface.

(2)実施例1及び2で作製された成長因子徐放性ステントによる細胞成長因子の放出制御、細胞の成長と繁殖への促進を検証するために、3D細胞の培養を採用し、細胞の増殖状況を検出した。 (2) In order to verify the controlled release of cell growth factors and the promotion of cell growth and proliferation by the growth factor sustained-release stents produced in Examples 1 and 2, 3D cell culture was employed to Proliferation conditions were detected.

実施例1及び2における成長因子徐放性ステント(3mm×3mm×50μm)を1枚取って24ウェルプレートに置き、3×10個のマウス胚線維芽細胞を接種し、1mlのDMEM完全培地(200mMのL-グルタミン、1000IU/mLのペニシリンとストレプトマイシン、10%の不活化ウシ胎児血清を含む)に入れ、37℃、5%のCO、95%の湿度で3日間培養した。同時に、24ウェルプレートに通常の細胞平板培養を行うことと、24ウェルプレートで平板培養された細胞に遊離細胞成長因子を加えることとをそれぞれ対照にした。MTT細胞増殖と毒性検出キットにより細胞の増殖状況を分析した。生細胞/死細胞蛍光染色キットにより細胞を染色し、蛍光写真を撮った。結果はそれぞれ図2~3に示される。線維芽細胞の細胞成長因子徐放性ステントにおける増殖速度は、通常の細胞培養よりも顕著に高い(高電荷密度ステント***の場合はp<0.01、低電荷密度ステント*の場合はp<0.05)。そして、低電荷密度ステントは、細胞増殖への促進効果がより顕著である。遊離細胞成長因子を加えて培養された細胞の増殖速度は、通常の培養と対照すると、有意差がない。 Take one growth factor sustained release stent (3 mm x 3 mm x 50 μm) in Examples 1 and 2 and place it in a 24-well plate, inoculate with 3 x 10 mouse embryonic fibroblasts, add 1 ml of DMEM complete medium (containing 200 mM L-glutamine, 1000 IU/mL penicillin and streptomycin, and 10% inactivated fetal bovine serum) and incubated at 37° C., 5% CO 2 , 95% humidity for 3 days. Concurrently, normal cell plating in 24-well plates and addition of free cell growth factors to cells plated in 24-well plates were controlled, respectively. Cell proliferation was analyzed by MTT cell proliferation and toxicity detection kit. Cells were stained with a live/dead fluorescent staining kit and fluorescent photographs were taken. The results are shown in Figures 2-3, respectively. The proliferation rate of fibroblasts on cell growth factor sustained release stents is significantly higher than on normal cell cultures (p<0.01 for high charge density stents***, p<0.01 for low charge density stents*). p<0.05). And the low charge density stent has a more pronounced promoting effect on cell proliferation. The growth rate of cells cultured with free cell growth factors is not significantly different when compared to normal cultures.

これにより、本発明の細胞成長因子徐放性ステントは、細胞の成長と増殖を顕著に促進する能力を有するとともに、遊離成長因子の変性と不活性化を効果的に回避することが証明される。蛍光顕微鏡写真には、高密度の生細胞がステントの内部に分布していることが示され、明らかな細胞クラスターが見られるので、本発明により製造されたステント材料は、細胞の成長と繁殖の速度を効果的に向上させることが再び証明され、また、ステントマトリックスが徐々に分解されることに伴い、細胞クラスターの生成を促進し、さらに徐々に分泌して自身の細胞外マトリックスを生成することができる。 This proves that the cell growth factor sustained release stent of the present invention has the ability to significantly promote cell growth and proliferation while effectively avoiding denaturation and inactivation of free growth factors. . Fluorescence micrographs show a high density of viable cells distributed inside the stent, with obvious cell clusters, suggesting that the stent material produced according to the present invention is effective for cell growth and proliferation. Again proven to effectively improve speed, and also promote the generation of cell clusters as the stent matrix is gradually degraded, which is then gradually secreted to generate its own extracellular matrix can be done.

(3)実施例2で作製されたナノセルロースに基づく細胞成長因子徐放性ステントの異方性構造を検証するために、実施例2で作製されたステント材料の断面を、走査型電子顕微鏡で撮影して観察した。図5から分かるように、ステント材料は、規則的な細孔構造と配向配列構造を有し、細胞の優位性を維持して細胞の有向分化を誘導するために強力なサポートを提供することができる。 (3) In order to verify the anisotropic structure of the nanocellulose-based cell growth factor sustained release stent fabricated in Example 2, the cross-section of the stent material fabricated in Example 2 was scanned with a scanning electron microscope. I photographed and observed. As can be seen from FIG. 5, the stent material has a regular pore structure and an oriented array structure, which provides strong support for maintaining cell dominance and inducing cell directed differentiation. can be done.

本発明の実施例を示して説明したが、当業者は、本発明の原理及び精神を逸脱することなく、これらの実施例に対して、様々な変更、修正、置換及び変形を行うことができ、本発明の範囲は添付された特許請求の範囲及びその等価物により限定されると理解すべきである。 While embodiments of the present invention have been shown and described, those skilled in the art can make various alterations, modifications, substitutions and alterations thereto without departing from the principles and spirit of the invention. , it is to be understood that the scope of the invention is limited by the appended claims and their equivalents.

Claims (10)

ナノセルロースに基づく細胞成長因子徐放異方性ステントの構築方法であって、
(1)パルプ繊維を製造するステップと、
(2)前記パルプ繊維を洗浄してろ過するステップと、
(3)きれいに洗浄された前記パルプ繊維を用いて高純度ナノセルロースヒドロゲルを作製するステップと、
(4)作製された前記ナノセルロースヒドロゲルを、濃度が0.1wt%になるように滅菌水で希釈し、PVDFろ過膜付きの真空フィルタに入れて、真空ろ過し、ろ過ケーキを収集し、ホットプレス乾燥機に移転し、80℃、2.3barの圧力で20分間ホットプレス乾燥し、紫外線で30分間照射し、ナノセルロースフィルムを作製するステップと、
(5)線維芽細胞成長因子及び複合セルラーゼを溶解した一定の体積の溶液に前記ナノセルロースフィルムを浸漬し、4℃でin situ吸着して膨潤し、異方性構造を有する3次元立体ステントを同期的に形成するステップと、
(6)作製された線維芽細胞成長因子及び複合セルラーゼが担持された前記ナノセルロースヒドロゲルステントを滅菌水で洗浄し、表面に残留した前記線維芽細胞成長因子及び前記複合セルラーゼを除去し、必要に応じて異なる形状やサイズに切断し、凍結乾燥して、ナノセルロースに基づく細胞成長因子徐放性ステントを作製するステップと、を含む、
ことを特徴とする構築方法。
A method for constructing a nanocellulose-based cell growth factor sustained release anisotropic stent comprising:
(1) producing pulp fibers;
(2) washing and filtering the pulp fibers;
(3) making a high-purity nanocellulose hydrogel using the washed pulp fibers;
(4) The prepared nanocellulose hydrogel was diluted with sterile water to a concentration of 0.1 wt%, put into a vacuum filter with a PVDF filtration membrane, vacuum filtered, collected the filter cake, hot Transfer to a press dryer, hot press dry at 80° C., 2.3 bar pressure for 20 minutes, and irradiate with UV light for 30 minutes to produce a nanocellulose film;
(5) The nanocellulose film is immersed in a solution of a certain volume in which fibroblast growth factor and complex cellulase are dissolved, and is swollen by in situ adsorption at 4°C to produce a three-dimensional stent having an anisotropic structure. synchronously forming;
(6) The nanocellulose hydrogel stent carrying fibroblast growth factor and complex cellulase thus prepared is washed with sterile water to remove the fibroblast growth factor and complex cellulase remaining on the surface, and if necessary cutting into different shapes and sizes and freeze-drying to fabricate nanocellulose-based cell growth factor sustained release stents;
A construction method characterized by:
前記ステップ(4)において、前記PVDFろ過膜の孔径は0.22ミクロンであり、真空ろ過の時間は8~12時間である、
ことを特徴とする請求項1に記載のナノセルロースに基づく細胞成長因子徐放異方性ステントの構築方法。
In the step (4), the pore size of the PVDF filtration membrane is 0.22 microns, and the vacuum filtration time is 8-12 hours.
The construction method of nanocellulose-based cell growth factor sustained release anisotropic stent according to claim 1, characterized in that:
前記ステップ(4)において、前記ろ過ケーキの上面に前記PVDFろ過膜を覆い、3層の吸収ろ紙を両面にパディングした後、前記ホットプレス乾燥機に移転する、
ことを特徴とする請求項2に記載のナノセルロースに基づく細胞成長因子徐放異方性ステントの構築方法。
In step (4), the upper surface of the filter cake is covered with the PVDF filter membrane, padded with three layers of absorbent filter paper on both sides, and then transferred to the hot press dryer.
The construction method of nanocellulose-based cell growth factor sustained release anisotropic stent according to claim 2, characterized in that:
前記ステップ(5)において、前記線維芽細胞成長因子の濃度は500~1000ng/mlであり、前記複合セルラーゼの濃度は20~100U/mlである、
ことを特徴とする請求項3に記載のナノセルロースに基づく細胞成長因子徐放異方性ステントの構築方法。
In step (5), the fibroblast growth factor has a concentration of 500-1000 ng/ml, and the complex cellulase has a concentration of 20-100 U/ml.
The construction method of nanocellulose-based cell growth factor sustained release anisotropic stent according to claim 3, characterized in that:
前記ステップ(6)において、凍結乾燥の条件は-50℃、0.1mbarの真空度であり、凍結乾燥の時間は72時間である、
ことを特徴とする請求項4に記載のナノセルロースに基づく細胞成長因子徐放異方性ステントの構築方法。
In step (6), the freeze-drying conditions are −50° C., a vacuum of 0.1 mbar, and the freeze-drying time is 72 hours.
The construction method of nanocellulose-based cell growth factor sustained release anisotropic stent according to claim 4, characterized in that:
前記ステップ(1)は、具体的に、トウヒ溶解パルプ繊維1kgを前記滅菌水30Lに分散し、攪拌して均一に分散させ、水酸化ナトリウム50~100g及び30%の過酸化水素20~40mLを加え、均一に攪拌し、120℃、高圧で60分間滅菌する、
ことを特徴とする請求項5に記載のナノセルロースに基づく細胞成長因子徐放異方性ステントの構築方法。
Specifically, in the step (1), 1 kg of spruce dissolving pulp fiber is dispersed in 30 L of the sterilized water, stirred to uniformly disperse, and 50 to 100 g of sodium hydroxide and 20 to 40 mL of 30% hydrogen peroxide are added. Add, stir evenly, sterilize at 120° C., high pressure for 60 minutes,
The construction method of nanocellulose-based cell growth factor sustained release anisotropic stent according to claim 5, characterized in that:
前記ステップ(2)は、具体的に、前記ステップ(1)における前記パルプ繊維をろ液のpHが中性になるように前記滅菌水でろ過して洗浄する、
ことを特徴とする請求項6に記載のナノセルロースに基づく細胞成長因子徐放異方性ステントの構築方法。
Specifically, the step (2) includes filtering and washing the pulp fibers in the step (1) with the sterilized water so that the pH of the filtrate becomes neutral.
The construction method of nanocellulose-based cell growth factor sustained release anisotropic stent according to claim 6, characterized in that:
前記ステップ(3)は、具体的に、きれいに洗浄された前記パルプ繊維を前記滅菌水50Lに分散して攪拌し、2,2,6,6-テトラメチルピペリジン1-オキシル10~15g、臭化ナトリウム50~100g、10%の次亜塩素酸ナトリウム3~5Lを加え、pH10.5に調整して維持し、室温下で3~6時間攪拌して反応させ、1.0MのHClでシステムをpH7.0に調整し、300メッシュのナイロンメッシュでろ過し、前記ろ液の導電率が5μS/cmよりも低くなるまで前記滅菌水で洗浄し、きれいに洗浄された前記パルプ繊維を前記滅菌水30~50Lに分散して均一に攪拌し、それぞれ300barと1000barの圧力で高圧ホモジナイザーを通過し、前記高純度ナノセルロースヒドロゲルを作製する、
ことを特徴とする請求項7に記載のナノセルロースに基づく細胞成長因子徐放異方性ステントの構築方法。
Specifically, the step (3) comprises dispersing and stirring the thoroughly washed pulp fibers in 50 L of the sterilized water, adding 10 to 15 g of 2,2,6,6-tetramethylpiperidine 1-oxyl, bromide Add 50-100 g of sodium, 3-5 L of 10% sodium hypochlorite, adjust and maintain the pH to 10.5, stir at room temperature for 3-6 hours to react, and quench the system with 1.0 M HCl. The pH is adjusted to 7.0, filtered through a 300-mesh nylon mesh, washed with the sterilized water until the conductivity of the filtrate is lower than 5 μS/cm, and the cleanly washed pulp fibers are added to the sterilized water 30%. Dispersed in ~50 L, stirred uniformly, and passed through a high pressure homogenizer at a pressure of 300 bar and 1000 bar respectively to produce the high purity nanocellulose hydrogel.
The construction method of nanocellulose-based cell growth factor sustained release anisotropic stent according to claim 7, characterized in that:
請求項1~8のいずれか1項に記載の構築方法により作製されるナノセルロースに基づく細胞成長因子徐放異方性ステント。 A nanocellulose-based cell growth factor sustained release anisotropic stent fabricated by the construction method of any one of claims 1-8. 人工臓器、組織工学、創傷修復材料における、請求項9に記載のナノセルロースに基づく細胞成長因子徐放異方性ステントの応用。 Application of the nanocellulose-based sustained release anisotropic stent according to claim 9 in artificial organs, tissue engineering, wound repair materials.
JP2021573348A 2020-09-26 2021-01-22 Construction method and application of nanocellulose-based cell growth factor sustained release anisotropic stent Active JP7190217B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202011027301.5 2020-09-26
CN202011027301.5A CN112138215B (en) 2020-09-26 2020-09-26 Construction method and application of cell growth factor slow-release anisotropic scaffold based on nano-cellulose
PCT/CN2021/073194 WO2022062282A1 (en) 2020-09-26 2021-01-22 Nanocellulose-based cell growth factor sustained-release anisotropic stent construction method and application

Publications (2)

Publication Number Publication Date
JP2022544735A true JP2022544735A (en) 2022-10-21
JP7190217B2 JP7190217B2 (en) 2022-12-15

Family

ID=73897388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021573348A Active JP7190217B2 (en) 2020-09-26 2021-01-22 Construction method and application of nanocellulose-based cell growth factor sustained release anisotropic stent

Country Status (3)

Country Link
JP (1) JP7190217B2 (en)
CN (1) CN112138215B (en)
WO (1) WO2022062282A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112138215B (en) * 2020-09-26 2021-11-05 江苏大学 Construction method and application of cell growth factor slow-release anisotropic scaffold based on nano-cellulose
CN114984320B (en) * 2022-05-31 2022-11-22 南开大学 Preparation method and application of acellular matrix tissue paper

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110028840A (en) * 2019-04-29 2019-07-19 江苏大学 A kind of preparation method of nano-cellulose biometric print gel ink
CN112138215A (en) * 2020-09-26 2020-12-29 江苏大学 Construction method and application of cell growth factor slow-release anisotropic scaffold based on nano-cellulose

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0243151B1 (en) * 1986-04-22 1992-12-16 Ajinomoto Co., Inc. Modified microbially-produced cellulose gel and complex thereof with animal cell
US20070128243A1 (en) * 2005-12-02 2007-06-07 Xylos Corporation Implantable microbial cellulose materials for various medical applications
CN102210888A (en) * 2010-04-08 2011-10-12 上海交通大学医学院附属第九人民医院 Agarose-enhanced three-dimensional nanometer porous bacterial cellulose stent and application thereof
FI123988B (en) * 2010-10-27 2014-01-31 Upm Kymmene Corp Cell Culture Materials
US20140038275A1 (en) * 2010-11-24 2014-02-06 Paul Gatenholm Pharmacology Bioassays for Drug Discovery, Toxicity Evaluation and in vitro Cancer Research Using a 3D Nanocellulose Scaffold and Living Tissue
WO2014186430A1 (en) * 2013-05-16 2014-11-20 Trustees Of Boston University Multi-layered cell constructs and methods of use and production using enzymatically degradable natural polymers
CN103690995A (en) * 2013-12-10 2014-04-02 深圳先进技术研究院 Bioabsorbable fiber, as well as preparation method and application thereof
CN104587516B (en) * 2014-12-29 2017-06-06 深圳先进技术研究院 A kind of transparent degradable bacteria cellulose regeneration membrane and its preparation method and application
FI129934B (en) * 2015-02-13 2022-11-15 Upm Kymmene Corp Suture wire, method for preparing the suture wire and use thereof
CA2984598C (en) * 2015-05-04 2022-06-14 Upm-Kymmene Corporation Nanofibrillar cellulose product
CN104958782B (en) * 2015-06-08 2018-01-02 东华大学 A kind of bacterial cellulose porous foam material and preparation method thereof
WO2017023375A1 (en) * 2015-08-06 2017-02-09 Lockheed Martin Corporation Biologically-relevant selective enclosures for promoting growth and vascularization
GB201519730D0 (en) * 2015-11-09 2015-12-23 Univ Dublin A method, system and device for three dimensional additive manufacturing in a liquid phase
CN109180988B (en) * 2018-08-27 2021-07-30 武汉理工大学 Functionalized nano-cellulose hydrogel and preparation method thereof
CN110464876B (en) * 2019-08-30 2022-03-29 东营凤起生物科技发展有限公司 Growth factor-loaded bacterial cellulose/biological ceramic composite membrane
CN111001042B (en) * 2019-12-10 2021-09-28 广州市拜沃思生物科技有限公司 Completely degradable tissue engineering skin scaffold material and preparation method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110028840A (en) * 2019-04-29 2019-07-19 江苏大学 A kind of preparation method of nano-cellulose biometric print gel ink
CN112138215A (en) * 2020-09-26 2020-12-29 江苏大学 Construction method and application of cell growth factor slow-release anisotropic scaffold based on nano-cellulose

Also Published As

Publication number Publication date
JP7190217B2 (en) 2022-12-15
CN112138215A (en) 2020-12-29
WO2022062282A1 (en) 2022-03-31
CN112138215B (en) 2021-11-05

Similar Documents

Publication Publication Date Title
Klemm et al. Nanocelluloses as innovative polymers in research and application
CN105999410B (en) Acellular tissue matrix composite material and preparation method thereof
JP4214051B2 (en) Elastin crosslinked body and method for producing the same
Macri et al. Tissue engineering for cutaneous wounds: selecting the proper time and space for growth factors, cells and the extracellular matrix
JP7190217B2 (en) Construction method and application of nanocellulose-based cell growth factor sustained release anisotropic stent
KR100771058B1 (en) Scaffolds removed lipid for human volume replacement or cell culture and use thereof
Stumpf et al. Enriched glucose and dextrin mannitol-based media modulates fibroblast behavior on bacterial cellulose membranes
HU215534B (en) Biocompatible perforated membranes, process for their preparation, their use as a support in the in vitro growth of epithelial cells and the artificial skin obtained in this manner
CN114524953A (en) Silk fibroin/hyaluronic acid composite hydrogel, preparation method and application
CN110305338B (en) Preparation and application method of double-network hydrogel for tumor microsphere intrusion detection
CN107556377A (en) Recombination human source collagen and its medical nano tunica fibrosa
CN114276567B (en) Bionic hydrogel scaffold for tissue engineering skin construction and preparation method thereof
CN110152055A (en) The functional drug that alginic acid amination derivative/bacteria cellulose nanocomposite gel is constructed is sustained medical dressing
CN112980001A (en) Collagen composite hyaluronic acid gel, extracellular matrix bionic material and preparation method
CN103041446A (en) Bacterial cellulose/collagen composite material having biocompatibility and preparation method thereof
Du et al. Heparin-based sericin hydrogel–encapsulated basic fibroblast growth factor for in vitro and in vivo skin repair
CN101204592B (en) Process for fabricating engineering esophagus imitating biochemistry tissue
CN109125782A (en) A kind of porous fibre/inorganic bio Particles dispersed type skin wound dressing and preparation method thereof
CN111849864A (en) Construction method and application of three-dimensional tumor model acellular derivative matrix scaffold
CN109966540B (en) Preparation method and application of nano chitin composite calcium alginate medical dressing
Yu et al. Evaluation of artificial skin made from silkworm cocoons
Papuga et al. Different types of biotechnological wound coverages created with the application of alive human cells
Huang et al. MXene-NH2/chitosan hemostatic sponges for rapid wound healing
Wu et al. Fabrication of alginate/sericin/cellulose nanocrystals interpenetrating network composite hydrogels with enhanced physicochemical properties and biological activity
CN103467778A (en) Bacterial cellulose/lecithin composite material as well as preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211209

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20211209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221128

R150 Certificate of patent or registration of utility model

Ref document number: 7190217

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150