JP2022543212A - ヒータ - Google Patents

ヒータ Download PDF

Info

Publication number
JP2022543212A
JP2022543212A JP2022505479A JP2022505479A JP2022543212A JP 2022543212 A JP2022543212 A JP 2022543212A JP 2022505479 A JP2022505479 A JP 2022505479A JP 2022505479 A JP2022505479 A JP 2022505479A JP 2022543212 A JP2022543212 A JP 2022543212A
Authority
JP
Japan
Prior art keywords
heater
track
heat
temperature
heater track
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022505479A
Other languages
English (en)
Inventor
バックランド,ジャスティン・ローク
マーレイ,シアーシャ
Original Assignee
レックス ダイアグノスティックス リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by レックス ダイアグノスティックス リミテッド filed Critical レックス ダイアグノスティックス リミテッド
Publication of JP2022543212A publication Critical patent/JP2022543212A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/025Align devices or objects to ensure defined positions relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/12Specific details about manufacturing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/143Quality control, feedback systems
    • B01L2200/147Employing temperature sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • B01L2300/1827Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks using resistive heater

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Resistance Heating (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Control Of Temperature (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PCR増幅を実行するための熱サイクリング用ヒータ。本ヒータは、反応セルへ熱を伝達するための反応面を有する熱拡散層と、冷却用背面を有するヒータトラック支持層と、ヒータトラック支持層と熱拡散層との間に支持される導電性の主ヒータトラックと、主ヒータトラックを駆動しかつ同時に主ヒータトラックの抵抗を検出するための電気接続を提供するように適合化される、主ヒータトラックへの4端子電気接点と、を備える。反応面の横方向寸法は、ヒータの厚さHより大きく、よって、反応面の面積A>H2である。

Description

本発明は、ヒータの反応面に可変温度を与えるためのヒータに関する。
このようなヒータが必要とされる1つの例示的なプロセスは、ポリメラーゼ連鎖反応(PCR)によるDNA増幅であり、この場合、ヒータは、PCRの完了時間を短縮する高速熱サイクリングを提供する。
従来技術のヒータは、電気絶縁基板により支持される導電性トラックから製造される。従来技術のヒータは、ヒータ温度を検出するための別個の温度センサと、ヒータに合わせて電気駆動を変調するための制御アルゴリズムおよび電子駆動回路とを用いて制御される。
高速熱応答を提供するために、ヒータは、低い熱容量を有していなければならず、かつヒータは、反応面と密に熱接触していなければならない。具体的には、ヒータエレメントから反応面までの熱拡散時間は、要求される温度変化応答時間より短くなければならず、よって、ヒータと反応面とを分離できるのは、薄層のみである。
従来のヒータおよび温度制御システムには、高速応答、精密な温度制御および均一な温度分布を達成しようとする場合に幾つかの欠点がある。
たとえば、ヒータから分離された温度センサを使用すると、応答速度を低下させる、または温度オーバーシュートを引き起こす可能性があるヒータ制御ループの遅延が生じる。
さらに、反応面の近くに位置決めされる空間的に分離された抵抗加熱トラック内の発熱により、結果として温度不均一性が生じ、ヒータトラックの真上により高温の領域が、およびヒータトラック間の間隙上により低温の領域が生じる。反応面上の温度不均一性は、PCR増幅の効率および特異度を低下させる場合があり、望ましくない。したがって、本発明の目的は、温度均一性を高めることにあり、ここで、温度均一性の向上および温度均一性の増加という言及は、等価である。
反応面における温度不均一性は、より狭いトラックおよび間隙を用いることによって低減されることが可能であるが、これは、標準的なプリント回路基板技術を用いる製造を複雑にする。反応面における温度不均一性は、ヒータトラックと反応面との距離を増加させることによっても低減されることが可能であるが、これにより、ヒータから反応面までの熱拡散時間が増し、かつヒータ応答が遅くなる。
温度不均一性は、ヒータの温度が側方熱流に起因してエッジで低下するエッジ効果によっても生じる。従来技術において、エッジ効果は、ヒータのエッジ近くの熱出力を、たとえば、これらの部位におけるヒータエレメントのトラックおよび間隙の幅を減らすことによって増大させるヒータ・トラック・パターン設計によって低減される。しかしながら、この手法は、特定の動作温度ならびに反応面の幾何学的形状および熱負荷に合わせて慎重に設計される必要があり、また、ヒータトラックおよび間隙の幅が、既に標準的な製造プロセスにとって実用的である最小値に近いものである場合には、達成が困難であり得る。また、温度不均一性を最小限に抑えるためには、ヒータの中央エリアにおいてもヒータトラックおよび間隙の幅を最小限に抑えることが望ましく、よって、ヒータのエッジに近いヒータトラックおよび間隙の幅をさらに減らすことは、困難である。
ヒータ電力が低減される場合の迅速な冷却を可能にするために、ヒータは、制御された熱抵抗を介してヒートシンクへ接続されることがある。しかしながら、ヒータの温度均一性は、ヒータとヒートシンクとの間の熱接触の均一性に依存する。具体的には、ヒータとヒートシンクとの間の空隙はいずれも、かなりの熱抵抗および温度不均一性を生じさせる可能性がある。
上述の課題および目的に鑑みて、本発明は、PCR増幅を実行するための熱サイクリング用ヒータを提供する。本ヒータは、反応セルへ熱を伝達するための反応面を有する熱拡散層と、冷却用背面を有するヒータトラック支持層と、ヒータトラック支持層と熱拡散層との間に支持される導電性の主ヒータトラックと、主ヒータトラックを駆動しかつ同時に主ヒータトラックの抵抗を検出するための電気接続を提供するように適合化される、主ヒータトラックへの4端子電気接点と、を備える。反応面の横方向寸法は、ヒータの厚さHより大きく、よって、反応面の面積A>Hである。
好ましくは、主ヒータトラックは、幅Wtrackを有しかつ幅Wgapの間隙により分離される複数の略平行なトラックセクションを備える中央領域を備え、熱拡散層の厚さHは、トラックセクションの最小幅Wtrackより小さく、または間隙の最小幅Wgapより小さく、WtrackまたはWgapは、主ヒータトラックの中央領域において評価される。これは、主ヒータトラックが、PCB製造技術を用いて製造され得ることを意味する。また、これは、ヒータが、急速な温度変化を要求する多くの用途にとって十分な薄さであることも意味する。
好ましくは、間隙幅Wgapおよび/またはトラックセクションの幅Wtrackは、主ヒータトラックのエッジに近いトラックセクションのほうが、主ヒータトラックの中央領域内のトラックセクションより少ない。これにより、主ヒータトラックの中央領域内の温度均一性が向上する。
好ましくは、ヒータは、さらに、ヒータトラック支持層と熱拡散層との間のガード・ヒータ・トラックであって、該ガード・ヒータ・トラックは、主ヒータトラックを略包囲する、ガード・ヒータ・トラックと、主ヒータトラックへの4端子電気接点とは独立している、ガード・ヒータ・トラックへのさらなる2つの電気接点と、を備える。これは、側方熱流を抑止し、かつ主ヒータトラックの平面における温度均一性を高める。
好ましくは、ヒータトラック支持層は、1×10-4~1×10-2K.m/Wの範囲の、より好ましくは、3×10-4~3×10-3K.m/Wの範囲の、熱抵抗と面積との積を有する。
好ましくは、ヒータは、さらに、熱拡散層またはヒータトラック支持層のうちの一方と接触して、または該一方の内部に位置決めされる反応面ヒートスプレッダ層を備える。これにより、反応面における温度均一性が向上する。
好ましくは、反応面ヒートスプレッダ層は、熱拡散層またはヒータトラック支持層のうちの一方に比べて、熱伝導性が高く、より高い横方向熱伝導率を有し、かつより低い熱容量を有する。
好ましくは、反応面ヒートスプレッダ層は、ヒータトラック支持層内に、主ヒータトラックから距離Lを隔てて位置決めされ、Lは、中央領域において評価されるヒータトラック幅Wtrackおよびヒータ間隙幅Wgapの最小値の20%未満である。これにより、反応面における温度均一性がさらに向上する。
好ましくは、背面に、背面ヒートスプレッダ層が位置決めされる。これにより、反応面における温度均一性が向上することに加えて、背面に隣接するあらゆるヒートシンクとの熱接触が向上する。
好ましくは、ヒータは、さらに、背面と接触するヒートシンクを備える。これは、ヒータが駆動されていないときにヒータの温度を下げる効果を有する。
別の態様において、本発明は、ヒータと、反応面に接触して配置される反応セルとを備える使い捨て消耗品を提供する。
別の態様において、本発明は、ヒータまたは可変温度反応器の動作方法であって、主ヒータトラックを駆動することと、主ヒータトラックの抵抗を同時に検出することと、検出された抵抗に基づいて、主ヒータトラックの温度を計算すること、を含む方法を提供する。
好ましくは、本方法は、PCR増幅を実行すべく反応面の温度を循環させるために、主ヒータトラックの一連の温度設定点に従って主ヒータトラックのフィードバックベースの駆動を実行することを含む。
好ましくは、本方法は、さらに、ガード・ヒータ・トラックを、主ヒータトラックより高い単位面積当たりの熱出力を提供するように駆動することを含む。
好ましくは、前述のヒータまたは使い捨て消耗品は、さらに、前述の方法を実行するように構成される制御回路を備える。
以下、添付の図面を参照して、本発明の実施例について説明する。
ヒータとヒートシンクとを備える本発明の一実施形態を示す略断面図である。 該実施形態のヒータにおけるヒータトラックおよび電気接続部の2つの例示的な略配置を示す。 ヒータトラックを駆動するために使用可能な電子回路を示す略図である。 図4Aおよび図4Bは、本発明の一実施形態によるガードヒータのシミュレートされた温度分布、およびガードヒータなしの温度分布との比較を示す。 該実施形態のヒータを示す別の略断面図である。 図6Aおよび図6Bは、本発明の実施形態による、可変厚さおよび2つの異なる位置におけるヒートスプレッダを用いてシミュレートされた温度分布を示す。図6Cおよび図6Dは、異なるヒータトラックとの相対位置にあるヒートスプレッダを用いてシミュレートされた温度分布を示す。 図7Aおよび図7Bは、本発明の実施形態による、背面ヒートスプレッダを用いてミュレートされた温度分布、背面ヒートスプレッダなしでミュレートされた温度分布を示す。 本発明の一実施形態によるヒータの、PCR熱サイクリングの間のヒータトラック温度および反応面温度の変動を示す。 本発明によるヒータ100における抵抗加熱トラックの代替配置図を示す。 熱サイクルに保持ステップが含まれる場合の熱抵抗の例示的な範囲を示す。
以下、PCR増幅のための熱サイクリングを実行することに適する、例示的なヒータについて説明する。熱サイクリングは、温度変化に要求される時間が熱サイクリングの合計時間の大部分を占めないほどの高速で実行されることが望ましい。熱サイクリングの合計時間は、温度変化の時間と反応時間との和であって、PCR反応の最遅部分は、伸長相であり、これは、典型的な配列長さである100塩基対で約1秒以上を必要とする。したがって、目標を、温度ランピング時間<1秒とする。PCRの標的温度は、典型的には、60℃~95℃であり、よって、温度変化時間を1秒にまで短縮するための加熱および冷却には、70℃/秒以上の温度傾斜速度が必要である。これより遙かに高い温度傾斜速度(200℃/秒以上)の場合、必要とされる合計時間の多くを温度変化に必要とされる時間ではなく反応時間によって占められるという理由で、提供される速度上の利点は限定的である。
後述する一実施形態において、高速熱サイクリングを実行するためのヒータは、従来のヒータおよび温度制御システムに関わる欠点なしに、約100℃/秒の温度傾斜速度を有する。
ヒータは、たとえば、使い捨て消耗品として反応セルと共に配置されてもよい。使い捨て消耗品は、1回の反応検査の実行に必要な試薬および電力を供給され、その後廃棄されてもよい。
ヒータは、以下のエレメント、すなわち、ヒータトラックの温度依存抵抗を介する同時的な加熱および温度検出を可能にするように構成される主ヒータトラックと、主ヒータトラックを略包囲するガード・ヒータ・トラックと、ヒータトラックと反応面との間に位置決めされる熱拡散層と、ヒータトラックとヒータ背面との間に位置決めされるヒータ支持層と、を含む。また、ヒータには、ヒータ駆動力が低下するとヒータを急冷できるように、背面と熱接触するヒートシンクも設けられてもよい。
図1は、ヒータ100とヒートシンク200とを備える本発明の一実施形態の略断面を示す。
ヒータ100は、一方の面上に反応面110を、かつ反対側の面上に背面120を有する。反応面110は、ヒータにより、時変的かつ略空間均一的な温度を提供するように加熱される。背面120は、ヒータ100が駆動されないときの冷却を可能にすべく、ヒートシンク200と熱接触している。
以下の説明では、軸方向を反応面に対して垂直であるものとして、かつ横方向を反応面の平面内にあるものとして定義する。
ヒータは、反応面を抵抗加熱するための主ヒータトラック130を備える。しかしながら、温度制御の精度を低下させる、反応面に渡る温度勾配および温度不均一性に関連づけられる側方熱流は、制限することが望ましい。
主ヒータトラック部位内の側方熱流を制限するために、主ヒータトラック130は、ガード・ヒータ・トラック140によって略包囲される。ガード・ヒータ・トラックは、主ヒータトラックのエッジ近くに位置決めされ、かつ主ヒータトラックの目標温度に近い、またはこれより高い温度を維持するように駆動される、追加のヒータトラックである。ガード・ヒータ・トラックの単位面積当たりの熱出力は、側方の熱損失を補償するために、主ヒータトラックのそれより高い。ガード・ヒータ・トラックは、主ヒータとは独立して駆動されてもよい。主ヒータトラック130およびガード・ヒータ・トラック140は、たとえば、銅などの金属から形成されてもよい。
主ヒータトラック130およびガード・ヒータ・トラック140は、ヒータトラック支持層150と熱拡散層160との間に位置決めされる。ヒータトラック支持層150は、たとえば、FR4もしくはポリイミドまたは別の電気絶縁支持材料から構築されるプリント回路を備えてもよい。
反応面のヒートスプレッダ層170、180は、ヒータトラック支持層150および熱拡散層160の各々の内部に、またはこれと接触して存在する。反応面のヒートスプレッダ層170、180は、熱拡散層またはヒータトラック支持層より高い熱伝導率を有する材料製の層である。これらの反応面ヒートスプレッダ層の機能は、反応面110上の温度均一性を高めることにある。これらの反応面ヒートスプレッダ層は、各々、厚さH、熱伝導率k、密度ρ、および比熱容量Cを有し、一方で、ヒータトラック支持層150および熱拡散層160は、各々、個々の厚さH、H、熱伝導率k、k、密度ρ、ρ、および比熱容量C、Cを有する。高速温度応答を維持しながら温度均一性を高めるために、反応面ヒートスプレッダ層は、ヒータトラック支持層150/熱拡散層160より大きい横方向熱伝導率および/またはより低い熱容量を有するものでなければならない。ヒートスプレッダ層が熱拡散層より大きい横方向熱伝導率を有するためには、
>Hである。ヒートスプレッダ層が熱拡散層より低い熱容量を有するためには、Hρ<Hρである。ヒータ支持層の場合、これらの条件は、各々、H>HおよびHρ<Hρで置き換えられる。
反応面のヒートスプレッダ層170、180は、各々、主ヒータトラック130の近くへ位置決めされる。この具体例において、熱拡散層160における反応面のヒートスプレッダ層170は、主ヒータトラックの上面から10μmの距離に設けられ、かつヒータトラック支持層150における反応面のヒートスプレッダ層180は、主ヒータトラックの下面から5μmの距離に設けられる。
背面120にも、反応面110上の温度均一性を高めるために、背面ヒートスプレッダ190が設けられる。
ヒートシンク200は、図1に示す中実ブロックおよび図7に示す後述する個々のピラーを含む、任意の形態をとり得る。背面のヒートスプレッダ190は、ヒータトラック支持層とヒートシンクとの間の熱接触の均一さを保証できない場合に、特に有用である。
主ヒータトラックとの良好な熱接触を達成するために、主ヒータトラックと背面ヒートスプレッダまたはヒートシンクとの間の熱抵抗と面積との積は、好ましくは、1×10-4~1×10-2K.m/Wの範囲内であるべきであり、より好ましくは、3×10-4~3×10-3K.m/Wの範囲内であるべきである。
ヒータおよびヒートシンク(使用される場合)は、平面形状または湾曲形状を有することが可能である。平面形状は、構築のし易さ、およびヒータの使用目的である反応の光学的監視のし易さの点で、好ましいものであり得る。しかしながら、一部球形または円筒形などの他の形状も可能であって、これらは、張力をかけられる可撓性の反応セルおよびヒータ層が互いに、かつ典型的には剛性金属部品であるヒートシンクとの間で良好な熱接触を行えることにおいて、利点を有し得る。
図2は、主ヒータトラック130と、ガード・ヒータ・トラック140と、これらのヒータトラックへの電気接続とを含む、ヒータ100における抵抗加熱トラックおよび電気接続の2つの例示的な略配置を示す。
図2(i)および図2(ii)に示すように、これらの実施形態の主ヒータトラック130は、蛇行構成を有する。あるいは、主ヒータトラック130は、並列に位置決めされる、かつ同じく並列に電気接続される複数のトラックセクションを備えてもよい。同様に、図2(i)および図2(ii)に示すように、これらの実施形態のガード・ヒータ・トラック140も、蛇行構成を有する。図2の実施例から分かるように、実施形態によっては、ガード・ヒータ・トラック140は、主ヒータトラック130を完全には包囲せず、主ヒータトラック130を、主ヒータトラックのエリア内の側方熱流を制限する効果を達成するために必要とされる程度に略包囲する。多くの実施形態において、この要件は、ガード・ヒータ・トラック140が、主ヒータトラック130の周囲長さの50%超を包囲することに相当する。
図2(i)は、主ヒータトラック130においてトラック幅および間隙幅が均一であるヒータを示し、一方で、図2(ii)は、中央領域131においてトラック幅および間隙幅がより大きく、ヒータのエッジ133の近くでヒータトラック幅および間隙幅がより小さい主ヒータトラック130を示す。エッジ領域133は、増加された単位面積当たりの熱出力を提供し、かつ、ヒータのエッジに対して垂直方向の熱伝導率を下げかつこれにより中央領域131における側方熱流を低減して温度均一性を高めるべく、ヒータのエッジに対して平行に配向されるトラックも含む。
空間的に分離された温度センサは、主ヒータトラックにおける温度変化と温度センサにおける温度変化との間にタイムラグを引き起こす可能性もある。このタイムラグは、ヒータエレメント温度のオーバーシュートまたは揺動などの問題を引き起こす可能性もある。これらの問題を回避するために、主ヒータトラックは、ヒータエレメントの抵抗を用いてその温度を決定する温度センサとして構成される。金属製のヒータエレメントは、通常、正の抵抗温度係数を有するが、金属酸化物または半導体製のヒータエレメントは、負の温度係数を有する。ヒータエレメントの抵抗温度係数(TCR)の大きさは、大きいことが望ましく、好ましくは、500ppm/K超であり、より好ましくは、2,500ppm/K超であることが望ましい。
主ヒータトラック130は、電気駆動用正接続部132および負接続部134と、電圧検出用Vsense正接続部136および負接続部138とを備える4線接続を有する。Vsenseの測定値は、図3に示すような回路を用いてトラック抵抗を精密に監視するために使用されることが可能である。主ヒータトラック130の既知の抵抗温度係数TCR、または所望の温度設定点と組み合わせて、Vsenseは、主ヒータトラック130の温度検出を実行するために使用されることが可能である。駆動および検出の双方に従来の2線接続を用いる代わりに、主ヒータトラックの駆動用と主ヒータトラックに渡る電圧検出用とで別々の接点を有する4線接続を用いることには、電流を主ヒータトラックへ供給する接続部の内部抵抗に起因する電圧降下が排除されるという利点がある。
ガード・ヒータ・トラック140は、主ヒータトラック130とは独立して駆動されるべき正の接続部142と、負の接続部144とを有する。
図3は、主ヒータトラックを駆動し、同時に主ヒータトラックの抵抗を検出しかつ検出される抵抗に基づいて主ヒータトラックの温度を計算するために使用されることが可能な供給接続部VposおよびVnegにより駆動される、電子回路を略示している。このような制御回路は、ヒータ100と共に包含される場合もあれば、ヒータの使用中に接続される可能性もある。図3を参照すると、電流は、ヒータトラック130を、正の駆動接続部132および負の駆動接続部134を介して流れる。ヒータトラックには、ヒータトラックを通した電圧Vsenseが、正電圧検出接点136および負電圧検出接点138および電圧測定回路310を用いて測定されることを可能にする、4線接点が装備される。ヒータトラック130を通って流れる電流は、抵抗Risenseが既知である電流検出抵抗器320と、電流検出抵抗器を通した電圧Visenseを測定するための電圧測定回路330とを用いて測定される。ヒータを通る電流は、Iheater=Visense/Risenseとして計算される。次には、ヒータトラック130の抵抗が、Rheater=Vsense/Iheaterとして計算される。次には、フィードバックをベースとする主ヒータトラックの駆動が、一連の温度設定点に従って実行されてもよい。温度制御は、所望の温度設定点に対応するRheaterの設定点値を決定し、かつヒータ駆動をヒータの抵抗設定点値に合わせて制御することにより、実装される。あるいは、温度制御は、既知の抵抗温度係数TCRに基づいて、ある温度範囲に渡り連続的に実行されてもよい。トランジスタであり得るスイッチ340は、ヒータの抵抗を測定するためにオンにされ、次には、Rheaterがその時点で必要とされる設定点抵抗を上回るか下回るかに依存して、所定の時間間隔に渡りオフにされるか、オンのままにされる。あるいは、スイッチ340は、ヒータを必要な電力で駆動するように選択されるデューティサイクルを有するパルス幅変調波形によって駆動されてもよい。いずれの手法においても、スイッチ340は、反応面の温度を循環させてPCR増幅を実行すべく、主ヒータトラックへの電気的駆動を変調するために使用される。
ガード・ヒータ・トラックは、主ヒータトラックの温度設定点以上の温度設定点を有する閉ループ制御で動作されてもよく、または、ガード・ヒータ・トラックは、主ヒータエレメントと同じコントローラもしくはオン/オフタイミングで、ただし、ある特有の温度設定点において温度均一性を最適化するように調整されることが可能な異なる駆動電圧で動作されてもよい。
再度図2を参照すると、この例示的な構成の長手方向および横方向に沿ったセクションAおよびBが、図4Aおよび図4Bに示すように、温度分布を決定すべくシミュレーションされた。これらのシミュレーションの結果は、ガードヒータを使用することによって達成された温度均一性の増加を示している。
図4Aおよび図4Bを参照すると、反応面上の温度分布のシミュレーション結果は、長方形のヒータエリアの中心から長手方向(A)および横方向(B)のエッジまで得られた。各図において、垂直軸は、温度を示し、水平軸は、中心からの長手方向/横方向に沿った位置を示す。温度分布は、ガードヒータなし(実線)の場合と、ガードヒータあり(破線)の場合を示し、ガードヒータが使用される場合に、より均一な温度分布が示されている。図4Aおよび図4Bの各々には、主ヒータおよびガードヒータの位置が指示されている。
図5は、ヒータ100およびヒートシンク200を介する別の略断面を示す。図5に示すように、主ヒータトラック130は、幅Wtrackを有する、幅Wgapの間隙により離隔された複数の略平行なトラックセクションを備える。トラックセクションは、間隙幅Wgapを画定することが可能である限り、厳密に平行である必要はない。主ヒータトラック130から出力される熱は、トラックおよび間隙の幅が有限であることに起因して不均一である。これは、急速な温度変化を達成するには熱拡散層の厚さHを小さくする必要があることによって悪化される。この実施形態において、熱拡散層の厚さHは、トラックセクションの最小幅Wtrackより少なく、または、間隙の最小幅Wgapより少ない。より狭いトラック幅および間隙幅は、反応面における温度均一性を高めるが、これは、PCB製造技術の要件などの典型的な設計規則によって制限される。
図5は、ヒータおよびヒートシンクがシミュレートされたシミュレーション領域Cも示している。図6A、図6B、図6Cおよび図6Dは、反応面に沿ったシミュレーション領域C内の温度のシミュレーション結果を示す。シミュレーションは、WtrackおよびWgapが75μmにおいて一定である銅製トラックのヒータを想定し、さらに、ヒータトラック支持層150がFR4製であり、かつ熱拡散層160がポリプロピレン製であるとした。ヒートスプレッダ層厚さを増加させる効果が、2つの事例について示されているが、各図において、縦軸は、反応面上の温度を示し、横軸は、シミュレーション領域C内の反応面に沿った、ヒータトラック部分の中心からの位置を示す。図6Aは、アルミニウム製の反応面ヒートスプレッダ層170が熱拡散層内のヒータトラックと反応面110との間、ヒータトラックから10μmの距離に位置決めされ、反応面ヒートスプレッダ層180が省かれているシミュレーション(構成A)の結果を示す。図6Bは、アルミニウム製の反応面ヒートスプレッダ層180がヒータトラック支持層内の、ヒータのヒータトラックと背面120との間、ヒータトラックから5μmの距離に位置決めされ、反応面ヒートスプレッダ層170が省かれているシミュレーション(構成B)の結果を示す。どちらの事例においても、ヒートスプレッダ層は、温度均一性を高め、ヒートスプレッダ層が厚いほど効果が高く、構成Aは、構成Bより効果が高い。
図6Cおよび図6Dは、反応面ヒートスプレッダ層170の位置を変化させたシミュレーション結果を示す。図6Cにおいて、反応面ヒートスプレッダは、熱拡散層内に位置決めされ、かつ図6Cのグラフ内の凡例に示されている距離は、ヒータトラックの上面とヒートスプレッダ層との離隔を示す。図6Dにおいて、ヒートスプレッダは、ヒータ支持層内に位置決めされ、かつ図6Dのグラフ内の凡例に示されている距離は、ヒータトラックの下面とヒートスプレッダ層との離隔を示す。いずれの事例においても、ヒートスプレッダは、アルミニウム製であって、厚さ100nmである。ヒートスプレッダが熱拡散層内に位置決めされる場合、反応面ヒートスプレッダの位置は、温度均一性にほとんど影響しない(図6C)。しかしながら、反応面ヒートスプレッダがヒータ支持層内に位置決めされる場合、反応面ヒートスプレッダは、温度均一性の略向上をもたらすために、ヒータから15μm以内に位置決めされることが好ましい(図6D)。この距離は、トラックおよび間隙幅に対応し、中央領域で評価される最小のトラックおよび間隙幅の20%に相当する。
図1において、ヒータ100は、背面ヒートスプレッダ190を含む。この特徴は、本発明の実施形態の全てにおいて必要とされるわけではないが、背面ヒートスプレッダ190には、シミュレーションを用いて実証されているように、反応面110における温度均一性をさらに向上させるという利点がある。図7Aおよび図7Bは、背面ヒートスプレッダ190なし(図7A)と、背面ヒートスプレッダあり(図7B)のヒータを比較したシミュレーション結果を示す。各図において、上側のプロットは、シミュレーションされたヒータ上の40℃~60℃の温度等高線を示す。シミュレーションされたヒータは、破線で示すヒータトラックを含み、短いほうの破線は、主ヒータトラック130を示し、長いほうの破線は、ガード・ヒータ・トラック140を示す。ヒータトラックより上方では、反応セル710が、反応面110を有する熱拡散層160によって包囲され、よって、反応セルの内容物の温度は、反応面の温度に従って制御されることが可能である。さらに、各図において、下側のプロットは、反応面に沿った(実線、凡例の「A」)、ヒータトラックを切断する平面内(凡例の「B」)、およびヒータの背面上(凡例の「C」)の温度プロファイルを示す。図7Bは、背面ヒートスプレッダが厚さ12μmの銅層から構築されることを想定している。いずれのシミュレーションにおいても、不均一な熱接触を有するヒートシンク200は、幅0.5mmおよび高さ1.0mmである3つのアルミニウム柱によるセットとして表されている。ジオメトリおよび結果は、位置x=0を対称面とする2Dハーフモデルについて示されている。いずれの事例においても、ヒータの設定温度は、60℃である。
図8は、温度設定点58℃、73℃および98℃を用いてサイクル時間4秒で熱サイクリングする、背面ヒートスプレッダありの上述のヒータの過渡応答のシミュレーションを示す。主ヒータトラックの温度は、トレースA(破線)で示され、反応面の中心における温度は、トレースB(実線)で示されている。
一例として、本発明によるヒータは、反応へ熱を提供するために使用されてもよい。このような使用において、ヒータの反応面は、試料を含む反応体積を有する反応セルと接触して位置決めされる。反応面を加熱するために、ヒータエレメントは、オンに切換され、ヒータエレメントにより発生される熱は、反応面を通って反応体積へ流れ込む。迅速な冷却が要求される場合、ヒータは、ヒータエレメントがオフにされると、熱が反応面からヒータを通ってヒートシンクへ流れ込むように、その背面でヒートシンクに接触することができる。
ヒータがPCR反応を駆動するためなどの熱サイクリングのために印加される場合、ヒータと試料との間の熱拡散時間は、目標サイクル時間より短いことが有利である。概して、材料試料の熱拡散時間tは、
t=L/D
によって与えられ、
ここで、Lは、材料試料の特性長さスケールであり、Dは、材料の熱拡散率である。下表1は、本発明によるヒータの材料の1つの例示的な選択肢を示し、この場合、熱拡散層の熱拡散時間は、100塩基対のDNA配列の増幅に約1秒かかると理解されるPCRの反応時間より短い。
さらに、ヒータトラック支持層の熱抵抗Rは、所与の温度プロファイルおよびヒートシンク温度TSinkおよびヒータ電力pHeatに対する熱サイクリング時間を最小化するように、最適化されることが可能である。TLOWとTHIGHとの間の熱サイクリングに必要とされる時間は、加熱時間が冷却時間に等しいときに最小化され、この条件は、R=RT,Optのときに、次式のように満たされる。
T,Opt=(THIGH+TLOW-2TSink)/ρHeat
表2(下記)は、ヒータ電力、最適な熱抵抗および熱サイクル時間の例示的な値を示す。これらは、30℃のヒートシンク温度で60℃と95℃との間を循環する、面積50mmおよび熱容量0.04J/Kの反応面の事例について示されている。
表3(下記)は、熱サイクルが72℃において持続時間1秒の保持ステップを含む事例に関する、ヒータ電力、最適な熱抵抗および熱サイクル時間の例示的な値を示す。これらは、30℃のヒートシンク温度で60℃と95℃との間を循環する、面積50mmおよび熱容量0.04J/Kの反応面の事例について示されている。
図9は、本発明によるヒータ100における抵抗加熱トラックの代替配置図を示す。この実施形態では、反応面110の別々のエリアを個々に加熱するために、2つの主ヒータトラック130が隣合わせに配置されている。これらの主ヒータトラックは、いずれも、ガード・ヒータ・トラック140によって包囲されかつ分離されている。
図9の実施形態は、本発明によるヒータに、反応面の複数の個々に温度制御されるエリアの各々に対する主ヒータトラックが如何にして装備され得るかを示している。ガード・ヒータ・トラック140は、側方熱流を抑止し、これにより、反応面の個々のエリアの各々が温度制御され得る精度を高める。
図9に示すように、ガード・ヒータ・トラック140は、単位面積当たりの電流および熱出力が2つの主ヒータトラック130の間で、かつこれらの周囲で異なり得るように、3つの接続部142、144および146を有する。あるいは、各主ヒータトラック130には、2つの接続部を有する別個のガード・ヒータ・トラック140が装備されてもよい。
図10は、熱サイクルに、本明細書に記述しているようなヒータまたは可変温度反応器を制御するための保持ステップが含まれる場合の、熱抵抗の好ましい範囲1001の一例を示す。PCRサイクルは、融解ステップ、アニールステップおよび伸長ステップから成り、伸長は、反応の最も時間のかかる部分であることが多く、保持ステップを必要とし得る。本例には、PCR反応における伸長のための時間を可能にするために、72℃において持続時間1秒の保持ステップが含まれる。伸長に必要な時間は、ポリメラーゼの速度および増幅されるDNA配列の長さに依存して変わり得る。1秒の保持ステップは、典型的には核酸ベースの診断検査に使用される長さである100~150塩基対の範囲の長さを有するDNA配列の迅速な増幅に適切であり得、より長い配列は、概して、より長い伸長時間を必要とする。保持ステップの持続時間は、最適には、伸長を見込むに足る長さであって、著しく長いものにはならず、そうでなければ、サイクル時間全体が支配され、望ましくない伸長となる。当業者には、上述の例では1秒として例示されている保持ステップ持続時間の調整は、全体的な動作に重大な影響を及ぼすことなく行われ得ることが、容易に理解されるであろう。
図10のグラフは、低い熱サイクル時間(実線)およびサイクル当たりの低いエネルギー消費量(破線)の双方を可能にするための熱抵抗の好ましい値範囲(対数スケールに示す)を示し、保持ステップを含む最小の熱サイクル時間tcycle1004は、熱抵抗が好ましい最大値1003より大きい場合に望ましくない大きさ(>5秒)となり、一方で、1サイクル当たりの消費エネルギーEcycle1005は、熱抵抗が好ましい最小値1002より低い場合に望ましくない大きさ(>10J)となる。要約すると、1サイクル当たりのエネルギー消費量が低い(Acell=5×10-5でEcycle<10J)高速熱サイクル(tcycle<5秒)にとっては、3×10-3~3×10-2K.m/Wの範囲の熱抵抗とセル面積との積RT,Opt×Acellが好ましい。
上述の実施形態において、ヒータは、ヒートシンクを有するアセンブリ内に設けられる。しかしながら、本発明は、均一な加熱が要求されるが、ヒートシンクは不要である事例にも適用可能である。たとえば、冷却時間がさほど重要でない用途では、ヒートシンクが省かれることがある。
上述の実施形態において、ヒータには、ガード・ヒータ・トラック140が装備される。しかしながら、ガード・ヒータ・トラック140を設けることに加えて、またはこれを設ける代わりに、主ヒータトラック130は、そのエッジの近くでより高い熱出力を有し、かつ反応体積を超えて延びるように設計されてもよい。このより高い熱出力効果は、主ヒータトラックの中央のヒータトラック部分よりも主ヒータトラックのエッジに近い2つ以上のヒータトラック部分間の間隙幅を減らしてヒータトラックの密度を高めることにより、達成されてもよい。あるいは、または追加的に、この効果は、主ヒータトラックの中央のヒータトラック部分よりも主ヒータトラックのエッジに近い1つ以上のヒータトラック部分の幅または高さを減らして主ヒータトラックの抵抗を高めることにより、達成されてもよい。そのエッジに近いヒータエレメントのより高い熱出力は、側方熱流を補償しかつ反応体積に渡ってより均一な温度状態を提供することができる。さらに、ヒータが、必要とされる反応体積を遙かに超えて延びる反応面を有する場合、ガード・ヒータ・トラックおよび主ヒータトラックのエッジ付近の修正の双方を省略することが可能である。
さらに、先の説明では、ヒートスプレッダの各々を含む場合と、含まない場合との比較が評価されている。したがって、読者には、含まれることが好ましいものの、ヒートスプレッダ170、180および190の各々は、本発明の実施形態において省かれ得ることが理解されるであろう。
Figure 2022543212000002
Figure 2022543212000003
Figure 2022543212000004

Claims (15)

  1. PCR増幅を実行するための熱サイクリング用ヒータであって、
    反応セルへ熱を伝達するための反応面を有する熱拡散層と、
    冷却用背面を有するヒータトラック支持層と、
    前記ヒータトラック支持層と前記熱拡散層との間に支持される導電性の主ヒータトラックと、
    前記主ヒータトラックを駆動しかつ同時に前記主ヒータトラックの抵抗を検出するための電気接続を提供するように適合化される、前記主ヒータトラックへの4端子電気接点と、
    を備え、
    前記反応面の横方向寸法は、前記ヒータの厚さHより大きく、よって、反応面の面積A>Hである、ヒータ。
  2. 前記主ヒータトラックは、幅Wtrackを有しかつ幅Wgapの間隙により分離される複数の略平行なトラックセクションを備える中央領域を備え、前記熱拡散層の厚さHは、前記トラックセクションの最小幅Wtrackより小さく、または間隙の最小幅Wgapより小さく、WtrackまたはWgapは、前記主ヒータトラックの前記中央領域において評価される、請求項1に記載のヒータ。
  3. 前記間隙幅Wgapおよび/または前記トラックセクションの幅Wtrackは、前記主ヒータトラックのエッジに近いトラックセクションのほうが、前記主ヒータトラックの前記中央領域内のトラックセクションより少ない、請求項2に記載のヒータ。
  4. 前記ヒータトラック支持層と前記熱拡散層との間のガード・ヒータ・トラックであって、前記ガード・ヒータ・トラックは、前記主ヒータトラックを略包囲する、ガード・ヒータ・トラックと、
    前記主ヒータトラックへの前記4端子電気接点とは独立している、前記ガード・ヒータ・トラックへのさらなる2つの電気接点と、
    をさらに備える、先行する請求項のいずれかに記載のヒータ。
  5. 前記ヒータトラック支持層は、1×10-4~1×10-2K.m/Wの範囲の、より好ましくは、3×10-4~3×10-3K.m/Wの範囲の、熱抵抗と面積との積を有する、先行する請求項のいずれかに記載のヒータ。
  6. 前記熱拡散層または前記ヒータトラック支持層のうちの一方と接触して、または前記一方の内部に位置決めされる反応面ヒートスプレッダ層をさらに備える、先行する請求項のいずれかに記載のヒータ。
  7. 前記反応面ヒートスプレッダ層は、前記熱拡散層または前記ヒータトラック支持層のうちの一方に比べて、熱伝導性が高く、より高い横方向熱伝導率を有し、かつより低い熱容量を有する、請求項6に記載のヒータ。
  8. 前記反応面ヒートスプレッダ層は、前記ヒータトラック支持層内に、前記主ヒータトラックから距離Lを隔てて位置決めされ、Lは、前記中央領域において評価される前記ヒータトラック幅Wtrackおよびヒータ間隙幅Wgapの最小値の20%未満である、請求項2または請求項3に記載の、および請求項6または請求項7に記載のヒータ。
  9. 前記背面に、背面ヒートスプレッダ層が位置決めされる、先行する請求項のいずれかに記載のヒータ。
  10. 前記背面と接触するヒートシンクをさらに備える、先行する請求項のいずれかに記載のヒータ。
  11. 先行する請求項のいずれかに記載のヒータと、前記反応面に接触して配置される反応セルとを備える使い捨て消耗品。
  12. 先行する請求項のいずれかに記載のヒータまたは可変温度反応器の動作方法であって、前記主ヒータトラックを駆動することと、前記主ヒータトラックの抵抗を同時に検出することと、検出された前記抵抗に基づいて、前記主ヒータトラックの温度を計算すること、を含む方法。
  13. PCR増幅を実行すべく前記反応面の温度を循環させるために、前記主ヒータトラックの一連の温度設定点に従って前記主ヒータトラックのフィードバックベースの駆動を実行することを含む、請求項12に記載の方法。
  14. 前記ヒータは、請求項4に記載のヒータであり、前記方法は、前記主ヒータトラックより高い単位面積当たりの熱出力を提供するために、前記ガード・ヒータ・トラックを駆動することをさらに含む、請求項12または請求項13に記載の方法。
  15. 請求項12~14のいずれかに記載の方法を実行するように構成される制御回路をさらに備える、請求項1~11のいずれかに記載のヒータまたは使い捨て消耗品。
JP2022505479A 2019-07-26 2020-07-24 ヒータ Pending JP2022543212A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP19188688.6A EP3769843A1 (en) 2019-07-26 2019-07-26 Heater
EP19188688.6 2019-07-26
PCT/EP2020/071059 WO2021018807A1 (en) 2019-07-26 2020-07-24 Heater

Publications (1)

Publication Number Publication Date
JP2022543212A true JP2022543212A (ja) 2022-10-11

Family

ID=67439132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022505479A Pending JP2022543212A (ja) 2019-07-26 2020-07-24 ヒータ

Country Status (7)

Country Link
US (1) US20220250080A1 (ja)
EP (2) EP3769843A1 (ja)
JP (1) JP2022543212A (ja)
CN (1) CN114375323A (ja)
AU (1) AU2020321480A1 (ja)
CA (1) CA3148777A1 (ja)
WO (1) WO2021018807A1 (ja)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6477479B1 (en) * 1998-12-11 2002-11-05 Symyx Technologies Sensor array for rapid materials characterization
US6337435B1 (en) * 1999-07-30 2002-01-08 Bio-Rad Laboratories, Inc. Temperature control for multi-vessel reaction apparatus
US8306773B2 (en) * 2007-08-29 2012-11-06 Canon U.S. Life Sciences, Inc. Microfluidic devices with integrated resistive heater electrodes including systems and methods for controlling and measuring the temperatures of such heater electrodes
US20120264202A1 (en) * 2011-03-23 2012-10-18 Walker Christopher I System for performing polymerase chain reaction nucleic acid amplification
EP2710859B1 (en) * 2011-05-17 2019-09-04 Canon U.S. Life Sciences, Inc. Systems and methods using external heater systems in microfluidic devices
JP2017506060A (ja) * 2013-11-13 2017-03-02 キヤノン ユー.エス. ライフ サイエンシズ, インコーポレイテッドCanon U.S. Life Sciences, Inc. 熱的にガードされた多重センサを用いた熱制御システム及び方法

Also Published As

Publication number Publication date
CA3148777A1 (en) 2021-02-04
CN114375323A (zh) 2022-04-19
US20220250080A1 (en) 2022-08-11
AU2020321480A1 (en) 2022-02-17
EP3769843A1 (en) 2021-01-27
WO2021018807A1 (en) 2021-02-04
EP4003600A1 (en) 2022-06-01

Similar Documents

Publication Publication Date Title
TWI751180B (zh) 靜電夾頭加熱器
TWI266175B (en) A cooling system for an electronic component
TWI547448B (zh) 用於製作具有受控制之厚度的玻璃片之方法及設備
KR101599339B1 (ko) 멀티플렉싱된 히터 어레이에 대한 폴트 검출 방법
TWI598988B (zh) 具有可切換多區域加熱器的基板支撐件
US6530686B1 (en) Differential scanning calorimeter having low drift and high response characteristics
JP5897275B2 (ja) 温度制御ユニット、基板載置台、基板処理装置、温度制御システム、及び基板処理方法
JP2022543212A (ja) ヒータ
JP4313670B2 (ja) サンプルの加熱装置
CN113536600B (zh) 一种功率模块绑定线布局优化设计方法
AU2002324154A1 (en) Zone heating of specimen carriers
JP2012055293A (ja) 温度制御装置、及び温度素子
US20220151026A1 (en) Heater temperature control method, heater, and placement stand
JP3608998B2 (ja) 回路装置、パッケージ部材、回路試験方法および装置
US5196865A (en) Temperature sensing of heater points in thermal print heads by resistive layer beneath the heating points
JP7491634B1 (ja) 加熱装置
JP2007079893A (ja) 温度制御装置
WO2023047999A1 (ja) 基板載置機構、検査装置、および検査方法
WO2012172884A1 (ja) 温度制御装置、及び温度素子
Pfahni et al. Temperature control of a handler test interface
JP2002373764A (ja) 加熱板の温度制御装置
JP2008041735A (ja) 加熱・冷却ユニット、サーモチャック装置およびサーモチャック装置の製造方法
JP2015075365A (ja) 加熱デバイス
JP2016019503A (ja) デバイスの温度制御方法、温度制御装置、分析装置、および分析システム
JP2006173505A (ja) 半導体ウェーハ、その加熱制御方法、およびバーンイン装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230721