JP2022537417A - 周期的周波数領域における摂動ベースファイバ非線形性補償を用いた光ファイバチャンネルを介したデータを送受信するための装置および方法 - Google Patents
周期的周波数領域における摂動ベースファイバ非線形性補償を用いた光ファイバチャンネルを介したデータを送受信するための装置および方法 Download PDFInfo
- Publication number
- JP2022537417A JP2022537417A JP2021576085A JP2021576085A JP2022537417A JP 2022537417 A JP2022537417 A JP 2022537417A JP 2021576085 A JP2021576085 A JP 2021576085A JP 2021576085 A JP2021576085 A JP 2021576085A JP 2022537417 A JP2022537417 A JP 2022537417A
- Authority
- JP
- Japan
- Prior art keywords
- time domain
- domain
- frequency domain
- signal
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 42
- 239000000835 fiber Substances 0.000 title claims description 36
- 230000000737 periodic effect Effects 0.000 title claims description 6
- 239000013307 optical fiber Substances 0.000 title description 10
- 230000005540 biological transmission Effects 0.000 claims description 41
- 230000003595 spectral effect Effects 0.000 claims description 30
- 238000004590 computer program Methods 0.000 claims description 14
- 238000013459 approach Methods 0.000 claims description 13
- 238000012546 transfer Methods 0.000 claims description 13
- 238000004458 analytical method Methods 0.000 claims description 11
- 238000012986 modification Methods 0.000 claims description 11
- 230000004048 modification Effects 0.000 claims description 11
- 230000001131 transforming effect Effects 0.000 claims description 5
- 230000004044 response Effects 0.000 claims description 3
- 230000003287 optical effect Effects 0.000 description 12
- 238000010586 diagram Methods 0.000 description 11
- 230000006870 function Effects 0.000 description 11
- 238000004422 calculation algorithm Methods 0.000 description 10
- 239000000654 additive Substances 0.000 description 5
- 230000000996 additive effect Effects 0.000 description 5
- 230000001427 coherent effect Effects 0.000 description 5
- 230000001419 dependent effect Effects 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- 238000005070 sampling Methods 0.000 description 4
- 238000007493 shaping process Methods 0.000 description 4
- 230000006978 adaptation Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 238000009795 derivation Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2507—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
- H04B10/2543—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to fibre non-linearities, e.g. Kerr effect
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2575—Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2507—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/501—Structural aspects
- H04B10/503—Laser transmitters
- H04B10/505—Laser transmitters using external modulation
- H04B10/5057—Laser transmitters using external modulation using a feedback signal generated by analysing the optical output
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/66—Non-coherent receivers, e.g. using direct detection
- H04B10/69—Electrical arrangements in the receiver
- H04B10/697—Arrangements for reducing noise and distortion
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Optical Communication System (AREA)
Abstract
Description
・複数のスペクトル係数を含む周波数領域データ信号を取得するために、データ入力信号を時間領域から複数の周波数チャンネルを含む周波数領域に変換するステップであって、複数のスペクトル係数の各スペクトル係数が複数の周波数チャンネルのうちの1つの周波数チャンネルに割り当てられている、変換するステップ。
・1つ以上のスペクトル干渉係数を決定することによって干渉を決定し、1つ以上のスペクトル干渉係数の各々は、複数の周波数チャンネルのうちの1つの周波数チャンネルに割り当てられる。
図7bは、(55)のように実施される正則対数(REGLOG)モデル(REGLOG-PERT-TD)におけるシングルチャンネル、シングルスパン、ロスレスファイバのシナリオのコンタープロットを示す図である。
[1] S. J. Savory, “Digital Coherent Optical Receivers: Algorithms and Subsystems,” IEEE J. Sel. Top. Quantum Electron., vol. 16, no. 5, pp. 1164-1179, 2010-09.
[2] D. Zwillinger, Handbook of Differential Equations (eprint). Academic Press, 3rd ed., 1998.
[3] K. V. Peddanarappagari and M. Brandt-Pearce, “Volterra Series Transfer Function of Single-mode Fibers,” J. Lightwave Technol., vol. 15, no. 12, pp. 2232-2241, 1997.
[4] A. Vannucci, P. Serena, and A. Bononi, “The RP Method: A New Tool for The Iterative Solution of the Nonlinear Schrodinger Equation,” J. Lightwave Technol., vol. 20, no. 7, pp. 1102-1112, 2002.
[5] A. Ghazisaeidi, “A Theory of Nonlinear Interactions Between Signal and Amplified Spontaneous Emission Noise in Coherent Wavelength Division Multiplexed Systems,” J. Lightwave Technol., vol. 35, pp. 5150- 5175, Dec. 2017.
[6] A. Mecozzi, C. B. Clausen, and M. Shtaif, “Analysis of Intrachannel Nonlinear Effects in Highly Dispersed Optical Pulse Transmission,” IEEE Photonics Technol. Lett., vol. 12, no. 4, pp. 392-394, 2000.
[7] A. Mecozzi, C. B. Clausen, and M. Shtaif, “System Impact of Intrachannel Nonlinear Effects in Highly Dispersed Optical Pulse Transmission,” IEEE Photonics Technol. Lett., vol. 12, no. 12, pp. 1633-1635, 2000.
[8] A. Mecozzi, C. B. Clausen, M. Shtaif, S. G. Park, and A. H. Gnauck, “Cancellation of Timing and Amplitude Jitter in Symmetric Links Using Highly Dispersed Pulses,” IEEE Photonics Technol. Lett., vol. 13, no. 5, pp. 445-447, 2001.
[9] A. Mecozzi, “A Unified Theory of Intrachannel Nonlinearity in Pseudolinear Transmission,” in Impact of Nonlinearities on Fiber Optic Communications, pp. 253-291, Springer Science & Business Media, 2011.
[10] A. Mecozzi and R. Essiambre, “Nonlinear Shannon Limit in Pseudolinear Coherent Systems,” J. Lightwave Technol., vol. 30, no. 12, pp. 2011- 2024, 2012.
[11] R. Dar, M. Feder, A. Mecozzi, and M. Shtaif, “Properties of Nonlinear Noise in Long, Dispersion-Uncompensated Fiber Links,” Opt. Express, vol. 21, no. 22, pp. 25685-25699, 2013.
[12] R. Dar, M. Feder, A. Mecozzi, and M. Shtaif, “Accumulation of Nonlinear Interference Noise in Fiber-Optic Systems,” Opt. Express, vol. 22, no. 12, pp. 14199-14211, 2014.
[13] R. Dar, M. Feder, A. Mecozzi, and M. Shtaif, “Pulse Collision Picture of Inter-Channel Nonlinear Interference in Fiber-Optic Communications,” J. Lightwave Technol., vol. 34, pp. 593-607, jan 2016.
[14] A. V. Oppenheim and A. S. Willsky, Signals and Systems. Prentice Hall, 1983.
[15] G. P. Agrawal, Fiber-Optic Communication Systems. John Wiley & Sons, Inc., 4th ed., 2010.
[16] I. Kaminow, Optical Fiber Telecommunications Volume VIB, Systems and Networks. Elsevier Science Publishing, 6th ed., 2013.
[17] R. Engelbrecht, Nichtlineare Faseroptik: Grundlagen und Anwendungsbeispiele. Springer-Verlag, 2015.
[18] R. F. H. Fischer, Precoding and Signal Shaping for Digital Transmission. John Wiley & Sons, 2002.
[19] K. D. Kammeyer, Nachrichtenubertragung. Vieweg + Teubner, 2008.
[20] J. P. Gordon and H. Kogelnik, “PMD Fundamentals: Polarization Mode Dispersion in Optical Fibers,” Proc. Natl. Acad. Sci. U.S.A., vol. 97, no. 9, pp. 4541-50, 2000.
[21] P. Johannisson and M. Karlsson, “Perturbation Analysis of Nonlinear Propagation in a Strongly Dispersive Optical Communication System,” J. Lightwave Technol., vol. 31, no. 8, pp. 1273-1282, 2013-04.
[22] H. Louchet, A. Hodzic, K. Petermann, A. Robinson, and R. Epworth, “Simple Criterion for the Characterization of Nonlinear Impairments in Dispersion-Managed Optical Transmission Systems,” IEEE Photonics Technol. Lett., vol. 17, no. 10, pp. 2089-2091, 2005.
[23] X. Wei, “Power-Weighted Dispersion Distribution Function Long-haul Optical Transmission Links,” Opt. Lett., vol. 31, no. 17, pp. 2544-2546, 2006.
[24] L. Liu, L. Li, Y. Huang, K. Cui, Q. Xiong, F. N. Hauske, C. Xie, and Y. Cai, “Intrachannel Nonlinearity Compensation by Inverse Volterra Series Transfer Function,” J. Lightwave Technol., vol. 30, no. 3, pp. 310-316, 2012.
[25] R. W. Boyd, Nonlinear Optics. Academic Press, 3rd ed., 2008.
[26] P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, and F. Forghieri, “A Detailed Analytical Derivation of the GN Model of Non-Linear Interference in Coherent Optical Transmission Systems,” arXiv Prepr.arXiv1209.0394v13, no. 1209.0394, pp. 1-24, 2012.
[27] P. Poggiolini, “The GN Model of Non-linear Propagation in Uncompensated Coherent Optical Systems,” J. Lightwave Technol., vol. 30, no. 24, pp. 3857-3879, 2012.
[28] A. Bononi, P. Serena, and A. Orlandini, “A Unified Design Framework for Terrestrial Systems,” J. Lightwave Technol., vol. 26, no. 22, pp. 3617- 3631, 2008.
[29] J. K. Fischer, C.-A. Bunge, and K. Petermann, “Equivalent Single-Span Model for Dispersion-Managed Fiber-Optic Transmission Systems,” J. Lightwave Technol., vol. 27, no. 16, pp. 3425-3432, 2009.
[30] M. J. Ablowitz and T. Hirooka, “Managing Nonlinearity in Strongly Dispersion-managed Optical Pulse Transmission,” J. Opt. Soc. Am. B Opt. Phys., vol. 19, no. 3, pp. 425-439, 2002.
[31] M. J. Ablowitz and T. Hirooka, “Resonant Nonlinear Intrachannel Interactions in Strongly Dispersion-managed Transmission Systems,” Opt. Lett., vol. 25, no. 24, pp. 1750-1752, 2000.
[32] I. R. Gabitov and S. K. Turitsyn, “Averaged Pulse Dynamics in a Cascaded Transmission System with Passive Dispersion Compensation,” Opt. Lett., vol. 21, no. 5, pp. 327-329, 1996.
[33] R. Dar, “Analytical and Semi-Analytical Models for Nonlinear Transmission,” in 42th Eur. Conf. Opt. Commun., no. W.1.D.5, 2016.
[34] A. Carena, V. Curri, G. Bosco, P. Poggiolini, and F. Forghieri, “Modeling of the Impact of Nonlinear Propagation Effects in Uncompensated Optical Coherent Transmission Links,” J. Lightwave Technol., vol. 30, no. 10, pp. 1524-1539, 2012-05.
[35] F. Frey, R. Emmerich, C. Schubert, J. K. Fischer, and F. Fischer, “Improved Perturbation-based Fiber Nonlinearity Compensation,” in 44th Eur. Conf. Opt. Commun., no. Tu1F.6, 2018.
[36] J. J. Shynk, “Frequency-Domain and Multirate Adaptive Filtering,” IEEE Signal Process Mag., vol. 9, no. 1, pp. 14-37, 1992.
[37] F. P. Guiomar and A. N. Pinto, “Simplified Volterra Series Nonlinear Equalizer for Polarization-multiplexed Coherent Optical Systems,” J. Lightwave Technol., vol. 31, no. 23, pp. 3879-3891, 2013.
[38] B. Xu and M. Brandt-Pearce, “Modified Volterra Series Transfer Function Method,” IEEE Photonics Technol. Lett., vol. 14, pp. 47-49, Jan. 2002.
[39] B. Xu and M. Brandt-Pearce, “Modified Volterra Series Transfer Function Method and Applications to Fiber-Optic Communications,” in 35th Annu. Asilomar Conf. Signals, Syst. Comput., pp. 23-27, 2001.
[40] Y. Fan, L. Dou, Z. Tao, L. Lei, S. Oda, T. Hoshida, and J. C. Rasmussen, “Modulation Format Dependent Phase Noise Caused by Intra-channel Nonlinearity,” in 38th Eur. Conf. Opt. Commun., no. We.2.C.3, 2012.
[41] Z. Tao, Y. Zhao, Y. Fan, L. Dou, T. Hoshida, and J. Rasmussen, “Analytical Intrachannel Nonlinear Models to Predict the Nonlinear Noise Waveform,” J. Lightwave Technol., vol. 33, no. 10, pp. 2111-2119, 2014.
[42] M. Secondini, E. Forestieri, and C. R. Menyuk, “A Combined Regular- Logarithmic Perturbation Method for Signal-Noise Interaction in Amplified Optical Systems,” J Lightwave Technol, vol. 27, pp. 3358-3369, Aug. 2009.
[43] M. Winter, C.-A. Bunge, D. Setti, and K. Petermann, “A Statistical Treatment of Cross-Polarization Modulation in DWDM Systems,” J. Lightwave Technol., vol. 27, no. 17, pp. 3739-3751, 2009.
[44] P. Serena and A. Bononi, “On the Nonlinear Reference Phase in Regular Perturbation Models,” in 2015 Tyrrhenian Int. Work. Digit. Commun., no. 1-4, 2015.
[45] A. Mecozzi and F. Matera, “Polarization Scattering by Intra-channel Collisions,” Opt. Express, vol. 20, no. 2, pp. 1213-1218, 2012.
[46] O. V. Sinkin, R. Holzlohner, J. Zweck, and C. R. Menyuk, “Optimization of the Split-step Fourier Method in Modeling Optical-fiber Communications Systems,” J Lightwave Technol, vol. 21, pp. 61-68, Jan. 2003.
Claims (26)
- 前記伝送媒体は光ファイバーチャンネルである、請求項1に記載の装置。
- 前記装置は、前記1つ以上のスペクトル干渉係数を用いて前記周波数領域データ信号を修正して修正済みデータ信号を得るように構成される信号修正モジュール(130)をさらに備え、
前記装置は、前記修正済みデータ信号を前記周波数領域から前記時間領域に変換して、修正済み時間領域データ信号を得るように構成される逆変換モジュール(135)をさらに備える、請求項1または2に記載の装置。 - 前記変換モジュール(110)は、前記データ入力信号の複数の重複するブロックを前記時間領域から前記周波数領域に変換することにより前記データ入力信号を前記時間領域から前記周波数領域に変換して、前記周波数領域データ信号の複数のブロックを得るように構成され、また、
前記逆変換モジュール(135)は、複数のブロックを前記周波数領域から前記時間領域に変換し、かつ、前記時間領域において表現されている前記複数のブロックを重畳させることにより前記修正済みデータ信号を前記周波数領域から前記時間領域に変換して、前記修正済み時間領域データ信号を得るように構成される、請求項3または4に記載の装置。 - 前記装置が、前記1つ以上のスペクトル干渉係数を前記周波数領域から前記時間領域に変換するように構成される逆変換モジュール(135)をさらに備え、
前記装置が、前記時間領域で表現されている前記1つ以上のスペクトル干渉係数を用いて前記時間領域において表現されている前記データ入力信号を修正して、前記修正済み時間領域データ信号を得るように構成される信号修正モジュール(130)をさらに備える、請求項1または2に記載の装置。 - 前記信号修正モジュール(130)は、前記時間領域で表現されている前記1つ以上のスペクトル干渉係数の各々、または、前記1つ以上のスペクトル干渉係数のうちの該1つのスペクトル干渉係数から導出される値と、前記時間領域で表現されている前記データ入力信号の複数の時間領域サンプルのうち1つの時間領域サンプルとを結合して、前記修正済み時間領域データ信号を得るように構成される、請求項6に記載の装置。
- 前記変換モジュール(110)は、前記データ入力信号の複数の重複するブロックを前記時間領域から前記周波数領域に変換することにより前記データ入力信号を前記時間領域から前記周波数領域に変換して、前記周波数領域データ信号の複数のブロックを得るように構成され、また、
前記逆変換モジュール(135)は、複数の干渉係数ブロックを前記周波数領域から前記時間領域に変換するように構成され、前記複数のブロックは、前記1つ以上のスペクトル干渉係数を含み、
前記信号修正モジュール(130)は、前記複数の干渉係数ブロックを用いて前記時間領域で表現されている前記データ入力信号の前記重複するブロックを修正して、複数の修正済みブロックを得るように構成され、前記信号修正モジュール(130)は、前記複数の修正済みブロックを重畳して、前記修正済み時間領域データ信号を得るように構成される、請求項6または7に記載の方法。 - 前記装置は、前記修正済み時間領域データ信号を前記伝送媒体を介して送信するように構成される送信モジュール(140)をさらに備える、請求項3ないし8のいずれか1項に記載の装置。
- 前記装置は、前記伝送媒体を介して伝送される前記データ入力信号を受信するように構成されている受信モジュール(105)をさらに備える、請求項3ないし9のいずれか1項に記載の装置。
- 前記解析モジュール(120)は、前記1つ以上のスペクトル干渉係数を用いて、前記データ入力信号に応じて摂動信号の推定を決定するように構成される、請求項1または2に記載の装置。
- 前記解析モジュール(120)は、正則摂動アプローチを適用することによって前記干渉を決定するように構成される、請求項14に記載の装置。
- 前記解析モジュール(120)は、正則対数摂動アプローチを適用することによって前記干渉を決定するように構成される、請求項14に記載の装置。
- 前記伝達関数は正規化され、かつ非線形である、請求項1ないし20のいずれか1項に記載の装置。
- 前記解析モジュール(120)は、前記1つ以上のスペクトル干渉係数を決定するために、ヴォルテラ(Volterra)ベースの補償を採用するように構成される、請求項1ないし21のいずれか1項に記載の装置。
- 前記解析モジュール(120)は、周期的ナイキスト(Nyquist)間隔から離散的な周波数にわたって1つ以上の送信および受信シーケンスを決定することによって、前記1つ以上のスペクトル干渉係数を決定するように構成される、請求項1ないし22のいずれか1項に記載の装置。
- コンピュータまたは信号処理装置において実行されるときに、請求項25に記載の方法を実施するためのコンピュータプログラム。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19181865.7 | 2019-06-21 | ||
EP19181865 | 2019-06-21 | ||
PCT/EP2019/067484 WO2020253972A1 (en) | 2019-06-21 | 2019-06-28 | Apparatus and method for transmitting and/or receiving data over a fiber-optical channel employing perturbation-based fiber nonlinearity compensation in a periodic frequency domain. |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022537417A true JP2022537417A (ja) | 2022-08-25 |
JP7322196B2 JP7322196B2 (ja) | 2023-08-07 |
Family
ID=67137522
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021576085A Active JP7322196B2 (ja) | 2019-06-21 | 2019-06-28 | 周期的周波数領域における摂動ベースファイバ非線形性補償を用いた光ファイバチャンネルを介したデータを送受信するための装置および方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11942994B2 (ja) |
EP (1) | EP3987690A1 (ja) |
JP (1) | JP7322196B2 (ja) |
WO (1) | WO2020253972A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220066975A1 (en) * | 2020-09-01 | 2022-03-03 | Texas Instruments Incorporated | Bit stream transformation in parallel data interfaces |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120114341A1 (en) * | 2010-11-10 | 2012-05-10 | Nec Laboratories America, Inc. | System and method for frequency-domain chromatic dispersion and polarization mode dispersion compensation with time-domain channel estimation |
JP2015204622A (ja) * | 2014-04-11 | 2015-11-16 | 富士通株式会社 | 非線形ディストーションの推定装置、方法及び受信機 |
JP2017017427A (ja) * | 2015-06-29 | 2017-01-19 | 日本電信電話株式会社 | 波長分散推定装置及び光伝送システム |
WO2017033550A1 (ja) * | 2015-08-21 | 2017-03-02 | 日本電気株式会社 | 信号処理装置、通信システム、及び信号処理方法 |
JP2018530974A (ja) * | 2016-03-14 | 2018-10-18 | 三菱電機株式会社 | 光信号を復号する方法、並びに光信号を受信及び復号する受信機 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030231726A1 (en) * | 2002-06-12 | 2003-12-18 | Andreas Schuchert | Arrangement and method for frequency domain compensation of OFDM signals with IQ imbalance |
KR101291683B1 (ko) * | 2006-12-07 | 2013-08-01 | 삼성전자주식회사 | Tds-ofdm 수신기의 등화방법 및 상기 등화방법을이용한 등화장치 |
CN103312414B (zh) * | 2012-03-16 | 2016-03-30 | 富士通株式会社 | 一种逆信道装置和包含该装置的发射机、接收机及系统 |
CN103378908B (zh) * | 2012-04-11 | 2016-03-23 | 富士通株式会社 | 一种强度调制直接检测系统的非线性损伤补偿方法和装置 |
WO2014058898A1 (en) * | 2012-10-08 | 2014-04-17 | Huawei Technologies Co., Ltd. | Resource-efficient digital chromatic dispersion compensation in fiber optical communication using spectral-shaping subcarrier modulation |
CN104158787B (zh) * | 2014-04-14 | 2018-12-07 | 上海大学 | Ofdm-pon系统中基于volterra模型的非线性损伤补偿方法 |
CN106452593B (zh) * | 2016-05-30 | 2018-09-28 | 北京邮电大学 | 滤波器的构建方法和装置、及非线性噪声抑制方法和系统 |
US11336367B1 (en) * | 2021-03-12 | 2022-05-17 | Iena Corporation | Low-power pre-compensation of linear and nonlinear transmitter effects in narrow-spectrum optical signals |
-
2019
- 2019-06-28 EP EP19735535.7A patent/EP3987690A1/en active Pending
- 2019-06-28 JP JP2021576085A patent/JP7322196B2/ja active Active
- 2019-06-28 WO PCT/EP2019/067484 patent/WO2020253972A1/en active Application Filing
-
2021
- 2021-12-20 US US17/556,944 patent/US11942994B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120114341A1 (en) * | 2010-11-10 | 2012-05-10 | Nec Laboratories America, Inc. | System and method for frequency-domain chromatic dispersion and polarization mode dispersion compensation with time-domain channel estimation |
JP2015204622A (ja) * | 2014-04-11 | 2015-11-16 | 富士通株式会社 | 非線形ディストーションの推定装置、方法及び受信機 |
JP2017017427A (ja) * | 2015-06-29 | 2017-01-19 | 日本電信電話株式会社 | 波長分散推定装置及び光伝送システム |
WO2017033550A1 (ja) * | 2015-08-21 | 2017-03-02 | 日本電気株式会社 | 信号処理装置、通信システム、及び信号処理方法 |
JP2018530974A (ja) * | 2016-03-14 | 2018-10-18 | 三菱電機株式会社 | 光信号を復号する方法、並びに光信号を受信及び復号する受信機 |
Also Published As
Publication number | Publication date |
---|---|
EP3987690A1 (en) | 2022-04-27 |
US11942994B2 (en) | 2024-03-26 |
US20220116113A1 (en) | 2022-04-14 |
JP7322196B2 (ja) | 2023-08-07 |
WO2020253972A1 (en) | 2020-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Häger et al. | Physics-based deep learning for fiber-optic communication systems | |
Roberts et al. | Channel power optimization of WDM systems following Gaussian noise nonlinearity model in presence of stimulated Raman scattering | |
Oliari et al. | Revisiting efficient multi-step nonlinearity compensation with machine learning: An experimental demonstration | |
EP3096470B1 (en) | Method and system for nonlinear interference mitigation | |
US9628189B2 (en) | System optimization of pulse shaping filters in fiber optic networks | |
Tavakkolnia et al. | Capacity analysis of signaling on the continuous spectrum of nonlinear optical fibers | |
Cho et al. | Shaping lightwaves in time and frequency for optical fiber communication | |
Kahlon et al. | Various dispersion compensation techniques for optical system: a survey | |
Agrell et al. | Information-theory-friendly models for fiber-optic channels: A primer | |
Häger et al. | Wideband time-domain digital backpropagation via subband processing and deep learning | |
Fougstedt et al. | ASIC implementation of time-domain digital backpropagation with deep-learned chromatic dispersion filters | |
Inoue et al. | Learning-based digital back propagation to compensate for fiber nonlinearity considering self-phase and cross-phase modulation for wavelength-division multiplexed systems | |
Pan et al. | Nonlinear electrical predistortion and equalization for the coherent optical communication system | |
US20180191448A1 (en) | Adaptive Nonlinear Compensation In Direct Detect Optical Transmission | |
JP7322196B2 (ja) | 周期的周波数領域における摂動ベースファイバ非線形性補償を用いた光ファイバチャンネルを介したデータを送受信するための装置および方法 | |
Askari et al. | Probabilistic amplitude shaping and nonlinearity tolerance: Analysis and sequence selection method | |
Freire et al. | Towards FPGA implementation of neural network-based nonlinearity mitigation equalizers in coherent optical transmission systems | |
Zhang et al. | Improved soliton amplitude estimation via the continuous spectrum | |
Dahan et al. | Universal virtual lab: A fast and accurate simulation tool for wideband nonlinear DWDM systems | |
Martins et al. | Low-complexity time-domain DBP based on random step-size and partitioned quantization | |
JP2000031904A (ja) | 光分散の補償 | |
Frey et al. | Improved perturbation-based fiber nonlinearity compensation | |
Maghrabi et al. | Adaptive digital back propagation exploiting adjoint-based optimization for fiber-optic communications | |
Jovanovic et al. | Optimization of Fiber Optics Communication Systems via End-to-End Learning | |
Trujillo et al. | Algorithm for the dynamic compensation of Chromatic Dispersion in XGS-PON network architecture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220215 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20221114 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20221114 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221221 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230214 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230512 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230627 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230726 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7322196 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |