JP2022535548A - オフ共鳴アーチファクト補正を伴うスパイラルmr撮像 - Google Patents
オフ共鳴アーチファクト補正を伴うスパイラルmr撮像 Download PDFInfo
- Publication number
- JP2022535548A JP2022535548A JP2021571885A JP2021571885A JP2022535548A JP 2022535548 A JP2022535548 A JP 2022535548A JP 2021571885 A JP2021571885 A JP 2021571885A JP 2021571885 A JP2021571885 A JP 2021571885A JP 2022535548 A JP2022535548 A JP 2022535548A
- Authority
- JP
- Japan
- Prior art keywords
- image
- deep learning
- artifacts
- imaging
- learning network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/80—Geometric correction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/4818—MR characterised by data acquisition along a specific k-space trajectory or by the temporal order of k-space coverage, e.g. centric or segmented coverage of k-space
- G01R33/4824—MR characterised by data acquisition along a specific k-space trajectory or by the temporal order of k-space coverage, e.g. centric or segmented coverage of k-space using a non-Cartesian trajectory
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/561—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
- G01R33/5611—Parallel magnetic resonance imaging, e.g. sensitivity encoding [SENSE], simultaneous acquisition of spatial harmonics [SMASH], unaliasing by Fourier encoding of the overlaps using the temporal dimension [UNFOLD], k-t-broad-use linear acquisition speed-up technique [k-t-BLAST], k-t-SENSE
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/003—Reconstruction from projections, e.g. tomography
- G06T11/008—Specific post-processing after tomographic reconstruction, e.g. voxelisation, metal artifact correction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/565—Correction of image distortions, e.g. due to magnetic field inhomogeneities
- G01R33/56536—Correction of image distortions, e.g. due to magnetic field inhomogeneities due to magnetic susceptibility variations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/565—Correction of image distortions, e.g. due to magnetic field inhomogeneities
- G01R33/56563—Correction of image distortions, e.g. due to magnetic field inhomogeneities caused by a distortion of the main magnetic field B0, e.g. temporal variation of the magnitude or spatial inhomogeneity of B0
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Signal Processing (AREA)
- Biomedical Technology (AREA)
- Artificial Intelligence (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Life Sciences & Earth Sciences (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Description
少なくとも1つのRF励起パルスと変調された磁場勾配とを含む撮像シーケンスを物体に施すステップと;
少なくとも1つの非デカルトk空間軌道に沿ってMR信号を取得するステップと;
取得されたMR信号からMR画像を再構成するステップと;
B0不均一性に誘起された不十分なk空間サンプリングによって生じる1つ又は複数の不良サンプリングアーチファクトを、深層学習ネットワークを使用して検知するステップと
を有する。
Claims (12)
- MRデバイスの検査ボリューム内に位置付けられた物体のMR撮像の方法であって、前記方法は、
少なくとも1つのRF励起パルスと変調された磁場勾配とを含む撮像シーケンスを前記物体に施すステップと、
少なくとも1つの非デカルトk空間軌道に沿ってMR信号を取得するステップと、
取得された前記MR信号からMR画像を再構成するステップと、
前記MR画像における不均一性に誘起された不十分なk空間サンプリングによって生じる1つ又は複数の不良サンプリングアーチファクトを、深層学習ネットワークを使用して検知するステップと
を有する、方法。 - 前記非デカルトk空間軌道は、スパイラルk空間軌道である、請求項1に記載の方法。
- 再構成された前記MR画像は、残存する不良サンプリングアーチファクトを前記検知するステップの前に、B0マップに基づいてぼけ除去される、請求項1又は2に記載の方法。
- 前記深層学習ネットワークは、前記MR画像からアーチファクトマップを導出するように訓練され、前記アーチファクトマップは、少なくとも1つの検知された前記不良サンプリングアーチファクトのみの図的表現である、請求項1から3のいずれか一項に記載の方法。
- 前記深層学習ネットワークは、その出力においてモデル化されたアーチファクトマップのセットによって、及びその入力においてそれぞれのモデル化された前記アーチファクトマップと訓練MR画像との重畳によって訓練される、請求項4に記載の方法。
- モデル化された前記アーチファクトマップは、使用された前記撮像シーケンスに関して計算された単一又は複数のボクセルのオフ共鳴の点広がり関数を含む、請求項5に記載の方法。
- 検知された前記不良サンプリングアーチファクトは、前記深層学習ネットワークによって、再構成された前記MR画像から導出された前記アーチファクトマップに基づいて補正される、請求項4から6のいずれか一項に記載の方法。
- 前記1つ又は複数の不良サンプリングアーチファクトを検知するステップは、予め定められた画像領域及び/又は前記不均一性又は主磁場の局所的な変化の程度が所与の閾値を超えることをB0マップが示す画像領域に制限される、請求項1から7のいずれか一項に記載の方法。
- B0マップが、前記不良サンプリングアーチファクトの検知中に前記深層学習ネットワークの更なる入力として使用される、請求項1から8のいずれか一項に記載の方法。
- 前記深層学習ネットワークは畳み込みネットワークである、請求項1から9のいずれか一項に記載の方法。
- 検査ボリューム内に均一な静的磁場を生成するための少なくとも1つの主電磁コイルと、前記検査ボリューム内で種々の空間的方向におけるスイッチされた磁場勾配を生成するためのいくつかの勾配コイルと、前記検査ボリューム内にRFパルスを生成するため及び/又は前記検査ボリュームに位置付けられた物体からのMR信号を受信するための少なくとも1つのRFコイルと、時間的に連続するRFパルス及びスイッチされた磁場勾配を制御するための制御ユニットと、受信された前記MR信号からMR画像を再構成するための再構成ユニットとを含むMRデバイスであって、前記MRデバイスは、
少なくとも1つのRF励起パルスと変調された磁場勾配とを含む撮像シーケンスを前記物体に施すことと、
少なくとも1つの非デカルトk空間軌道に沿ってMR信号を取得することと、
取得された前記MR信号からMR画像を再構成することと、
前記MR画像における不均一性に誘起された不十分なk空間サンプリングによって生じる1つ又は複数の不良サンプリングアーチファクトを、深層学習ネットワークを使用して検知することと
を実施する、MRデバイス。 - 非デカルトk空間サンプリングを使用して取得されたMR信号からMR画像を再構成することと、
前記MR画像における不均一性に誘起された不十分なk空間サンプリングによって生じる1つ又は複数の不良サンプリングアーチファクトを、深層学習ネットワークを使用して検知することと
のための命令を含む、コンピュータプログラム。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19178061.8 | 2019-06-04 | ||
EP19178061.8A EP3748384A1 (en) | 2019-06-04 | 2019-06-04 | Spiral mr imaging with off-resonance artefact correction |
PCT/EP2020/065273 WO2020245144A1 (en) | 2019-06-04 | 2020-06-03 | Spiral mr imaging with off-resonance artefact correction |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2022535548A true JP2022535548A (ja) | 2022-08-09 |
JPWO2020245144A5 JPWO2020245144A5 (ja) | 2023-10-31 |
JP7507793B2 JP7507793B2 (ja) | 2024-06-28 |
Family
ID=66751971
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021571885A Active JP7507793B2 (ja) | 2019-06-04 | 2020-06-03 | オフ共鳴アーチファクト補正を伴うスパイラルmr撮像 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11867784B2 (ja) |
EP (2) | EP3748384A1 (ja) |
JP (1) | JP7507793B2 (ja) |
CN (1) | CN113939846B (ja) |
WO (1) | WO2020245144A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023038799A (ja) * | 2021-09-07 | 2023-03-17 | キヤノンメディカルシステムズ株式会社 | データ処理装置、磁気共鳴イメージング装置及びデータ処理方法 |
CN115187449A (zh) * | 2022-06-20 | 2022-10-14 | 湖南大学 | 一种基于透视变换的提高对抗样本迁移性的方法 |
CN115327459A (zh) * | 2022-08-18 | 2022-11-11 | 深圳市联影高端医疗装备创新研究院 | 一种并行发射局部激发脉冲生成方法、装置和存储介质 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5617028A (en) * | 1995-03-09 | 1997-04-01 | Board Of Trustees Of The Leland Stanford Junior University | Magnetic field inhomogeneity correction in MRI using estimated linear magnetic field map |
US20050058368A1 (en) * | 2003-06-27 | 2005-03-17 | Hisamoto Moriguchi | Efficient method for MR image reconstruction using coil sensitivity encoding |
JP2015531251A (ja) * | 2012-09-04 | 2015-11-02 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | ディクソン水脂肪分離を用いるプロペラ |
JP2017064175A (ja) * | 2015-09-30 | 2017-04-06 | 株式会社日立製作所 | 磁気共鳴イメージング装置、および、画像処理装置 |
CN109242924A (zh) * | 2018-08-31 | 2019-01-18 | 南方医科大学 | 一种基于深度学习的核磁共振图像的降采样伪影去除方法 |
US20190147588A1 (en) * | 2017-11-13 | 2019-05-16 | Siemens Healthcare Gmbh | Artifact identification and/or correction for medical imaging |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004086060A2 (en) | 2003-03-20 | 2004-10-07 | Case Western Reserve University | Chemical species suppression for mri imaging using spiral trajectories with off-resonance correction |
CN1327809C (zh) * | 2005-03-28 | 2007-07-25 | 南方医科大学 | 在t1加权磁共振成像中用propeller采样方式消除运动伪影的方法 |
US7642777B1 (en) | 2006-08-21 | 2010-01-05 | University Of Virginia Patent Foundation | Fast automatic linear off-resonance correction method for spiral imaging |
US8238634B1 (en) | 2007-02-23 | 2012-08-07 | University Of Virginia Patent Foundation | Efficient off-resonance correction method and system for spiral imaging with improved accuracy |
DE102008007048B4 (de) * | 2008-01-31 | 2010-06-17 | Siemens Aktiengesellschaft | Dynamische Verzeichnungskorrektur bei EPI-Messungen in der medizinischen Magnet-Resonanz-Bildgebung |
US9322896B2 (en) | 2012-04-20 | 2016-04-26 | University Of Virginia Patent Foundation | Systems and methods for reduced off-resonance blurring in spiral imaging |
JP2016512780A (ja) * | 2013-03-21 | 2016-05-09 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 圧縮センシングを使用したmr画像の再構成 |
CN107850652B (zh) * | 2015-07-15 | 2021-10-15 | 皇家飞利浦有限公司 | 具有运动检测的mr成像 |
CN107945132B (zh) * | 2017-11-29 | 2022-10-04 | 深圳安科高技术股份有限公司 | 一种基于神经网络的ct图像的伪影校正方法及装置 |
CN108132274B (zh) * | 2017-12-21 | 2019-08-16 | 厦门大学 | 不均匀磁场下回波平面成像无参考扫描图像畸变矫正方法 |
US11681001B2 (en) * | 2018-03-09 | 2023-06-20 | The Board Of Trustees Of The Leland Stanford Junior University | Deep learning method for nonstationary image artifact correction |
US10915990B2 (en) * | 2018-10-18 | 2021-02-09 | General Electric Company | Systems and methods for denoising medical images with deep learning network |
CN109741409A (zh) * | 2018-11-30 | 2019-05-10 | 厦门大学 | 回波平面成像涡流伪影的无参考扫描校正方法 |
-
2019
- 2019-06-04 EP EP19178061.8A patent/EP3748384A1/en not_active Withdrawn
-
2020
- 2020-06-03 CN CN202080041174.6A patent/CN113939846B/zh active Active
- 2020-06-03 EP EP20729749.0A patent/EP3980801B1/en active Active
- 2020-06-03 WO PCT/EP2020/065273 patent/WO2020245144A1/en unknown
- 2020-06-03 US US17/614,595 patent/US11867784B2/en active Active
- 2020-06-03 JP JP2021571885A patent/JP7507793B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5617028A (en) * | 1995-03-09 | 1997-04-01 | Board Of Trustees Of The Leland Stanford Junior University | Magnetic field inhomogeneity correction in MRI using estimated linear magnetic field map |
US20050058368A1 (en) * | 2003-06-27 | 2005-03-17 | Hisamoto Moriguchi | Efficient method for MR image reconstruction using coil sensitivity encoding |
JP2015531251A (ja) * | 2012-09-04 | 2015-11-02 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | ディクソン水脂肪分離を用いるプロペラ |
JP2017064175A (ja) * | 2015-09-30 | 2017-04-06 | 株式会社日立製作所 | 磁気共鳴イメージング装置、および、画像処理装置 |
US20190147588A1 (en) * | 2017-11-13 | 2019-05-16 | Siemens Healthcare Gmbh | Artifact identification and/or correction for medical imaging |
CN109242924A (zh) * | 2018-08-31 | 2019-01-18 | 南方医科大学 | 一种基于深度学习的核磁共振图像的降采样伪影去除方法 |
Non-Patent Citations (1)
Title |
---|
KUESTNER ET AL.: "SIMULTANEOUS DETECTION AND IDENTIFICATION OF MR ARTIFACT TYPES IN WHOLE-BODY IMAGING", PROCEEDINGS OF THE INTERNATIONAL SOCIETY FOR MAGNETIC RESONANCE IN MEDICINE, JPN5022010310, 16 June 2018 (2018-06-16), pages 1 - 3, ISSN: 0005215409 * |
Also Published As
Publication number | Publication date |
---|---|
US11867784B2 (en) | 2024-01-09 |
EP3980801B1 (en) | 2024-09-04 |
JP7507793B2 (ja) | 2024-06-28 |
EP3980801A1 (en) | 2022-04-13 |
CN113939846B (zh) | 2025-06-17 |
US20220229134A1 (en) | 2022-07-21 |
CN113939846A (zh) | 2022-01-14 |
EP3748384A1 (en) | 2020-12-09 |
WO2020245144A1 (en) | 2020-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10634753B2 (en) | MR imaging with motion detection | |
CN110869790B (zh) | 使用具有可变对比度的星形堆叠采集进行的mr成像 | |
US10401456B2 (en) | Parallel MR imaging with Nyquist ghost correction for EPI | |
US10466322B2 (en) | MR imaging using multi-echo k-space acquisition | |
US20140009156A1 (en) | Compressed sensing mr image reconstruction using constraint from prior acquisition | |
US9223001B2 (en) | MR imaging using navigators | |
WO2014195384A1 (en) | Parallel mri with b0 distortion correction and multi-echo dixon water-fat separation using regularised sense reconstruction | |
US20170307716A1 (en) | Propeller mr imaging with artefact suppression | |
JP7507793B2 (ja) | オフ共鳴アーチファクト補正を伴うスパイラルmr撮像 | |
JP7128972B2 (ja) | 歪み補正を伴うepi mr画像 | |
CN113614558B (zh) | 使用具有软运动门控的3d径向或螺旋采集的mr成像 | |
US11543482B2 (en) | Magnetic resonance imaging using motion-compensated image reconstruction | |
EP3185029A1 (en) | Mr imaging using propeller acquisition with t2 decay correction | |
CN108431625A (zh) | 具有对运动引起的扩散梯度不一致性的修正的dti | |
US20230400545A1 (en) | Spin echo mr imaging with spiral acquisition | |
JPWO2020245144A5 (ja) | ||
EP3432019A1 (en) | Parallel multi-slice mr imaging using signal averaging | |
US11815577B2 (en) | Parallel MR imaging using wave-encoding | |
US20240069136A1 (en) | Mr mammography | |
EP3118643A1 (en) | Dynamic propeller mr imaging | |
EP2657718A1 (en) | MRI with arterial spin labeling in combination with a navigator sequence |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230601 |
|
A524 | Written submission of copy of amendment under article 19 pct |
Free format text: JAPANESE INTERMEDIATE CODE: A524 Effective date: 20231023 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20231129 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231211 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240307 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240520 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240618 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7507793 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |