JP2022534983A - 停電の検出と報告 - Google Patents

停電の検出と報告 Download PDF

Info

Publication number
JP2022534983A
JP2022534983A JP2021570876A JP2021570876A JP2022534983A JP 2022534983 A JP2022534983 A JP 2022534983A JP 2021570876 A JP2021570876 A JP 2021570876A JP 2021570876 A JP2021570876 A JP 2021570876A JP 2022534983 A JP2022534983 A JP 2022534983A
Authority
JP
Japan
Prior art keywords
node
packet
power
last
power outage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021570876A
Other languages
English (en)
Other versions
JP7410981B2 (ja
Inventor
イー サラサール カルドソ,ルーベン
ランドール ターナー,ジェイムズ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Landis and Gyr Innovations Inc
Original Assignee
Landis and Gyr Innovations Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Landis and Gyr Innovations Inc filed Critical Landis and Gyr Innovations Inc
Publication of JP2022534983A publication Critical patent/JP2022534983A/ja
Application granted granted Critical
Publication of JP7410981B2 publication Critical patent/JP7410981B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R22/00Arrangements for measuring time integral of electric power or current, e.g. electricity meters
    • G01R22/06Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods
    • G01R22/061Details of electronic electricity meters
    • G01R22/068Arrangements for indicating or signaling faults
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0007Details of emergency protective circuit arrangements concerning the detecting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/04Details with warning or supervision in addition to disconnection, e.g. for indicating that protective apparatus has functioned
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0604Management of faults, events, alarms or notifications using filtering, e.g. reduction of information by using priority, element types, position or time
    • H04L41/0622Management of faults, events, alarms or notifications using filtering, e.g. reduction of information by using priority, element types, position or time based on time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0686Additional information in the notification, e.g. enhancement of specific meta-data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/10Active monitoring, e.g. heartbeat, ping or trace-route
    • H04L43/106Active monitoring, e.g. heartbeat, ping or trace-route using time related information in packets, e.g. by adding timestamps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • H04L69/324Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the data link layer [OSI layer 2], e.g. HDLC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B2001/6908Spread spectrum techniques using time hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • H04L45/026Details of "hello" or keep-alive messages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Power Engineering (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Small-Scale Networks (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

接続されたネットワークにおいてノードの停電を検出して報告するシステム及び方法が開示される。ネットワーク内のノードは、ノードにて停電が発生したことを検出し、ノードは、ネットワークが通信に使用する通常のパケットフォーマットよりも少ないデータユニットを含むパケットフォーマットを使用して最後の息切れパケットを生成する。ノードは、その隣接するノードに最後の息切れパケットをブロードキャストする。最後の息切れパケットを受信する隣接のノードは、停電の時刻を推定し、最後の息切れパケットを通常のパケットフォーマットを用いる停電アラームメッセージに変換する。隣接のノードは、停電アラームメッセージをヘッドエンドシステムに送信してノードにおける停電を報告する。

Description

本開示は、概略、無線ネットワーク内部のノードの停電(例えば、構内停電若しくはグリッド停電)を検出し及び報告するプロセスに関する。
スマート電力、ガス、水道メータのネットワークやその他のスマートデバイス(即ち、他のデバイスやネットワークに接続して通信することができるデバイス)などの、ネットワークシステムは、デバイス間通信のために相互に接続することができる。更に、ネットワーク化されたシステム内部のスマートデバイスの一つ若しくは複数は、インターネット若しくは他のネットワークと相互接続することが可能である。例えば、ネットワーク化されたシステムは、スマートデバイスに、互いに通信可能に結合してデータを交換するメカニズムを提供する。ネットワーク化されたシステムは、ネットワーク(例えば、インターネット若しくはイントラネット)に、直接的に、又は親及びルートノード若しくはコレクタの追加の層を介して間接的に、接続する一つ若しくは複数のノードを含み得る。又、ネットワーク化されたシステムは、親ノード若しくは他の子ノードとリンクして、ネットワーク化されたシステム全体でデータを交換するノードを含み得る。
ネットワーク化されたシステム内部のノードに対する停電検出および報告の信頼性には、特定の問題が生じる。例えば、電力を失った後、瀕死のノードは、その停電を報告するためにネットワークメッセージを生成してヘッドエンドシステムに送信するエネルギが残っている場合がある。しかしながら、ノードが有するエネルギの量は、ネットワーク化されたシステムが必要とする全ての情報を含むネットワークメッセージを生成して送信するのに十分ではない可能性がある。また、停電が一つ以上のノードに影響を与える場合、瀕死のノードのネットワークメッセージをヘッドエンドシステムにルーティングするように構成されたネットワークノードも停電に見舞われてしまい、適切に機能しない可能性がある。その結果、瀕死のノードの停電を報告するネットワークメッセージが、ネットワーク化されたシステム内の他のノードに受信されず、ヘッドエンドシステムに報告されない可能性がある。このように、ネットワーク化されたシステム内のノードの停電イベントは、適切に若しくは一貫して検出されるということが無く、更なる是正措置のためにヘッドエンドシステムに報告されるということが無い、可能性がある。
スマートデバイスのネットワーク化されたシステムにおいてノードの停電を検出して報告する装置及びプロセスについて、態様及び実施例が開示される。例えば、ノードの停電を検出して報告する方法は、メッシュネットワークの第1のノードが、第1のノードで停電が発生したことを検出するステップと、停電を検出してから所定の期間が経過し、電力が回復していないことを判断するステップとを含む。方法は、更に、所定の期間が経過し、電力が回復していないことを判断することに応答して、ランダムなオフセット期間の待機後に、第1のノードによって、メッシュネットワーク上に最後の息切れパケットをブロードキャストすることを含む。最後の息切れパケットは、メッシュネットワークが通信に使用する通常のパケットフォーマットよりも少ない数のデータユニットを含む第1のパケットフォーマットを使用して生成される。方法は、又、メッシュネットワークの第2のノードによって、最後の息切れパケットを受信することを含む。第2のノードは、メッシュネットワークを介して第2のノードに通信可能に接続する第1のノードの隣接のノードである。方法は、更に、第2のノードによって、最後の息切れパケットを受信した時刻と所定の期間とに基づいて、停電の推定時刻を決定するステップと、第2のノードによって、受信した最後の息切れパケットと停電の推定時刻とに基づいて、メッシュネットワークが通信に使用する通常のパケットフォーマットで停電アラームメッセージを生成するステップと、並びに、第2のノードによって、停電アラームメッセージをメッシュネットワークのヘッドエンドシステムに送信するステップとを含む。
別の例では、システムは、メッシュネットワークの第1のノードを含み、第1のノードは、第1のノードにおいて停電が発生したことを検出するステップと、停電を検出してから所定の期間が経過し、電力が回復していないことを判断するステップと、及び、所定の期間が経過し、電力が回復していないことを判断することに応答して、ランダムなオフセット期間の待機後に、メッシュネットワーク上に最後の息切れパケットをブロードキャストするステップと、を行うように構成されている。前記最後の息切れパケットは、前記メッシュネットワークが通信に使用する通常のパケットフォーマットよりも少ない数のデータユニットを含む第1のパケットフォーマットを用いて生成される。システムは、メッシュネットワークを介して第1のノードに通信可能に接続する、第1のノードの複数の隣接のノードを更に含む。複数の隣接のノードの各々は、第1のノードから最後の息切れパケットを受信するステップと、最後の息切れパケットを受信した時刻と所定の期間とに基づいて停電の推定時刻を判断するステップと、受信した最後の息切れパケットと停電の推定時刻とに基づいて、メッシュネットワークが通信に使用する通常のパケットフォーマットで停電アラームメッセージを生成するステップと、及び、停電アラームメッセージをメッシュネットワークのヘッドエンドシステムに送信するステップとを行うように構成されている。
更なる例では、ネットワークのノードは、コンピュータ可読命令を実行するように構成されたプロセッサと、及び、プロセッサによって実行されたときに、プロセッサに、動作を行わせるコンピュータ可読命令を格納するように構成されたメモリとを含む。動作は、瀕死のノードから瀕死のノードにおける停電を示す最後の息切れパケットを受信するステップを含む。ノードは、ネットワークを介してノードに通信可能に接続する瀕死のノードの隣接のノードである。最後の息切れパケットは、停電を検出してから所定の期間が経過した後に瀕死のノードによって生成され、ネットワークが通信に使用する通常のパケットフォーマットよりも少ない数のデータユニットを含む第1のパケットフォーマットを使用して、ネットワーク上にブロードキャストされる。動作は更に、最後の息切れパケットを受信した時刻と所定の期間とに基づいて、停電の推定時刻を判断するステップと、受信した最後の息切れパケットと停電の推定時刻とに基づいて、ネットワークが通信に使用する通常のパケットフォーマットで停電アラームメッセージを生成するステップと、及び、停電アラームメッセージを、ネットワークのヘッドエンドシステムに送信するステップとを含む。
これらの例示的な態様及び特徴は、説明する発明の主旨を限定若しくは定義するためではなく、本願で説明する概念の理解を助けるための例を提供するために、言及されている。 説明する発明の主旨の他の態様、利点、及び特徴は、本願全体を検討した後に明らかになるであろう。
本開示のこれらおよびその他の特徴、態様、および利点は、添付の図面を参照して以下の詳細な説明を読むと、よりよく理解できる。
図1は、本開示の特定の態様に係る、ネットワーク化されたシステム内のノードの停電を検出して報告する例示的な動作環境を示すブロック図である。 図2は、本開示の特定の態様に係る、ネットワーク化されたシステム内のノードの停電を検出して報告するタイムラインの例を示す図である。 図3は、本開示の特定の態様に係る、最後の息切れパケット118及び停電アラームメッセージ108の例を示す図である。 図4は、本開示の特定の態様に係る、ネットワーク化されたシステム内のノードの停電を検出して報告する幾つかのプロセスを示す幾つかのフロー図を示す。 図5は、本開示の特定の態様に係る、図1のネットワーク化されたシステムのノードのブロック図の例である。
スマートデバイスのネットワーク化されたシステム内のノード停電の検出及び報告のためのシステム及び方法を、提供する。本明細書で使用されるように、ノードの停電は、ノードの位置における構内停電(例えば、停電は、ノードの位置における構内レベルでのみ発生し、単独のノードに影響を与える。)、又は、ノードの位置におけるグリッド停電(例えば、停電は、電力グリッドレベルで発生し、複数の構内及び複数のノードに影響を与え得る。)を、含み得る。ネットワーク化されたシステム内部では、ノードは、他のノード若しくは集中型ネットワーク(例えば、インターネット若しくはイントラネット)との間でデータを送信及び受信することができるネットワーク化されたシステム内の任意のポイントであればよい。ネットワーク化されたシステムに接続するノードのステータスの適切なアカウンティングを提供するために、ネットワーク化されたシステムは、ネットワーク化されたシステムに接続するノードにおけるノード停電検出を管理するためにノード能力を活用するプロセスを含む。
例えば、ノードは、停電を経験していることを検出することがある。停電を被っているノードを本明細書では、「瀕死のノード」若しくは「非機能のノード」とも称する。停電を検出すると、瀕死のノードは、ノードの内部キャパシタに蓄積されるエネルギを使用するなどして、完全にシャットダウンする前に短時間だけ動作することができる場合がある。この短時間に、瀕死のノードは、瀕死のノードの様々なコンポーネントをオフにする、関連データをストレージデバイスに保存する、などの、順序付けされたシャットダウンプロセスを開始することができる。
この短時間の間に、瀕死のノードは、その停電を報告する最後の息切れパケットを生成することもできる。停電報告メッセージを生成して送信する際の電力消費を低減するために、最後の息切れパケットは、ネットワーク化されたシステムが通信に使用する通常のメッセージよりも少ないデータを含むフォーマットで生成される。例えば、最後の息切れパケットには、最後の息切れパケットであることの表示や、ノードの識別子など、必要な情報のみを含めることができる。停電の時間、パケットの宛先情報など、通常の停電アラームメッセージに別途含まれる他の情報は、最後の息切れパケットから省略することができる。
一時的または瞬間的な停電を報告することを回避するために、瀕死のノードは、最後の息切れパケットを送信する前に持続期間を待つことができる。更に、最後の息切れパケットを送信する際の衝突の可能性を低減するために、ランダムなオフセット期間を待機時間に加えることもできる。可能な限り多くのノードに到達するために、瀕死のノードは、最後の息切れパケットを、ネットワークを介してブロードキャストするように構成され得る。(瀕死のノードのためのメッセージをルーティングするように構成されたノードを含むが、これに限定されない、)瀕死のノードと直接通信可能な隣接のノードは、最後の息切れパケットを受信し得る。このように、最後の息切れパケットは、瀕死のノードの複数の隣接のノードによって受信される可能性があり、それにより、最後の息切れパケットが、機能中のノードに到達する可能性が高まる。
最後の息切れパケットを受信した、瀕死のノードの隣接のノードの各々は、ネットワークメッセージの通常のフォーマットに従うことによって最後の息切れパケットを停電アラームメッセージに変換し、ヘッドエンドシステムに送信することができる。複数の隣接のノードが同時に停電アラームメッセージを送信することにより生じる送信衝突を回避するために、各隣接のノードは、停電アラームメッセージを送信する前に、ランダムの期間、待つことができる。更に、ヘッドエンドシステムに重複した停電アラームメッセージが送信されるのを回避するために、各隣接のノードは、そのランダムの期間に、他のノードが送信する停電アラームメッセージをリッスンすることができる。瀕死のノードでの停電を報告する停電アラームメッセージが、そのランダムの期間に、他のノードによって送信された場合、隣接のノードは停電アラームメッセージの送信を控える。そのランダムの期間に、他のノードから停電アラームメッセージが送信されていない場合、隣接のノードは、通常のパケットルーティングによりヘッドエンドシステムに停電アラームメッセージを送信する。 停電アラームメッセージを受信した後、ヘッドエンドシステムは、非機能のノードに対処するための措置を取ることができる。例えば、非機能のノードに関して物理的な検査や修理を行うために、技術者を配置することができる。また、非機能のノードに関する情報は、顧客に正確な停電情報を提供したり、問題の範囲を特定したりするのに使用することもできる。
非機能のノードの電力が回復したとき、このノードは十分な電力を有しており、通常のネットワークメッセージフォーマットで電力回復メッセージを生成し、通常のパケットルーティングを介してヘッドエンドシステムに電力回復メッセージを送信して、その電力回復を報告することができる。
本開示に記載の技術は、ノードの停電検出及び報告の信頼性を高める。例えば、最後の息切れパケットのサイズを小さくすることにより、最後の息切れパケットを生成して送信するための瀕死のノードにおけるエネルギ消費を、低減することができ、それにより、瀕死のノードの限られたエネルギを使用して最後の息切れパケットが正常に送信される可能性を高めることができる。更に、ユニキャストではなくブロードキャストで最後の息切れパケットを送信することで、最後の息切れパケットが機能中のノードに到達する可能性が高くなり、ヘッドエンドシステムに確実に停電が報告され得る。瀕死のノードが最後の息切れパケットを送信する前に追加するランダムなオフセット期間、隣接のノードが他のノードから報告される停電アラームメッセージをリッスンするランダムの期間などの、様々な他のメカニズムも、ネットワーク伝送の衝突を更に減らし得、ノードの停電を報告する信頼性を高め得る。
図1は、ネットワーク化されたシステム100及びメッシュネットワーク102の例を示すブロック図である。ネットワーク化されたシステム100及びメッシュネットワーク102は、スマートデバイス(例えば、通信技術を含む、リソース消費メータ、車両、家電製品など)が、ノード(即ち、他のスマートデバイス)のネットワーク、インターネット、及び/又はイントラネットを介して、通信するためのネットワークインフラストラクチャを提供するものである。
ネットワーク化されたシステム100は、ヘッドエンドシステム104を含み、このヘッドエンドシステム104は、ネットワーク120からデータのストリームを受信する中央処理システムとして機能し得る。ネットワーク120は、インターネット、イントラネット、又は、任意の他のデータ通信ネットワークであってよい。メッシュネットワーク102は、(本明細書では、個別にノード112と称することも、集合的にノード112と称することもある)様々なノード112A-112Hを含み得る。これらのノード112は、ノードの夫々の展開された位置からデータを収集するための測定ノード、ノードに利用可能なデータを処理する処理ノード、メッシュネットワーク102内の一つのノードから別のノードに、受信されたデータを転送するためのルータノード、又は、これらの機能の組み合わせを実行するように構成されたノードなどの、ノードを含む。
一つの例では、メッシュネットワーク102は、配電ネットワークで得られる測定データ又は他のデータを配信するために、配電ネットワークと関連付けられている。この例では、ノード112は、配電ネットワークの様々な動作特性を測定し、メッシュネットワーク102を介して収集されるデータを(本明細書では、個別にルートノード114と称され得る、又は、集合的にルートノード114と称され得る)ルートノード114A及び114Bに送信するように、実装された電力計を含む。
メッシュネットワーク102のルートノード114は、ノード112を管理し、ノード112からデータを収集し、データをヘッドエンドシステム104に転送するなどの動作を実行するために、ノード112と通信するように構成され得る。また、ルートノード114は、自身がデータを測定して処理するノードとして機能するように構成され得る。ルートノード114は、パーソナルエリアネットワーク(PAN)コーディネータ、ゲートウェイ、若しくは、ヘッドエンドシステム104と通信可能な他のデバイスであってもよい。ルートノード114は、生成されて収集されるデータを、ネットワーク120を介してヘッドエンドシステム104に最終的に送信する。更に、ルートノード114は、ヘッドエンドシステム104からネットワーク管理メッセージを受信し、該ネットワーク管理メッセージをノード112に送信することもできる。同様に、ルートノード114自身又はノード112は、ネットワーク管理メッセージを発行して他のノード112に送信することもできる。ノード114とノード112との間で送信されるデータ及びネットワーク管理は、本明細書では「通信メッセージ」と総称することがある。これらの通信メッセージは、ノード114とノード112との間のデータリンク110を介して送信されてルーティングされる。幾つかの例では、通信メッセージは、メッシュネットワーク102上のノード114及びノード112が通信メッセージを理解して、正確な宛先ノード若しくはヘッドエンドシステム104にルーティングできるように、通常のフォーマットで生成される。
通信メッセージは、通常、メッシュネットワーク102のノードヒエラルキに従って、ノードとヘッドエンドシステム104との間、又は、ノード間で、ルーティングされる。 例えば、ネットワーク120を介してヘッドエンドシステム104と直接通信するルートノード114Aは、ルートノード114Aの下のノード層(例えば、層1)に位置するノード112A及びノード112Bとのデータリンクのため、概略親ノードと呼ばれ得る。図示されているように、ノード112A及びノード112Bは、ノード112A及びノード112Bの下のノード層(例えば、層2)に位置するノード112C、112D、及び112Eとのデータリンクのため、親ノードと呼ばれ得る。同様に、ノード114B及びノード112Gも、夫々のノードの下のノード層に位置するノード112F-112G及びノード112Hとのデータリンクのため、親ノードと呼ばれ得る。通常の動作中、ノード112は全て、ノード層を介して情報をルートノード114に、最終的にはヘッドエンドシステム104に流し得る。
ノード112及びノード114の各々は、他のノードの少なくとも一つとリンクしている。リンク110は、データがルーティングされ得る他のノードの指示をノード112及び114に提供する、ノード112及び114のネイバーキャッシュに、隣接のノード情報を格納することによって作成され得る。例えば、ノード112Dのネイバーキャッシュは、ノード112Dで収集されたデータがノード112Bに送信されるべきであることを識別するネイバーノード情報を含み得る。同様に、ノード112Bのネイバーキャッシュは、ノード112Bが関連情報(例えば、ネットワーク管理メッセージ又はヘッドエンドシステム104からの他の情報)をノード112Dに送信すべきであることを識別し、また、ノード112Bがノード112Bにより収集するデータ及びノード112Dから受信するデータをルートノード114Aに送信すべきであることを識別する、近隣ノード情報を含み得る。このようなデータ送信スキームは、より多くのノード層がある場合、メッシュネットワーク102のノード層を介して上に続き得る。
動作において、より少ない若しくはより多いノード112が、メッシュネットワーク102に含まれ得、又、より多いルートノード114が、ネットワーク化されたシステム100に含まれ得る。更に、図1に示されるメッシュネットワーク102は、ルートノード層(即ち、ルートノード114)、層1(即ち、ノード112A、112B、112F、及び112G)、並びに層2(即ち、ノード112C、112D、112E、及び112H)を含むが、より少ない若しくはより多いノード層も、企図される。更に、図1は、特定のネットワークトポロジ(例えば、DODAGツリートポロジ)を示しているが、他のネットワークトポロジ(例えば、リングトポロジ、メッシュトポロジ、スタートポロジなど)も可能である。
ヘッドエンドシステム104は、ノード114及び112の動作ステータスの追跡を保持し得る。そうするために、ノード114及び112の各々は、そのステータスをヘッドエンドシステム104に報告するように構成され得る。例えば、ノード114又は112が停電を経験する場合、このノードは、ヘッドエンドシステム104に停電を報告することができる。後にそのノードで電力が回復する場合、そのノードはヘッドエンドシステム104に電力回復を報告することができる。図1に示す例では、ノード112Dが、停電を経験しつつある(このようなノード112Dは、瀕死のノード112Dとも称される)。停電を検出すると、瀕死のノード112Dは、停電を示すための最後の息切れパケット118を生成し得る。瀕死のノード112Dは、最後の息切れパケット118を、上述したような通常の送信手順に従って、ノード112Bに直接送信する代わりに、ブロードキャストすることができる。このようにして、最後の息切れパケット118は、ノード112B、112C、112E、112Hなどの、瀕死のノード112Dと直接通信可能な、瀕死のノード112Dの複数の隣接のノードに、到達し得る。更に、最後の息切れパケット118は、通信メッセージの送信に使用される通常のフォーマットよりも少ないデータを含むフォーマットで生成され得る。
最後の息切れパケット118を受信すると、電力を失っておらず正常に機能している隣接のノードの各々は、パケットを停電アラームメッセージ108に再フォーマットすることができる。停電アラームメッセージ108は、停電アラームメッセージ108がヘッドエンドシステム104に適切にルーティングされ得るように、ネットワーク102上の通信メッセージの通常のフォーマットに従うことによって、生成され得る。隣接のノードは、瀕死のノード112Dでの停電を報告するために、ヘッドエンドシステム104に停電アラームメッセージ108を送信することができる。例えば、隣接のノード112Cは、最後の息切れパケット118に基づいて停電アラームメッセージ108を生成し、ノード112A及び114Aを介してヘッドエンドシステム104に送信することができる。幾つかの例では、隣接のノードによって生成される停電アラームメッセージ108は、そうでなければ瀕死のノードによって生成されていたであろう停電アラームメッセージと同じである。そのため、停電アラームメッセージ108の生成は、システムの残りの部分に対して透過的である。瀕死のノードによって送信される最後の息切れパケット118に基づいて、さもなければ瀕死のノードによって生成されたであろう停電アラームメッセージと同じ停電アラームメッセージ108を生成することは、本明細書では隣接のノードの「プロキシ」機能と称する。プロキシ機能を実行するとき、隣接のノードは、瀕死のノードのプロキシと称される。
幾つかの例では、瀕死のノード112Dのための停電アラームメッセージ108は、アラームパケットにおいて他の瀕死のノードのための停電アラームメッセージと結合又は統合され得る。アラームパケットは、停電している複数のノードの表示を含み得る。複数の隣接のノードが停電アラームメッセージ108を送信する可能性を低減するために、特定のメカニズムを各隣接のノードで実装することができる。最後の息切れパケット118及び停電アラームメッセージ108の生成および送信の追加の詳細は、図2-4に関して説明される。
アラームパケット又は停電アラームメッセージが、次のより高いノードレベルのノード112又は114で受信されると、不要な若しくは繰り返しの停電表示の送信を防止するために、フィルタリングおよび統合プロセスが生じることがある。例えば、アラームパケットを受信するノード112又は114は、アラームパケット又は停電アラームメッセージを、アラームパケットに含まれるノード112又は114のうち、どのノードが停電中であるかを示すノード識別子に解析し得る。ノードは、ノード識別子を分析して、繰り返しアラーム表示を行うことができる。例えば、アラームパケット又は停電アラームメッセージを受信するノードが、アラームパケット又は停電アラームメッセージが既に送信されたことを既に知っている場合、ノードは、アラームパケット又は停電アラームメッセージからノード識別子を除去し、更新されたアラームパケット又は停電アラームメッセージを、メッシュネットワーク102の次のトポロジ的に高いノード層に転送することができる。また、ルートノード114は、フィルタリング及び統合処理を実行し、結果として得られるアラームパケットをネットワーク120を介してヘッドエンドシステム104に送信し得る。
ヘッドエンドシステム104がルートノード114からアラームパケット又は停電アラームメッセージ108を受信すると、ヘッドエンドシステム104は、ノード112Dを含む停電中であるとしてアラームパケットによって示された一つ若しくは複数のノードに対処するように、技術者を配置し得る。例えば、技術者は、アラームパケットによって特定されるノードを修理又は交換するために、又は、停電の原因に対処するために、配備され得る。更に、ヘッドエンドシステム104は、停電中であるノードの記録を維持し得る。
ノード112Dにおける電力が後に回復した場合、ノード112Dは、通信メッセージ用の通常のフォーマットを使用して電力回復メッセージを生成し、その電力回復を報告するために、通常のルーティングパスに従って、ノード112B及びノード114Aを介してヘッドエンドシステムに電力回復メッセージを送信することができる。
図2は、本開示の特定の態様に係る、ネットワークシステム内のノードの停電を検出して報告するための、タイムラインの例を示す図である。図2は、2つの同期する時間軸を示しており、下側の時間軸は瀕死のノード202のものであり、上側の時間軸は瀕死のノード202の隣接のノード204のものである。時刻T1において、瀕死のノード202は停電を検出し、時刻T1とT2の間に、瀕死のノード202は順序付けされたシャットダウンプロセスを実行する。順序付けされたシャットダウンプロセスは、受信機などのコンポーネントの電源を順序正しく切ることや、プロトコルアクティビティやパケット処理などの通信機能を停止することを、含み得る。これらの通信コンポーネントや機能を停止することで、エネルギ使用量を削減することができる。更に、高速クロックなど、重要ではないプロセッサの動作も、シャットダウンさせることができる。最後の息切れパケットを送信する前に、持続期間をカウントするのに用いられる低消費電力タイマのみが、電力を維持することができる。更に、コンテキスト情報を不揮発性記憶装置に保存することができる。
また、瀕死のノード202は、その停電を報告するための最後の息切れパケット118を生成することができる。幾つかの例では、最後の息切れパケット118は、ネットワーク上で送信される通信メッセージを生成するために使用される通常のパケットフォーマットよりも、少ないデータユニットを含む簡略化されたフォーマットで生成される。図3は、通常のパケットフォーマットに従うことで停電が報告された場合の、最後の息切れパケット118と停電アラームメッセージ108との例を示す。この例では、最後の息切れパケット118には、瀕死のノード202の識別子(ID)など、停電の報告に用いられる必要な情報を含む最後の息切れ情報フィールドが含まれている。また、この例の最後の息切れパケット118は、受信ノードが最後の息切れパケット118のフォーマットに従ってパケットを解析することを知るために、このパケットが最後の息切れパケット118であることを示す物理層(PHY)ヘッダ及びメディアアクセスコントロール(MAC)層ヘッダなどのヘッダフィールドを含む。また、図3には、最後の息切れパケット118の各フィールドのサイズの例も示される。この例では、最後の息切れパケット118の合計サイズは25バイトである。
比較すると、ネットワークの通常のパケットフォーマットに従う停電アラームメッセージ108は、より多くの情報を必要とし、従って、より大きいパケットサイズを有する可能性がある。例えば、停電アラームメッセージ108は、瀕死のノードのID、停電が発生した時間を示すタイムスタンプなど、停電を説明する停電情報フィールドを含むことができる。更に、停電アラームメッセージ108がヘッドエンドシステム104に適切にルーティングされるために、停電アラームメッセージ108は、PHYヘッダ、MACヘッダ、IPヘッダ、UDPヘッダ、アプリケーションヘッダなど、様々なネットワーク層の適切なヘッダも必要となる場合がある。また、停電アラームメッセージ108には、他のフィールドも含まれ得る。図3に示す例では、停電アラームメッセージ108のサイズは47バイトであり、最後の息切れパケット118のサイズの略2倍である。図3から分かるように、ネットワークの通常のパケット形式に従う停電アラームメッセージ108と比較して、最後の息切れパケット118は、単純なパケット構造であり、サイズもより小さい。結果として、瀕死のノード202が最後の息切れパケット118を生成して送信するのに必要なエネルギは、停電アラームメッセージ108よりも遥かに少ない。
図2に戻って、最後の息切れパケット118を送出する前に、瀕死のノード202は持続期間206(時刻T2からT3までの期間)を待つが、このことは、瞬間的な停電を報告することを回避するのに役立つ。持続期間の時間は、数秒から1分程度に設定してもよい。持続期間の時間は、電力会社などの、ヘッドエンドシステムに関連するエンティティによって、予め定めることができる。持続期間206(即ち、時間T3)の終わりに、電力が回復しておらず、瀕死のノード202がまだ停電中である場合、瀕死のノード202は、停電が瞬間的ではないと判断し、最後の息切れパケット118を送信し得る。
しかしながら、場合によっては、停電が広い範囲に影響を与えて、複数のノード114及び112が電力を失うことがある。その場合、瀕死のノード202が持続期間206の満了直後に最後の息切れパケット118を送信すると、複数の瀕死のノード間で衝突が発生する可能性がある。衝突の可能性を低減するために、瀕死のノード202は、最後の息切れパケット118を送信する前に、ランダムなオフセット期間210(即ち、T3とT4の間の期間)を追加するように構成され得る。言い換えれば、持続期間206が時刻T3で満了した後、瀕死のノード202は、最後の息切れパケット118を送出する前に、別の期間(即ち、ランダムなオフセット210)を待つ。ランダムなオフセット210は、瀕死のノード202によって、最後の息切れランダム化範囲内でランダムに生成され得る。幾つかの例では、最後の息切れランダム化範囲は、1~5秒とすることができる。瀕死のノード202は、この範囲内の値をランダムに選択して、ランダムなオフセット期間210として用いることができる。選択は、最後の息切れランダム化範囲に亘る、一様分布又は他のタイプの分布に、従い得る。
ランダムなオフセット期間210(即ち、時間T3)の終わりに、瀕死のノード202は、ブロードキャストを介して最後の息切れパケット118を送信することができる。ブロードキャストされた最後の息切れパケット118は、瀕死のノード202の通信範囲内にあり、且つまだ機能している瀕死のノード202の隣接のノードの、例えば隣接のノード204の、夫々に到達し得る。隣接のノード204が最後の息切れパケット118を復活させる時刻は、図2では時刻T5と示されている。隣接のノード204は機能しており、十分な電力を有しているので、隣接のノード204は、最後の息切れパケット118を、図3に示す停電アラームメッセージ108のような、ネットワークを介して送信される通信メッセージのための通常のフォーマットに従う停電アラームメッセージ108に、変換することができる。隣接のノード204は、図1に関して上述したように、ネットワークのノード層を介して、ヘッドエンドシステム104に停電アラームメッセージ108を送信することができる。
幾つかのシナリオでは、(瀕死の隣接のノードとも称される)同じく停電を経験している隣接のノードが、(例えば、順序付けされたシャットダウン手順の間に受信機がオフにされていない場合、)瀕死のノード202によって送信される最後の息切れパケット118も受信し得ることに留意されたい。それらのシナリオでは、瀕死の隣接のノードは、受信する最後の息切れパケット118を無視し、本明細書で説明する瀕死のノードと同様の方法で、自身の停電検出及び報告を処理するプロセスを実行することができる。
最後の息切れパケット118が複数の隣接のノードに到達する可能性が高いため、これらの隣接のノードが生成される停電アラームメッセージ108を略同時に送信すると、ネットワーク衝突が発生し得る。ネットワーク衝突の可能性を低減するために、隣接のノード204は、停電アラームメッセージ108を送出する前に、ランダム化期間212を待つように構成され得る。ランダム化期間212は、停電アラームランダム化範囲内で隣接のノード204によってランダムに選択することができる。幾つかの例では、停電アラームランダム化範囲は、0秒から15秒までとすることができる。隣接のノード204は、この範囲内の値をランダムに選択して、ランダム化期間212として用いることができる。選択は、最後の息切れランダム化範囲に亘る一様分布又は他のタイプの分布に従うことができる。ランダム化期間212を選択する際、異なる隣接のノード204は、同じ分布又は異なる分布に従い得る。
ランダム化期間212の間、隣接のノード204は、同じ瀕死のノード202の停電を報告する停電アラームメッセージ108をネットワーク上でリッスンすることができる。隣接のノード204が、瀕死のノード202の停電を報告する停電アラームメッセージ108が別のノードから送信されたことを検出する場合、隣接のノード204は、重複する停電報告を回避するために、ヘッドエンドシステム104への停電アラームメッセージ108の送信を控える。隣接のノード204がランダム化期間212の間にネットワーク上で他の停電アラームメッセージ108を検出しなかった場合、隣接のノード204は、図2でT6と示される、ランダム化期間212の終わりに、生成された停電アラームメッセージ108を送信することができる。ネットワークのタイプ及び相対的なノードの位置に応じて、場合によっては、ネットワーク内のノードが通信メッセージを検出及び解析することができないことが、理解されるべきである。それらの場合、隣接のノード204は、停電アラームメッセージ108が他のノードによって送信されたか否かを判断できないことがある。隣接のノード204は、ランダム化期間212が経過した後に、停電アラームメッセージ108を送信する。重複する停電アラームメッセージ108を除去することは、図1に関して上述したように、ネットワーク内の上位層のノードによって実行することができる。
上述のプロセスから分かるように、瀕死のノード202はヘッドエンドシステム104に停電アラームメッセージ108を生成して送信するのではなく、瀕死のノード202は、自分に代わって停電アラームメッセージ108を生成させて送信させるべく、より多くのエネルギを有する隣接のノードに依存する。瀕死のノード202は、その限られたエネルギを用いて、ネットワークの通常のパケットフォーマットに従うことなく、より小さくてより単純な最後の息切れパケット118の生成と送信に集中し得る。これにより、瀕死のノード202が完全にシャットダウンする前に、生成と送信が成功する可能性が高まる。
(時刻T7などの)後の時点で、瀕死のノード202の電力が回復した場合、瀕死のノード202は、通信メッセージの通常のフォーマットで電力回復メッセージを生成し、隣接のノードをプロキシとして用いることなく、ヘッドエンドシステム104自身に電力回復メッセージを送信することができる。
図2に示す例では、瀕死のノード202は、瞬間的な電力の損失のシナリオを除外するために、最後の息切れパケット118を送信する前に持続期間206を待つ。しかしながら、場合によっては、電力損失後の瀕死のノード202の残余のエネルギは、ランダムなオフセット210に加えて持続期間206を、待つことができるほど長く続かないかもしれない。そのため、幾つかの実装では、瀕死のノード202は、持続期間206をスキップするように構成される。言い換えれば、停電を検出し、順序付けされたシャットダウン手順を実行した後、瀕死のノード202は、瀕死のノード202をブロードキャストする前に、ランダムなオフセット期間を待つだけである。隣接のノードは、停電アラームメッセージ108を生成して、ランダム化期間212の間、他の停電アラームメッセージ108をネットワーク上でリッスンすることの次のステップに進む前に、持続期間206と同じ若しくは異なる持続期間を待つように構成され得る。例えば、隣接のノード204で使用される持続期間は、数十秒から数分まで変化し得る。隣接のノード204が持続期間中に瀕死のノード202から更なるパケットを受信しない場合、隣接のノード204は、停電が瞬間的なものではないと判断することができ、上述した停電報告の次のステップ(例えば、停電アラームメッセージ108を生成し、ランダム化期間212を待つこと)に進むことになる。隣接のノード204が持続期間中に瀕死のノード202から更なるパケットを受信する場合、隣接のノード204は、停電が瞬間的なものであると判断し、以前に受信した最後の息切れパケット118を無視することができる。
更なる例では、持続期間を追加することに加えて、隣接のノード204は、瀕死のノード202が実際に電力を失ったことを検証するために、ネットワーク上の他のノードと通信することもできる。例えば、隣接のノード204は、ネットワーク上の他のノードに要求を送信して、これらの他のノードのいずれかが持続期間中に瀕死のノード202から何らかのメッセージを受信したかどうかを確認することができる。そうであれば、隣接のノード204は、停電アラームメッセージ108の生成をキャンセルすることができ、そうでなければ、隣接のノード204は、上述したように、停電アラームメッセージ108の生成及び送信を進めることができる。このようにして、停電を報告する際の偽陽性率を更に低減することができる。瀕死のノード202のステータスを検証するために、他の様々な方法を利用することもできる。
図4は、本開示の特定の態様に係る、ネットワーク化されたシステムにおいてノードの停電を検出及び報告するための幾つかのプロセスを示す複数のフロー図である。特に、図1~3に関して上述した実施形態に関して、プロセス400Aは、瀕死のノード202の態様を示し、ルーチン400Bは、隣接のノード204の態様を示す。以下、プロセス400A及び400Bを、併せて説明する。
ブロック402において、プロセス400Aは、瀕死のノード202が停電を検出することを含む。停電は、瀕死のノード202の検知回路によって検知され得る。停電を検出すると、瀕死のノード202は、瀕死のノードの様々なコンポーネントの電源を切る、関連するデータを記憶装置に保存するなど、順序付けされたシャットダウンプロセスを開始し得る。ブロック406では、瀕死のノード202が停電を検出してから、予め定められた持続期間が経過したかどうかを判断することを、プロセスが含む。このことは、停電が瞬間的な停電なのか、持続的な停電なのかを判断する助けとなり得る。なお、持続期間は数秒程度に設定し得る。予め定められた持続期間が経過していない場合、瀕死のノード202は待機を続ける。
予め定められた持続期間が経過し、瀕死のノード202における電力が回復していない場合、プロセス400Aは、ブロック408において、最後の息切れパケットを生成することを含む。図2及び図3に関して上述にて詳細に説明するように、停電アラームメッセージ108は、図3に示す最後の息切れパケット118のような、ネットワーク上で送信される通信メッセージを生成するのに用いられる、通常のパケットフォーマットよりも少ないデータユニットを含む簡略化されたフォーマットで生成され得る。複数の瀕死のノード間の通信衝突を回避するために、瀕死のノード202は、ブロック410において、ランダムなオフセット期間210を待つことができる。ランダムなオフセット期間210は、ネットワーク内の他のノードから独立してオフセット範囲から瀕死のノード202によってランダムに選択される。このように、瀕死のノード202の近くのエリアに複数の瀕死のノードがある場合、これらの複数の瀕死のノードによって選択されるランダムなオフセット期間は異なる可能性が高く、それによって、これらの瀕死のノードからの最後の息切れパケットの送信がオフセットされ得る。
ランダムなオフセット期間を待った後、ブロック412において、瀕死のノード202は、ブロック408で生成された停電アラームメッセージ108をブロードキャストすることができる。ブロック422において、プロセス400Bは、隣接のノード204が、瀕死のノード202によってブロードキャストされた最後の息切れパケット118を受信することを含む。隣接のノード204は、更に、最後の息切れパケット118の様々なフィールドを解析することによって、最後の息切れパケット118を処理することができる。例えば、隣接のノード204は、最後の息切れパケット118のヘッダから、受信したパケットが最後の息切れパケット118であることを判断することができる。隣接のノード204は、更に、最後の息切れパケット118の最後の息切れ情報フィールドから、瀕死のノード202の識別子を判断することができる。
受信されるパケットが最後の息切れパケット118であると判断することに応答して、ブロック424において、隣接のノード204は、ランダム化期間をランダムに選択し、ランダム化期間中に瀕死のノード202の停電を報告する停電アラームメッセージをネットワーク上でリッスンする。ランダム化期間は、ランダムなオフセット期間とは独立して選択される。ブロック426において、隣接のノード204は、瀕死のノード202のために停電アラームメッセージ108が送信されたかどうかを判断する。例えば、この判断は、隣接のノード204がネットワークをリッスンすること、及び、停電メッセージのフォーマットを有して瀕死のノードのIDを含むメッセージを検出することによって、行うことができる。そうであれば、隣接のノード204は、最後の息切れパケット118をドロップし、プロセス400Bは終了する。
ランダム化期間中に、瀕死のノード202に対して停電アラームメッセージ108が検出されなかった場合、隣接のノード204は、ブロック428にて、停電アラームメッセージ108を生成する。最後の息切れパケット118が停電に関する時間情報を含まない場合、隣接のノード204は、瀕死のノード202に対する推定停電時刻を判断することができる。例えば、隣接のノード204は、隣接のノード204が最後の息切れパケット118を受信する時間から持続期間206を差し引くことにより、停電時刻を推定することができる。更なる例では、隣接のノード204は、例えば、ランダムオフセットの分布に基づいて、平均ランダムオフセットを減算することによって、停電の推定時刻からランダムオフセットを除去することもできる。停電の推定時刻、ノードID、及び他の情報は、停電アラームメッセージ108を生成するのに利用することができる。
ブロック430において、プロセス400Bは、隣接のノード204が複数の停電アラームメッセージを統合することを含む。例えば、隣接のノード204が隣接のノードから複数の最後の息切れパケット118を受信した場合、又は、隣接のノード204よりも下位の層のノードから複数の停電アラームメッセージ108を受信した場合、隣接のノード204は、図1に関して上述したように停電情報を結合して、重複する情報を除去しアラームパケットを生成することができる。例えば、アラームパケットは、図3に示す停電アラームメッセージ108と同様に生成することができるが、複数の瀕死のノードの停電を報告するために、複数のノードIDとそれらに関連する停電タイムスタンプを含むより大きい停電情報フィールドを含む。ブロック432において、隣接のノード204は、(統合が行われていない場合には)停電アラームメッセージ108中の、又は(統合が行われている場合には)アラームパケットの中の、停電情報を、瀕死のノード202のプロキシとして、ヘッドエンドシステム104に送信することができる。
ブロック414において、プロセス400Aは、瀕死のノード202が、電力が回復したことを検出することを含む。ブロック416において、瀕死のノード202は、瀕死のノード202の電力が回復したことを報告する回復メッセージを生成し、ヘッドエンドシステムに送信する。
プロセス400A及び400Bは説明のために提供されており、限定的に解釈されるべきではないことを理解されたい。図4の特定のブロックは、省略されてもスキップされてもよく、瀕死のノードの停電を判断し報告する際に、図4に示されていない他のブロックが関与してもよい。例えば、ブロック430で実行される統合は、スキップされてもよく、隣接のノード204は、瀕死のノード202のためだけに停電アラームメッセージ108を生成し、ヘッドエンドシステム104に送信するように構成されてもよい。統合は、ネットワークの上位の層のノードによって実行することができる。更に上述したように、瀕死のノード202は、ブロック406をスキップしてもよく(、従って持続期間をスキップしてもよく)、プロセス400Bは、隣接のノード204が、停電が瞬間的なものかどうかを判断するために持続期間を待つ、ブロックを含んでもよい。
また、図4では、瀕死のノード202と隣接のノード204の動作を一定の順序で示しているが、動作は異なる順序で実行されてもよい。例えば、瀕死のノード202は、ブロック408を実行して、持続期間の前に、又は間に、停電アラームメッセージ108を生成してもよい。同様に、隣接のノード204は、ブロック428を実行して停電時刻を推定し、ランダム化期間の前に、又は間に、停電メッセージを生成してもよい。本明細書に示す技術を実装する他の方法も可能である。
例示的なノード
図5は、メッシュネットワーク102のノード114又は112のコンポーネントのブロック図の例である。コンピューティングシステム500のコンポーネントの一部又は全部は、図1のノード114又は112の一つ若しくは複数に、属することができる。ノード500は、ローカル又はシリアル接続530を介して接続する通信モジュール516及び計測モジュール518を含む。通信モジュール516の機能は、メッシュネットワーク102内の他のノードとの間で様々な信号を送受信することを含み、例えば、最後の息切れパケット、停電アラームメッセージ、アラームパケット、及び他のネットワーク通信メッセージなどである。
通信モジュール516は、アンテナや無線機などの通信デバイス512を含み得る。或いは、通信デバイス512は、無線若しくは有線の通信を可能にする任意のデバイスであってよい。通信デバイス512は、メッシュネットワーク102内の他のノードからRF通信を送受信可能な、RFトランシーバなどの、トランシーバデバイスを含んでもよい。また、通信モジュール516は、プロセッサ513と、メモリ514とを含み得る。プロセッサ513は、図1~4に関して上述した、動作の一つ若しくは複数など、通信モジュール516によって実行される機能を制御する。メモリ514は、プロセッサ513がその機能を実行するために使用するデータを格納するのに利用され得る。
計測モジュール518の機能は、リソースを管理するのに必要な機能、特に、リソースへのアクセスを許可するのに必要な機能と、使用されたリソースを計測するのに必要な機能とを含む。計測モジュール518は、プロセッサ521、メモリ522、及び測定回路523を含み得る。測定回路523は、リソースの測定を処理し、センサデータを収集するためのセンサとして使用され得る。計測モジュール518のプロセッサ521は、計測モジュール518が行う機能を制御する。メモリ522は、プロセッサ521がその機能を実行するのに必要なデータを記憶する。又、計測モジュール518は、測定回路523のように、ノード500の電力ステータスを検知するための検知回路を含み得る。通信モジュール516及び計測モジュール518は、ローカル接続530を介して互いに通信し、電力ステータスデータを含む、他のモジュールが必要とするデータを提供する。通信モジュール516と計測モジュール518との両方は、メモリに、若しくは別のタイプのコンピュータ可読媒体に、格納されるコンピュータ実行可能命令を含んでもよく、モジュール内部の一つ若しくは複数のプロセッサは、本明細書に記載の機能を提供するために命令を実行してもよい。
また、ノード500は、通信モジュール516及び計測モジュール518にエネルギを提供するように構成された、電源/エネルギ貯蔵モジュール530を含む。電源/エネルギ貯蔵モジュール530は、通信モジュール516及び計測モジュール518に継続的に電力を供給するための電源に接続される。停電が発生すると(即ち、電源がノード500に電力を提供しなくなると)、電源/エネルギ貯蔵モジュール530は、(電源/エネルギ貯蔵モジュール530のキャパシタに貯蔵されたエネルギなど、)その貯蔵されたエネルギを、通信モジュール516及び計測モジュール518に提供して、ノード500の順序付けされたシャットダウン、最後の息切れパケット118の生成及び送信など、本明細書に記載の動作を実行することができる。
一般的検討事項
請求項の発明の主旨についての完全な理解を提供するために、複数の特定の詳細を本明細書に記載する。しかしながら、当業者であれば、請求校の発明の主旨がこれらの特定の詳細無しに、実施され得ることを理解するであろう。他の例では、当業者に知られているであろう、方法、装置、又はシステムは、請求項の発明の主旨を不明瞭にしないように、詳細には記載していない。
本明細書で説明する特徴は、特定のハードウェアアーキテクチャ又は構成に限定されない。コンピューティングデバイスは、一つ若しくは複数の入力を条件とする結果を提供するコンポーネントの任意の適切な配置を含み得る。適切なコンピューティングデバイスには、コンピューティングシステムを、汎用コンピューティング装置から、本発明の主旨の一つ若しくは複数の態様を実装する専用コンピューティング装置へと、プログラムする又は構成する、ストアードソフトウェア(即ち、コンピュータシステムのメモリ上に格納されるコンピュータ可読命令)にアクセスする多目的マイクロプロセッサベースのコンピュータシステムが、含まれる。本明細書に含まれる教示を、コンピューティング装置のプログラミングまたは構成に使用するソフトウェアに実装するために、任意の適切なプログラミング、スクリプト、または他のタイプの言語、若しくは言語の組み合わせを、使用することができる。
本明細書に開示の方法の態様は、それらのコンピューティングデバイスの動作において実行され得る。上述の例で提示するブロックの順序は変化させることができ、例えば、ブロックを再順序付けしたり、組み合わせたり、及び/又は、サブブロックに分割したりすることができる。特定のブロック又はプロセスは、並行して実行することができる。
本明細書での「~ように適応した」又は「~ように構成された」の使用は、追加のタスク又はステップを実行するように適応又は構成されたデバイスを排除しない、オープンで包括的な言語として、意図されている。さらに、「~に基づいて」の使用は、一つ若しくは複数の記載された条件または値「に基づく」プロセス、ステップ、計算、又は他のアクションが、実際には、記載されたものを超える追加の条件又は値に基づいてもよい、という意味で、オープンで包括的であることを意図されている。本明細書に含まれる、へディング、リスト、及びナンバリングは、説明を容易にするためだけのものであり、限定することを意図していない。
本発明の主旨をその特定の態様に関して詳細に説明したが、当業者は、前述の理解を得た上で、そのような態様に対する、変更、変形、及び等価物を容易に作り出すことができることが理解されるであろう。従って、本開示は、限定ではなく例示を目的として提示されており、当業者に容易に明らかになるような本発明の主旨の変更、変形、及び/又は追加を、含めることを排除するものではないことを理解されたい。

Claims (20)

  1. ノードの停電を検出して報告する方法において、
    メッシュネットワーク内の第1のノードによって、前記第1のノードで停電が発生したことを検出するステップと、
    前記第1のノードによって、前記停電を検出してから所定の期間が経過し、電力が回復していないことを判断するステップと、
    前記所定の期間が経過し、電力が回復していないことを判断することに応答して、前記第1のノードによって、ランダムなオフセット期間の待機後に、前記メッシュネットワーク上に最後の息切れパケットをブロードキャストするステップであって、前記最後の息切れパケットは、前記メッシュネットワークが通信に使用する通常のパケットフォーマットよりも少ない数のデータユニットを含む第1のパケットフォーマットを使用して生成される、ブロードキャストするステップと、
    前記メッシュネットワーク内の第2のノードによって、前記最後の息切れパケットを受信するステップであって、前記第2のノードは、前記メッシュネットワークを介して前記第2のノードに通信可能に接続する前記第1のノードの隣接のノードである、受信するステップと、
    前記第2のノードによって、前記最後の息切れパケットを受信した時刻と前記所定の期間とに基づいて、停電の推定時刻を判断するステップと、
    前記第2のノードによって、前記受信した最後の息切れパケットと前記停電の推定時刻とに基づいて、前記メッシュネットワークが通信に使用する通常のパケットフォーマットで停電アラームメッセージを生成するステップと、並びに、
    前記第2のノードによって、前記停電アラームメッセージを前記メッシュネットワークのヘッドエンドシステムに送信するステップと
    を含む、方法。
  2. 前記最後の息切れパケットは、前記第1のノードの識別子と、前記最後の息切れパケットが最後の息切れパケットであることを示す表示とを含み、及び、
    前記停電アラームメッセージは、前記第1のノードの識別子と、前記第1のノードにおける前記停電の推定時刻を示すタイムスタンプとを含む、
    請求項1に記載の方法。
  3. 更に、
    前記メッシュネットワークの前記ヘッドエンドシステムに前記停電アラームメッセージを送信する前に、前記第2のノードによって、前記メッシュネットワーク内の別のノードによって送信される、前記第1のノードにおける停電を報告する別の停電アラームメッセージを、ランダム化期間中にリッスンするステップと、
    他の停電アラームメッセージが前記メッシュネットワーク上で送信されていないことを検出することに応答して、前記ランダム化期間が終了した後、前記第2のノードによって、前記ヘッドエンドシステムに前記停電アラームメッセージを送信するステップと、並びに、
    別の停電アラームメッセージが前記メッシュネットワーク上で送信されたことを検出することに応答して、前記第2のノードによって、前記ヘッドエンドシステムへの前記停電アラームメッセージの送信を控えるステップと
    を含む、請求項1に記載の方法。
  4. 前記停電の推定時刻を判断するステップは、
    前記最後の息切れパケットを受信した時刻から前記所定の期間を減算して前記停電の時刻とするステップを含む、
    請求項1に記載の方法。
  5. 更に、
    前記最後の息切れパケットをブロードキャストする前に、コンテキスト情報を不揮発性記憶装置に保存すること、又は、前記第1のノードのコンポーネントをオフにすることのうち、一つ以上を実行することによって、前記第1のノードをシャットダウンするステップ
    を含む、請求項1に記載の方法。
  6. 前記停電アラームメッセージを前記ヘッドエンドシステムに送信するステップは、
    前記第2のノードによって、前記停電アラームメッセージを含む複数の停電アラームメッセージをアラームパケットに結合するステップと、及び、
    前記第2のノードによって、前記アラームパケットを前記ヘッドエンドシステムに送信するステップと
    を含む、請求項1に記載の方法。
  7. 更に、
    前記第1のノードによって、前記第1のノードにおいて前記電力が回復したことを検出するステップと、及び、
    前記第1のノードによって、前記メッシュネットワークの前記ヘッドエンドシステムに、通常のパケットフォーマットを使用する電力回復メッセージを送信するステップと
    を含む、請求項1に記載の方法。
  8. システムにおいて、
    メッシュネットワークの第1のノードであって、該第1のノードは、
    前記第1のノードにおいて停電が発生したことを検出するステップと、
    前記停電を検出してから所定の時間が経過し、電力が回復していないことを判断するステップと、及び、
    前記所定の期間が経過し、電力が回復していないことを判断することに応答して、ランダムなオフセット期間の待機後に、前記メッシュネットワーク上に最後の息切れパケットをブロードキャストするステップであって、前記最後の息切れパケットは、前記メッシュネットワークが通信に使用する通常のパケットフォーマットよりも少ない数のデータユニットを含む第1のパケットフォーマットを使用して生成される、ブロードキャストするステップと
    を行うように構成されている、第1のノードと、並びに、
    前記メッシュネットワークを介して前記第1のノードに通信可能に接続する、前記第1のノードの複数の隣接のノードであって、該複数の隣接のノードの各々は、
    前記第1のノードから前記最後の息切れパケットを受信するステップと、
    前記最後の息切れパケットを受信した時刻と前記所定の期間とに基づいて、前記停電の推定時刻を判断するステップと、
    前記受信した最後の息切れパケットと前記停電の推定時刻とに基づいて、前記メッシュネットワークが通信に使用する通常のパケットフォーマットで停電アラームメッセージを生成するステップと、及び、
    前記停電アラームメッセージを、前記メッシュネットワークのヘッドエンドシステムに送信するステップと
    を行うように構成されている、複数の隣接のノードと
    を含む、システム。
  9. 前記複数の隣接のノードの各々は、更に、
    前記停電アラームメッセージを前記メッシュネットワークの前記ヘッドエンドシステムに送信するステップの前に、ランダム化期間中に、前記メッシュネットワーク内の別のノードによって送信される、前記第1のノードにおける前記停電を報告する別の停電アラームメッセージをリッスンするステップと、
    他の停電アラームメッセージが前記メッシュネットワーク上で送信されていないことを検出することに応答して、前記ランダム化期間が終了した後に、前記ヘッドエンドシステムに前記停電アラームメッセージを送信するステップと、及び、
    別の停電アラームメッセージが前記メッシュネットワーク上で送信されたことを検出することに応答して、前記ヘッドエンドシステムへの前記停電アラームメッセージの送信を控えるステップと
    を行うように構成されている、
    請求項8に記載のシステム。
  10. 前記ランダムなオフセット期間は、第1の範囲の期間から選択され、前記ランダム化期間は、第2の範囲の期間から選択され、前記ランダムなオフセット期間は、前記ランダム化期間とは独立して選択される、
    請求項9に記載のシステム。
  11. 前記最後の息切れパケットは、前記第1のノードの識別子と、前記最後の息切れパケットが最後の息切れパケットであることを示す表示とを含み、及び、
    前記停電アラームメッセージは、前記第1のノードの識別子と、前記第1のノードにおける前記停電の推定時刻を示すタイムスタンプとを含む
    請求項8に記載のシステム。
  12. 前記停電の推定時刻を判断するステップは、
    前記最後の息切れパケットを受信した時刻から前記所定の期間を減算して前記停電の時刻とするステップを含む、
    請求項8に記載のシステム。
  13. 前記第1のノードは、更に、
    前記第1のノードにおいて前記電力が回復したことを検出するステップと、及び、
    前記メッシュネットワークの前記ヘッドエンドシステムに、通常のパケットフォーマットを使用する電力回復メッセージを送信するステップと
    を行うように構成されている、請求項8に記載のシステム。
  14. 前記第1のノードは、更に、
    前記最後の息切れパケットをブロードキャストする前に、コンテキスト情報を不揮発性記憶装置に保存すること、又は、前記第1のノードのコンポーネントをオフにすることのうち、一つ以上を実行することによって、前記第1のノードをシャットダウンするステップ
    を行うように構成されている、請求項8に記載のシステム。
  15. ネットワークのノードにおいて、
    コンピュータ可読命令を実行するように構成されたプロセッサと、及び、
    前記プロセッサによって実行されたときに、前記プロセッサに、動作を行わせるコンピュータ可読命令を格納するように構成されたメモリと
    を含み、
    前記動作は、
    瀕死のノードから該瀕死のノードにおける停電を示す最後の息切れパケットを受信するステップであって、
    前記ノードは、前記ネットワークを介して前記ノードに通信可能に接続する瀕死のノードの隣接のノードであり、及び、
    前記最後の息切れパケットは、前記停電を検出してから所定の時間が経過した後に前記瀕死のノードによって生成され、前記ネットワークが通信に使用する通常のパケットフォーマットよりも少ない数のデータユニットを含む第1のパケットフォーマットを使用して、前記ネットワーク上にブロードキャストされる、
    受信するステップと、
    前記最後の息切れパケットを受信した時刻と前記所定の期間とに基づいて、前記停電の推定時刻を判断するステップと、
    前記受信した最後の息切れパケットと前記停電の推定時刻とに基づいて、前記ネットワークが通信に使用する通常のパケットフォーマットで停電アラームメッセージを生成するステップと、及び、
    前記停電アラームメッセージを、前記ネットワークのヘッドエンドシステムに送信するステップと
    を含む、
    ノード。
  16. 前記動作は、更に、
    前記停電アラームメッセージを前記ネットワークの前記ヘッドエンドシステムに送信する前に、ランダム化期間中に、前記ネットワーク内の別のノードによって送信される、前記瀕死のノードにおける前記停電を報告する別の停電アラームメッセージをリッスンするステップと、
    他の停電アラームメッセージが前記ネットワーク上で送信されていないことを検出することに応答して、前記ランダム化期間が終了した後に、前記ヘッドエンドシステムに前記停電アラームメッセージを送信するステップと、及び、
    他の停電アラームメッセージが前記ネットワーク上で送信されたことを検出することに応答して、前記ヘッドエンドシステムへの前記停電アラームメッセージの送信を控えること
    を含む、請求項15に記載のノード。
  17. 前記最後の息切れパケットは、前記停電を検出してから前記所定の期間が経過した後、ランダムなオフセット期間の待機後に前記瀕死のノードによってブロードキャストされる、
    請求項15に記載のノード。
  18. 前記最後の息切れパケットは、前記瀕死のノードの識別子と前記最後の息切れパケットが最後の息切れパケットであることを示す表示とを含み、及び、
    前記停電アラームメッセージは、前記瀕死のノードの識別子と前記瀕死のノードにおける前記停電の推定時刻を示すタイムスタンプとを含む、
    請求項15に記載のノード。
  19. 前記停電の推定時刻を判断するステップは、
    前記最後の息切れパケットを受信した時刻から前記所定の期間を減算して前記停電の時刻とするステップを含む、
    請求項15に記載のノード。
  20. 停電アラームメッセージを前記ヘッドエンドシステムに送信するステップは、
    前記停電アラームメッセージを含む複数の停電アラームメッセージをアラームパケットに結合するステップと、及び、
    前記アラームパケットを前記ヘッドエンドシステムに送信するステップと
    請求項15に記載のノード。
JP2021570876A 2019-05-30 2020-05-29 停電の検出と報告 Active JP7410981B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962854553P 2019-05-30 2019-05-30
US62/854,553 2019-05-30
PCT/US2020/035282 WO2020243542A1 (en) 2019-05-30 2020-05-29 Power outage detection and reporting

Publications (2)

Publication Number Publication Date
JP2022534983A true JP2022534983A (ja) 2022-08-04
JP7410981B2 JP7410981B2 (ja) 2024-01-10

Family

ID=71787096

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2021570876A Active JP7410981B2 (ja) 2019-05-30 2020-05-29 停電の検出と報告
JP2021570877A Active JP7437420B2 (ja) 2019-05-30 2020-05-29 停電の検出と報告の管理
JP2021570868A Active JP7497375B2 (ja) 2019-05-30 2020-05-29 停電の検出と報告の管理

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2021570877A Active JP7437420B2 (ja) 2019-05-30 2020-05-29 停電の検出と報告の管理
JP2021570868A Active JP7497375B2 (ja) 2019-05-30 2020-05-29 停電の検出と報告の管理

Country Status (7)

Country Link
US (5) US11125791B2 (ja)
EP (4) EP3977772B1 (ja)
JP (3) JP7410981B2 (ja)
CN (5) CN116346682A (ja)
AU (3) AU2020282835A1 (ja)
CA (3) CA3141788A1 (ja)
WO (3) WO2020243525A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11125791B2 (en) * 2019-05-30 2021-09-21 Landis+Gyr Innovations, Inc. Managing outage detections and reporting
US20210160125A1 (en) * 2019-11-26 2021-05-27 Jing Cheng Systems and methods for fault detection based on peer statistics
US11800437B2 (en) 2021-01-27 2023-10-24 Landis+Gyr Technology, Inc. Automatic configuration switch for a node joined to a wireless network
US20230284042A1 (en) * 2022-03-07 2023-09-07 Charter Communications Operating, Llc Control of communication devices in a wireless network
US11784936B1 (en) * 2022-08-18 2023-10-10 Uab 360 It Conservation of resources in a mesh network
DK181560B1 (en) * 2022-12-23 2024-05-16 Anticimex Innovation Center As A pest control system and a method for building a network of pest control devices

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6332072B1 (en) 1999-05-24 2001-12-18 Motorola, Inc. Method and apparatus for detecting failures in a communication device BV signal metrics
US7701858B2 (en) 2003-07-17 2010-04-20 Sensicast Systems Method and apparatus for wireless communication in a mesh network
US7233991B2 (en) 2003-08-22 2007-06-19 Clearmesh Networks, Inc. Self-healing tree network
US7627283B2 (en) 2004-09-10 2009-12-01 Nivis, Llc System and method for a wireless mesh network of configurable signage
DE102005017021A1 (de) * 2005-04-13 2006-10-19 Siemens Ag Verfahren und Vorrichtung zur Kommunikation zwischen Netzknotenelementen
US8059011B2 (en) 2006-09-15 2011-11-15 Itron, Inc. Outage notification system
US20170070563A1 (en) 2008-08-11 2017-03-09 Ken Sundermeyer Data model for home automation
KR101066291B1 (ko) 2009-01-02 2011-09-20 삼성전자주식회사 패킷 라우팅 방법 및 장치
US9679255B1 (en) 2009-02-20 2017-06-13 Oneevent Technologies, Inc. Event condition detection
US10397823B2 (en) * 2010-10-01 2019-08-27 Signify Holding B.V. Device and method for scheduling data packet transmission in wireless networks
US8970394B2 (en) 2011-01-25 2015-03-03 Trilliant Holdings Inc. Aggregated real-time power outages/restoration reporting (RTPOR) in a secure mesh network
CN102196502B (zh) * 2011-04-06 2013-10-16 东南大学 一种面向无线传感器网络的拥塞控制方法
US20130136033A1 (en) * 2011-11-28 2013-05-30 Abhishek Patil One-click connect/disconnect feature for wireless devices forming a mesh network
US8930455B2 (en) 2011-12-22 2015-01-06 Silver Spring Networks, Inc. Power outage detection system for smart grid using finite state machines
EP2834941B1 (en) * 2012-04-05 2019-02-27 Schneider Electric Industries SAS Diagnosing and reporting a network break
US9689710B2 (en) 2012-09-21 2017-06-27 Silver Spring Networks, Inc. Power outage notification and determination
US20140105037A1 (en) 2012-10-15 2014-04-17 Natarajan Manthiramoorthy Determining Transmission Parameters for Transmitting Beacon Framers
CN103052110B (zh) * 2013-01-07 2015-12-02 华为技术有限公司 小区失效检测和补偿方法及装置
EP2949104A4 (en) * 2013-01-23 2016-02-10 Ericsson Telefon Ab L M METHOD AND ARRANGEMENTS FOR CONNECTIVITY REVIEW AND DETECTION OF CONNECTIVITY FAILURES
CN103974225B (zh) 2013-02-01 2018-03-13 财团法人工业技术研究院 通讯装置、装置对装置通讯系统及其无线通信方法
US9088983B2 (en) 2013-08-06 2015-07-21 Cisco Technology, Inc. Interleaving low transmission power and medium transmission power channels in computer networks
WO2015040349A1 (en) 2013-09-17 2015-03-26 Kabushiki Kaisha Toshiba Methods and apparatus for a tdma mesh network
JP6177933B2 (ja) 2013-11-08 2017-08-09 株式会社日立製作所 通信装置、及び通信チャネルとスロットの割当方法
WO2016098205A1 (ja) 2014-12-17 2016-06-23 富士通株式会社 収集システム、収集装置及び電力制御方法
US9860789B2 (en) 2014-12-30 2018-01-02 Fortinet, Inc. Load balancing for a cloud-based wi-fi controller based on local conditions
US9787491B2 (en) * 2015-03-20 2017-10-10 Landis & Gyr Innovations, Inc. Interleaved communication with resource providers and a home area network
CN107710835B (zh) * 2015-05-04 2021-07-23 瑞典爱立信有限公司 网状网格中的协调工作循环指派
US10693719B2 (en) * 2015-07-17 2020-06-23 Vitir As Centralized controlling system controlling interactions and cooperation between radio-operated devices operating in a mesh network supporting multiple radio communication protocols
US10505948B2 (en) 2015-11-05 2019-12-10 Trilliant Networks, Inc. Method and apparatus for secure aggregated event reporting
WO2017095882A1 (en) * 2015-11-30 2017-06-08 Landis+Gyr Innovations, Inc. Selecting a parent node in a time-slotted channel hopping network
US10708126B2 (en) * 2016-03-18 2020-07-07 Plume Design, Inc. Cloud-based control of a Wi-Fi network
US10420024B2 (en) * 2016-03-22 2019-09-17 British Telecommunications Public Limited Company Transmitter outage detection
JP2017195555A (ja) 2016-04-21 2017-10-26 富士通株式会社 通信装置、通信システムおよび通信方法
AU2017261270B2 (en) * 2016-05-03 2021-06-10 Landis+Gyr Technology, Inc. Scheduled communication with resource providers and a home area network
US11076370B2 (en) 2016-06-07 2021-07-27 Texas Instruments Incorporated Node synchronization for networks
US10009783B2 (en) * 2016-09-27 2018-06-26 King Fahd University Of Petroleum And Minerals Energy efficient data collection routing protocol for wireless rechargeable sensor networks
US20200033393A1 (en) 2016-09-28 2020-01-30 Andium Inc. Electrical transmission line sensing
US9974035B2 (en) * 2016-10-12 2018-05-15 Landis+Gyr Innovations, Inc. Synchronization between low energy end point devices and parent devices in a time slotted channel hopping network
US10912004B2 (en) * 2016-10-28 2021-02-02 British Telecommunications Public Limited Company Method of handling a cell outage in a radiocommunication network
US10256783B2 (en) 2016-11-29 2019-04-09 Taiwan Semiconductor Manufacturing Co., Ltd. Dual-mode RF transmission frontend
CA3018453C (en) 2017-01-11 2021-01-26 Abl Ip Holding Llc Asset tracking using active wireless tags that report via a local network of connected beacons
US10477500B2 (en) * 2017-03-07 2019-11-12 Itron Networked Solutions, Inc. Time distribution scheme for wireless mesh networks
US10219142B2 (en) 2017-05-15 2019-02-26 Amazon Technologies, Inc. Neighbor discovery and neighbor selection of mesh network devices in a mesh network
WO2018211616A1 (ja) 2017-05-17 2018-11-22 三菱電機株式会社 通信装置、通信方法および通信システム
US10849086B2 (en) * 2017-07-20 2020-11-24 Itron Networked Solutions, Inc. Compensating for oscillator drift in wireless mesh networks
MX2020001252A (es) 2017-08-04 2020-07-13 Sensus Spectrum Llc Metodo y sistema para deteccion de alta temperatura en medidores electricos.
US10708172B2 (en) 2017-10-03 2020-07-07 Itron Networked Solutions, Inc. Energy aware routing for mesh networks
US11871249B2 (en) 2017-10-13 2024-01-09 Plume Design, Inc. Intelligent monitoring systems and methods for cloud-based Wi-Fi
US20200389469A1 (en) 2017-12-24 2020-12-10 Arilou Information Security Technologies Ltd. System and method for tunnel-based malware detection
US20200022005A1 (en) * 2018-01-18 2020-01-16 Cable Television Laboratories, Inc. Ad-hoc wireless mesh network system and methodology for failure reporting and emergency communications
US10056159B1 (en) 2018-01-31 2018-08-21 MedPather, Inc. System and method for medical resource utilization management
US10488910B1 (en) 2018-06-06 2019-11-26 General Electric Company Healthcare asset tracker apparatus and methods
US11178530B2 (en) 2018-07-13 2021-11-16 Itron, Inc. Power-efficient discovery process for nodes within a wireless mesh network
US10833824B2 (en) 2018-10-01 2020-11-10 Ahmad Jalali Self-configurable mesh network for wireless broadband access
US11012290B2 (en) 2018-12-06 2021-05-18 Landis+Gyr Innovations, Inc. Systems and methods for node outage determination and reporting
US10687384B2 (en) * 2018-12-26 2020-06-16 Intel Corporation Enhanced Wi-Fi disconnection with collocated wireless technology
US10849048B2 (en) 2019-01-08 2020-11-24 Sony Corporation Quick blockage discovery and recovery in multi-hop routing
US10924343B1 (en) 2019-01-22 2021-02-16 Amazon Technologies, Inc. Event propagation and action coordination in a mesh network
US11125791B2 (en) * 2019-05-30 2021-09-21 Landis+Gyr Innovations, Inc. Managing outage detections and reporting

Also Published As

Publication number Publication date
CN116366509A (zh) 2023-06-30
AU2020282841A1 (en) 2022-01-27
EP3977773B8 (en) 2023-09-13
JP2022534984A (ja) 2022-08-04
CN114175593A (zh) 2022-03-11
US20200382972A1 (en) 2020-12-03
US11125791B2 (en) 2021-09-21
EP3957129A1 (en) 2022-02-23
EP4346331A3 (en) 2024-07-03
AU2020283902A1 (en) 2022-02-03
EP3977773A1 (en) 2022-04-06
CN114208130A (zh) 2022-03-18
CN114208130B (zh) 2023-03-31
US20210318366A1 (en) 2021-10-14
US20210172985A1 (en) 2021-06-10
US20200379023A1 (en) 2020-12-03
US11067614B2 (en) 2021-07-20
JP2022534980A (ja) 2022-08-04
CN114175118B (zh) 2023-04-04
WO2020243542A1 (en) 2020-12-03
CA3140176A1 (en) 2020-12-03
CN114175593B (zh) 2023-03-10
WO2020243525A1 (en) 2020-12-03
EP4346331A2 (en) 2024-04-03
EP3977772B1 (en) 2024-02-14
CA3141793A1 (en) 2020-12-03
EP3977773B1 (en) 2023-08-09
US11125792B2 (en) 2021-09-21
EP3977772A1 (en) 2022-04-06
CN116346682A (zh) 2023-06-27
US20200382973A1 (en) 2020-12-03
JP7410981B2 (ja) 2024-01-10
CN114175118A (zh) 2022-03-11
JP7497375B2 (ja) 2024-06-10
CA3141788A1 (en) 2020-12-03
AU2020282835A1 (en) 2022-02-03
JP7437420B2 (ja) 2024-02-22
WO2020243518A1 (en) 2020-12-03
US11585838B2 (en) 2023-02-21
EP3957129B1 (en) 2024-01-24
US11543442B2 (en) 2023-01-03

Similar Documents

Publication Publication Date Title
JP7410981B2 (ja) 停電の検出と報告
JP7416793B2 (ja) ノードの機能不全を決定及び報告するためのシステム及び方法
KR20110003508A (ko) 통신 네트워크에서 라우팅 및 정전 정보의 갱신
US11456944B1 (en) Managing outage reporting using last gasps
JP2015109555A (ja) 通信装置、時刻同期方法、及び、時刻同期プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231222

R150 Certificate of patent or registration of utility model

Ref document number: 7410981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150