JP2022530627A - Nanobarium titanate powder and its manufacturing method, ceramic dielectric layer and its manufacturing method - Google Patents

Nanobarium titanate powder and its manufacturing method, ceramic dielectric layer and its manufacturing method Download PDF

Info

Publication number
JP2022530627A
JP2022530627A JP2021563689A JP2021563689A JP2022530627A JP 2022530627 A JP2022530627 A JP 2022530627A JP 2021563689 A JP2021563689 A JP 2021563689A JP 2021563689 A JP2021563689 A JP 2021563689A JP 2022530627 A JP2022530627 A JP 2022530627A
Authority
JP
Japan
Prior art keywords
barium
manufacturing
powder
temperature
nanotitanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021563689A
Other languages
Japanese (ja)
Other versions
JP7382083B2 (en
Inventor
瞿海▲鋒▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qu Haifeng
Suzhou Bao Shun Mei Technology Co Ltd
Original Assignee
Qu Haifeng
Suzhou Bao Shun Mei Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qu Haifeng, Suzhou Bao Shun Mei Technology Co Ltd filed Critical Qu Haifeng
Publication of JP2022530627A publication Critical patent/JP2022530627A/en
Application granted granted Critical
Publication of JP7382083B2 publication Critical patent/JP7382083B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/781Nanograined materials, i.e. having grain sizes below 100 nm

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Ceramic Capacitors (AREA)
  • Thermistors And Varistors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

ナノチタン酸バリウム粉末及びその製造方法、セラミック誘電体層及びその製作方法であって、当該ナノチタン酸バリウム粉末の製造方法は、より低い温度のナノ二酸化チタン水分散液を、より高い温度の水酸化バリウム水溶液と急速に混合し、得られた混合系の温度を両者の高速混合により水酸化バリウム水溶液の温度に比べて少なくとも2℃低くし、ここで、ナノ二酸化チタン水分散液の質量濃度は20%以上であることと、混合系を高圧水熱合成反応させ、反応生成物を洗浄と乾燥し、ナノチタン酸バリウム粉末を得ることと、を含む。当該ナノチタン酸バリウム粉末を、セラミック誘電体層の製作に良く使用することができる。【選択図】図5Nanotitanium barium powder and its manufacturing method, ceramic dielectric layer and its manufacturing method, the nanotitanium barium powder manufacturing method is to use nanotitanium dioxide aqueous dispersion at a lower temperature and barium hydroxide at a higher temperature. The mixture was rapidly mixed with the aqueous solution, and the temperature of the obtained mixing system was lowered by at least 2 ° C. from the temperature of the barium hydroxide aqueous solution by high-speed mixing of both, where the mass concentration of the nanotitanium dioxide aqueous dispersion was 20%. This includes the above and the reaction of the mixed system to a high-pressure hydrothermal synthesis reaction, washing and drying of the reaction product to obtain nanotitanium barium powder. The nanobarium titanate powder can be often used in the production of ceramic dielectric layers. [Selection diagram] FIG. 5

Description

本発明は、ナノ材料合成技術に関し、具体的にナノチタン酸バリウム粉末及びその製造方法、セラミック誘電体層及びその製作方法に関し、特にナノチタン酸バリウム粉末の工業化生産方法及びそれを原料として製作されるセラミック誘電体層に関する。 The present invention relates to a nanomaterial synthesis technique, specifically a nanobarium titanate powder and a method for producing the same, a ceramic dielectric layer and a method for producing the same, and particularly a method for industrializing and producing the nanobarium titanate powder and a ceramic produced from the same. Regarding the dielectric layer.

ナノチタン酸バリウム(BaTiO)は、高誘電率、低誘電損失、高抵抗率、及び優れた絶縁性能と高い耐圧強度を持つため、電子セラミック工業に広く応用され、多層セラミックコンデンサ(MLCC)、正温度係数サーミスタ(PTC)、ダイナミックランダムメモリ(DRAM)などの電子部品を製造する基礎材料である。 Barium nanotitanium (BaTIO 3 ) has high dielectric constant, low dielectric loss, high resistivity, and excellent insulation performance and high withstand voltage strength, so it is widely applied in the electronic ceramic industry. Multilayer ceramic capacitors (MLCC), positive It is a basic material for manufacturing electronic components such as temperature coefficient thermistors (PTCs) and dynamic random memories (DRAMs).

セラミック誘電体層の均一性と緻密性を高め、空隙率を低減することは、電子部品の静電容量を改善するための有効な手段である。Horsfieldモデルによれば、異なる粒径のチタン酸バリウム粒子を混合し、粒径が小さいチタン酸バリウム粒子を、粒径が比較的大きいチタン酸バリウム粒子間に形成されたギャップに充填し、充填密度を高めることが望ましい。一方、粒径が小さいチタン酸バリウム粉末を使用すると、セラミック誘電体層においてより小さな結晶粒、より多くの粒界を形成し、セラミック誘電体層の性能を向上させるのに役立つ。しかしながら、現在、市販のチタン酸バリウム粉末粒子の粒径は、ほとんどが100nm以上であり、小粒子のナノチタン酸バリウム粉末は比較的まれである。 Increasing the uniformity and compactness of the ceramic dielectric layer and reducing the porosity are effective means for improving the capacitance of electronic components. According to the Horsfield model, barium titanate particles of different particle sizes are mixed and the barium titanate particles with a smaller particle size are filled into the gap formed between the barium titanate particles with a relatively large particle size to fill the packing density. It is desirable to increase. On the other hand, the use of barium titanate powder having a small particle size helps to form smaller crystal grains and more grain boundaries in the ceramic dielectric layer and improve the performance of the ceramic dielectric layer. However, at present, most of the commercially available barium titanate powder particles have a particle size of 100 nm or more, and small particles of nano-barium titanate powder are relatively rare.

現段階でナノチタン酸バリウム粉末を製造する主流プロセスは、固相焼結法と液相合成法に大きく分けられることができる。固相焼結法は、チタン酸バリウムを構成する金属元素(TiとBa)の酸化物又は酸性塩を混合し、細かく磨いた後、約1100℃の高温で▲か▼焼し、固相反応により必要な粉末を形成する。固相焼結法のプロセスは比較的簡単であるが、生産されたチタン酸バリウム粉末の粒子粒径が大きく、粒径分布が集中していないほか、純度が低く、性能が不安定な欠陥があり、ナノチタン酸バリウム粉末に対するセラミック誘電体層の需要を満たすことができない。 The mainstream process for producing nanobarium titanate powder at this stage can be broadly divided into a solid phase sintering method and a liquid phase synthesis method. In the solid-phase sintering method, oxides or acid salts of metal elements (Ti and Ba) constituting barium titanate are mixed, finely polished, and then ▲ or ▼ baked at a high temperature of about 1100 ° C. for a solid-phase reaction. To form the required powder. The solid phase sintering process is relatively simple, but the produced barium titanate powder has large particle size, unconcentrated particle size distribution, low purity, and unstable performance. Yes, it cannot meet the demand for ceramic dielectric layers for nanobarium titanate powder.

液相合成法はさらに、ゾル-ゲル法、水熱法などに分けられることができる。ここで、水熱法は特に、高圧反応釜などの密閉システムにおいて、分散したTiO細粒子を含むBa(OH)水溶液を水熱処理し、一定の温度と水の自生圧力で、常圧条件では得られない特殊な物理化学環境を提供し、結晶度が高く、純度が高く、サイズが小さい粉末を形成する。しかし、水熱法の反応システムでは、常にTiOの質量濃度を非常に低い範囲に制御する必要があり、TiOの濃度が高すぎることによる粒子凝集などの問題を避けるために、一般的に15%を超えない。しかし、低濃度であれば、TiOの分散液の体積が大きすぎるので、反応時間が長くなり、エネルギー消費が増加し、設備の生産率が非常に低い。また、実際の工業生産では、大量の溶媒による不均一な温度制御などの要因もチタン酸バリウム粉末の均一性に悪影響を及ぼす。 The liquid phase synthesis method can be further divided into a sol-gel method, a hydrothermal method and the like. Here, in the hydrothermal method, in particular, in a closed system such as a high-pressure reaction kettle, a Ba (OH) 2 aqueous solution containing dispersed TiO 2 fine particles is hydrothermally heat-treated, and a constant temperature and a natural pressure of water are used under normal pressure conditions. It provides a special physicochemical environment that cannot be obtained by, and forms powders with high crystallinity, high purity, and small size. However, in hydrothermal reaction systems, it is always necessary to control the mass concentration of TiO 2 to a very low range, and in general, in order to avoid problems such as particle aggregation due to the concentration of TiO 2 being too high. Does not exceed 15%. However, if the concentration is low, the volume of the dispersion liquid of TiO 2 is too large, so that the reaction time becomes long, the energy consumption increases, and the production rate of the equipment is very low. Further, in actual industrial production, factors such as non-uniform temperature control by a large amount of solvent also adversely affect the uniformity of barium titanate powder.

上記の状況に鑑みて、二酸化チタン濃度が高い場合には、セラミック誘電体層の要求を満たす高品質のナノチタン酸バリウム粉末が依然として得られ、収率が高いナノチタン酸バリウム粉末の工業化生産プロセスを開発することが期待されている。 In view of the above situation, when the titanium dioxide concentration is high, high quality barium titanate powder that meets the requirements of the ceramic dielectric layer is still obtained, and the industrial production process of barium titanate powder with high yield is developed. It is expected to do.

上記の欠陥に対して、本発明は、ナノチタン酸バリウム粉末の製造方法を提供し、高濃度の二酸化チタン水分散液を原料として用いて、非常に高い収率を持つだけでなく、工業化生産のニーズを満たすことができ、得られたナノチタン酸バリウム粉末は粒径が小さく、粒径分布が狭く、純度が高く、結晶粒成長が良いという利点があり、セラミック誘電体層の品質要求を満たす。 For the above defects, the present invention provides a method for producing a barium powder of nanotitanium acid, which uses a high-concentration aqueous titanium dioxide dispersion as a raw material, and not only has a very high yield, but also has an industrial production. The obtained nano-tirate barium powder has the advantages of small particle size, narrow particle size distribution, high purity, and good crystal grain growth, and meets the quality requirements of the ceramic dielectric layer.

本発明は、上記の製造方法を用いて製造されるナノチタン酸バリウム粉末を提供する。当該ナノチタン酸バリウム粉末は、粒径が小さく、粒径分布が狭く、純度が高く、結晶粒成長が良いという利点があり、セラミック誘電体層の要求を満たすことができる。 The present invention provides a barium nanotitanate powder produced by using the above production method. The barium nanotitanate powder has advantages of a small particle size, a narrow particle size distribution, high purity, and good crystal grain growth, and can meet the requirements of a ceramic dielectric layer.

本発明は、上記ナノチタン酸バリウム粉末を最初に製造することを含むセラミック誘電体層の製作方法を提供し、当該製作方法は、セラミック誘電体層の均一性と緻密性を高め、空隙率を低減することができる。 The present invention provides a method for producing a ceramic dielectric layer, which comprises first producing the above barium titanate powder, which method enhances the uniformity and denseness of the ceramic dielectric layer and reduces porosity. can do.

本発明は、上記の製作方法を用いて製作されるセラミック誘電体層を提供し、当該セラミック誘電体層は、より高い均一性、緻密性、及び低い空隙率を有する。 The present invention provides a ceramic dielectric layer made using the above fabrication method, the ceramic dielectric layer having higher uniformity, tightness and lower porosity.

上記の目的を達成するために、本発明は、ナノチタン酸バリウム粉末の製造方法を提供し、前記方法は、
ナノ二酸化チタン水分散液を水酸化バリウム水溶液と急速に混合し、得られた混合系の温度を両者の急速な混合により水酸化バリウム水溶液の温度に比べて少なくとも2℃低くし、ここで、ナノ二酸化チタン水分散液の質量濃度は20%以上であることと、
当該混合系を高圧水熱合成反応させ、得られた反応生成物を洗浄と乾燥し、ナノチタン酸バリウム粉末を得ることと、を含む。
In order to achieve the above object, the present invention provides a method for producing a barium nanotitanate powder, and the method is described.
The nano-titanium dioxide aqueous dispersion was rapidly mixed with the barium hydroxide aqueous solution, and the temperature of the obtained mixing system was lowered by at least 2 ° C. from the temperature of the barium hydroxide aqueous solution by rapid mixing of both, and here, nano. The mass concentration of the titanium dioxide aqueous dispersion is 20% or more, and
The mixed system is subjected to a high-pressure hydrothermal synthesis reaction, and the obtained reaction product is washed and dried to obtain a nanobarium titanate powder.

現在、水熱法を用いてナノチタン酸バリウム粉末を合成する場合、チタン源としてのTiOの濃度が高いと、ナノチタン酸バリウム粒子間の凝集現象が非常に深刻になりやすいが、TiOの濃度が低すぎると、生産効率が低下すぎ、製品の粒径が大きいなどの問題がある。この現状に対して、本発明は解決策を提供し、高濃度(質量濃度≧20%)のナノ二酸化チタン水分散液を原料として、まず、ナノ二酸化チタン水分散液を水酸化バリウム水溶液と急速に混合し、次に高圧水熱合成を実施することで、高圧水熱合成反応過程での溶媒(一般的には脱イオン水)の使用量を低減させ、生産効率を向上させるだけでなく、チタン酸バリウムナノ粒子の粒径を制御でき、より狭い粒径分布を得ることができ、また、ナノチタン酸バリウム粉末の高純度と結晶粒の良好な成長を確保することもでき、結果として性能の優れたナノチタン酸バリウム粉末製品が得られる。 Currently, when synthesizing nanobarium titanate powder using the hydrothermal method, if the concentration of TiO 2 as a titanium source is high, the aggregation phenomenon between the nanobarium titanate particles tends to become very serious, but the concentration of TiO 2 If it is too low, there are problems such as the production efficiency is too low and the particle size of the product is large. The present invention provides a solution to this situation. Using a high-concentration (mass concentration ≥ 20%) nano-titanium dioxide aqueous dispersion as a raw material, first, the nano-titanium dioxide aqueous dispersion is rapidly mixed with a barium titanate aqueous solution. By mixing with barium titanate and then performing high-pressure hydrothermal synthesis, the amount of solvent (generally deionized water) used in the high-pressure hydrothermal synthesis reaction process is reduced, and production efficiency is improved. The particle size of barium titanate nanoparticles can be controlled, a narrower particle size distribution can be obtained, and the high purity of barium titanate powder and good growth of crystal grains can be ensured, resulting in performance. An excellent barium titanate powder product is obtained.

本発明では、ナノ二酸化チタン水分散液と水酸化バリウム水溶液との間の急速な混合、或いはチタン源とバリウム源の急速な混合は、混合系の温度低下の程度によって具現され、即ち、両者の急速な混合によって直接引き起こされる明らかな温度低下によって具現され、混合過程において外部冷却などの手段による明らかな温度低下を含まない。両者の急速な混合過程では、加熱装置を用いて加熱していても、2つの温度の液体の急速な混合のため、加熱装置は、混合前の水酸化バリウム水溶液の温度に達する温度を適時に維持するのに十分ではないので、混合系の温度が水酸化バリウム水溶液の温度よりも著しく低くなる。 In the present invention, the rapid mixing of the nanotitanium dioxide aqueous dispersion and the barium hydroxide aqueous solution, or the rapid mixing of the titanium source and the barium source, is embodied by the degree of temperature decrease of the mixing system, that is, both. It is embodied by the apparent temperature drop directly caused by rapid mixing and does not include the apparent temperature drop by means such as external cooling in the mixing process. In the rapid mixing process of both, even if the liquid is heated using a heating device, the heating device timely reaches the temperature of the barium hydroxide aqueous solution before mixing because of the rapid mixing of the liquids at two temperatures. The temperature of the mixing system is significantly lower than that of the aqueous barium hydroxide solution because it is not sufficient to maintain.

明らかに、このようなシステム温度の低下は主に、ナノ二酸化チタン水分散液の量と初期温度、ナノ二酸化チタン水分散液の添加速度と混合速度、そしてシステム加熱装置の電力と熱伝導の影響を受ける。従来の電気加熱又は熱媒体伝熱方式の加熱電力が限られていることを考慮して、初期温度T1のナノ二酸化チタン水分散液を、初期温度T2の水酸化バリウム水溶液に急速に加えると、温度の低下を補うために不足し、混合系温度T3は2℃以上低下し、添加速度と混合速度が遅い場合のみ、加熱電力はシステム温度の低下を2℃以内に補うことができる。また、混合速度が足りないと、システム中の各所の温度が均一でないだけでなく、システム中のナノ二酸化チタン水分散液の分布が不均一になり、製品の一貫性に影響を及ぼす。よって、本発明は、システム温度低下の定義を用いて添加速度と混合速度の速さを判断する。 Obviously, such a decrease in system temperature is mainly due to the amount and initial temperature of the nanotitanium dioxide aqueous dispersion, the addition and mixing rate of the nanotitanium dioxide aqueous dispersion, and the power and heat conduction of the system heater. Receive. Considering that the heating power of the conventional electric heating or heat transfer method is limited, when the nanotitanium dioxide aqueous dispersion having an initial temperature T1 is rapidly added to the barium hydroxide aqueous solution having an initial temperature T2, Only when the temperature drop is insufficient to compensate for the temperature drop, the mixing system temperature T3 drops by 2 ° C or more, and the addition rate and mixing rate are slow, the heating power can compensate for the system temperature drop within 2 ° C. In addition, if the mixing rate is insufficient, not only the temperature of each part in the system is not uniform, but also the distribution of the nanotitanium dioxide aqueous dispersion in the system becomes uneven, which affects the consistency of the product. Therefore, the present invention determines the rate of addition and mixing using the definition of system temperature drop.

具体的に、両者の急速な混合を実現するために、工業生産において、水酸化バリウム水溶液を加熱撹拌釜に置いて、ナノ二酸化チタン水分散液をポンプ又は他の液体供給方式を介して加熱撹拌釜に注入し、高速撹拌と分散を補うことができ、或いは2つの液体を、計測可能な液液混合装置を介してオンラインの連続混合を実現することなどができる。実際には、一定の温度で液体と液体の高速混合を実現することができる全ての生産方式は、本発明の技術的手段の実施に利用されてもよい。 Specifically, in order to achieve rapid mixing of the two, in industrial production, the barium hydroxide aqueous solution is placed in a heating and stirring kettle, and the nanotitanium dioxide aqueous dispersion is heated and stirred via a pump or another liquid supply method. It can be injected into a kettle to supplement high speed agitation and dispersion, or two liquids can be continuously mixed online via a measurable liquid mixing device. In practice, any mode of production capable of achieving high speed mixing of liquids at a constant temperature may be utilized in the practice of the technical means of the present invention.

もちろん、添加又は混合の速度は、混合系の不均一な温度による後続のチタン酸バリウム粒子の成長サイズの一貫性に影響を及ぼすことを避けるために、混合溶液全体の温度が早く平衡になることを保証しなければならない。実際の工業生産では、一般的に代表的な監視点を複数選択して混合過程中の温度変化をテストすることができ、各監視点の温度は2℃以上低下し、低下範囲はほぼ同じであることが適切である。 Of course, the rate of addition or mixing should equilibrate the temperature of the entire mixed solution quickly to avoid affecting the consistency of subsequent barium titanate growth size due to the non-uniform temperature of the mixing system. Must be guaranteed. In actual industrial production, it is generally possible to select multiple typical monitoring points and test the temperature change during the mixing process, the temperature of each monitoring point drops by 2 ° C or more, and the range of drop is almost the same. It is appropriate to have.

さらに、後続のチタン酸バリウム粒子の成長サイズの一貫性を確保するために、混合系の温度と混合前の水酸化バリウム水溶液の間の温度差も大きすぎるべきではなく、一般的に2~20℃に制御され、通常は2~10℃に制御される。このようにして、温度の急速な低下による水酸化バリウムの析出も効果的に回避できる。 Furthermore, in order to ensure consistency in the growth size of subsequent barium titanate particles, the temperature difference between the temperature of the mixing system and the unmixed barium hydroxide aqueous solution should not be too large, generally 2-20. It is controlled to ° C, usually 2 to 10 ° C. In this way, the precipitation of barium hydroxide due to the rapid decrease in temperature can be effectively avoided.

説明すべきものとして、ナノ二酸化チタン水分散液において、ナノ二酸化チタンは非常に高い濃度(≧20%)を持っているので、ナノチタン酸バリウム粉末の高収率を実現するために、バリウムイオンとチタン原子のモル比及びバリウム源とチタン源の間の急速な混合を確保するために、水酸化バリウム水溶液にも高濃度のバリウムイオンを含む必要がある。通常、水酸化バリウム水溶液において、水酸化バリウムの濃度は飽和濃度に近いことが好ましく、例えばバリウム源の濃度は20%以上で、さらに50%以上に達することができ、よって、水酸化バリウムを水に十分に溶解させることを確保するために、水酸化バリウム水溶液の温度を90℃以上に、一般的に90~110℃に制御すれば、バリウム源とチタン源の比率を確保することができる。 It should be explained that, in the nano-titanium dioxide aqueous dispersion, nano-titanium dioxide has a very high concentration (≧ 20%), so barium ion and titanium are used to achieve high yield of nano-titanium barium powder. The barium hydroxide aqueous solution must also contain high concentrations of barium ions to ensure the molar ratio of atoms and the rapid mixing between the barium source and the titanium source. Usually, in an aqueous barium hydroxide solution, the concentration of barium hydroxide is preferably close to the saturated concentration, for example, the concentration of the barium source is 20% or more, and can reach 50% or more, and thus the barium hydroxide is watered. If the temperature of the barium hydroxide aqueous solution is controlled to 90 ° C. or higher, generally 90 to 110 ° C., in order to ensure sufficient dissolution, the ratio of the barium source to the titanium source can be secured.

ナノ二酸化チタン水分散液の温度は、水酸化バリウム水溶液より低く、両者の急速な混合過程での温度低下程度を確保するために、ナノ二酸化チタン水分散液の温度が70℃を超えないほうがよく、一般的には室温で70℃まで保存されることを理解するのは難しいことではない。 The temperature of the nano-titanium dioxide aqueous dispersion is lower than that of the barium hydroxide aqueous solution, and it is better that the temperature of the nano-titanium dioxide aqueous dispersion does not exceed 70 ° C. It is not difficult to understand that it is generally stored up to 70 ° C at room temperature.

本発明では、混合系の調製は、大気環境で行うことができる。もちろん、副反応の発生を避けるために、混合系の調製は、不活性雰囲気で、例えば窒素、アルゴンの保護で行ってもよく、本発明はここでは特に限定されない。 In the present invention, the preparation of the mixed system can be performed in an atmospheric environment. Of course, in order to avoid the occurrence of side reactions, the preparation of the mixed system may be carried out in an inert atmosphere, for example, protection of nitrogen and argon, and the present invention is not particularly limited here.

前述したように、上記混合系の調製は、ナノ二酸化チタン水分散液を水酸化バリウム水溶液に加えて実現することができ、水酸化バリウム水溶液をナノ二酸化チタン水分散液に加えて実現することもでき、また、並流混合の形態でナノ二酸化チタン水分散液と水酸化バリウム水溶液を混合して実現することもできる。 As described above, the preparation of the above mixed system can be realized by adding the nano barium hydroxide aqueous solution to the nano barium hydroxide aqueous solution, and can also be realized by adding the nano barium hydroxide aqueous solution to the nano barium hydroxide aqueous solution. It can also be realized by mixing a nanotitanium dioxide aqueous dispersion and a barium hydroxide aqueous solution in the form of parallel flow mixing.

本発明の好ましい実施形態では、ナノ二酸化チタン水分散液を急速に水酸化バリウム水溶液に加え、得られた混合系の温度を水酸化バリウム水溶液の温度に比べて少なくとも2℃低くさせる。このような形態で混合系を調製することは、高温の水酸化バリウム水溶液の供給、輸送に関係なく、プロセスと装置に対する要求が低く、より実現しやすい。 In a preferred embodiment of the present invention, the nano-titanium dioxide aqueous dispersion is rapidly added to the barium hydroxide aqueous solution to bring the temperature of the resulting mixed system at least 2 ° C. lower than the temperature of the barium hydroxide aqueous solution. Preparing the mixed system in such a form is more feasible because the requirements for the process and the apparatus are low regardless of the supply and transportation of the high-temperature barium hydroxide aqueous solution.

本発明で使用されるナノ二酸化チタン水分散液は、ナノ二酸化チタン粉末を水に分散させることによって形成される。好ましくは、ナノ二酸化チタン水分散液において、ナノ二酸化チタンは体積計でメジアン粒径D50は30nm以下である。 The nano-titanium dioxide aqueous dispersion used in the present invention is formed by dispersing nano-titanium dioxide powder in water. Preferably, in the nano-titanium dioxide aqueous dispersion, the nano-titanium dioxide has a median particle size D50 of 30 nm or less on a volume meter.

本発明は、ナノ二酸化チタン粉末又はナノ二酸化チタン水分散液のソースについては特に限定されず、市販又は自体で製造することができる。例えば特許出願201610879270.3又は201610879701.6に記載されたプロセスに従って、ナノ二酸化チタン粉末を製造して、それを比例的に水に分散させ、ナノ二酸化チタン水分散液を得ることができる。 The present invention is not particularly limited as to the source of the nano-titanium dioxide powder or the nano-titanium dioxide aqueous dispersion, and can be commercially available or produced by itself. For example, according to the process described in patent application 2016108279270.3 or 2016108779701.6, nanotitanium dioxide powder can be produced and proportionally dispersed in water to obtain a nanotitanium dioxide aqueous dispersion.

二酸化チタン水分散液の濃度を合理的に制御することは、合成過程中のナノチタン酸バリウム粉末の凝集などの問題を回避するのに役立つので、一般的にナノ二酸化チタン水分散液の質量濃度を20~50%に制御する。発明人の研究によると、質量濃度がこの区間にあれば、分散性が良いナノチタン酸バリウム粉末を得るだけでなく、この区間内にナノ二酸化チタン水分散液の質量濃度を変えると、ナノチタン酸バリウム粉末の平均粒径は大きく変化しない。 Since rationally controlling the concentration of the titanium dioxide aqueous dispersion helps to avoid problems such as agglomeration of nanotitanium barium powder during the synthesis process, the mass concentration of the nanotitanium aqueous dispersion is generally used. Control to 20-50%. According to the research of the inventor, if the mass concentration is in this section, not only the nanotitanium barium powder with good dispersibility can be obtained, but also if the mass concentration of the nanotitanium dioxide aqueous dispersion is changed in this section, the nanotitanium barium The average particle size of the powder does not change significantly.

理想的な状態では、BaとTiのモル比が1である場合、両者を十分に反応させてチタン酸バリウムを生成し、原料の残留を避けることができる。理解できるものとして、過剰なチタン源又はバリウム源は、チタン酸バリウムの合成に向ける方向に反応を進行することに有利であり、例えば過剰なBaは、反応生成物における二酸化チタン不純物の含有量を低減するのに役立つ。しかし、バリウムの大量の残余は、バリウム源の浪費をもたらすだけでなく、反応生成物を収集する時、空気に接触すると、炭酸バリウム不純物を導入する可能性もある。水熱反応効率及び経済的要因を総合的に考慮して、一般的にBaイオンとTi原子の間のモル比を1~4:1に制御することにより、最終に得られたナノチタン酸バリウム粉末はより高い純度を有し、また、二酸化チタンの完全な反応を確保することができる。 In an ideal state, when the molar ratio of Ba and Ti is 1, the two can be sufficiently reacted to form barium titanate and the residue of the raw material can be avoided. As is understandable, an excess titanium source or barium source is advantageous in advancing the reaction in the direction towards the synthesis of barium titanate, for example, excess Ba indicates the content of titanium dioxide impurities in the reaction product. Helps reduce. However, large amounts of barium residue not only result in wasted barium sources, but can also introduce barium carbonate impurities upon contact with air when collecting reaction products. The final barium titanate powder obtained by generally controlling the molar ratio between Ba ions and Ti atoms to 1 to 4: 1 in consideration of hydrothermal reaction efficiency and economic factors. Has a higher purity and can ensure a complete reaction of titanium dioxide.

本発明の高圧水熱合成反応条件は、現在の水熱法によってチタン酸バリウムを合成するプロセスを参照してもよい。本発明の具体的な実施過程において、通常、高圧水熱合成反応は、温度が100~250℃で、圧力が7MPaより小さいように制御される。具体的に、調製された混合系を高圧反応釜に転移させ、密封後に昇温し、100~250℃で反応させる。 The high-pressure hydrothermal synthesis reaction conditions of the present invention may refer to the process of synthesizing barium titanate by the current hydrothermal method. In the specific implementation process of the present invention, the high pressure hydrothermal synthesis reaction is usually controlled so that the temperature is 100 to 250 ° C. and the pressure is smaller than 7 MPa. Specifically, the prepared mixed system is transferred to a high-pressure reaction kettle, sealed, heated, and reacted at 100 to 250 ° C.

本発明は高濃度のナノ二酸化チタン水分散液を原料として使用し、従来の高圧水熱合成プロセスに比べて反応時間を大幅に短縮することができ、一般に、高圧水熱合成反応が完了するまでに約1時間、例えば1~24時間かかる。 The present invention uses a high-concentration nano-titanium dioxide aqueous dispersion as a raw material, and can significantly shorten the reaction time as compared with the conventional high-pressure hydrothermal synthesis process, and generally, until the high-pressure hydrothermal synthesis reaction is completed. It takes about 1 hour, for example 1 to 24 hours.

本発明の具体的な実施過程では、ナノチタン酸バリウム粉末に対する実際の需要に応じて、対応する高圧水熱合成反応条件を合理的に設定することができ、例えば、反応温度、反応時間などの条件を変えることにより、異なる粒径及び/又は異なる正方晶相(又は立方晶相)比重を有するナノチタン酸バリウム粉末を得る。 In the specific implementation process of the present invention, the corresponding high-pressure hydrothermal synthesis reaction conditions can be rationally set according to the actual demand for the nanobarium titanate powder, for example, conditions such as reaction temperature and reaction time. To obtain barium nanotitanate powder having a different particle size and / or a different cubic phase (or cubic phase) specific gravity.

高圧水熱合成反応が完了した後、温度を下げて反応生成物を収集し、洗浄と乾燥などの処理を経て、高品質のナノチタン酸バリウム粉末を得ることができる。本発明の具体的な実施過程において、脱イオン水、又は脱イオン水とエタノールを使用して、反応生成物を1回以上洗浄し、次いで濾過及び60~90℃での乾燥を経て、ナノチタン酸バリウム粉末を得る。 After the high-pressure hydrothermal synthesis reaction is completed, the temperature is lowered to collect the reaction product, and the reaction product is subjected to treatments such as washing and drying to obtain high-quality barium nanotitanium powder. In the specific implementation process of the present invention, the reaction product is washed at least once using deionized water or deionized water and ethanol, then filtered and dried at 60-90 ° C. to nanotitanic acid. Obtain barium powder.

本発明は、上記製造方法を用いて製造されるナノチタン酸バリウム粉末を提供する。 The present invention provides a barium nanotitanate powder produced by using the above production method.

本発明によって提供されるナノチタン酸バリウム粉末は、非常に小さい粒径を有し、その平均粒径は100nm以下であり、5~50nmにも達することができ、当該ナノチタン酸バリウム粉末の粒径は基本的に正規分布であり、計算された相対標準偏差は25%以下であるので、当該チタン酸バリウム粉末の粒子は非常に均一で、粒径分布は狭く、ナノチタン酸バリウム粉末のXRD図では、2θ角が44°~46°の間の回折ピークは、明らかな分裂がない単一ピークとして現れるので、結晶粒成長が完全で、結晶形が良いであると意味し、Ba/Ti比はいずれも約1であり、当該ナノチタン酸バリウム粉末は非常に高い純度を持つと意味する。よって、本発明で提供されるナノチタン酸バリウム粉末は非常に高い品質を有し、セラミック誘電体層の製作要求を満たすことができる。 The nanobarium titanate powder provided by the present invention has a very small particle size, its average particle size is 100 nm or less, and can reach 5 to 50 nm, and the particle size of the nanobarium titanate powder is Since it is basically a normal distribution and the calculated relative standard deviation is 25% or less, the particles of the barium titanate powder are very uniform, the particle size distribution is narrow, and in the XRD diagram of the nanobarium titanate powder, Diffraction peaks with a 2θ angle between 44 ° and 46 ° appear as a single peak with no apparent splitting, which means that the grain size is complete and the crystal shape is good, and the Ba / Ti ratio will eventually change. Also, it is about 1, which means that the nanobarium titanate powder has a very high purity. Therefore, the nanobarium titanate powder provided in the present invention has very high quality and can meet the requirements for producing a ceramic dielectric layer.

本発明は、セラミック誘電体層の製作方法を提供し、以下のステップを含み、
まず、前述の製造方法に従ってナノチタン酸バリウム粉末を製造し、次にナノチタン酸バリウム粉末をフレークにして焼成し、セラミック誘電体層を得る。
The present invention provides a method of making a ceramic dielectric layer, comprising the following steps:
First, the nanobarium titanate powder is produced according to the above-mentioned production method, and then the nanobarium titanate powder is made into flakes and fired to obtain a ceramic dielectric layer.

具体的に、まず、必要に応じて異なる粒径のナノチタン酸バリウム粉末を製造し、次に異なる粒径のナノチタン酸バリウム粉末を比例的に混合し、例えば平均粒径が75nmと29nmの2つのナノチタン酸バリウム粉末を混合してもよく、又は、単一(平均)粒径のナノチタン酸バリウム粉末を原料としてもよく、また、又は、本発明の製造プロセスによって得られたナノチタン酸バリウム粉末を、粒径が100nmよりも大きいチタン酸バリウム粉末と混合して、密充填を実現してもよい。 Specifically, first, nanobarium titanate powders having different particle sizes are produced as needed, and then nanobarium titanate powders having different particle sizes are mixed proportionally, for example, two having an average particle size of 75 nm and 29 nm. The nanobarium titanate powder may be mixed, or the nanobarium titanate powder having a single (average) particle size may be used as a raw material, or the nanobarium titanate powder obtained by the production process of the present invention may be used as a raw material. It may be mixed with barium titanate powder having a particle size larger than 100 nm to realize dense filling.

上記混合は、セラミック誘電体層の従来の混合プロセスを用いてもよく、例えば、異なる粒径のナノチタン酸バリウム粉末を、遊星ボールミルで450回転/分の速度で10時間湿式粉砕し、水又はエタノールを分散剤として用いて、最後に、得られたスラリーを約80℃の温度で乾燥させる。 The mixing may be carried out using a conventional mixing process of a ceramic dielectric layer, for example, nanotitanate barium powders of different particle sizes are wet-ground in a planetary ball mill at a rate of 450 rpm for 10 hours and then water or ethanol. Finally, the resulting slurry is dried at a temperature of about 80 ° C.

上記のフレーク状成形と焼成は、セラミック誘電体層の従来の製造プロセスを用いてもよく、例えば、混合後のチタン酸バリウム粉末とポリビニルアルコール水溶液を粉砕して混合し、プレス機と金型を用いてシートに押さえ、脱バインダーし、1100℃以上で焼結してセラミックを形成し、セラミック誘電体層を得る。 The above-mentioned flake-shaped molding and firing may use the conventional manufacturing process of the ceramic dielectric layer. For example, the barium titanate powder after mixing and the polyvinyl alcohol aqueous solution are crushed and mixed to form a press and a die. It is pressed onto a sheet, debindered, and sintered at 1100 ° C. or higher to form a ceramic to obtain a ceramic dielectric layer.

本発明はまた、上記製作方法を用いて製作されるセラミック誘電体層を提供する。上記高品質のナノチタン酸バリウム粉末を原料として使用するので、セラミック誘電体層の高緻密性及び低空隙率を保証することができ、セラミック誘電体層に穴や亀裂が生じることを避け、MLCCなどのデバイスの小型化、薄型化、高性能の開発ニーズをより良く満たすことができる。 The present invention also provides a ceramic dielectric layer manufactured using the above fabrication method. Since the above-mentioned high-quality barium titanate powder is used as a raw material, high density and low porosity of the ceramic dielectric layer can be guaranteed, holes and cracks are avoided in the ceramic dielectric layer, and MLCC and the like are used. It can better meet the development needs of smaller, thinner, and higher performance devices.

本発明で提供されるナノチタン酸バリウム粉末の製造方法は、まず、高濃度のナノ二酸化チタン水分散液を水酸化バリウム水溶液と急速に混合してから、高圧水熱合成を実施し、既存の水熱合成法によってナノチタン酸バリウム粉末を製造する場合、二酸化チタン濃度が高すぎるとチタン酸バリウム粒子が凝集し、及び二酸化チタン濃度が低すぎると、生産効率が低く、製品品質が悪いという問題を解決する。本発明の製造方法を用いて、ナノ二酸化チタンの濃度が非常に高いため、工業生産効率が著しく向上し、また、得られたナノチタン酸バリウム粉末は次のような利点がある。
1)粒径が小さい:平均粒径は100nm未満であり、5~50nmに達することもできる。
2)粒径が均一で、粒径分布が狭い:粒径分布の相対標準偏差は25%以内である。
3)結晶粒の成長が完全で、結晶形が良好である:XRD図では、2θ角は44°~46°の間の回折ピークは、明らかな分裂がない単一ピークとして現れる。
4)純度が高い:Ba/Ti比はいずれも約1であり、ほとんどが0.990~0.999の間である。
In the method for producing the nano-barium titanate powder provided in the present invention, first, a high-concentration nano-barium titanate aqueous dispersion is rapidly mixed with a barium hydroxide aqueous solution, and then high-pressure hydrothermal synthesis is carried out to carry out existing water. When producing nanobarium titanate powder by the hydrothermal synthesis method, the problem that barium titanate particles aggregate when the titanium dioxide concentration is too high and the production efficiency is low and the product quality is poor when the titanium dioxide concentration is too low is solved. do. Since the concentration of nanotitanium dioxide is very high by using the production method of the present invention, the industrial production efficiency is remarkably improved, and the obtained barium titanate powder has the following advantages.
1) Small particle size: The average particle size is less than 100 nm and can reach 5-50 nm.
2) Uniform particle size and narrow particle size distribution: The relative standard deviation of the particle size distribution is within 25%.
3) Grain grain growth is perfect and crystal shape is good: In the XRD diagram, diffraction peaks with a 2θ angle between 44 ° and 46 ° appear as single peaks with no apparent splitting.
4) High purity: The Ba / Ti ratios are all about 1, most of which are between 0.999 and 0.999.

本発明で提供されるナノチタン酸バリウム粉末は、上記製造方法を用いて製造される。当該ナノチタン酸バリウム粉末は、粒径が小さく、粒径分布が狭く、結晶形が良く、純度が高いという利点があるため、セラミック誘電体層の使用要求を満たすことができる。 The barium nanotitanate powder provided in the present invention is produced by using the above-mentioned production method. The barium nanotitanate powder has advantages of a small particle size, a narrow particle size distribution, a good crystal shape, and a high purity, so that the requirements for using a ceramic dielectric layer can be satisfied.

本発明で提供されるセラミック誘電体層の製作方法は、前述のナノチタン酸バリウム粉末の製造方法を含む。上記高品質のナノチタン酸バリウム粉末をフレークにして焼成するため、セラミック誘電体層厚度の高緻密性と低空隙率を確保するのに役立ち、セラミック誘電体層に穴や亀裂が生じるのを避けることができる。 The method for producing a ceramic dielectric layer provided in the present invention includes the above-mentioned method for producing barium titanate powder. Since the above high-quality barium titanate powder is fired as flakes, it helps to ensure high density and low porosity of the ceramic dielectric layer thickness, and avoids holes and cracks in the ceramic dielectric layer. Can be done.

本発明で提供されるセラミック誘電体層は、前述のナノチタン酸バリウム粉末を原料として使用するので、当該セラミック誘電体層の厚さの高均一性、高緻密性及び低空隙率を確保することができる。 Since the ceramic dielectric layer provided in the present invention uses the above-mentioned barium titanate powder as a raw material, it is possible to ensure high uniformity, high density and low porosity of the thickness of the ceramic dielectric layer. can.

本発明の実施例1~10で使用したナノ二酸化チタンを1%の質量濃度で脱イオン水に分散させて測定した粒径分布曲線である。6 is a particle size distribution curve measured by dispersing the nanotitanium dioxide used in Examples 1 to 10 of the present invention in deionized water at a mass concentration of 1%. 本発明の実施例1~10で使用したナノ二酸化チタンを10%の質量濃度で脱イオン水に分散させて測定した粒径分布曲線である。It is a particle size distribution curve measured by dispersing the nanotitanium dioxide used in Examples 1 to 10 of the present invention in deionized water at a mass concentration of 10%. 本発明の実施例1~10で使用したナノ二酸化チタンを50%の質量濃度で脱イオン水に分散させて測定した粒径分布曲線である。6 is a particle size distribution curve measured by dispersing the nanotitanium dioxide used in Examples 1 to 10 of the present invention in deionized water at a mass concentration of 50%. 本発明の実施例1において製造されたナノチタン酸バリウム粉末の透過型電子顕微鏡写真である。It is a transmission electron micrograph of the barium nanotitanate powder produced in Example 1 of this invention. 本発明の実施例1において製造されたナノチタン酸バリウム粉末の粒径分布図である。It is a particle size distribution chart of the barium nanotitanate powder produced in Example 1 of this invention. 本発明の実施例1において製造されたナノチタン酸バリウム粉末のXRDパターンである。It is an XRD pattern of the barium nanotitanate powder produced in Example 1 of this invention. 本発明の実施例2において製造されたナノチタン酸バリウム粉末の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the barium nanotitanate powder produced in Example 2 of this invention. 本発明の実施例2において製造されたナノチタン酸バリウム粉末の粒径分布図である。It is a particle size distribution chart of the barium nanotitanate powder produced in Example 2 of this invention. 本発明の実施例2において製造されたナノチタン酸バリウム粉末のXRDパターンである。It is an XRD pattern of the barium nanotitanate powder produced in Example 2 of this invention. 本発明の実施例3において製造されたナノチタン酸バリウム粉末の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the barium nanotitanate powder produced in Example 3 of this invention. 本発明の実施例3において製造されたナノチタン酸バリウム粉末の粒径分布図である。FIG. 3 is a particle size distribution diagram of the barium nanotitanate powder produced in Example 3 of the present invention. 本発明の実施例3において製造されたナノチタン酸バリウム粉末のXRDパターンである。It is an XRD pattern of the barium nanotitanate powder produced in Example 3 of this invention. 本発明の比較例1において製造されたナノチタン酸バリウム粉末の走査型電子顕微鏡写真である。6 is a scanning electron micrograph of the barium nanotitanate powder produced in Comparative Example 1 of the present invention. 本発明の比較例1において製造されたナノチタン酸バリウム粉末のXRDパターンである。It is an XRD pattern of the barium nanotitanate powder produced in the comparative example 1 of this invention. 本発明の比較例2において製造されたナノチタン酸バリウム粉末の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the barium nanotitanate powder produced in Comparative Example 2 of the present invention. 本発明の比較例2において製造されたナノチタン酸バリウム粉末のXRDパターンである。It is an XRD pattern of the barium nanotitanate powder produced in the comparative example 2 of this invention. 本発明の比較例3において製造されたナノチタン酸バリウム粉末の走査型電子顕微鏡写真である。3 is a scanning electron micrograph of the barium nanotitanate powder produced in Comparative Example 3 of the present invention. 本発明の比較例3において製造されたナノチタン酸バリウム粉末のXRDパターンである。It is an XRD pattern of the barium nanotitanate powder produced in the comparative example 3 of this invention. 異なる粒径のナノチタン酸バリウム粉末を異なる比率で混合して焼結することによって得られたチタン酸バリウム誘電体セラミックシートのXRDパターンである。It is an XRD pattern of a barium titanate dielectric ceramic sheet obtained by mixing and sintering nanobarium titanate powder of different particle diameters in different ratios. 図19の部分拡大図である。It is a partially enlarged view of FIG.

本発明の実施例の目的、技術的解決策及び利点をより明確にするために、以下では、本発明の実施例における図面を組み合わせて、本発明の実施例における技術的解決策を明確完全に説明する。明らかに、説明した実施例は、本発明の実施例の全てではなく、一部である。本発明の実施例に基づいて、当業者は創造的な労働がない前提で取得される他のすべての実施例は、本発明の保護の範囲に属する。 In order to further clarify the objectives, technical solutions and advantages of the embodiments of the present invention, the drawings of the embodiments of the present invention are combined in the following to clarify and completely clarify the technical solutions of the embodiments of the present invention. explain. Obviously, the examples described are not all, but some of the examples of the invention. Based on the embodiments of the present invention, all other embodiments obtained by those skilled in the art on the premise of no creative labor fall within the scope of protection of the present invention.

以下の実施例と比較例では、以下の検出技術を使用してナノチタン酸バリウム粉末又は二酸化チタン粉末の特性をテストし、判定する。
1、Malvernレーザー粒度計(Zetasizer Nano ZS)を使用してサンプルの分散粒度をテストし、ナノ二酸化チタンの水での体積分布分散粒径分布図を得、これにより、体積計でメジアン粒径D50を得る。
2、走査型電子顕微鏡と透過型電子顕微鏡を用いてサンプルの表面形態を観察し、約200個の粒子の粒径を統計し、チタン酸バリウムの一次粒子の平均粒径を得る。
3、相対標準偏差は、標準偏差と測定された平均値の比率であり、originソフトウェアによって提供される。
4、X線回折計(D8 Advance)を用いて、ステップ長が0.02°、積分時間が2sのパラメータで20~80°の範囲でX線回折パターンを収集し、TopasソフトウェアでRietveid法を用いて構造を精密化して格子定数比(c/a)を計算し、ここで、格子定数比が1に近いほど、結晶構造が立方晶相に近くなり、逆に正方晶相に近いなると意味し、正方晶相と立方晶相の含有量は、標準サンプルを使用せずに定量分析によって計算される。
5、BET法を用いて材料の比表面積を解析する。
6、ICP-MSを用いてチタン酸バリウム粉末のバリウムとチタンの比率を検出する。
In the following examples and comparative examples, the characteristics of the nanobarium titanate powder or titanium dioxide powder are tested and determined using the following detection techniques.
1. The dispersion particle size of the sample was tested using a Malvern laser particle size meter (Zetasizer Nano ZS) to obtain a volume distribution dispersion particle size distribution map of nanotitanium dioxide in water, whereby the median particle size D50 was obtained with the volume meter. To get.
2. Observe the surface morphology of the sample using a scanning electron microscope and a transmission electron microscope, statistics the particle size of about 200 particles, and obtain the average particle size of the primary particles of barium titanate.
3. Relative standard deviation is the ratio of the standard deviation to the measured mean value and is provided by the orange software.
4. Using an X-ray diffractometer (D8 Advance), collect X-ray diffraction patterns in the range of 20 to 80 ° with a parameter with a step length of 0.02 ° and an integration time of 2s, and use the Topas software to use the Rietved method. The structure is refined and the lattice constant ratio (c / a) is calculated. Here, the closer the lattice constant ratio is to 1, the closer the crystal structure is to the cubic phase, and conversely, the closer it is to the cubic phase. However, the contents of the square and cubic phases are calculated by quantitative analysis without the use of standard samples.
5. Analyze the specific surface area of the material using the BET method.
6. Detect the ratio of barium to titanium in barium titanate powder using ICP-MS.

実施例1
室温下、二酸化チタンナノ粉末を脱イオン水に分散し、質量濃度48%のナノ二酸化チタン水分散液200gを得、
窒素の保護で、三口フラスコに710gの水酸化バリウムと700mLの脱イオン水を加え、溶解するまで90℃で攪拌し、
水酸化バリウムが析出しない場合、ナノ二酸化チタン水分散液を三口フラスコに急速に加えて、混合系の温度が2~5℃低下するのを測定し、急速に加える間に急速に攪拌し、添加が完了した後、約半時間攪拌を続け、均一に分散した混合系を得、
混合系を反応釜に移し、密封し、120℃で約16時間加熱し、冷却後に反応生成物を取り出し、脱イオン水で生成物を数回洗浄し、80℃で数時間乾燥させ、ナノチタン酸バリウム粉末を得る。
Example 1
At room temperature, titanium dioxide nanopowder was dispersed in deionized water to obtain 200 g of nanotitanium dioxide aqueous dispersion having a mass concentration of 48%.
To protect against nitrogen, add 710 g of barium hydroxide and 700 mL of deionized water to the three-necked flask and stir at 90 ° C. until dissolution.
If barium hydroxide does not precipitate, add the nanotitanium dioxide aqueous dispersion rapidly to the three-necked flask, measure the temperature of the mixing system to drop by 2-5 ° C, stir rapidly during the rapid addition, and add. After completion, stirring was continued for about half an hour to obtain a uniformly dispersed mixed system.
The mixing system is transferred to a reaction vessel, sealed, heated at 120 ° C. for about 16 hours, cooled, the reaction product is removed, the product is washed several times with deionized water, dried at 80 ° C. for several hours, and nanotitanic acid. Obtain barium powder.

本実施例で使用されるナノ二酸化チタン粉末は、体積計でD50≦10nmであり、1%、10%及び50%の濃度で脱イオン水に分散させて測定した粒径分布曲線はそれぞれ図1、図2及び図3に示される。 The nano-titanium dioxide powder used in this example has D50 ≦ 10 nm on a volumetric meter, and the particle size distribution curves measured by dispersing in deionized water at concentrations of 1%, 10% and 50% are shown in FIG. 1, respectively. , 2 and 3.

実施例2
高圧水熱合成反応の温度を160℃に変更し、他の条件は実施例1と同じであり、ナノチタン酸バリウム粉末を得る。
Example 2
The temperature of the high-pressure hydrothermal synthesis reaction was changed to 160 ° C., and the other conditions were the same as in Example 1 to obtain barium nanotitanium powder.

実施例3
高圧水熱合成反応の温度を220℃に変更し、他の条件は実施例1と同じであり、ナノチタン酸バリウム粉末を得る。
Example 3
The temperature of the high-pressure hydrothermal synthesis reaction was changed to 220 ° C., and the other conditions were the same as in Example 1 to obtain barium nanotitanium powder.

実施例4
高圧水熱合成反応の時間を4時間に変更し、他の条件は実施例1と同じであり、ナノチタン酸バリウム粉末を得る。
Example 4
The time of the high-pressure hydrothermal synthesis reaction was changed to 4 hours, and the other conditions were the same as in Example 1 to obtain barium nanotitanium powder.

実施例5
高圧水熱合成反応の時間を24時間に変更し、他の条件は実施例1と同じであり、ナノチタン酸バリウム粉末を得る。
Example 5
The time of the high-pressure hydrothermal synthesis reaction was changed to 24 hours, and the other conditions were the same as in Example 1 to obtain barium nanotitanium powder.

実施例6
脱イオン水の体積を変えずに、二酸化チタンの質量を元の半分に減らすことで、二酸化チタンと水酸化バリウムのモル比を変更し、他の操作ステップと条件はいずれも実施例1と同じである。
Example 6
By reducing the mass of titanium dioxide to half of the original mass without changing the volume of deionized water, the molar ratio of titanium dioxide to barium hydroxide was changed, and all other operating steps and conditions were the same as in Example 1. Is.

実施例7~8
実施例7~8の製造プロセスは実施例2とほぼ同じであり、相違点は、実施例7のナノ二酸化チタン水分散液の質量濃度が36%であり、実施例8のナノ二酸化チタン水分散液の質量濃度が24%であることのみである。
Examples 7-8
The production process of Examples 7 to 8 is almost the same as that of Example 2, and the difference is that the mass concentration of the nanotitanium dioxide aqueous dispersion of Example 7 is 36%, and the nanotitanium dioxide aqueous dispersion of Example 8 is obtained. The only thing is that the mass concentration of the liquid is 24%.

実施例9~10
実施例9~10の製造プロセスは実施例2とほぼ同じであり、相違点は、実施例9において、710gの水酸化バリウムと1000mLの脱イオン水を三口フラスコに加えて、溶解するまで70℃で攪拌し、実施例10において、710gの水酸化バリウムと300mLの脱イオン水を三口フラスコに加えて、溶解するまで110℃で攪拌することのみである。
Examples 9-10
The production process of Examples 9 to 10 is almost the same as that of Example 2, and the difference is that in Example 9, 710 g of barium hydroxide and 1000 mL of deionized water are added to the three-necked flask and heated to 70 ° C. until dissolution. In Example 10, 710 g of barium hydroxide and 300 mL of deionized water are added to the three-necked flask, and the mixture is only stirred at 110 ° C. until it is dissolved.

実施例11~12
実施例11~12の製造プロセスは実施例2とほぼ同じであり、相違点は、実施例11におけるナノ二酸化チタンは、体積計でメジアン粒径D50が約18nmであり、実施例12におけるナノ二酸化チタンは、体積計でメジアン粒径D50が約27nmであることのみである。
Examples 11-12
The production process of Examples 11 to 12 is almost the same as that of Example 2, and the difference is that the nano-titanium dioxide in Example 11 has a median particle size D50 of about 18 nm on a volume meter and nano-dioxide in Example 12. Titanium only has a median particle size D50 of about 27 nm on a volumetric meter.

前述の実施例1~12においてナノチタン酸バリウム粉末を合成する反応条件は、具体的に表1を参照し、得られたナノチタン酸バリウム粉末の性能試験結果は表2を参照する。 Refer specifically to Table 1 for the reaction conditions for synthesizing the nano-titanium barium powder in Examples 1 to 12 described above, and refer to Table 2 for the performance test results of the obtained nano-titanium barium powder.

Figure 2022530627000002
Figure 2022530627000002

Figure 2022530627000003
Figure 2022530627000003

実施例1で得られたナノチタン酸バリウム粉末の透過型電子顕微鏡(SEM)写真、粒径分布図及びXRDパターンはそれぞれ図4、図5及び図6に示され、実施例2で得られたナノチタン酸バリウム粉末の走査型電子顕微鏡写真、粒径分布図及びXRDパターンはそれぞれ図7、図8及び図9に示され、実施例3で得られたナノチタン酸バリウム粉末の走査型電子顕微鏡写真、粒径分布図及びXRDパターンはそれぞれ図10、図11及び図12に示され、他の実施例の特性評価結果は図4~図12を参照する。 The transmission electron microscope (SEM) photograph, particle size distribution diagram, and XRD pattern of the nanotitanate barium powder obtained in Example 1 are shown in FIGS. 4, 5 and 6, respectively, and the nanotitanium obtained in Example 2 is shown. Scanning electron micrographs, particle size distribution charts and XRD patterns of barium acid acid powder are shown in FIGS. 7, 8 and 9, respectively, and scanning electron micrographs and granules of barium acid nanotitanium powder obtained in Example 3 are shown. The diameter distribution map and the XRD pattern are shown in FIGS. 10, 11 and 12, respectively, and the characteristic evaluation results of the other examples refer to FIGS. 4 to 12.

表2における比表面積と粒径データと、透過型電子顕微鏡写真又は走査型電子顕微鏡写真、粒径分布図の組み合わせによれば、本発明の実施例1~12における製造方法を用いて、得られたナノチタン酸バリウム粉末の平均粒径は100nmを超えず、5~50nmにも達することができ、且つ粒度分布が均一で、粒子粒径はほぼ正規分布を呈し、粒子分散が良好で、粒子の凝集が見られない。さらに計算すると、粒子粒径の相対標準偏差はいずれも23%を超えないので、本発明で提供される製造方法を用いると、粒径が小さくて均一なナノチタン酸バリウム粉末を得ることができる。 According to the combination of the specific surface area and particle size data in Table 2, the transmission electron micrograph or the scanning electron micrograph, and the particle size distribution map, it was obtained by using the production method according to Examples 1 to 12 of the present invention. The average particle size of the barium nanotitanate powder does not exceed 100 nm and can reach 5 to 50 nm, the particle size distribution is uniform, the particle size is almost normal, the particle dispersion is good, and the particles No aggregation is seen. Further calculation shows that the relative standard deviations of the particle sizes do not exceed 23%, so that the production method provided in the present invention can be used to obtain a uniform nano-titanium barium powder having a small particle size.

XRD回折パターンをさらに組み合わせると、実施例1~12で得られたナノチタン酸バリウム粉末の2θ角が44°~46°の間の回折ピークは明らかな分裂のない単一ピークとして現れ、それぞれ格子定数比(c/a)を計算し、いずれも約1.0000であり、ほとんどが1.0000~1.0070の間に集中しているので、ナノチタン酸バリウム粉末の結晶粒の成長が完全で、結晶形が良く、主に立方晶相又はすべてが立方晶相であると意味する。 When the XRD diffraction pattern is further combined, the diffraction peaks in which the 2θ angle of the barium nanotitanate powder obtained in Examples 1 to 12 is between 44 ° and 46 ° appear as a single peak without obvious splitting, and each lattice constant appears. The ratio (c / a) was calculated, and all of them were about 1.000, and most of them were concentrated between 1.0000 and 1.0070, so that the growth of the crystal grains of the barium nanotitanium powder was perfect. It has a good crystalline form and means that it is mainly a cubic phase or all of them are cubic phases.

表2のBa/Ti比データによれば、実施例1~12で得られたナノチタン酸バリウム粉末は、Ba/Ti比がいずれも約1であり、ほとんどが0.990~0.999の間に集中しているので、当該ナノチタン酸バリウム粉末は非常に高い純度を持つ。 According to the Ba / Ti ratio data in Table 2, the barium titanate powders obtained in Examples 1 to 12 have a Ba / Ti ratio of about 1, and most of them are between 0.990 and 0.999. The nano-barium titanate powder has a very high purity because it is concentrated in.

これから分かるように、本発明で提供される製造方法により、粒径が小さく、粒径分布が均一で、結晶成長が完全で、純度が高い高品質のナノチタン酸バリウム粉末が得られる。 As can be seen, the production method provided by the present invention provides a high quality barium nanotitanium powder having a small particle size, a uniform particle size distribution, perfect crystal growth, and high purity.

さらに、実施例1~3の試験結果によれば、水熱合成反応の温度を上げると、ナノチタン酸バリウム粉末の粒子粒径が大きくなり、立方晶相の含有量が減少して正方晶相の含有量が増加することがわかる。 Further, according to the test results of Examples 1 to 3, when the temperature of the hydrothermal synthesis reaction is raised, the particle size of the barium titanate powder increases, the content of the cubic phase decreases, and the cubic phase becomes It can be seen that the content increases.

実施例1と4、実施例3と5の試験結果の比較によれば、水熱合成反応の時間を延長すると、ナノチタン酸バリウム粉末の粒子粒径が増加し、また、正方晶相の比重が増加し、立方晶相の比重が減少することもある。 According to the comparison of the test results of Examples 1 and 4, and the time of the hydrothermal synthesis reaction was extended, the particle size of the barium nanotitanate powder increased and the specific gravity of the tetragonal phase increased. It may increase and the specific gravity of the cubic phase may decrease.

実施例2、7及び8の試験結果によれば、ナノ二酸化チタン水分散液の質量濃度、又は混合系における二酸化チタンの質量濃度を変えることは、ナノチタン酸バリウム粉末の粒子粒径及び正方晶相(又は立方晶相)の比重にも影響を及ぼす。概して、ナノ二酸化チタン水分散液の質量濃度は減少し、ナノチタン酸バリウム粉末の粒子粒径はわずかに減少したが、減少幅は明らかではなく、正方晶相の比重もわずかに減少したが、同じように減少幅は大きくない。例えば、ナノ二酸化チタン水分散液の質量濃度を48%から24%に低減すると、ナノチタン酸バリウム粉末の平均粒径は29nmから25nmに減少し、正方晶相の含有量を37.9%から37.5%に減少する。 According to the test results of Examples 2, 7 and 8, changing the mass concentration of the nanotitanium dioxide aqueous dispersion or the mass concentration of titanium dioxide in the mixed system is the particle size and the square crystal phase of the nanotitanium barium powder. It also affects the specific gravity of (or cubic phase). In general, the mass concentration of the nano-titanium dioxide aqueous dispersion decreased and the particle size of the nano-titanium barium powder decreased slightly, but the amount of decrease was not clear, and the specific gravity of the square crystal phase also decreased slightly, but the same. As such, the amount of decrease is not large. For example, when the mass concentration of the nanotitanium dioxide aqueous dispersion is reduced from 48% to 24%, the average particle size of the barium nanotitanium powder is reduced from 29 nm to 25 nm, and the content of the square crystal phase is reduced from 37.9% to 37. It decreases to .5%.

実施例1、11及び12の試験結果によれば、ナノ二酸化チタン水分散液における二酸化チタンのメジアン粒径を増加させると、ナノチタン酸バリウム粉末の粒子粒径は大きくなり、さらに正方晶相の比重は増加し、立方晶相の比重は減少する。 According to the test results of Examples 1, 11 and 12, when the median particle size of titanium dioxide in the nanotitanium dioxide aqueous dispersion is increased, the particle size of the barium nanotitanium powder becomes larger, and the specific gravity of the square crystal phase is further increased. Increases and the specific gravity of the cubic phase decreases.

これから推測できるものとして、本発明で提供される製造方法により、高濃度(20%~50%)のナノ二酸化チタン水分散液を原料として使用し、高圧水熱合成反応の前に、まずチタン源とバリウム源の急速混合を行うことで、既存の水熱合成プロセスによってナノチタン酸バリウムを製造する技術において、二酸化チタンの低濃度によるチタン酸バリウム粒子が大きいなどの欠点、及び、二酸化チタン濃度の高濃度による粒子凝集のせいで、粒径が小さいチタン酸バリウムが得られない欠点を克服することができ、粒径分布範囲が狭く、結晶粒成長が完全で、純度が高い高品質ナノチタン酸バリウム粉末を得ることができる。 As can be inferred from this, according to the production method provided by the present invention, a high-concentration (20% to 50%) nano-titanium dioxide aqueous dispersion is used as a raw material, and a titanium source is first used before the high-pressure hydrothermal synthesis reaction. In the technology for producing nanobarium titanate by the existing hydrothermal synthesis process by rapid mixing of barium titanate, there are drawbacks such as large barium titanate particles due to low concentration of titanium dioxide, and high concentration of titanium dioxide. High-quality nano-barium titanate powder with a narrow particle size distribution range, complete grain growth, and high purity can overcome the drawbacks of not being able to obtain barium titanate with a small particle size due to particle aggregation due to concentration. Can be obtained.

比較例1
比較例1の製造プロセスは実施例2とほぼ同じであり、相違点は、混合系を調製するとき、ナノ二酸化チタン粉末の質量が変わらないが(即ちバリウムイオンとチタン原子のモル比が変わらない)、ナノ二酸化チタンの質量濃度が8%であることのみである。
Comparative Example 1
The production process of Comparative Example 1 is almost the same as that of Example 2, and the difference is that the mass of the nanotitanium dioxide powder does not change when the mixed system is prepared (that is, the molar ratio of barium ion to titanium atom does not change). ), The mass concentration of nanotitanium dioxide is only 8%.

当該ナノチタン酸バリウム粉末の具体的な物性試験結果は表3を参照し、そのSEM写真及びXRDパターンはそれぞれ図13及び図14に示される。計算により、平均粒径は33nmであり、実施例2で得られた結果(29nm)よりも大きい。二酸化チタン水分散液の濃度を下げると、得られたナノチタン酸バリウム粉末の平均粒径が大きくなると意味する。なお、ナノ二酸化チタン水分散液の濃度は8%だけであるので、ナノチタン酸バリウム粉末の生産効率は低い。 The specific physical characteristic test results of the barium nanotitanate powder are shown in Table 3, and the SEM photograph and the XRD pattern thereof are shown in FIGS. 13 and 14, respectively. By calculation, the average particle size is 33 nm, which is larger than the result obtained in Example 2 (29 nm). Decreasing the concentration of the aqueous titanium dioxide dispersion means that the average particle size of the obtained barium nanotitanium powder increases. Since the concentration of the nano-titanium dioxide aqueous dispersion is only 8%, the production efficiency of the nano-barium titanate powder is low.

比較例2
比較例2の製造プロセスは実施例2とほぼ同じであり、相違点は、混合系を調製するとき、水酸化バリウム水溶液を入れた三口フラスコにナノ二酸化チタン水分散液をゆっくり注入し、注入しながら急速に攪拌して混合し、注入過程中の混合液の温度を90±2℃の範囲で維持することのみである。
Comparative Example 2
The production process of Comparative Example 2 is almost the same as that of Example 2, and the difference is that when preparing the mixed system, the nanotitanium dioxide aqueous dispersion is slowly injected into a three-necked flask containing an aqueous barium hydroxide solution. It is only necessary to keep the temperature of the mixed solution in the range of 90 ± 2 ° C. during the injection process by stirring and mixing rapidly while stirring.

当該ナノチタン酸バリウム粉末の具体的な物性試験結果は表3を参照し、そのSEM写真及びXRDパターンはそれぞれ図15及び図16に示される。 The specific physical characteristic test results of the barium nanotitanate powder are shown in Table 3, and the SEM photograph and the XRD pattern thereof are shown in FIGS. 15 and 16, respectively.

計算により、平均粒径は37nmであり、実施例2(29nm)より明らかに高い。二酸化チタン水分散液をゆっくり注入すると、ナノチタン酸バリウム粉末の平均粒径が大きくなると意味する。 By calculation, the average particle size is 37 nm, which is clearly higher than in Example 2 (29 nm). It means that the average particle size of the barium nanotitanium powder increases when the aqueous dispersion of titanium dioxide is slowly injected.

比較例3
窒素の保護で、三口フラスコに710gの水酸化バリウム及び700mLの脱イオン水を加え、90℃で溶解するまで攪拌し、水酸化バリウムが析出しない場合、市販の5~10nm二酸化チタン粉96gを三口フラスコに加え、加えながら急速に攪拌して混合し、均一に分散した混合系を得て、半時間攪拌を続け、混合系を反応釜に移し、密封し、約120℃で約16時間加熱し、冷却後に反応釜から取り出し、脱イオン水とエタノールで生成物を数回洗浄し、約80℃で数時間乾燥させて、ナノチタン酸バリウム粉末を得る。
Comparative Example 3
To protect the nitrogen, add 710 g of barium hydroxide and 700 mL of deionized water to the three-necked flask and stir until it dissolves at 90 ° C. If barium hydroxide does not precipitate, add 96 g of commercially available 5-10 nm titanium dioxide powder to the three-necked flask. Add to flask and mix by stirring rapidly while adding to obtain a uniformly dispersed mixing system, continue stirring for half an hour, transfer the mixing system to a reaction vessel, seal and heat at about 120 ° C. for about 16 hours. After cooling, the product is removed from the reaction vessel, washed with deionized water and ethanol several times, and dried at about 80 ° C. for several hours to obtain barium hydroxide powder.

当該ナノチタン酸バリウム粉末の具体的な物性試験結果は表3を参照し、そのSEM写真及びXRDパターンはそれぞれ図17~図18に示される。 Refer to Table 3 for the specific physical characteristic test results of the barium nanotitanate powder, and the SEM photographs and XRD patterns thereof are shown in FIGS. 17 to 18, respectively.

比較例3と実施例2の試験結果を比較して、特に比較例3のSEM写真から明らかに分かるように、ナノ二酸化チタンを原料として直接使用すると(質量濃度100%のナノ二酸化チタン水分散液を原料として使用するに相当)、当該ナノ二酸化チタン粉末が非常に小さい粒径(5~10nm)を持っていても、得られたナノチタン酸バリウムの粒子凝集現象は非常に深刻であり、直接応用することができなく、特に、密充填を実現することができないので、セラミック誘電体層の原料として用いることができない。 When the test results of Comparative Example 3 and Example 2 are compared and, as can be clearly seen from the SEM photograph of Comparative Example 3, when nanotitanium dioxide is directly used as a raw material (nanotitanium dioxide aqueous dispersion having a mass concentration of 100%). Even if the nano-titanium dioxide powder has a very small particle size (5 to 10 nm), the particle aggregation phenomenon of the obtained barium titanate is very serious and is directly applied. In particular, it cannot be used as a raw material for a ceramic dielectric layer because it cannot be packed tightly.

Figure 2022530627000004
Figure 2022530627000004

実施例13~18
実施例2と実施例3で得られたナノチタン酸バリウム粉末を、異なる比率で混合、フレーク状成形及び焼成し、セラミック誘電体層を得、具体的な方法は、
比率によって異なる粒径のチタン酸バリウム粉末を計量して、遊星ボールミルで450回転/分の速度で10時間粉砕し、得られたスラリーを80℃で乾燥させることである。
Examples 13-18
The nanobarium titanate powders obtained in Examples 2 and 3 were mixed at different ratios, flake-shaped and fired to obtain a ceramic dielectric layer.
Barium titanate powder having different particle sizes depending on the ratio is weighed, pulverized with a planetary ball mill at a rate of 450 rpm for 10 hours, and the obtained slurry is dried at 80 ° C.

セラミックシートの製作:単一粉末と調合粉末をそれぞれ5%のポリビニルアルコール水溶液と研磨して均一に混合し、プレス機と金型を用いて8MPaで直径12.7mm、厚さ約1mmの円片に押さえ、円片を550℃まで加熱し、4時間保温して脱バインダーし、1150℃まで加熱し続けて、2時間保温して焼結し、セラミックを形成し、セラミックシートの表面に金メッキされた電極の誘電特性をテストする。 Production of ceramic sheet: Single powder and compounded powder are each polished with 5% polyvinyl alcohol aqueous solution and mixed uniformly, and a circle piece with a diameter of 12.7 mm and a thickness of about 1 mm at 8 MPa using a press and a die. The circular piece is heated to 550 ° C, kept warm for 4 hours to debinder, kept heated to 1150 ° C, kept warm for 2 hours, sintered to form ceramic, and the surface of the ceramic sheet is gold-plated. Test the dielectric properties of the electrodes.

得られたセラミック誘電体層の密度と誘電率を検出するために、Agilent LCR測定器(4294A)を使用する。異なる比率で得られたセラミック誘電体層の密度及び誘電特性を表4に示す。 An Agilent LCR meter (4294A) is used to detect the density and permittivity of the resulting ceramic dielectric layer. Table 4 shows the densities and dielectric properties of the ceramic dielectric layers obtained at different ratios.

Figure 2022530627000005
Figure 2022530627000005

表4の試験結果から分かるように、本発明の実施例で得られたナノチタン酸バリウム粉末を異なる比率で混合、フレーク状成形及び焼成することにより、得られたセラミック誘電体層は、いずれも非常に高い密度と小さな空隙率を有し、良好な誘電特性を有している。特に、異なる(平均)粒径のナノチタン酸バリウム粉末を適切な比率で混合することは、セラミック誘電体層の密度をより高くし、誘電特性をより良くすることができる。 As can be seen from the test results in Table 4, the ceramic dielectric layers obtained by mixing, flake-shaped forming and firing the nanobarium titanate powder obtained in the examples of the present invention at different ratios are all very very. It has a high density and a small porosity, and has good dielectric properties. In particular, mixing nanobarium titanate powders of different (average) particle sizes in appropriate proportions can increase the density of the ceramic dielectric layer and improve the dielectric properties.

図19は、実施例13、15、16及び18で得られたセラミック誘電体層のXRDパターンである。図19によれば、実施例13、15、16及び18のセラミック誘電体層は、いずれも良好な結晶構造を有していることが明らかになっている。図19における2θが約45°でのピークを拡大し、即ち図20に示すように、2つの粒径を混合して焼成する実施例15及び16は、単一粒径で焼成する実施例13及び18よりも明らかな二重ピーク構造を有しており、顕著な正方晶相チタン酸バリウムの特徴を有している。これは、異なる粒径のチタン酸バリウム粒子を適切な比率で混合、フレーク状成形、▲か▼焼することで、正方晶相がより良いチタン酸バリウムセラミック誘電体層を得ることができると意味する。 FIG. 19 is an XRD pattern of the ceramic dielectric layer obtained in Examples 13, 15, 16 and 18. According to FIG. 19, it is clear that the ceramic dielectric layers of Examples 13, 15, 16 and 18 all have a good crystal structure. In FIG. 19, 2θ expands the peak at about 45 °, that is, as shown in FIG. 20, Examples 15 and 16 in which two particle sizes are mixed and fired are in Examples 13 in which a single particle size is fired. It has a double peak structure that is more pronounced than those of and 18, and has the characteristics of a prominent square crystal phase barium titanate. This means that a barium titanate ceramic dielectric layer with a better square crystal phase can be obtained by mixing barium titanate particles of different particle sizes in appropriate proportions, flake-forming, and baking. do.

最後に説明すべきものとして、上記の各実施例は、本発明の技術的手段を説明するためにのみ使用され、これに限定されるものではない。上記の各実施例を参照して本発明を詳細に説明したが、当業者は、依然として上記の各実施例に記載された技術的手段を修正し、又はその一部又は全部の技術的特徴を均等に置換することができ、これらの修正又は置換は、対応する技術的手段の本質を本発明の各実施例の技術的手段の範囲から逸脱させないと理解すべきである。
Last but not least, each of the above embodiments is used only, but is not limited to, to illustrate the technical means of the invention. Although the present invention has been described in detail with reference to each of the above embodiments, those skilled in the art will still modify the technical means described in each of the above embodiments, or some or all of the technical features thereof. It should be understood that these modifications or substitutions can be replaced equally and do not deviate from the essence of the corresponding technical means within the scope of the technical means of each embodiment of the invention.

Claims (10)

ナノチタン酸バリウム粉末の製造方法であって、
より低い温度のナノ二酸化チタン水分散液をより高い温度の水酸化バリウム水溶液と急速に混合し、得られた混合系の温度を両者の急速な混合により、前記水酸化バリウム水溶液の温度に比べて少なくとも2℃低くし、ここで、前記ナノ二酸化チタンの水分散液の質量濃度は20%以上であることと、
前記混合系を高圧水熱合成反応させ、得られた反応生成物を洗浄と乾燥し、ナノチタン酸バリウム粉末を得ることと、を含む、
ことを特徴とするナノチタン酸バリウム粉末の製造方法。
A method for producing barium nanotitanate powder.
The lower temperature nanotitanium dioxide aqueous dispersion was rapidly mixed with the higher temperature barium hydroxide aqueous solution, and the temperature of the obtained mixing system was compared with the temperature of the above barium hydroxide aqueous solution by rapid mixing of both. The temperature should be lowered by at least 2 ° C., where the mass concentration of the aqueous dispersion of the nanotitanium dioxide is 20% or more.
The mixed system is subjected to a high-pressure hydrothermal synthesis reaction, and the obtained reaction product is washed and dried to obtain a nanobarium titanate powder.
A method for producing barium nanotitanate powder, which is characterized by the above.
前記より低い温度のナノ二酸化チタン水分散液を前記より高い温度の水酸化バリウム水溶液に加えて急速に混合し、前記混合系を得る、
ことを特徴とする請求項1に記載の製造方法。
The lower temperature nanotitanium dioxide aqueous dispersion is added to the higher temperature barium hydroxide aqueous solution and rapidly mixed to obtain the mixed system.
The manufacturing method according to claim 1.
前記ナノ二酸化チタン水分散液の温度は70℃以下であり、急速混合の前に、前記水酸化バリウム水溶液の温度は90℃以上であるように制御する、
ことを特徴とする請求項1又は請求項2に記載の製造方法。
The temperature of the nano-titanium dioxide aqueous dispersion is controlled to be 70 ° C. or lower, and the temperature of the barium hydroxide aqueous solution is controlled to be 90 ° C. or higher before rapid mixing.
The manufacturing method according to claim 1 or 2, wherein the manufacturing method is characterized by the above.
前記ナノ二酸化チタン水分散液において、ナノ二酸化チタンは体積計でメジアン粒径≦30nmである、
ことを特徴とする請求項1~3のいずれか1項に記載の製造方法。
In the nano-titanium dioxide aqueous dispersion, the nano-titanium dioxide has a median particle size of ≤30 nm on a volume meter.
The manufacturing method according to any one of claims 1 to 3, wherein the manufacturing method is characterized by the above.
前記混合系において、BaイオンとTi原子のモル比は1~4:1である、
ことを特徴とする請求項1~3のいずれか1項に記載の製造方法。
In the mixed system, the molar ratio of Ba ion to Ti atom is 1 to 4: 1.
The manufacturing method according to any one of claims 1 to 3, wherein the manufacturing method is characterized by the above.
前記水酸化バリウム水溶液の質量濃度は20%以上である、
ことを特徴とする請求項1又は請求項5に記載の製造方法。
The mass concentration of the barium hydroxide aqueous solution is 20% or more.
The manufacturing method according to claim 1 or 5.
前記高圧水熱合成反応は、温度が100~250℃で、圧力が7MPaより小さく、時間が1時間以上である、
ことを特徴とする請求項1に記載の製造方法。
The high-pressure hydrothermal synthesis reaction has a temperature of 100 to 250 ° C., a pressure of less than 7 MPa, and a time of 1 hour or more.
The manufacturing method according to claim 1.
請求項1~7のいずれか1項に記載の製造方法を用いて製造される、
ことを特徴とするナノチタン酸バリウム粉末。
It is manufactured by the manufacturing method according to any one of claims 1 to 7.
Nano barium titanate powder characterized by that.
セラミック誘電体層の製作方法であって、
請求項1~7のいずれか1項に記載の製造方法に従ってナノチタン酸バリウム粉末を製造することと、
前記ナノチタン酸バリウム粉末をフレークにして焼成し、セラミック誘電体層を得ることと、を含む、
ことを特徴とするセラミック誘電体層の製作方法。
It is a method of manufacturing a ceramic dielectric layer.
To produce the nano-tirate barium powder according to the production method according to any one of claims 1 to 7.
The nanobarium titanate powder is made into flakes and fired to obtain a ceramic dielectric layer.
A method for manufacturing a ceramic dielectric layer.
請求項9に記載の製作方法によって製作される、
ことを特徴とするセラミック誘電体層。
Manufactured by the manufacturing method according to claim 9.
A ceramic dielectric layer characterized by that.
JP2021563689A 2019-04-25 2019-08-14 Nano barium titanate powder and its manufacturing method, ceramic dielectric layer and its manufacturing method Active JP7382083B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201910338161.4 2019-04-25
CN201910338161.4A CN110028317B (en) 2019-04-25 2019-04-25 Nano barium titanate powder and preparation method thereof, ceramic dielectric layer and manufacturing method thereof
PCT/CN2019/100604 WO2020215535A1 (en) 2019-04-25 2019-08-14 Nano barium titanate powder and preparation method thereof, ceramic dielectric layer and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2022530627A true JP2022530627A (en) 2022-06-30
JP7382083B2 JP7382083B2 (en) 2023-11-16

Family

ID=67240256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021563689A Active JP7382083B2 (en) 2019-04-25 2019-08-14 Nano barium titanate powder and its manufacturing method, ceramic dielectric layer and its manufacturing method

Country Status (4)

Country Link
JP (1) JP7382083B2 (en)
KR (1) KR102590441B1 (en)
CN (1) CN110028317B (en)
WO (1) WO2020215535A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110028317B (en) * 2019-04-25 2021-01-26 苏州宝顺美科技有限公司 Nano barium titanate powder and preparation method thereof, ceramic dielectric layer and manufacturing method thereof
CN112707726B (en) * 2020-02-24 2022-12-20 中国科学院深圳先进技术研究院 Preparation method of barium titanate nano powder
CN113603498B (en) * 2020-12-30 2022-09-30 苏州金宏气体股份有限公司 Cobalt-doped BaTiO 3 Piezoelectric ceramic, preparation method thereof and high-purity hydrogen production
CN114804194B (en) * 2022-04-22 2024-02-06 南充三环电子有限公司 Barium titanate powder and preparation method and application thereof
CN115818705A (en) * 2022-11-21 2023-03-21 重庆德强化工有限公司 Method for preparing superfine barium titanate by using nano titanium dioxide
CN115924963A (en) * 2022-12-14 2023-04-07 深圳先进电子材料国际创新研究院 Preparation method for synthesizing tetragonal nano barium titanate by hydrothermal method, tetragonal nano barium titanate and application thereof
CN116639972B9 (en) * 2023-05-29 2024-04-05 重庆新申世纪新材料科技有限公司 Tetragonal phase nano barium titanate powder and preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014024750A (en) * 2012-07-27 2014-02-06 Samsung Electro-Mechanics Co Ltd Method for manufacturing barium titanate and barium titanate powder manufactured by the same method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2193713B (en) * 1986-07-14 1990-12-05 Cabot Corp Method of producing perovskite-type compounds.
KR970001125B1 (en) * 1993-10-29 1997-01-28 요시히로 이와타 Device for purifying fuel
CN1451607A (en) * 2002-04-16 2003-10-29 唐应吉 Process for preparing high-purity superfine barium titanate by liquid phase chemical reaction
JP4252508B2 (en) * 2004-07-20 2009-04-08 Tdk株式会社 Method for producing barium titanate powder, powder and multilayer ceramic electronic component using the same
JP2007290887A (en) * 2006-04-24 2007-11-08 Fuji Ceramics:Kk Bismuth titanate-based nanoparticle, piezoelectric ceramic using the same, and methods for producing them
CN101348938A (en) * 2008-09-02 2009-01-21 济南大学 Preparation of nano barium titanate powder
KR101218979B1 (en) * 2010-12-10 2013-01-04 삼성전기주식회사 A manufacturing method of perovskite powder, perovskite powder and laminated ceramic electronic part manufactured by the same
WO2015025939A1 (en) * 2013-08-23 2015-02-26 堺化学工業株式会社 Method for producing barium titanate powder
CN110028317B (en) * 2019-04-25 2021-01-26 苏州宝顺美科技有限公司 Nano barium titanate powder and preparation method thereof, ceramic dielectric layer and manufacturing method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014024750A (en) * 2012-07-27 2014-02-06 Samsung Electro-Mechanics Co Ltd Method for manufacturing barium titanate and barium titanate powder manufactured by the same method

Also Published As

Publication number Publication date
CN110028317A (en) 2019-07-19
JP7382083B2 (en) 2023-11-16
CN110028317B (en) 2021-01-26
WO2020215535A1 (en) 2020-10-29
KR102590441B1 (en) 2023-10-16
KR20210153704A (en) 2021-12-17

Similar Documents

Publication Publication Date Title
JP7382083B2 (en) Nano barium titanate powder and its manufacturing method, ceramic dielectric layer and its manufacturing method
EP2356069B1 (en) Synthesis of metal compounds
Hao et al. Enhanced sintering characteristics and microwave dielectric properties of Li 2 TiO 3 due to nano-size and nonstoichiometry effect
CN104129988B (en) A kind of unleaded high energy storage density height energy storage efficiency ceramic medium material and preparation method thereof
CN103553589B (en) Method for preparing CaCu3Ti4O12 ceramic material
Chen et al. Nano-BaTiO3 phase transition behavior in coated BaTiO3-based dielectric ceramics
CN114478029B (en) Preparation of ABO 3 Method for manufacturing perovskite ceramic block
Mofassal et al. Comparison between microwave and conventional calcination techniques in regard to reactivity and morphology of co-precipitated BaTiO3 powder, and the electrical and energy storage properties of the sintered samples
KR102590443B1 (en) Nano barium titanate microcrystals and method for producing the same and barium titanate powder and method for producing the same
CN108147452A (en) A kind of synthetic method of the controllable low-dimensional strontium titanate crystals of size and application
Shen et al. Preparation and characterizations of uniform nanosized BaTiO3 crystallites by the high-gravity reactive precipitation method
CN114105190A (en) Barium calcium titanate nanocrystalline dielectric material and preparation method thereof
Guo et al. One-step synthesis and densification of BaTiO3 by reactive cold sintering
Jin et al. A binary particle self-assembly sintering method to realize controllable synthesis of fine-grained barium titanate ceramics
Pązik et al. Microwave driven hydrothermal synthesis of Ba1− xSrxTiO3 nanoparticles
Gadea et al. Hybrid inks for 3D printing of tall BaTiO3-based ceramics
Cui et al. Preparation and characterization of niobium-doped barium titanate nanocrystalline powders and ceramics
CN101602522A (en) A kind of synthetic method of monodisperse barium titanate polyhedral nano particles
CN113292097A (en) Method for preparing high-tetragonality barium titanate powder
CN107586129B (en) Preparation method of [100] direction textured barium titanate piezoelectric ceramic
CN101525151B (en) Manufacturing technique for high-purity electronic grade strontium titanate
Luo et al. Synthesis of tetragonal BaTiO3 powder with size and dispersity optimization via synergy mechanisms of combined dispersants
CN111892082A (en) Superfine barium titanate powder and preparation method thereof
Appiah et al. Effect of Constituent Core-sizes on Microstructure and Dielectric Properties of BaTiO3@(0.6 Ba-TiO3-0.4 BiAlO3) Core-Shell Material
Baek et al. Hydrothermal Synthesis and Dielectric Properties of Ba1− x Sr x TiO3 Nanoparticles with Enhanced Uniformity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230403

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20230629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230630

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20230908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231027

R150 Certificate of patent or registration of utility model

Ref document number: 7382083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150