JP2022526701A - Lithium polymer battery and its preparation method - Google Patents

Lithium polymer battery and its preparation method Download PDF

Info

Publication number
JP2022526701A
JP2022526701A JP2021547315A JP2021547315A JP2022526701A JP 2022526701 A JP2022526701 A JP 2022526701A JP 2021547315 A JP2021547315 A JP 2021547315A JP 2021547315 A JP2021547315 A JP 2021547315A JP 2022526701 A JP2022526701 A JP 2022526701A
Authority
JP
Japan
Prior art keywords
weight
lithium polymer
fullerene
parts
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021547315A
Other languages
Japanese (ja)
Inventor
雄二 平松
豪三 那須野
Original Assignee
叶 小剣
雄二 平松
牛尾 順一
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 叶 小剣, 雄二 平松, 牛尾 順一 filed Critical 叶 小剣
Publication of JP2022526701A publication Critical patent/JP2022526701A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】 リチウムポリマー電池およびその調製方法を提供することを課題とする。【解決手段】 本発明は、リチウムポリマー電池を提供する。前記リチウムポリマー電池は、コバルト酸リチウム、導電剤、結合剤、カーボンナノチューブスラリーまたはグラフェンという成分を含有する正極材料と、グラファイトカーボンブラック、導電剤、結合剤、フラーレン、ナノワイヤー、ナノチタンという成分を含有する負極材料と、炭酸ジエチル、ジフェニルエーテル、エチレンカーボネートを含有する電解液と、を含む。本発明は、電池の正極材料にカーボンナノチューブスラリーまたはグラフェンを加え、負極材料にフラーレンを加えることで、本発明のリチウムポリマー電池の容量を従来の電池の容量より増えさせ、電流密度が増大し、内部抵抗が減少し、発熱・燃焼しにくく、突き刺され、破損した時も短絡しにくく、リチウムポリマー電池の性能を向上する。【選択図】 図1PROBLEM TO BE SOLVED: To provide a lithium polymer battery and a method for preparing the same. The present invention provides a lithium polymer battery. The lithium polymer battery contains a positive electrode material containing a component of lithium cobalt oxide, a conductive agent, a binder, a carbon nanotube slurry or graphene, and a component of graphite carbon black, a conductive agent, a binder, fullerene, nanowire and nanotitanium. It contains a negative electrode material to be used, and an electrolytic solution containing diethyl carbonate, diphenyl ether, and ethylene carbonate. In the present invention, by adding carbon nanotube slurry or graphene to the positive electrode material of the battery and adding fullerene to the negative electrode material, the capacity of the lithium polymer battery of the present invention is increased from the capacity of the conventional battery, and the current density is increased. Internal resistance is reduced, heat generation and combustion are difficult, and even if it is pierced or damaged, it is difficult to short-circuit, improving the performance of lithium polymer batteries. [Selection diagram] Fig. 1

Description

本発明は、電池分野に関し、特に、リチウムポリマー電池およびその調製方法に関する。 The present invention relates to the battery field, and more particularly to a lithium polymer battery and a method for preparing the same.

リチウムポリマー電池は、サイクル寿命が長く、安全性が高く、純粋な大型電気バスに広く活用されているが、低温性能が劣り、材料の電子導電性が低いため、その応用が制限されている。ハイブリッド車の省燃費指標の継続的なアップにつれ、改質された高倍率リチウムポリマー電池の優れた急速充電、急速放電能力、および低温性能は、ハイブリッド車で応用され、自動車の省燃費に役立つ。特に厳寒の冬には、ハイブリッド動力システムの正常な動作を保証するため、低温での電解液の優れた導電率を確保することで、電池の正常な作動を保証できる。 Lithium polymer batteries have a long cycle life, high safety, and are widely used in pure large electric buses, but their application is limited due to their poor low temperature performance and low electron conductivity of the material. As the fuel saving index of hybrid vehicles is continuously improved, the excellent fast charge, fast discharge capacity, and low temperature performance of the modified high magnification lithium polymer battery will be applied to hybrid vehicles to help the fuel saving of automobiles. Especially in the cold winter, in order to guarantee the normal operation of the hybrid power system, the normal operation of the battery can be guaranteed by ensuring the excellent conductivity of the electrolytic solution at a low temperature.

本発明の目的は、上記の問題点を解決するため、リチウムポリマー電池およびその調製方法を提供することである。 An object of the present invention is to provide a lithium polymer battery and a method for preparing the same, in order to solve the above-mentioned problems.

上記目的を達成するために本発明では次のような技術的手段を講じた。
リチウムポリマー電池であって、コバルト酸リチウム、導電剤、結合剤、カーボンナノチューブスラリーまたはグラフェンという成分を含有する正極材料と、グラファイトカーボンブラック、導電剤、結合剤、フラーレン、ナノワイヤー、ナノチタンという成分を含有する負極材料と、炭酸ジエチル、ジフェニルエーテル、エチレンカーボネートを含有する電解液と、を含む。
In order to achieve the above object, the following technical measures have been taken in the present invention.
A lithium polymer battery containing a positive electrode material containing lithium cobaltate, a conductive agent, a binder, a carbon nanotube slurry or graphene, and a component such as graphite carbon black, a conductive agent, a binder, fullerene, nanowire and nanotitanium. It contains a negative electrode material contained therein, and an electrolytic solution containing diethyl carbonate, diphenyl ether, and ethylene carbonate.

好ましくは、前記正極材料は、コバルト酸リチウム2~10重量部、導電剤5~30重量部、結合剤1~15重量部、カーボンナノチューブスラリーまたはグラフェン2.5~30重量部という成分を含み;前記負極材料は、グラファイトカーボンブラック1~20重量部、導電剤5~30重量部、結合剤1~15重量部、フラーレン0.8~25重量部、ナノワイヤー5~15重量部、ナノチタン2~8重量部という成分を含み、前記電解液が体積百分率で10~40%の炭酸ジエチル、2~10%のジフェニルエーテル、および30~60%のエチレンカーボネートで構成される混合溶液である。 Preferably, the positive electrode material comprises 2-10 parts by weight of lithium cobaltate, 5-30 parts by weight of the conductive agent, 1-15 parts by weight of the binder, 2.5-30 parts by weight of carbon nanotube slurry or graphene; The negative electrode material is graphite carbon black 1 to 20 parts by weight, conductive agent 5 to 30 parts by weight, binder 1 to 15 parts by weight, fullerene 0.8 to 25 parts by weight, nanowire 5 to 15 parts by weight, nanotitanium 2 to It is a mixed solution containing 8 parts by weight, and the electrolytic solution is composed of 10 to 40% diethyl carbonate, 2 to 10% diphenyl ether, and 30 to 60% ethylene carbonate in a volume percentage.

好ましくは、前記正極は、アルミニウム箔である。 Preferably, the positive electrode is an aluminum foil.

好ましくは、前記負極は、銅箔である。 Preferably, the negative electrode is a copper foil.

好ましくは、前記導電剤は、アセチレンブラックである。 Preferably, the conductive agent is acetylene black.

好ましくは、前記結合剤は、ポリフッ化ビニリデン(PVDF)である。 Preferably, the binder is polyvinylidene fluoride (PVDF).

本発明は、以下の工程(1)~(3)を含む上記リチウムポリマー電池の調製方法も提供する。すなわち、
(1)原料配合:コバルト酸リチウム、導電剤、結合剤、カーボンナノチューブスラリーを混合して混合正極スラリーを得、グラファイトカーボンブラック、導電剤、結合剤、フラーレン、ナノワイヤー、ナノチタンを混合して混合負極スラリーを得る工程、
(2)塗工:上記正極スラリーを塗工機で正極に塗工し、負極スラリーを塗工機で負極上に塗工する工程、
(3)その後圧延、スリット、レーザー切断、巻回、組立、トップ・サイド封止、乾燥、電解液注入、化成を経て、最終的にパッケージングすることで本発明の電池を得る工程。
The present invention also provides a method for preparing the above lithium polymer battery, which comprises the following steps (1) to (3). That is,
(1) Raw material composition: Lithium cobalt oxide, a conductive agent, a binder, and a carbon nanotube slurry are mixed to obtain a mixed positive electrode slurry, and graphite carbon black, a conductive agent, a binder, fullerene, nanowire, and nanotitanium are mixed and mixed. The process of obtaining a negative electrode slurry,
(2) Coating: A process in which the positive electrode slurry is applied to the positive electrode with a coating machine and the negative electrode slurry is applied onto the negative electrode with a coating machine.
(3) A step of obtaining the battery of the present invention by rolling, slitting, laser cutting, winding, assembling, top / side sealing, drying, electrolytic solution injection, and chemical conversion, and finally packaging.

好ましくは、前記工程(1)の前にフラーレンを抽出する必要があり、抽出方法は、炭素粉末を酸化還元焼成窯に入れて通電して燃焼させ、その後焼成窯内壁に付着する炭素の黒い微粒子を抽出し、更に静電加工を通じて前記フラーレンを得る工程を用いる。 Preferably, it is necessary to extract fullerene before the step (1), and in the extraction method, carbon powder is placed in an oxidation-reduction firing kiln, energized and burned, and then black fine particles of carbon adhering to the inner wall of the firing kiln. Is extracted, and the process of obtaining the fullerene through electrostatic processing is used.

好ましくは、前記工程(1)の前に電解液を調製する必要があり、以下の方法で調製し、すなわち有機溶媒の炭酸ジエチル、エチレンカーボネートを混合させ、最後にジフェニルエーテルを加えると、前記電解液を得る。 Preferably, the electrolytic solution needs to be prepared before the step (1), and is prepared by the following method, that is, when the organic solvents diethyl carbonate and ethylene carbonate are mixed and finally diphenyl ether is added, the electrolytic solution is prepared. To get.

好ましくは、前記工程(2)の負極材料は、以下の方法で調製され、すなわちグラファイトカーボンブラック、導電剤、結合剤、フラーレン、ナノワイヤー、ナノチタンを混合した後、粉砕して粉末にし、粉末を圧力30~50mPaの高圧反応器に移し、その後反応器を出力1800~2200wの電子レンジに入れ、200~1200秒間加熱し、室温まで冷却することで、前記負極材料を得る。 Preferably, the negative electrode material of the step (2) is prepared by the following method, that is, graphite carbon black, a conductive agent, a binder, fullerene, nanowire, and nanotitanium are mixed and then pulverized into a powder to obtain a powder. The negative electrode material is obtained by transferring to a high pressure reactor having a pressure of 30 to 50 mPa, then placing the reactor in a microwave oven having an output of 1800 to 2200 w, heating for 200 to 1200 seconds, and cooling to room temperature.

本発明は、電解液に炭酸ジエチル、エチレンカーボネートとジフェニルエーテルを加えることで、本発明のリチウムポリマー電池に低温でのリチウム塩イオンの移動を効果的に改善させ、低温性能を向上させることができる。溶媒の炭酸ジエチル、エチレンカーボネートは、低温溶媒の凝固点を下げる役割を果たす。 同時に、本発明は、電池の正極材料にカーボンナノチューブスラリーまたはグラフェンを加え、負極材料にフラーレンを加えることで、本発明のリチウムポリマー電池の容量を従来の電池の容量より増えさせ、電流密度が増大し、内部抵抗が減少し、発熱・燃焼しにくく、突き刺され、破損した時も短絡しにくく、リチウムポリマー電池の性能を向上する。 According to the present invention, by adding diethyl carbonate, ethylene carbonate and diphenyl ether to the electrolytic solution, the transfer of lithium salt ions at low temperature can be effectively improved in the lithium polymer battery of the present invention, and the low temperature performance can be improved. Diethyl carbonate and ethylene carbonate as solvents play a role in lowering the freezing point of the low temperature solvent. At the same time, the present invention increases the capacity of the lithium polymer battery of the present invention from the capacity of the conventional battery and increases the current density by adding carbon nanotube slurry or graphene to the positive electrode material of the battery and adding fullerene to the negative electrode material. However, the internal resistance is reduced, it is difficult to generate heat and burn, it is difficult to short-circuit even when it is pierced or damaged, and the performance of the lithium polymer battery is improved.

本発明の実施例1によって提供される電池の充電容量、放電容量、充電比容量、および放電比容量の曲線である。6 is a curve of charge capacity, discharge capacity, charge specific capacity, and discharge specific capacity of the battery provided by the first embodiment of the present invention. 本発明の実施例1によって提供される電池の充放電効率の曲線である。It is a curve of the charge / discharge efficiency of the battery provided by Example 1 of this invention. 本発明の実施例に係るフラーレン調製時に使用される静電ローダーの写真である。It is a photograph of the electrostatic loader used at the time of fullerene preparation which concerns on embodiment of this invention.

以下に、実施例を参照しつつ本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to Examples.

本発明に記載のグラファイトカーボンブラックは、黒鉛化カーボンブラックとして理解される。 The graphite carbon black described in the present invention is understood as graphitized carbon black.

本発明の実施例で提供されるリチウムポリマー電池について、負極スラリー内にフラーレンを添加することで製品の総合的な性能を大幅に向上でき、フラーレンの添加量は1万分の4以上でよく、少量の添加されたフラーレンにより予期せぬ効果を引き起した。以下に記載される実施例について、負極スラリー内に添加されるフラーレンは、70%の正電荷を帯びたフラーレンと30%の負電荷を帯びたフラーレンの組み合わせから成る。好ましくは、正負電荷を帯びたフラーレンの組み合わせは、3~7%の質量比で電池の負極スラリー内に投入される。本発明で抽出されるフラーレンは、トルエン法によって精製することなく、電池に直接応用することができる。負極材科は、電池のエネルギー密度、寿命および安全性に重大な影響を与える。本発明で調製されたフラーレンを負極内に使用すると電荷の伝達速度、電極間の絶縁性の向上に役立ち、充放電による電極の体積変化を抑制できるため、より高い容量、より長い寿命、より高い安全性(発火や爆発しにくい)のある電池を製造できる。現在工業化や量産化ができないため高価なフラーレンと比較して、本発明の調製方法は、大量に生産できると共に比較的安価なフラーレンを得ることができる。 With respect to the lithium polymer battery provided in the examples of the present invention, the overall performance of the product can be significantly improved by adding fullerene in the negative electrode slurry, and the amount of fullerene added may be 4 / 10,000 or more, which is a small amount. The added fullerene of was caused an unexpected effect. For the examples described below, the fullerene added into the negative electrode slurry comprises a combination of 70% positively charged fullerene and 30% negatively charged fullerene. Preferably, the combination of positive and negative charged fullerenes is charged into the negative electrode slurry of the battery in a mass ratio of 3 to 7%. The fullerene extracted by the present invention can be directly applied to a battery without being purified by the toluene method. Negative electrode materials have a significant impact on battery energy density, life and safety. When the fullerene prepared in the present invention is used in the negative electrode, it helps to improve the charge transfer rate and the insulation between the electrodes, and the volume change of the electrodes due to charging and discharging can be suppressed, so that the capacity is higher, the life is longer, and the life is higher. Batteries with safety (hard to ignite or explode) can be manufactured. Compared with expensive fullerenes because they cannot be industrialized or mass-produced at present, the preparation method of the present invention can produce fullerenes in large quantities and can obtain relatively inexpensive fullerenes.

(実施例1)
本実施例のリチウムポリマー電池の正極材料は、コバルト酸リチウム2重量部、アセチレンブラック5重量部、ポリフッ化ビニリデン(PVDF)1重量部、カーボンナノチューブスラリー2.5重量部という成分を含み;負極材料は、グラファイトカーボンブラック1重量部、アセチレンブラック5重量部、ポリフッ化ビニリデン1重量部、フラーレン0.8重量部という成分を含む。電解液は、体積百分率で10%の炭酸ジエチル、2%のジフェニルエーテル、および30%のエチレンカーボネートで構成される混合溶液を含む。
(Example 1)
The positive electrode material of the lithium polymer battery of this embodiment contains components of 2 parts by weight of lithium cobaltate, 5 parts by weight of acetylene black, 1 part by weight of polyvinylidene fluoride (PVDF), and 2.5 parts by weight of carbon nanotube slurry; negative electrode material. Contains 1 part by weight of graphite carbon black, 5 parts by weight of acetylene black, 1 part by weight of polyvinylidene fluoride, and 0.8 parts by weight of fullerene. The electrolytic solution contains a mixed solution composed of 10% diethyl carbonate by volume, 2% diphenyl ether, and 30% ethylene carbonate.

本実施例のリチウムポリマー電池の調製方法は、以下の工程(1)~(3)を含む。すなわち、
(1)原料配合:上記重量部のコバルト酸リチウム、アセチレンブラック、ポリフッ化ビニリデン(PVDF)、カーボンナノチューブスラリーを混合して混合正極スラリーを得;上記重量部のグラファイトカーボンブラック、アセチレンブラック、ポリフッ化ビニリデン、フラーレンを混合して混合負極スラリーを得る工程、
(2)塗工:上記正極スラリーを塗工機でアルミニウム箔に塗工し、負極スラリーを塗工機で銅箔に塗工する工程、
(3)その後圧延、スリット、レーザー切断、巻回、組立、トップ・サイド封止、乾燥、電解液注液、化成を経て、最終的にパッケージングすることで本発明の電池を得る工程。
The method for preparing the lithium polymer battery of this example includes the following steps (1) to (3). That is,
(1) Raw material composition: The above-mentioned parts by weight of lithium cobaltate, acetylene black, polyvinylidene fluoride (PVDF), and carbon nanotube slurry are mixed to obtain a mixed positive electrode slurry; the above-mentioned parts by weight of graphite carbon black, acetylene black, and polyfluoride are obtained. The process of mixing vinylidene and fullerene to obtain a mixed negative electrode slurry,
(2) Coating: A process in which the positive electrode slurry is applied to an aluminum foil with a coating machine and the negative electrode slurry is applied to a copper foil with a coating machine.
(3) A step of obtaining the battery of the present invention by rolling, slitting, laser cutting, winding, assembling, top / side sealing, drying, electrolytic solution injection, and chemical conversion, and finally packaging.

本実施例は、以下の工程を用いてフラーレンを抽出した。
(1)陶磁器用の酸化・還元焼成窯に約1トンの薪(汚染されていない松、杉、ヒノキなど)を入れて燃やさせ、24時間後に酸化・還元焼成窯の内壁から上に付着している燃えかすを1100g抽出する工程、
(2)この1100gの燃えかすを静電ローダーに入れて静電加工して110gの導電性フラーレンを得る工程。
In this example, fullerene was extracted using the following steps.
(1) Approximately 1 ton of firewood (uncontaminated pine, cedar, hinoki, etc.) is put into an oxidation / reduction firing kiln for ceramics and burned, and after 24 hours, it adheres to the top from the inner wall of the oxidation / reduction firing kiln. The process of extracting 1100 g of burning residue,
(2) A step of putting this 1100 g of burnt residue into an electrostatic loader and electrostatically processing it to obtain 110 g of conductive fullerene.

具体的に、工程(1)燃焼後に得られた燃えかすを静電高圧発生装置(すなわち、静電ローダーで、図3に示すように型番GC50S-N、入力電圧AC100V50/60HZ、最大出力電圧DC50kV(固定)、最大出力電流20μA、消費電力10VA、有効距離50~250mm、接地100Ω以下。)に投入し、燃えかすは静電ローダー内で各々正極性と負極性に従って負荷をかけ、正電荷を帯びたフラーレンおよび負電荷を帯びたフラーレンを得、その後これら電荷を帯びたフラーレンの混合燃えかすをトルエン法で精製し、精製後のフラーレン燃えかすの正電荷を帯びたもの70%、負電荷を帯びたもの30%の割合に従い混合することで、負極スラリー内のフラーレン原料を得る。 Specifically, in step (1), the burnt residue obtained after combustion is generated by an electrostatic high voltage generator (that is, an electrostatic loader, model number GC50S-N, input voltage AC100V50 / 60HZ, maximum output voltage DC50kV, as shown in FIG. (Fixed), maximum output current 20 μA, power consumption 10 VA, effective distance 50 to 250 mm, grounding 100 Ω or less), the burnt residue is loaded in the electrostatic loader according to the positive and negative properties, respectively, to apply positive charge. A charged fullerene and a negatively charged fullerene are obtained, and then the mixed burnt residue of these charged fullerene is purified by the toluene method, and 70% of the positively charged fullerene burnt residue after purification is negatively charged. The fullerene raw material in the negative electrode slurry is obtained by mixing according to the ratio of 30% of the tinged material.

本実施例内の電解液の調製方法としては、
有機溶媒の炭酸ジエチル、エチレンカーボネートを混合させ、最後にジフェニルエーテルを加えると、前記電解液を得た。
As a method for preparing the electrolytic solution in this example,
Diethyl carbonate and ethylene carbonate, which are organic solvents, were mixed, and finally diphenyl ether was added to obtain the electrolytic solution.

(実施例2)
本実施例のリチウムポリマー電池の正極材料は、コバルト酸リチウム10重量部、アセチレンブラック30重量部、ポリフッ化ビニリデン15重量部、カーボンナノチューブスラリー30重量部という成分を含み;負極材料は、グラファイトカーボンブラック20重量部、アセチレンブラック30重量部、ポリフッ化ビニリデン5重量部、フラーレン25重量部という成分を含む。電解液は、体積百分率で40%の炭酸ジエチル、10%のジフェニルエーテル、および60%のエチレンカーボネートで構成される混合溶液を含む。
(Example 2)
The positive electrode material of the lithium polymer battery of this embodiment contains components of 10 parts by weight of lithium cobaltate, 30 parts by weight of acetylene black, 15 parts by weight of polyvinylidene fluoride, and 30 parts by weight of carbon nanotube slurry; the negative electrode material is graphite carbon black. It contains 20 parts by weight of acetylene black, 5 parts by weight of polyvinylidene fluoride, and 25 parts by weight of fullerene. The electrolytic solution contains a mixed solution composed of 40% diethyl carbonate by volume, 10% diphenyl ether, and 60% ethylene carbonate.

本実施例では、実施例1の調製方法を用いた。 In this example, the preparation method of Example 1 was used.

(実施例3)
本実施例のリチウムポリマー電池の正極材料は、コバルト酸リチウム5重量部、アセチレンブラック15重量部、ポリフッ化ビニリデン8重量部、カーボンナノチューブスラリー15重量部という成分を含み;負極材料は、グラファイトカーボンブラック10重量部、アセチレンブラック15重量部、ポリフッ化ビニリデン5重量部、フラーレン13重量部という成分を含む。電解液は、体積百分率で20%の炭酸ジエチル、5%のジフェニルエーテル、および40%のエチレンカーボネートで構成される混合溶液を含む。
(Example 3)
The positive electrode material of the lithium polymer battery of this embodiment contains components of 5 parts by weight of lithium cobaltate, 15 parts by weight of acetylene black, 8 parts by weight of polyvinylidene fluoride, and 15 parts by weight of carbon nanotube slurry; the negative electrode material is graphite carbon black. It contains 10 parts by weight of acetylene black, 5 parts by weight of polyvinylidene fluoride, and 13 parts by weight of fullerene. The electrolytic solution contains a mixed solution composed of 20% diethyl carbonate by volume, 5% diphenyl ether, and 40% ethylene carbonate.

本実施例では、実施例1の調製方法を用いた。 In this example, the preparation method of Example 1 was used.

(実施例4)
本実施例のリチウムポリマー電池は、正極材料と、負極材料と、電解液と、を含み、正極材料が正極およびその上に担持された正極スラリーから調製されてなり、負極材料が負極およびその上に担持された負極スラリーから調製されてなり;その正極スラリーは、コバルト酸リチウム8重量部、アセチレンブラック12重量部、ポリフッ化ビニリデン(PVDF)12重量部、カーボンナノチューブスラリー5重量部という成分を含み;負極スラリーは、グラファイトカーボンブラック12重量部、アセチレンブラック9重量部、ポリフッ化ビニリデン7重量部、フラーレン0.015重量部という成分を含み;電解液内の溶媒は、体積百分率で40%の炭酸ジエチル、5%のジフェニルエーテル、および55%のエチレンカーボネートで構成された。
(Example 4)
The lithium polymer battery of this embodiment contains a positive electrode material, a negative electrode material, and an electrolytic solution, and the positive electrode material is prepared from a positive electrode and a positive electrode slurry supported on the positive electrode, and the negative electrode material is a negative electrode and above the negative electrode. The positive electrode slurry contains 8 parts by weight of lithium cobaltate, 12 parts by weight of acetylene black, 12 parts by weight of polyvinylidene fluoride (PVDF), and 5 parts by weight of carbon nanotube slurry. The negative electrode slurry contains 12 parts by weight of graphite carbon black, 9 parts by weight of acetylene black, 7 parts by weight of polyvinylidene fluoride, and 0.015 parts by weight of fullerene; the solvent in the electrolytic solution is 40% carbon dioxide by volume. It was composed of diethyl, 5% diphenyl ether, and 55% ethylene carbonate.

本実施例のリチウムポリマー電池の調製方法は、以下の工程(1)~(5)を含む。すなわち、
(1)正極スラリーの調製:正極スラリー内の各成分を配合量に従って混合し、均一に攪拌して正極スラリーを得る工程、
(2)負極スラリーの調製:負極スラリー内の各成分を配合量に従って混合した後、粉砕して粉末にし、粉末を圧力30~50mPaの高圧反応器に移し、その後反応器を出力1800wの電子レンジに入れ、200秒間加熱し、室温まで冷却することで、負極材料を得る工程、
(3)塗工:上記正極スラリーを塗工機でアルミニウム箔に塗工し、正極シートを得、負極スラリーを塗工機で銅箔に塗工して負極シートを得る工程、
(4)電解質の調製:まず高分子ポリマーを体積百分率で40%の炭酸ジエチル、5%のジフェニルエーテルおよび55%のエチレンカーボネートの混合溶媒に溶解し、次にリチウム塩を含む液体電解質を加え、完全に混合してから溶液をテフロン(登録商標)プラスチックフィルムに注ぎ、室温で乾燥させて、溶媒が完全に揮発するまで、ゲルポリマー電解質フィルムを調製する工程、
(5)その後圧延、スリット、レーザー切断、巻回、組立、トップ・サイド封止、乾燥、電解液注液、化成を経て、最終的にパッケージングすることで本発明の電池を得る工程。
The method for preparing the lithium polymer battery of this example includes the following steps (1) to (5). That is,
(1) Preparation of positive electrode slurry: A step of mixing each component in the positive electrode slurry according to the blending amount and stirring uniformly to obtain a positive electrode slurry.
(2) Preparation of negative electrode slurry: After mixing each component in the negative electrode slurry according to the blending amount, it is crushed into powder, the powder is transferred to a high pressure reactor with a pressure of 30 to 50 mPa, and then the reactor is put into a microwave oven with an output of 1800 w. The process of obtaining a negative electrode material by putting it in a microwave oven, heating it for 200 seconds, and cooling it to room temperature.
(3) Coating: A process of applying the positive electrode slurry to an aluminum foil with a coating machine to obtain a positive electrode sheet, and applying a negative electrode slurry to a copper foil with a coating machine to obtain a negative electrode sheet.
(4) Preparation of electrolyte: First, the high polymer is dissolved in a mixed solvent of 40% diethyl carbonate, 5% diphenyl ether and 55% ethylene carbonate in a volume percentage, and then a liquid electrolyte containing a lithium salt is added to complete the process. Then the solution is poured into a Teflon® plastic film and dried at room temperature to prepare a gel polymer electrolyte film until the solvent is completely volatilized.
(5) A step of obtaining the battery of the present invention by rolling, slitting, laser cutting, winding, assembling, top / side sealing, drying, electrolytic solution injection, and chemical conversion, and finally packaging.

ここで、負極スラリーに使用されるフラーレンは、次の工程で得られた。
i 陶磁器用の酸化・還元焼成窯に1トンの汚染されていない松の薪を入れて燃やさせ、24時間後に酸化・還元焼成窯の内壁から上に付着している燃えかすを1100g抽出する工程、
ii 抽出された燃えかすを静電ローダーに入れて静電加工して導電性フラーレンを得た工程。
Here, the fullerene used for the negative electrode slurry was obtained in the following step.
i A process of putting 1 ton of uncontaminated pine firewood into an oxidation / reduction firing kiln for ceramics and burning it, and after 24 hours, extracting 1100 g of the burnt residue adhering to the top from the inner wall of the oxidation / reduction firing kiln. ,
ii A process in which the extracted burnt residue is placed in an electrostatic loader and electrostatically processed to obtain conductive fullerenes.

静電ローダーとは、静電高圧発生装置(Electrostatic Generator)を意味し、静電高圧発生装置が可燃物(例えば原木を焼いて木炭になり、原木が可燃物であり、鉱石、丸石なども可燃物に含まれる)を処理することによって静電気を発生できることに留意されたい。 The electrostatic loader means an electrostatic high-pressure generator, and the electrostatic high-pressure generator is a combustible material (for example, a log is burned to become charcoal, the log is a combustible material, and ore, round stone, etc. are also combustible. It should be noted that static electricity can be generated by processing (contained in objects).

(実施例5)
本実施例のリチウムポリマー電池は、正極材料と、負極材料と、電解液と、を含み、正極材料が正極およびその上に担持された正極スラリーから調製されてなり、負極材料が負極およびその上に担持された負極スラリーから調製されてなり;その正極スラリーは、コバルト酸リチウム9重量部、アセチレンブラック25重量部、ポリフッ化ビニリデン(PVDF)8重量部、カーボンナノチューブスラリー25重量部という成分を含み;負極スラリーは、グラファイトカーボンブラック17重量部、アセチレンブラック25重量部、ポリフッ化ビニリデン3重量部、フラーレン3重量部という成分を含み;電解液内の溶媒は、体積百分率で40%の炭酸ジエチル、10%のジフェニルエーテル、および50%のエチレンカーボネートで構成された。
(Example 5)
The lithium polymer battery of this embodiment contains a positive electrode material, a negative electrode material, and an electrolytic solution, and the positive electrode material is prepared from a positive electrode and a positive electrode slurry supported on the positive electrode, and the negative electrode material is a negative electrode and above the negative electrode. The positive electrode slurry contains 9 parts by weight of lithium cobaltate, 25 parts by weight of acetylene black, 8 parts by weight of polyvinylidene fluoride (PVDF), and 25 parts by weight of carbon nanotube slurry. The negative electrode slurry contains 17 parts by weight of graphite carbon black, 25 parts by weight of acetylene black, 3 parts by weight of polyvinylidene fluoride, and 3 parts by weight of fullerene; the solvent in the electrolytic solution is 40% diethyl carbonate by volume. It was composed of 10% diphenyl ether and 50% ethylene carbonate.

本実施例のリチウムポリマー電池の調製方法は、以下の工程(1)~(5)を含む。すなわち、
(1)正極スラリーの調製:正極スラリー内の各成分を配合量に従って混合し、均一に攪拌して正極スラリーを得る工程、
(2)負極スラリーの調製:負極スラリー内の各成分を配合量に従って混合した後、粉砕して粉末にし、粉末を圧力30~50mPaの高圧反応器に移し、その後反応器を出力2200wの電子レンジに入れ、1200秒間加熱し、室温まで冷却することで、負極材料を得る工程、
(3)塗工:上記正極スラリーを塗工機でアルミニウム箔に塗工し、正極シートを得、負極スラリーを塗工機で銅箔に塗工して負極シートを得る工程、
(4)電解質の調製:まず高分子ポリマーを体積百分率で40%の炭酸ジエチル、10%のジフェニルエーテルおよび50%のエチレンカーボネートの混合溶媒に溶解し、次にリチウム塩を含む液体電解質を加え、完全に混合してから溶液をポリエチレンテレフタレートフィルムに注ぎ、室温で乾燥させて、溶媒が完全に揮発するまで、ゲルポリマー電解質フィルムを調製する工程、
(5)その後圧延、スリット、レーザー切断、巻回、組立、トップ・サイド封止、乾燥、電解液注液、化成を経て、最終的にパッケージングすることで本発明の電池を得る工程。
The method for preparing the lithium polymer battery of this example includes the following steps (1) to (5). That is,
(1) Preparation of positive electrode slurry: A step of mixing each component in the positive electrode slurry according to the blending amount and stirring uniformly to obtain a positive electrode slurry.
(2) Preparation of negative electrode slurry: After mixing each component in the negative electrode slurry according to the blending amount, it is crushed into powder, the powder is transferred to a high pressure reactor with a pressure of 30 to 50 mPa, and then the reactor is put into a microwave oven with an output of 2200 w. The process of obtaining a negative electrode material by putting it in a microwave oven, heating it for 1200 seconds, and cooling it to room temperature.
(3) Coating: A process of applying the positive electrode slurry to an aluminum foil with a coating machine to obtain a positive electrode sheet, and applying a negative electrode slurry to a copper foil with a coating machine to obtain a negative electrode sheet.
(4) Preparation of electrolyte: First, the high polymer is dissolved in a mixed solvent of 40% diethyl carbonate, 10% diphenyl ether and 50% ethylene carbonate in a volume percentage, and then a liquid electrolyte containing a lithium salt is added to complete the process. Then the solution is poured into a polyethylene terephthalate film and dried at room temperature to prepare a gel polymer electrolyte film until the solvent is completely volatilized.
(5) A step of obtaining the battery of the present invention by rolling, slitting, laser cutting, winding, assembling, top / side sealing, drying, electrolytic solution injection, and chemical conversion, and finally packaging.

ここで、負極スラリーに使用されるフラーレンは、次の工程で得られた。
i 陶磁器用の酸化・還元焼成窯に1トンの汚染されていない杉の薪を入れて燃やさせ、24時間後に酸化・還元焼成窯の内壁から上に付着している燃えかすを780g抽出する工程、
ii 抽出された燃えかすを静電ローダーに入れて静電加工して導電性フラーレンを得た工程。
Here, the fullerene used for the negative electrode slurry was obtained in the following step.
i A process of putting 1 ton of uncontaminated cedar firewood into an oxidation / reduction firing kiln for ceramics and burning it, and after 24 hours, extracting 780 g of the burnt residue adhering to the top from the inner wall of the oxidation / reduction firing kiln. ,
ii A process in which the extracted burnt residue is placed in an electrostatic loader and electrostatically processed to obtain conductive fullerenes.

(実施例6)
実施例6と実施例4との相違点は、電解液内の溶媒は、体積百分率で35%の炭酸ジエチル、8%のジフェニルエーテル、および57%のエチレンカーボネートで構成された。
(Example 6)
The difference between Example 6 and Example 4 is that the solvent in the electrolytic solution was composed of 35% diethyl carbonate by volume, 8% diphenyl ether, and 57% ethylene carbonate.

(実施例7)
実施例7と実施例4との相違点は、次の通りである。すなわち、
負極スラリーに使用されるフラーレンは、次の工程で得られた。
i 陶磁器用の酸化・還元焼成窯に1トンの汚染されていないヒノキの薪を入れて燃やさせ、24時間後に酸化・還元焼成窯の内壁から上に付着している燃えかすを900g抽ii 抽出された燃えかすを静電ローダーに入れて静電加工して導電性フラーレンを得た工程。
(Example 7)
The differences between Example 7 and Example 4 are as follows. That is,
The fullerene used in the negative electrode slurry was obtained in the following step.
i Put 1 ton of uncontaminated hinoki firewood in an oxidation / reduction firing kiln for ceramics and burn it. After 24 hours, 900g of the burnt residue adhering to the top from the inner wall of the oxidation / reduction firing kiln is extracted. A process in which the burnt residue is placed in an electrostatic loader and electrostatically processed to obtain a conductive fullerene.

(比較例1)
比較例1と実施例1との唯一の相違点は、電解液内に炭酸ジエチルが添加されていないことである。
(Comparative Example 1)
The only difference between Comparative Example 1 and Example 1 is that diethyl carbonate is not added to the electrolytic solution.

(比較例2)
比較例2と実施例1との唯一の相違点は、負極材料内にフラーレン、ナノワイヤー、ナノチタンが含まれないことである。
(Comparative Example 2)
The only difference between Comparative Example 2 and Example 1 is that the negative electrode material does not contain fullerenes, nanowires, or nanotitaniums.

(比較例3)
比較例3と実施例1との相違点は、負極スラリーにフラーレンが含まれないことである。
(Comparative Example 3)
The difference between Comparative Example 3 and Example 1 is that the negative electrode slurry does not contain fullerene.

上記実施例1~6および比較例1~3で調製されたリチウムポリマー電池を試験したところ、試験指標および試験結果を次に示す。 When the lithium polymer batteries prepared in Examples 1 to 6 and Comparative Examples 1 to 3 were tested, the test index and the test result are shown below.

1、性能試験
上記の実施例で得られたリチウムポリマー電池に対し、それぞれ30C倍率の放電性能試験、電池DCR試験、-30℃のコールドスタート試験などを実施し、その試験結果を表1に示している。

Figure 2022526701000002
1. Performance test The lithium polymer batteries obtained in the above examples were subjected to a 30C magnification discharge performance test, a battery DCR test, a -30 ° C cold start test, etc., and the test results are shown in Table 1. ing.
Figure 2022526701000002

電池の常温30C放電容量維持率、動的内部抵抗(DCR)、低温コールドスタートなどの試験データから分かるように、本発明のリチウムポリマー電池は、カーボンナノチューブ/グラフェンを正極材料に添加することにより電池の倍率をアップし、電池の動的内部抵抗を大幅に減らし、電池の倍率性能を向上させることができる。電解液は、特定の溶媒配合を用い、炭酸ジエチルの添加により、低温下のリチウム塩イオンの移動を効果的に改善させ、低温性能を向上する。溶媒のエチルアセテートは、低温溶媒の凝固点を下げ、同時に過充電保護の役割を果たしている。本発明のリチウムポリマー電池の低温高倍率の放電およびサイクル性能に優れることが分かる。 As can be seen from the test data such as the room temperature 30C discharge capacity retention rate, dynamic internal resistance (DCR), and low temperature cold start of the battery, the lithium polymer battery of the present invention is a battery by adding carbon nanotube / graphene to the positive electrode material. The magnification of the battery can be increased, the dynamic internal resistance of the battery can be significantly reduced, and the magnification performance of the battery can be improved. The electrolytic solution uses a specific solvent formulation, and by adding diethyl carbonate, the movement of lithium salt ions at low temperature is effectively improved, and the low temperature performance is improved. The solvent ethyl acetate lowers the freezing point of the cold solvent and at the same time plays a role of overcharge protection. It can be seen that the lithium polymer battery of the present invention is excellent in low temperature and high magnification discharge and cycle performance.

2、サイクル試験
実施例で得られたリチウムポリマー電池を取って0.5C充電および1C放電(300サイクル)試験を実施し、定電流・定電圧充電(電圧4.35V、電流475mA、カットオフ電流9.5mA)、定電流放電(電圧3v、電流950mA))、サイクル数が300であった。試験結果に従って、充電容量、放電容量、充電比容量、および放電比容量の曲線(図1)、充電放電効率の曲線(図2)を描画した。
2. Cycle test The lithium polymer battery obtained in the example was taken and subjected to 0.5C charge and 1C discharge (300 cycles) test, and constant current / constant voltage charge (voltage 4.35V, current 475mA, cutoff current). 9.5mA), constant current discharge (voltage 3v, current 950mA)), and the number of cycles was 300. According to the test results, a curve of charge capacity, discharge capacity, charge specific capacity, and discharge specific capacity (FIG. 1) and a curve of charge / discharge efficiency (FIG. 2) were drawn.

図1の場合、曲線Y1は、充電容量(mAh)を表し、曲線Y2は放電容量(mAh)を表し、曲線Y3は充電比容量(mAh/g)を表し、曲線Y4は放電比容量(mAh/g)を表す。 In the case of FIG. 1, the curve Y1 represents the charge capacity (mAh), the curve Y2 represents the discharge capacity (mAh), the curve Y3 represents the charge ratio capacity (mAh / g), and the curve Y4 represents the discharge ratio capacity (mAh). / G).

図1~図2から分かるように、実施例1で得られた電池の充放電性能は、良好である。 As can be seen from FIGS. 1 and 2, the charge / discharge performance of the battery obtained in Example 1 is good.

実施例2~6のサイクル試験効果は、実施例1の効果と似ているため、ここでその説明を省略する。 Since the cycle test effects of Examples 2 to 6 are similar to the effects of Example 1, the description thereof will be omitted here.

3、破壊試験結果
実施例1~6で得られた電池(仕様:25×37×76mm)を取って以下の破壊試験を実施した。
1)打撃試験:重さ10kgの鋼製ハンマーを1mの高さから自由落下させた場合、発火や爆発することはなく;
2)過充電試験:発熱や爆発することはなく;
3)釘刺試験:3×8.0mmの鉄釘で直接電池を釘刺したところ、発火や爆発することはなく;
4)水没試験:24時間水没させても、性能に変化がなく;
5)熱衝撃サイクル試験:温度試験器に入れ、温度を5℃から150℃に上げたところ、発火や爆発することはなく;
6)振動試験:振動試験機に入れ、往復振動を30分間行ったところ、外観、性能に変化がなく;
7)圧壊試験:押し潰し試験機に入れ、最大17MPaの圧力を加えたところ、発火や爆発することはなく;
8)ドライバー刺し試験:電池にドライバーを貫通させた後、電圧に変化(一般的な電池の場合、貫通により短絡が生じ、電圧がゼロになる)がなく、6~7分間後6~7℃の温度上昇があり;
9)落下試験:電池を地上高さ6mから鉄板に自由落下させたところ、電圧に変化がなかった。
3. Destruction test results The following destructive test was carried out by taking the batteries (specifications: 25 x 37 x 76 mm) obtained in Examples 1 to 6.
1) Strike test: When a steel hammer weighing 10 kg is freely dropped from a height of 1 m, it does not ignite or explode;
2) Overcharge test: No heat generation or explosion;
3) Nail piercing test: When the battery was pierced directly with a 3 x 8.0 mm iron nail, it did not ignite or explode;
4) Submersion test: There is no change in performance even when submerged for 24 hours;
5) Thermal shock cycle test: When placed in a temperature tester and the temperature was raised from 5 ° C to 150 ° C, there was no ignition or explosion;
6) Vibration test: When placed in a vibration tester and subjected to reciprocating vibration for 30 minutes, there was no change in appearance or performance;
7) Crushing test: When placed in a crushing tester and applied with a maximum pressure of 17 MPa, it did not ignite or explode;
8) Driver piercing test: After penetrating the driver through the battery, there is no change in voltage (in the case of a general battery, a short circuit occurs due to penetration and the voltage becomes zero), and after 6 to 7 minutes, 6 to 7 ° C. There is a temperature rise in
9) Drop test: When the battery was freely dropped from a height of 6 m above the ground onto an iron plate, there was no change in voltage.

以上の実験を通じて、本発明の実施例1~6のリチウムポリマー電池の品質はPSE、GB、UC等の安全認証要件を完全に満たしていることが検証された。 Through the above experiments, it was verified that the quality of the lithium polymer batteries of Examples 1 to 6 of the present invention completely satisfies the safety certification requirements such as PSE, GB, and UC.

上記の実施例は、本発明の好ましい実施形態に過ぎず、本発明の保護の範囲はこの実施例に限定されるものではなく、本発明の技術的思想から逸脱しない限り、当業者により非実質的に変化および置換される場合でも、本発明によって請求される保護範囲に網羅される。


The above embodiments are merely preferred embodiments of the invention, and the scope of protection of the invention is not limited to this embodiment and is non-substantial by those skilled in the art as long as it does not deviate from the technical idea of the invention. Even if it is changed and replaced, it is covered by the scope of protection claimed by the present invention.


Claims (10)

コバルト酸リチウム、導電剤、結合剤、カーボンナノチューブスラリーまたはグラフェンという成分を含有する正極材料と、グラファイトカーボンブラック、導電剤、結合剤、フラーレン、ナノワイヤー、ナノチタンという成分を含有する負極材料と、炭酸ジエチル、ジフェニルエーテル、エチレンカーボネートを含有する電解液と、を含むことを特徴とする、リチウムポリマー電池。 A positive electrode material containing a component of lithium cobaltate, a conductive agent, a binder, a carbon nanotube slurry or graphene, a negative electrode material containing a component of graphite carbon black, a conductive agent, a binder, fullerene, nanowire, and nanotitanium, and carbon dioxide. A lithium polymer battery comprising an electrolytic solution containing diethyl, diphenyl ether, and ethylene carbonate. 前記正極材料は、コバルト酸リチウム2~10重量部、導電剤5~30重量部、結合剤1~15重量部、カーボンナノチューブスラリーまたはグラフェン2.5~30重量部という成分を含み;前記負極材料は、グラファイトカーボンブラック1~20重量部、導電剤5~30重量部、結合剤1~15重量部、フラーレン0.8~25重量部、ナノワイヤー5~15重量部、ナノチタン2~8重量部という成分を含み、前記電解液が体積百分率で10~40%の炭酸ジエチル、2~10%のジフェニルエーテル、および30~60%のエチレンカーボネートで構成される混合溶液であることを特徴とする、請求項1に記載のリチウムポリマー電池。 The positive electrode material contains 2 to 10 parts by weight of lithium cobaltate, 5 to 30 parts by weight of a conductive agent, 1 to 15 parts by weight of a binder, and 2.5 to 30 parts by weight of carbon nanotube slurry or graphene; the negative electrode material. Is graphite carbon black 1 to 20 parts by weight, conductive agent 5 to 30 parts by weight, binder 1 to 15 parts by weight, fullerene 0.8 to 25 parts by weight, nanowire 5 to 15 parts by weight, nanotitanium 2 to 8 parts by weight. The electrolytic solution is a mixed solution composed of 10 to 40% diethyl carbonate, 2 to 10% diphenyl ether, and 30 to 60% ethylene carbonate by volume. Item 2. The lithium polymer battery according to Item 1. 前記正極は、アルミニウム箔であり、前記負極が銅箔であることを特徴とする、請求項1または2に記載のリチウムポリマー電池。 The lithium polymer battery according to claim 1 or 2, wherein the positive electrode is an aluminum foil and the negative electrode is a copper foil. 前記フラーレンは、70%の正電荷を帯びたフラーレンと30%の負電荷を帯びたフラーレンの調製から成ることを特徴とする、請求項1または2に記載のリチウムポリマー電池。 The lithium polymer battery according to claim 1 or 2, wherein the fullerene comprises the preparation of a fullerene having a positive charge of 70% and a fullerene having a negative charge of 30%. 前記導電剤は、アセチレンブラックであることを特徴とする、請求項1または2に記載のリチウムポリマー電池。 The lithium polymer battery according to claim 1 or 2, wherein the conductive agent is acetylene black. 前記結合剤は、ポリフッ化ビニリデンであることを特徴とする、請求項1または2に記載のリチウムポリマー電池。 The lithium polymer battery according to claim 1 or 2, wherein the binder is polyvinylidene fluoride. 以下の工程(1)~(3)を含む請求項1~6のいずれか一項に記載のリチウムポリマー電池の調製方法。
(1)原料配合:コバルト酸リチウム、導電剤、結合剤、カーボンナノチューブスラリーを混合して混合正極スラリーを得、グラファイトカーボンブラック、導電剤、結合剤、フラーレン、ナノワイヤー、ナノチタンを混合して混合負極スラリーを得る工程、
(2)塗工:上記正極スラリーを塗工機で正極に塗工し、負極スラリーを塗工機で負極上に塗工する工程、
(3)その後圧延、スリット、レーザー切断、巻回、組立、トップ・サイド封止、乾燥、電解液注入、化成を経て、最終的にパッケージングすることで本発明の電池を得る工程。
The method for preparing a lithium polymer battery according to any one of claims 1 to 6, which comprises the following steps (1) to (3).
(1) Raw material composition: Lithium cobalt oxide, a conductive agent, a binder, and a carbon nanotube slurry are mixed to obtain a mixed positive electrode slurry, and graphite carbon black, a conductive agent, a binder, fullerene, nanowire, and nanotitanium are mixed and mixed. The process of obtaining a negative electrode slurry,
(2) Coating: A process in which the positive electrode slurry is applied to the positive electrode with a coating machine and the negative electrode slurry is applied onto the negative electrode with a coating machine.
(3) A step of obtaining the battery of the present invention by rolling, slitting, laser cutting, winding, assembling, top / side sealing, drying, electrolytic solution injection, and chemical conversion, and finally packaging.
前記工程(1)の前にフラーレンを抽出する必要があり、抽出方法は、炭素粉末を酸化還元焼成窯に入れて通電して燃焼させ、その後焼成窯内壁に付着する炭素の黒い微粒子を抽出し、更に静電加工を通じて前記フラーレンを得る工程を用いることを特徴とする、請求項7に記載のリチウムポリマー電池の調製方法。 It is necessary to extract fullerene before the step (1), and the extraction method is to put the carbon powder in a redox firing kiln and energize it to burn it, and then extract the black fine particles of carbon adhering to the inner wall of the firing kiln. The method for preparing a lithium polymer battery according to claim 7, further comprising a step of obtaining the fullerene through electrostatic processing. 前記工程(1)の前に電解液を調製する必要があり、以下の方法で調製し、すなわち有機溶媒の炭酸ジエチル、エチレンカーボネートを混合させ、最後にジフェニルエーテルを加えると、前記電解液を得ることを特徴とする、請求項7に記載のリチウムポリマー電池の調製方法。 It is necessary to prepare an electrolytic solution before the step (1), and it is prepared by the following method, that is, the organic solvents diethyl carbonate and ethylene carbonate are mixed, and finally diphenyl ether is added to obtain the electrolytic solution. 7. The method for preparing a lithium polymer battery according to claim 7. 前記工程(2)の負極材料は、以下の方法で調製され、すなわちグラファイトカーボンブラック、導電剤、結合剤、フラーレン、ナノワイヤー、ナノチタンを混合した後、粉砕して粉末にし、粉末を圧力30~50mPaの高圧反応器に移し、その後反応器を出力1800~2200wの電子レンジに入れ、200~1200秒間加熱し、室温まで冷却することで、前記負極材料を得ることを特徴とする、請求項7に記載のリチウムポリマー電池の調製方法。
The negative electrode material in the step (2) is prepared by the following method, that is, graphite carbon black, a conductive agent, a binder, fullerene, nanowires, and nanotitanium are mixed and then pulverized into a powder, and the powder has a pressure of 30 to 30. 7. The negative electrode material is obtained by transferring to a high-pressure reactor of 50 mPa, then placing the reactor in a microwave oven having an output of 1800 to 2200 w, heating for 200 to 1200 seconds, and cooling to room temperature. The method for preparing a lithium polymer battery according to.
JP2021547315A 2019-02-22 2020-02-13 Lithium polymer battery and its preparation method Pending JP2022526701A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201910133722.7A CN111564656A (en) 2019-02-22 2019-02-22 Lithium polymer battery and preparation method thereof
CN201910133722.7 2019-02-22
PCT/CN2020/075053 WO2020168975A1 (en) 2019-02-22 2020-02-13 Lithium polymer battery and preparation method therefor

Publications (1)

Publication Number Publication Date
JP2022526701A true JP2022526701A (en) 2022-05-26

Family

ID=72071457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021547315A Pending JP2022526701A (en) 2019-02-22 2020-02-13 Lithium polymer battery and its preparation method

Country Status (3)

Country Link
JP (1) JP2022526701A (en)
CN (1) CN111564656A (en)
WO (1) WO2020168975A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114142080B (en) * 2021-11-25 2024-04-05 东莞市茂盛新能源科技有限公司 Super-capacity graphene battery and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005142004A (en) * 2003-11-06 2005-06-02 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery
CN108847478A (en) * 2018-06-04 2018-11-20 安徽潜川动力锂电科技有限公司 A kind of lithium battery silicon-carbon nano composite anode material and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG103298A1 (en) * 2000-06-16 2004-04-29 Nisshin Spinning Polymer battery and method of manufacture
WO2002067355A1 (en) * 2001-02-22 2002-08-29 Matsushita Electric Industrial Co., Ltd. Lithium polymer cell
JP5768968B2 (en) * 2011-03-08 2015-08-26 日産自動車株式会社 Negative electrode active material for lithium ion secondary battery
JP5525003B2 (en) * 2012-05-07 2014-06-18 古河電気工業株式会社 Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
CN105552310A (en) * 2016-02-01 2016-05-04 宁波金和锂电材料有限公司 Slurry stirring process for lithium-ion batteries and application
CN107978728A (en) * 2017-10-31 2018-05-01 旭成(福建)科技股份有限公司 A kind of lithium ion battery coating material and coating method
CN108598556B (en) * 2018-05-21 2021-08-06 重庆市紫建电子股份有限公司 High-temperature polymer lithium ion battery and preparation method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005142004A (en) * 2003-11-06 2005-06-02 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery
CN108847478A (en) * 2018-06-04 2018-11-20 安徽潜川动力锂电科技有限公司 A kind of lithium battery silicon-carbon nano composite anode material and preparation method thereof

Also Published As

Publication number Publication date
CN111564656A (en) 2020-08-21
WO2020168975A1 (en) 2020-08-27

Similar Documents

Publication Publication Date Title
CN108054366B (en) Lithium ion battery cathode material and preparation method thereof
CN101335347B (en) Preparing method of highly conductive lithium iron phosphate anode material of lithium ionic cell
CN102237512B (en) Anode material and preparation method thereof
CN111370654B (en) Composite graphite negative electrode material, lithium ion battery and preparation method and application thereof
CN105449214A (en) Lithium ion battery cathode material of which nano particles embedded into carbon nanosheet and preparation method of lithium ion battery cathode material
CN104124431A (en) Graphite negative electrode material for lithium ion battery and preparation method of graphite negative electrode material
JP2022527237A (en) Lithium iron phosphate battery and its preparation method
CN102751472A (en) Cathode manufacturing method of lithium ion secondary battery
CN110890545A (en) PEDOT (polyethylene glycol terephthalate)/PSS (Polybutylece terephthalate)/CMC (carboxymethyl cellulose) composite binder as well as preparation method and application thereof
CN102867945B (en) Preparation method of graphite negative electrode material containing hollow carbon nanostructure for lithium ion battery
CN105280889B (en) A kind of lithium ion battery silicon composite cathode material and preparation method thereof
CN104300148B (en) A kind of graphite negative material of lithium ion battery and preparation method thereof
CN103579623B (en) Nanoscale lithium iron phosphate electrode material preparation method
JP2022526701A (en) Lithium polymer battery and its preparation method
CN103311521A (en) Surface-modified graphite negative electrode material, and preparation method and application thereof
JP2022527688A (en) Carbon nanotube fullerene battery and its preparation method
CN105633479A (en) Preparation method of all-solid-state lithium-sulfur battery
CN108199026B (en) Preparation method of power battery cathode material and cathode material prepared by same
JP2017069165A (en) Negative electrode material for lithium secondary battery and manufacturing method thereof, composition for negative electrode active material layer formation, negative electrode for lithium secondary battery, lithium secondary battery, and resin composite silicon particle
CN114122318A (en) Negative pole piece and preparation method and application thereof
CN113130874A (en) Graphene-based sodium-ion battery negative electrode material and preparation method thereof
CN105845887A (en) Solid-phase synthetic negative electrode material gamma-LiFeO2 for lithium-ion battery
CN105826516B (en) A kind of lithium ion battery and its cathode pole piece
CN107619033A (en) Bamboo charcoal material for lithium ion battery cathode prepared by a kind of natural products
CN104953116B (en) Method for preparing LiYO2 battery material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220513

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231017

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231228

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240229