JP2022520580A - 放射及びパネル認識ビーム選択 - Google Patents

放射及びパネル認識ビーム選択 Download PDF

Info

Publication number
JP2022520580A
JP2022520580A JP2021547226A JP2021547226A JP2022520580A JP 2022520580 A JP2022520580 A JP 2022520580A JP 2021547226 A JP2021547226 A JP 2021547226A JP 2021547226 A JP2021547226 A JP 2021547226A JP 2022520580 A JP2022520580 A JP 2022520580A
Authority
JP
Japan
Prior art keywords
uplink beam
resource
report
circuit
uplink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021547226A
Other languages
English (en)
Inventor
ユシュ チャン
アレクセイ ダヴィドフ
ギャン ション
グオトン ワン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apple Inc
Original Assignee
Apple Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apple Inc filed Critical Apple Inc
Publication of JP2022520580A publication Critical patent/JP2022520580A/ja
Priority to JP2023215652A priority Critical patent/JP2024038007A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment

Abstract

本明細書では、ビーム選択を実行するシステム、方法、及びコンピュータプログラム製品の実施形態が開示される。一実施形態は、基地局から、少なくとも1つのアップリンクビームに対する報告の要求を受信することによって動作する。これに応じて、実施形態は、少なくとも1つのアップリンクビームに対する報告を生成する。少なくとも1つのアップリンクビームに対する報告は、少なくとも1つのアップリンクビームに対応するリソースがアップリンクビーム指示のために利用可能であるという指示を含むことができる。リソースは、同期信号ブロック(SSB)リソース又はチャネル状態情報基準信号(CSI-RS)リソースであってもよい。実施形態は、少なくとも1つのアップリンクビームに対する報告を基地局に送信する。次いで、実施形態は、基地局から、少なくとも1つのアップリンクビームがアップリンクビームに対する報告に基づいてアップリンク送信のために選択可能であるという指示を受信する。【選択図】図14

Description

(関連出願の相互参照)
本出願は、米国特許法第35条119(e)項に基づき、2019年2月14日に出願された米国特許仮出願第62/805,873号の利益を主張し、その全体が参照により本明細書に組み込まれる。
様々な実施形態は、一般に、無線通信の分野に関連し得る。
本開示のいくつかの実施形態は、ビーム選択を実行するための方法、装置、及びコンピュータ可読媒体を含む。
いくつかの実施形態は、プロセッサ回路及び無線フロントエンド回路を含む装置に関する。処理回路は、基地局から、少なくとも1つのアップリンクビームに対する報告の要求を受信することができる。処理回路は、無線リソース制御(RPC)シグナリング、メディアアクセス制御制御要素(MAC-CE)、又はダウンリンク制御情報(DCI)を介して、少なくとも1つのアップリンクビームに対する報告の要求を受信することができる。
少なくとも1つのアップリンクビームに対する報告の要求を受信したことに応じて、処理回路は、少なくとも1つのアップリンクビームに対する報告を生成することができる。報告はまた、少なくとも1つのアップリンクビームに対応するリソースがアップリンクビーム指示のために利用可能であるという指示を含むことができる。リソースは、同期信号ブロック(SSB)リソース又はチャネル状態情報基準信号(CSI-RS)リソースであってもよい。この報告は、少なくとも1つのアップリンクビームに対応するリソースのための放射情報を含むことができる。この報告は、少なくとも1つのアップリンクビームに対応するリソースのためのアンテナポートグループを含むことができる。この報告はまた、少なくとも1つのアップリンクビームに対応するリソースの最大電力低減(MPR)レベルを含むことができる。次いで、処理回路は、無線フロントエンド回路を使用して、少なくとも1つのアップリンクビームに対する報告を基地局に送信することができる。
次いで、処理回路は、少なくとも1つのアップリンクビームが、少なくとも1つのアップリンクビームに対する報告に基づいてアップリンク送信に対して選択可能であるという指示を基地局から受信することができる。処理回路は、少なくとも1つのアップリンクビームが、無線リソース制御(RPC)シグナリング、メディアアクセス制御制御要素(MAC-CE)、又はダウンリンク制御情報(DCI)を介して、アップリンク送信に対して選択可能であるという指示を受信することができる。
いくつかの実施形態による、人体を標的とするビームのサイドローブの一例を示す。 いくつかの実施形態による、放射認識及び/又はパネル認識ベースのビーム選択のための例示的なプロセスを示す。 いくつかの実施形態による、いくつかの実施形態による、アップリンクビーム回復のための例示的なプロセスを示す。 いくつかの実施形態による、例示的システムアーキテクチャを示す。 いくつかの実施形態による、別の例示的なシステムアーキテクチャを示す。 いくつかの実施形態による、別の例示的なシステムアーキテクチャを示す。 いくつかの実施形態による、例示的なインフラストラクチャ設備のブロック図を示す。 いくつかの実施形態による、例示的なプラットフォームのブロック図を示す。 いくつかの実施形態による、ベースバンド回路及びフロントエンドモジュールのブロック図を示す。 いくつかの実施形態による、無線通信装置において実施され得る様々なプロトコル機能のブロック図を示す。 いくつかの実施形態による、コアネットワークの構成要素のブロック図を示す。 様々な実施形態を実施するために利用することができる例示的なコンピュータシステムのブロック図である。 いくつかの実施形態による、ビーム障害回復を実行するためのプロセスを示すフローチャートである。 いくつかの実施形態による、ビーム選択のためのプロセスを示すフローチャートである。
実施形態の特徴及び利点は、図面と併せて解釈されたときに以下に記載される詳細な説明からより明らかになるであろう。ここで、同様の参照符号は、図面全体にわたって対応する要素を特定する。図面において、同様の参照番号は、一般に、同一の、機能的に類似の、及び/又は構造的に類似の要素を示す。要素が最初に現れる図面は、対応する参照番号における最も左の桁(複数可)によって示される。
以下の詳細な説明は、添付の図面を参照する。同じ参照番号が、同じ又は類似の要素を識別するために、異なる図面において使用される場合がある。以下の記載において、限定するためにではなく説明の目的上、様々な実施形態の様々な態様の完全な理解を提供するために、特定の構造、アーキテクチャ、インタフェース、技法などの具体的な詳細を説明する。しかし、様々な実施形態の様々な態様が、これらの具体的な詳細から逸脱した他の実施例において実施され得ることは、本開示の利益を有する技術分野の当業者には明らかであろう。場合によっては、様々な実施形態の説明を不必要な詳細によって不明瞭にしないように、周知のデバイス、回路、及び方法の説明は省略される。本開示の目的のために、「A又はB」は、(A)、(B)、又は(A及びB)を意味する。
リリース15(Rel-15)において、アップリンクビーム管理が規定されており、ここで、次世代ノードB(gNB)は、同期信号ブロック(SSB)インデックス、チャネル状態情報基準信号(CSI-RS)リソースインデックス、又は、アップリンクビーム指示のためのサウンディング基準信号(SRS)リソースインデックスを使用することができる。gNBは、基地局とも称され得る。SRSリソースインデックス(SRI)が指示されている場合、ユーザ機器(UE)は、SRIによって指示されるSRSリソースと同じ空間領域送信フィルタ(Txビーム)を指示されたアップリンク信号に適用することができる。SSB/CSI-RSインデックスが指示されている場合、UEは、指示されたSSB/CSI-RSと同じTxビームを空間領域受信フィルタ(Rxビーム)として指示されたアップリンク信号に適用することができる。
ただし、SSB/CSI-RSが指示されている場合、gNBはUEビームに関する情報を有さないことがある。これは、2つの技術的問題を引き起こす可能性がある。
1)人体を標的としている特定のUEビームに対する何らかの放射が存在し得る。例えば、ビームの何らかのサイドローブが、人体を標的としていてもよい。このようなビームは、「安全でない」と見なすことができる。図1は、いくつかの実施形態による、人体を標的とするビームのサイドローブの一例を示す。図1に示すように、メインローブ102は、最も強いチャネルクラスタを標的とし、サイドローブ104は人体を標的とする。
2)UEが指示SSB/CSI-RSを受信するためにどのパネルを使用するかは不明である。その場合、UE TxビームがどのパネルからのものであるべきかはgNBにとって未知であるため、gNBは干渉を制御することができず、マルチパネル送信動作を選択することができない。
加えて、移動及び回転により、現在のUEビームの一部又は全部が人体に向いている場合がある。したがって、UEは、アップリンクでgNBと通信する方法を発見しない場合がある。したがって、いくつかのアップリンクビームの回復が必要であり得る。
放射及び/又はパネル認識ビーム選択を可能にするいくつかの実施形態としては、以下が挙げられるが、これらに限定されない。
・UEが報告するビーム放射状態に関する情報及び/又はパネル情報
・ビーム及び/又はパネル指示に関する制御シグナリング
gNBは、UEビームに対する放射及びUEパネル(単数又は複数)に関する情報を有さなくてもよい。したがって、第1のステップは、UEにこの情報を報告させることであり得る。第2のステップは、UEが報告した情報に基づいて、ビーム指示に関する何らかのgNB制御シグナリングを利用することであり得る。当業者には理解されるように、UEパネルは、UEアンテナポート(単数又は複数)グループとして見なすことができる。
図2は、いくつかの実施形態による、放射認識及び/又はパネル認識ベースのビーム選択の例示的なプロセスを示す。図2では、基地局202は、UE204に対するビーム報告のための制御シグナリングを送信する(例えば、ステップ206)。これに応じて、UE204は、同期信号ブロック(SSB)リソース又はチャネル状態情報基準信号(CSI-RS)リソースに対する放射及び/又はパネル情報を基地局202に報告する(例えば、ステップ208)。それに応じて、基地局202は、UE204にビーム指示を送信する(例えば、ステップ210)。ビーム指示は、ビームの放射及び/又はパネル情報に基づく。
ビーム報告の制御シグナリング
いくつかの実施形態では、ビーム報告のために、gNBは、無線リソース制御(RRC)シグナリング又は媒体アクセス制御-制御要素(MAC-CE)又はダウンリンク制御情報(DCI)又はそれらの組み合わせによって、UEがビームに関する放射及び/又はパネル関連情報を報告すべきかどうかを指示することができる。
いくつかの実施形態では、gNBは、報告されたビームがアップリンク送信のために選択され得るかどうかを指示することができる。報告されたビームがアップリンク送信のために選択され得るように設定される場合、対応するビーム報告インスタンスにおける報告されたビームは、放射安全であると見なすことができる。そうでなければ、報告されたビームは、アップリンク送信に使用されなくてもよい。その代わりに、このビーム報告インスタンスは、ダウンリンクビーム選択のみに関して考慮され得る。
いくつかの実施形態では、gNBは、報告されたSSB/CSI-RSインデックスがアップリンクビーム指示のために選択され得るかどうかをUEが報告できるかどうかを指示することができる。また、gNBは、どのUEパネル(単数又は複数)からSSB/CSI-RSが測定されているかをUEが報告することができるかどうかを指示することができる。
ビーム報告内容
いくつかの実施形態では、各ビーム報告インスタンスにおいて、設定されている場合、UEは、SSB/CSI-RSリソースをアップリンクビーム指示のために使用することができるかどうかを報告することができる。表1は、いくつかの実施形態による、UEビーム報告情報の一例を示す。表1において、CRIはCSI-RSリソースインデックスを示すことができ、SSBRIはSSBリソースインデックスを示すことができる。フラグは1ビットを取ることができ、0の値は、報告されたビームがアップリンクビーム指示に使用され得ないことを示すことができ、1の値は、報告されたビームがアップリンクビーム指示に使用され得ることを示すことができる。
Figure 2022520580000002
いくつかの実施形態では、各CRI/SSBRIについて、UEは、最大電力低減(MPR)レベルをgNBに報告することができる。そして、放射を低減するために、対応するビームが指示される場合には、アップリンク最大送信電力を低減することができる。表2は、いくつかの実施形態による、MPRベースのビーム報告の一例を示す。表3は、いくつかの実施形態による、MPR指示の一例を示す。
Figure 2022520580000003
Figure 2022520580000004
いくつかの実施形態では、UEは、設定された場合にビーム報告においてビームのパネルインデックス(単数又は複数)を報告することができる。表4は、いくつかの実施形態による、UEパネル情報を用いたビーム報告の一例を示す。表5は、いくつかの実施形態による、ビーム報告におけるUEアンテナポートグループの指示の一例を示す。
Figure 2022520580000005
Figure 2022520580000006
ビーム指示
いくつかの実施形態では、アップリンクビーム指示のために、gNBは、RRCシグナリング、MAC-CE、及び/又はDCIによって、物理アップリンク共有チャネル(PUSCH)、サウンディング基準信号(SRS)、物理アップリンク制御チャネル(PUCCH)、又は物理ランダムアクセスチャネル(PRACH)について各アップリンクビームに対するUEアンテナポート(単数又は複数)グループ(単数又は複数)を指示することができる。SRS、PUCCH、及びPRACHに対する空間関係情報設定の一例は、以下のように構成される。
Figure 2022520580000007
Figure 2022520580000008
いくつかの実施形態では、アンテナポート(単数又は複数)グループ(単数又は複数)はまた、各SRSリソースセットについて指示されることも可能である。アップリンクのコードブック及び非コードブックベースの送信のために設定された複数のSRSリソースセットが存在し得る。アンテナポートは、アップリンクパネル選択をサポートするために、異なるSRSリソースセットにおいて異なるように設定することができる。
いくつかの実施形態では、PDCCH命令によるPRACHに関して、アンテナポートグループインデックスは、ダウンリンク制御情報(DCI)によって指示されることが可能である。一例では、2パネルUEについて、以下は、PRACHをトリガするためにDCIで設定されることが可能である。
・SS/PBCHブロック(SSB)インデックス
・PRACHマスク
・アンテナポートグループインデックス
UEは、アンテナポートグループインデックスによって指示されるパネルからのDCIによって指示されるSSBインデックスに関連付けられたTxビームに基づいて、PRACHを送信することができる。あるいは、PRACHは、PRACHをトリガする対応するPDCCHの送信設定指示(TCI)状態で設定された基準信号に関連付けられたTxビームを用いて、指示されたパネルから送信されることが可能である。
いくつかの実施形態では、PDCCH命令によるPRACHのアンテナポートグループインデックスは、上位層のシグナリングによって、又は対応するSSBに対するビーム報告における最新の報告されたパネルインデックスに基づいて、又は指示されたSSBに基づく指示された空間関係情報に基づいて、設定されることが可能である。
当業者には理解されるように、本明細書の実施形態におけるアンテナポートグループインデックスからの送信は、アップリンク送信エンティティと見なすことができる。異なるアンテナポートインデックスからのアップリンク送信は、異なるアップリンク送信エンティティと見なすことができる。
アップリンクビーム回復
UEの移動又は回転の結果として、現在のアップリンクビームは、放射安全でないことがある。したがって、UEは、アップリンク信号を送信するために現在のアップリンクビームを使用しない場合がある。UEは、アップリンクビーム回復手順によってアップリンクビームを回復しようとすることができる。
図3は、いくつかの実施形態による、アップリンクビーム回復の例示的なプロセスを示す。図2において、UE304は、アップリンクビームのサブセット又は全部が放射安全でないこと、又はアップリンクビームの品質値が閾値を下回っていることを検出する。これに応じて、UE304は、ビーム回復要求を基地局302に送信する(ステップ308)。これに応じて、UE304は、基地局302からビーム回復要求応答を受信する(ステップ310)。
いくつかの実施形態では、ビーム回復要求は、PUCCH又はPRACHによって搬送されてもよく、これは、アップリンクビーム指示のためのSSB又はCSI-RSリソースインデックス(単数又は複数)を識別するために使用される。PUCCHベースの方式では、SSB/CSI-RSリソースインデックスを明示的に示すことができる。アップリンクビーム指示の失敗したSSB/CSI-RSリソースインデックスも送信されることがある。PRACHベースの方式では、SSB/CSI-RSリソースインデックスは、PRACHリソースインデックスに基づいて識別され得る。
いくつかの実施形態では、ビーム回復要求応答は、C-RNTI又は既定の/設定されたRNTIによってスクランブルされたPDCCHによって搬送され得る。この応答は、上位層のシグナリングによって設定された専用の探索空間若しくは制御リソースセット又は全ての設定された探索空間内で送信することができる。アップリンク信号のアップリンクビームの再設定を受信した後、UEは、アップリンクビームが回復されたと見なすことができる。
設定された時間ウィンドウにおいてビーム回復要求応答が受信されない場合、UEはアップリンクビーム回復要求を再送信することができる。UEは、N回の再送信を許可することができ、Nは、上位層シグナリングによって予め定義又は設定することができる。
手順例
図13は、いくつかの実施形態による、ビーム障害回復を実行するための方法1300のフローチャートである。方法1300は、ハードウェア(例えば、回路、専用ロジック、プログラマブルロジック、マイクロコードなど)、ソフトウェア(例えば、処理デバイス上で実行する命令)、又はそれらの組み合わせを含み得る処理ロジックによって実行することができる。本明細書で提供される開示を実行するために、全てのステップが必要とされるわけではないことを理解されたい。更に、当業者に理解されるように、いくつかのステップは、同時に実行されてもよく、又は図13に示されるものとは異なる順序で実行されてもよい。
ステップ1302において、基地局は、UEからのアップリンクビームに対する報告を要求する。この報告は、ビーム及び/又はパネル選択(例えば、アンテナポートグループ)の情報を含むことができる。
ステップ1304において、基地局は、UEからダウンリンク受信及び/又はアップリンク送信のためのビーム及び/又はパネル指示を受信する。
図13に記載されたプロセス及び機能は、アプリケーション回路505又は605、ベースバンド回路510又は610、又はプロセッサ1112及び1114のうちの1つ以上によって実行され得る。
図14は、いくつかの実施形態による、ビーム選択を実行するための方法1400のフローチャートである。方法1400は、ハードウェア(例えば、回路、専用ロジック、プログラマブルロジック、マイクロコードなど)、ソフトウェア(例えば、処理デバイス上で実行する命令)、又はそれらの組み合わせを含み得る処理ロジックによって実行することができる。本明細書で提供される開示を実行するために、全てのステップが必要とされるわけではないことを理解されたい。更に、当業者に理解されるように、いくつかの工程は、同時に実行されてもよく、又は図14に示されるものとは異なる順序で実行されてもよい。
ステップ1402において、UEは、基地局から、少なくとも1つのアップリンクビームに対する報告の要求を受信する。UEは、RRCシグナリング、MAC-CE、又はDCIを介して報告の要求を受信することができる。当業者には理解されるように、UEは、様々な他のメカニズムを使用して報告の要求を受信することができる。
ステップ1404において、UEは、少なくとも1つのアップリンクビームに対する報告を生成する。少なくとも1つのアップリンクビームに対する報告は、少なくとも1つのアップリンクビームに対応するリソースがアップリンクビーム指示のために利用可能であるという指示を含むことができる。リソースは、SSBリソース又はCSI-RSリソースであってもよい。
いくつかの実施形態において、及び表1に示すように、報告は、少なくとも1つのアップリンクビームがアップリンクビーム指示のために使用され得るかどうかを示すフラグを含むことができる。
この報告は、少なくとも1つのアップリンクビームに対応するリソースのための放射情報を含むことができる。この報告はまた、少なくとも1つのアップリンクビームに対応するリソースのMPRレベルを含むことができる。いくつかの実施形態において、及び表2に示すように、報告は、MPRビットを使用して、各リソースに対するMPR情報を含むことができる。この報告はまた、少なくとも1つのアップリンクビームに対応するリソースのアンテナポートグループを含むことができる。いくつかの実施形態において、及び表3に示すように、報告は、アンテナポートグループインジケータビットを使用して、各リソースに対するアンテナポートグループ情報を含むことができる。
ステップ1406において、UEは、少なくとも1つのアップリンクビームに対する報告を基地局(例えば、gNB)に送信する。
ステップ1408において、UEは、基地局から、少なくとも1つのアップリンクビームが、少なくとも1つのアップリンクビームに対する報告に基づいてアップリンク送信に対して選択可能であるという指示を受信する。UEはまた、RPCシグナリング、MAC-CE、又はDCIを介して、少なくとも1つのアップリンクビームに対するアンテナポートグループを受信することができる。
いくつかの実施形態では、少なくとも1つのアップリンクビームがアップリンク送信に対して選択可能であるという指示を受信した後、UEは、少なくとも1つのアップリンクビームが放射安全でないこと、又は少なくとも1つのアップリンクビームの品質値が閾値を下回ることを判定することができる。これは、UEの移動又は回転の結果として生じ得る。それに応じて、UEは、基地局に、アップリンクビーム指示のために利用可能な第2のアップリンクビームに対応する第2のリソースを識別するビーム回復要求を送信することができる。第2のリソースは、SSBリソース又はCSI-RSリソースであってもよい。これに応じて、UEは、基地局から、第2のアップリンクビームがアップリンク送信のために選択可能であることを示すビーム回復要求応答を受信することができる。
図14に記載されたプロセス及び機能は、アプリケーション回路505又は605、ベースバンド回路510又は610、又はプロセッサ1112及び1114のうちの1つ以上によって実行され得る。
システム及び実装
図4は、様々な実施形態による、ネットワークのシステム400の例示的なアーキテクチャを示す。以下の説明は、LTEシステム規格及び3GPP技術仕様によって提供されるような5G又はNRシステム標準と併せて動作する例示的なシステム400について提供される。しかしながら、例示的な実施形態は、この点に関して限定されず、説明される実施形態は、将来の3GPPシステム(例えば、第6世代(6G))システム、IEEE 802.16プロトコル(例えば、WMAN、WiMAXなど)などの、本明細書に記載の原理から恩恵を受ける他のネットワークに適用することができる。
図4に示すように、システム400は、UE401a及びUE401b(集合的に「UE401」と呼ばれる)を含む。この例では、UE401は、スマートフォン(例えば、1つ以上のセルラネットワークに接続可能な携帯式タッチスクリーンモバイルコンピューティングデバイス)として図示されているが、民生用電子デバイス、携帯電話、スマートフォン、フィーチャフォン、タブレットコンピュータ、ウェアラブルコンピュータデバイス、携帯情報端末(PDA)、ページャ、無線ハンドセット、デスクトップコンピュータ、ラップトップコンピュータ、車両内インフォテインメント(IVI)、車両内娯楽(ICE)デバイス、インストルメントクラスタ(IC)、ヘッドアップディスプレイ(HUD)デバイス、車載診断(OBD)デバイス、ダッシュトップモバイル機器(DME)、モバイルデータ端末(MDT)、電子エンジン管理システム(EEMS)、電子/エンジン制御ユニット(ECU)、電子/エンジン制御モジュール(ECM)、組み込みシステム、マイクロコントローラ、制御モジュール、エンジン管理システム(EMS)、ネットワーク化又は「スマート」電化製品、MTCデバイス、M2M、IoTデバイス、及び/又は同様のものなどの任意のモバイル又は非モバイルコンピューティングデバイスを含んでもよい。
いくつかの実施形態では、UE401のいずれかは、IoT UEを含むことができ、それは、短期UE接続を利用する低電力IoTアプリケーション用に設計されたネットワークアクセスレイヤを含み得る。IoT UEは、PLMN、ProSe又はD2D通信、センサネットワーク、又はIoTネットワークを介して、MTCサーバ又はデバイスとデータを交換するためのM2M又はMTCなどの技術を利用することができる。M2Mデータ交換又はMTCデータ交換は、機械起動のデータの交換であってもよい。IoTネットワークは、相互に接続するIoT UEを記載し、それは、短期接続による、(インターネットインフラストラクチャ内の)一意に識別可能な埋め込み型コンピューティングデバイスを含み得る。IoT UEは、IoTネットワークの接続を容易にするために、バックグラウンドアプリケーション(例えば、キープアライブメッセージ、ステータス更新など)を実行してもよい。
UE401は、RAN410に接続されるように、例えば通信可能に結合されるように、構成され得る。実施形態では、RAN410は、NG RAN若しくは5G RAN、E-UTRAN、又はUTRAN若しくはGERANなどのレガシーRANであってもよい。本明細書で使用するとき、用語「NG RAN」などは、NR又は5Gシステム400で動作するRAN410を指し、用語「E-UTRAN」などは、LTE又は4Gシステム400で動作するRAN410を指してもよい。UE401は、それぞれ接続(又はチャネル)403及び404を利用し、これらはそれぞれ、物理通信インタフェース又はレイヤ(以下で更に詳細に議論する)を含む。
この例では、接続403及び404は、通信可能な結合を可能にするためのエアインタフェースとして示されており、GSMプロトコル、CDMAネットワークプロトコル、PTTプロトコル、POCプロトコル、UMTSプロトコル、3GPP LTEプロトコル、5Gプロトコル、NRプロトコル、及び/又は本明細書で論じる他の通信プロトコルのいずれかなどのセルラ通信プロトコルと一致し得る。本実施形態では、UE401は、更に、ProSeインタフェース405を介して通信データを直接交換することができる。ProSeインタフェース405は、代替的にSLインタフェース405と称されてもよく、PSCCH、PSSCH、PSDCH、及びPSBCHを含むがこれらに限定されない1つ以上の論理チャネルを含んでもよい。
UE401bは、接続407を介してAP406(「WLANノード406」、「WLAN406」、「WLAN端末406」、「WT406」などとも呼ばれる)にアクセスするように構成されていることが示されている。接続407は、任意のIEEE802.11プロトコルと合致する接続などのローカルワイヤレス接続を含むことができ、AP406は、WiFi(Wireless Fidelity)(登録商標)ルータを備えるであろう。この例では、AP406は、ワイヤレスシステムのコアネットワークに接続せずにインターネットに接続されるように示されている(以下で更に詳細に説明する)。様々な実施形態では、UE401b、RAN410及びAP406は、LWA動作及び/又はLWIP動作を利用するように構成することができる。LWA動作は、LTE及びWLANの無線リソースを利用するために、RANノード411a~411bによって構成されているRRC_CONNECTEDのUE401bを伴い得る。LWIP動作は、接続407を介して送信されたパケット(例えば、IPパケット)を認証及び暗号化するために、IPsecプロトコルトンネリングを介してWLAN無線リソース(例えば、接続407)を使用するUE401bを伴い得る。IPsecトンネリングは、元のIPパケットの全体をカプセル化し、新しいパケットヘッダを追加することを含んでもよく、それによってIPパケットのオリジナルヘッダを保護することを含んでもよい。
RAN410は、接続403及び404を可能にする1つ以上のANノード又はRANノード411a及び411b(まとめて「RANノード411」又は「RANノード411」と呼ぶ)を含むことができる。本明細書で使用するとき、用語「アクセスノード」、「アクセスポイント」などは、ネットワークと1人以上のユーザとの間のデータ及び/又は音声接続のための無線ベースバンド機能を提供する機器を説明することができる。これらのアクセスノードは、BS、gNB、RANノード、eNB、NodeBs、RSUs、TRxP又はTRPなどと称される場合があり、地理的エリア(例えば、セル)内に有効通信範囲を提供する地上局(例えば、地上アクセスポイント)又はサテライト局を備えることができる。本明細書で使用するとき、用語「NG RANノード」などは、NR又は5Gシステム400(例えば、gNB)で動作するRANノード411を指してもよく、用語「E-UTRANノード」などは、LTE又は4Gシステム400(例えば、eNB)で動作するRANノード411を指してもよい。様々な実装形態によれば、RANノード411は、マクロセルと比較してより小さいカバレッジエリア、より小さいユーザ容量、又はより高い帯域幅を有するフェムトセル、ピコセル、又は他の同様のセルを提供するための、マクロセル基地局、及び/又は低電力(LP)基地局などの専用物理デバイスのうちの1つ以上として実装され得る。
いくつかの実装形態では、RANノード411の全部又は一部は、仮想ネットワークの一部としてサーバコンピュータ上で実行される1つ以上のソフトウェアエンティティとして実装されてもよく、このソフトウェアエンティティは、CRAN及び/又は仮想ベースバンドユニットプール(vBBUP)と称され得る。これらの実装形態では、CRAN又はvBBUPは、RRC及びPDCP層が、CRAN/vBBUPによって動作され、他のL2プロトコルエンティティは個々のRANノード411によって動作されるPDCP分割などのRAN機能分割、RRC、PDCP、RLC、及びMAC層がCRAN/vBBUPによって動作され、PHY層が個別のRANノード411によって動作される、MAC/PHY分割、又はRRC、PDCP、RLC、MAC層、及びPHY層の上部がCRAN/vBBUPによって動作され、PHY層の下部が個々のRANノード411によって動作される、「下位PHY」分割を実装し得る。この仮想化されたフレームワークは、RANノード411の解放されたプロセッサコアが、他の仮想化されたアプリケーションを実行することを可能にする。いくつかの実装形態では、個々のRANノード411は、個々のF1インタフェース(図4に示されていない)を介してgNB-CUに接続された個々のgNB-DUを表し得る。これらの実装形態では、gNB-DUは、1つ以上のリモート無線ヘッド又はRFEM(例えば、図7を参照)を含むことができ、gNB-CUは、RAN410(図示せず)に配置されたサーバによって、又はCRAN/vBBUPと同様の方法でサーバプールによって動作することができる。追加的又は代替的に、RANノード411のうちの1つ以上は次世代eNB(ng-eNB)であってもよく、次世代eNBは、UE401に向けてE-UTRAユーザプレーン及び制御プレーンプロトコル終端を提供し、NGインタフェースを介して5GC(例えば、図6のCN620)に接続されるRANノードである。
V2Xシナリオでは、RANノード411のうちの1つ以上は、RSUとすることができるか、又はその役割を果たし得る。用語「Road Side Unit」又は「RSU」は、V2X通信に使用される任意の輸送インフラストラクチャエンティティを指し得る。RSUは、適切なRANノード又は静止(又は比較的静止)UEにおいて又はそれによって実装されてもよく、UEにおいて又はそれによって実装されるRSUは「UEタイプRSU」と呼ばれてもよく、eNBにおいて又はそれによって実装されるRSUは「eNBタイプRSU」と呼ばれてもよく、gNBにおいて又はそれによって実装されるRSUは「gNBタイプRSU」などと呼ばれてもよい。一例では、RSUは、通過車両UE401(vUE401)に接続性サポートを提供する路側に位置する無線周波数回路に結合されたコンピューティングデバイスである。RSUはまた、交差点マップ形状、交通統計、媒体、並びに進行中の車両及び歩行者の交通を検知及び制御するためのアプリケーション/ソフトウェアを記憶するための内部データ記憶回路を含むことができる。RSUは、5.9GHz Direct Short Range Communication(DSRC)帯域で動作して、衝突回避、トラフィック警告などの高速イベントに必要な非常に短い待ち時間の通信を提供することができる。追加的又は代替的に、RSUは、前述の短い待ち時間通信、並びに他のセルラ通信サービスを提供するために、セルラV2X帯域で動作することができる。追加的又は代替的に、RSUは、Wi-Fiホットスポット(2.4GHz帯域)として動作することができ、及び/又は1つ以上のセルラネットワークへの接続性を提供して、アップリンク及びダウンリンク通信を提供することができる。RSUのコンピューティングデバイス及び無線周波数回路の一部又は全ては、屋外設置に適した耐候性エンクロージャにパッケージ化することができ、交通信号コントローラ及び/又はバックホールネットワークに有線接続(例えば、イーサネット)を提供するためのネットワークインタフェースコントローラを含むことができる。
RANノード411は、エアインタフェースプロトコルを終了することができ、UE401の第1の接触ポイントとすることができる。いくつかの実施形態では、RANノード411のいずれも、RAN410のための様々な論理機能を果たすことができ、その機能は、限定されないが、無線ベアラ管理、アップリンク及びダウンリンク動的無線リソース管理、並びにデータパケットスケジューリング、並びにモビリティ管理などの無線ネットワークコントローラ(RNC)機能を含む。
実施形態では、UE401は、様々な通信技術に従ったマルチキャリア通信チャネルにより、OFDM通信信号を用いて、互いに又はRANノード411のいずれかと通信するように構成することができ、この様々な通信技術は、例えば、(例えば、ダウンリンク通信用の)OFDMA通信技術、又は(例えば、アップリンク及びProSe又はサイドリンク通信用の)SC-FDMA通信技術であるが、これらに限定されず、実施形態の範囲は、この点において限定されない。OFDM信号は、複数の直交サブキャリアを含むことができる。
いくつかの実施形態では、ダウンリンクリソースグリッドは、RANノード411のいずれかからUE401へのダウンリンク送信のために使用することができ、一方、アップリンク送信は同様の技術を利用することができる。グリッドは、リソースグリッド又は時間周波数リソースグリッドと呼ばれる時間周波数グリッドとすることができ、それは、各スロット内のダウンリンクの物理的リソースである。このような時間周波数平面表現は、OFDMシステムの一般的な慣習であり、それは無線リソース割り当ての直感的なものにする。リソースグリッドの各列及び各行は、それぞれ、1つのOFDMシンボル及び1つのOFDMサブキャリアに対応する。時間ドメイン内のリソースグリッドの持続時間は、無線フレーム内の1つのスロットに対応する。リソースグリッドの最小時間周波数単位は、リソースエレメントと表記する。各リソースグリッドは、多数のリソースブロックを含み、それは、リソースエレメントへの特定の物理チャネルのマッピングを説明する。各リソースブロックは、リソースエレメントの集合を含み、周波数ドメインにおいて、これは、現在割り当てられ得るリソースの最小量を表すことができる。このようなリソースブロックを用いて伝達されるいくつかの異なる物理ダウンリンクチャネルが存在する。
様々な実施形態によれば、UE401、402及びRANノード411、412は、認可媒体(「認可スペクトル」及び/又は「認可帯域」とも呼ばれる)及び無認可共有媒体(「無認可スペクトル」及び/又は「無認可帯域」とも呼ばれる)を介してデータ(例えば、送信及び受信)データを通信する。認可スペクトルは、約400MHz~約3.8GHzの周波数範囲で動作するチャネルを含んでもよく、無認可スペクトルは5GHz帯域を含んでもよい。
無認可スペクトルで動作するために、UE401、402及びRANノード411、412は、LAA、eLAA、及び/又はfeLAA機構を使用して動作することができる。これらの実装では、UE401、402及びRANノード411、412は、無認可スペクトル内の1つ以上のチャネルが無認可スペクトルで送信する前に利用不可能であるか、又は別の方法で占有されているかどうかを判定するために、1つ以上の既知の媒体検知動作及び/又はキャリア検知動作を実行してもよい。媒体/キャリア検知動作は、listen-before-talk(LBT)プロトコルに従って実行することができる。
LBTは、機器(例えば、UE401、402、RANノード411、412など)が媒体(例えば、チャネル又はキャリア周波数)を検知し、媒体がアイドル状態であることが検知されたとき(又は、媒体内の特定のチャネルが占有されていないと検知されたとき)を送信する機構である。媒体検知動作は、チャネルが占有されているか又はクリアされているかどうかを決定するために、チャネル上の他の信号の有無を決定するために少なくともEDを利用するCCAを含んでもよい。このLBT機構により、無認可スペクトル及び他のLAAネットワークにおいて、セルラ/LAAネットワークが現用システムと共存することを可能にする。EDは、ある期間にわたって意図された送信帯域にわたってRFエネルギーを検知することと、検知されたRFエネルギーを所定の閾値又は設定された閾値と比較することを含んでもよい。
典型的には、5GHz帯域における現用システムは、IEEE802.11技術に基づいてWLANである。WLANは、CSMA/CAと呼ばれる、コンテンションベースのチャネルアクセス機構を採用する。ここで、WLANノード(例えば、UE401又は402、AP406などの移動局(MS))が送信することを意図する場合、WLANノードは、送信前にCCAを最初に実行してもよい。更に、2つ以上のWLANノードがチャネルをアイドル状態として検知し、同時に送信する状況における衝突を回避するためにバックオフ機構が使用される。バックオフ機構は、CWS内でランダムに引き寄せられたカウンタであってもよく、これは、衝突の発生時に指数関数的に増加し、送信が成功したときに最小値にリセットされる。LAA用に設計されたLBT機構は、WLANのCSMA/CAと幾分類似している。いくつかの実装形態では、PDSCH又はPUSCH送信をそれぞれ含むDL又はUL送信バーストのためのLBT手順は、XECCAスロットとYECCAスロットとの間の長さが可変であるLAA競合ウィンドウを有することができ、X及びYは、LAAのためのCWSの最小値及び最大値である。一例では、LAA送信のための最小CWSは、9マイクロ秒(μs)であってもよいが、CWS及びMCOTのサイズ(例えば、送信バースト)は、政府規制要件に基づいてもよい。
LAA機構は、LTEアドバンストシステムのCA技術に基づいて構築されている。CAでは、各集約されたキャリアはCCと呼ばれる。CCは、1.4、3、5、10、15、又は20MHzの帯域幅を有することができ、最大5つのCCを集約することができ、従って、最大集約された帯域幅は100MHzである。FDDシステムでは、集約されたキャリアの数は、DLとULとで異なることがあり、UL CCの数は、DL要素キャリアの数以下である。場合によっては、個々のCCは、他のCCとは異なる帯域幅を有することができる。TDDシステムでは、CCの数及び各CCの帯域幅は、通常、DL及びULに対して同じである。
CAはまた、個々のCCを提供する個々のサービングセルを含む。例えば、異なる周波数帯域におけるCCは、異なる経路喪失を経験するので、サービングセルの有効通信範囲は異なり得る。一次サービスセル又はPCellは、UL及びDLの両方にPCCを提供することができ、RRC及びNAS関連のアクティビティを処理することができる。他のサービングセルはSCellと呼ばれ、各SCellはULとDLの両方に個別のSCCを提供し得る。PCCを変更することは、UE401、402がハンドオーバを受けることを要求し得る一方、SCCは、必要に応じて追加及び除去され得る。LAA、eLAA、及びfeLAAでは、SCellの一部又は全部は、無認可スペクトル(「LAA SCell」と呼ばれる)で動作することができ、LAA SCellは、認可スペクトルで動作するPCellによって支援される。UEが2つ以上のLAA SCellで構成される場合、UEは、同じサブフレーム内の異なるPUSCH開始位置を示す、構成されたLAA SCell上でULグラントを受信することができる。
PDSCHは、ユーザデータ及び上位レイヤシグナリングをUE401に搬送する。PDCCHは、とりわけ、PDSCHチャネルに関連するトランスポートフォーマット及びリソース割り当てに関する情報を搬送する。また、それは、アップリンク共有チャネルに関する送信フォーマット、リソース割り当て、及びHARQ情報について、UE401に通知することもできる。典型的には、ダウンリンクスケジューリング(制御及び共有チャネルリソースブロックをセル内のUE401bに割り当てる)は、UE401のいずれかからフィードバックされるチャネル品質情報に基づいて、RANノード411のいずれかで実行されてもよい。ダウンリンクリソース割り当て情報は、UE401の各々に対して使用される(例えば、割り当てられた)PDCCHで送信されてもよい。
PDCCHは、CCEを使用して制御情報を伝達する。リソースエレメントにマッピングされる前に、PDCCH複素数値シンボルは最初に、4つ組に編成されてもよく、その後、レートマッチングのためのサブブロックインターリーバを用いて入れ替えられてもよい。各PDCCHを、これらのCCEのうちの1つ以上を用いて送信してもよく、各CCEは、REGとして知られる4つの物理リソースエレメントの9つのセットに対応することができる。4つの四位相偏移変調(QPSK)シンボルを各REGにマッピングしてもよい。PDCCHは、DCIのサイズ及びチャネル状態に応じて、1つ以上のCCEを用いて送信することができる。異なる数のCCE(例えば、アグリゲーションレベル、L=1、2、4、又は8)を有するLTEに定義される4つ以上の異なるPDCCHフォーマットが存在し得る。
いくつかの実施形態は、上記の概念の拡張である制御チャネル情報のためのリソース割り当てのための概念を使用することができる。例えば、いくつかの実施形態は、制御情報送信のためにPDSCHリソースを使用するEPDCCHを利用することができる。EPDCCHを、1つ以上のECCEを用いて送信してもよい。上記と同様に、各ECCEは、EREGとして知られる4つの物理リソースエレメントからなる9つのセットに対応し得る。ECCEは、一部の状況では、他の数のEREGを有してもよい。
RANノード411は、インタフェース412を介して互いに通信するように構成され得る。システム400がLTEシステム(例えば、CN420が図5のEPC520である場合)である実施形態では、インタフェース412は、X2インタフェース412であり得る。X2インタフェースは、EPC420に接続する2つ以上のRANノード411(例えば、2つ以上のeNBなど)間、及び/又はEPC420に接続する2つのeNB間に定義されてもよい。いくつかの実装形態では、X2インタフェースは、X2ユーザプレーンインタフェース(X2-U)及びX2制御プレーンインタフェース(X2-C)を含むことができる。X2-Uは、X2インタフェースを介して転送されるユーザデータパケットのためのフロー制御機構を提供し得、eNB間のユーザデータの配信に関する情報を通信するために使用され得る。例えば、X2-Uは、MeNBからSeNBへ転送されるユーザデータのための特定のシーケンス番号情報と、ユーザデータのためのSeNBからUE401へのPDCP PDUのシーケンス配信の成功に関する情報と、UE401に配信されなかったPDCP PDUの情報と、UEユーザデータに送信するためのSeNBにおける現在の最小所望バッファサイズに関する情報などを提供し得る。X2-Cは、ソースeNBからターゲットeNBへのコンテキスト転送、ユーザプレーントランスポート制御等を含む、LTE内アクセスモビリティ機能と、負荷管理機能と、セル間干渉調整機能とを提供し得る。
システム400が5G又はNRシステム(例えば、CN420が図6の5GC620である場合)である実施形態では、インタフェース412は、Xnインタフェース412であり得る。Xnインタフェースは、5GC420に接続する2つ以上のRANノード411(例えば、2つ以上のgNBなど)間、5GC420に接続するRANノード411(例えば、gNB)とeNBとの間、及び/又は5GC420に接続する2つのeNB間で定義される。いくつかの実装形態では、Xnインタフェースは、Xnユーザプレーン(Xn-U)インタフェース及びXn制御プレーン(Xn-C)インタフェースを含むことができる。Xn-Uは、ユーザプレーンPDUの非保証配信を提供し、データ転送及びフロー制御機能をサポート/提供することができる。Xn-Cは、他の機能の中でもとりわけ、管理及びエラー処理機能、Xn-Cインタフェースを管理する機能、1つ以上のRANノード411間の接続モードのためのUEモビリティを管理する機能を含む、接続モードのUE401(例えば、CM接続)のためのモビリティサポートを提供し得る。モビリティサポートは、古い(ソース)サービングRANノード411から新しい(ターゲット)サービングRANノード411へのコンテキスト転送と、古い(ソース)サービングRANノード411と新しい(ターゲット)サービングRANノード411との間のユーザプレーントンネルの制御とを含み得る。Xn-Uのプロトコルスタックは、インターネットプロトコル(IP)トランスポート層上に構築されたトランスポートネットワーク層と、ユーザプレーンPDUを搬送するためにUDP層及び/又はIP層の上のGTP-U層とを含むことができる。Xn-Cプロトコルスタックは、アプリケーション層シグナリングプロトコル(Xnアプリケーションプロトコル(Xn-AP)と呼ばれる)と、SCTP上に構築されたトランスポートネットワーク層とを含むことができる。SCTPは、IP層の上にあってもよく、アプリケーション層メッセージの保証された配信を提供してもよい。トランスポートIPレイヤでは、シグナリングPDUを配信するためにポイントツーポイント送信が使用される。他の実装形態では、Xn-Uプロトコルスタック及び/又はXn-Cプロトコルスタックは、本明細書に示し説明したユーザプレーン及び/又は制御プレーンプロトコルスタックと同じ又は同様であってもよい。
RAN410は、コアネットワーク、この実施形態ではコアネットワーク(CN)420、に通信可能に結合されるように示されている。CN420は、RAN410を介してCN420に接続されている顧客/加入者(例えば、UE401のユーザ)に様々なデータ及び電気通信サービスを提供するように構成された複数のネットワークエレメント422を備えることができる。CN420の構成要素は、機械可読媒体又はコンピュータ可読媒体(例えば、非一時的機械可読記憶媒体)から命令を読み取って実行するための構成要素を含む、単一の物理ノード又は別個の物理ノードに実装されてもよい。いくつかの実施形態では、NFVを利用して、1つ以上のコンピュータ可読記憶媒体(以下で更に詳細に説明する)に格納された実行可能命令を介して、上述のネットワークノード機能のいずれか又は全てを仮想化することができる。CN420の論理インスタンス化は、ネットワークスライスと呼ばれてもよく、CN420の一部の論理インスタンス化は、ネットワークサブスライスと呼ばれてもよい。NFVアーキテクチャ及びインフラストラクチャは、業界標準のサーバハードウェア、ストレージハードウェア、又はスイッチの組み合わせを含む物理リソース上で、1つ以上のネットワーク機能を仮想化するために使用されてもよく、或いは専用ハードウェアによって実行されてもよい。言い換えれば、NFVシステムを使用して、1つ以上のEPC構成要素/機能の仮想又は再構成可能な実装を実行することができる。
一般に、アプリケーションサーバ430は、コアネットワーク(例えば、UMTS PSドメイン、LTE PSデータサービスなど)とのIPベアラリソースを使用するアプリケーションを提供するエレメントであってもよい。アプリケーションサーバ430はまた、EPC420を介してUE401のために1つ以上の通信サービス(例えば、VoIPセッション、PTTセッション、グループ通信セッション、ソーシャルネットワーキングサービスなど)をサポートするように構成することもできる。
実施形態では、CN420は5GC(「5GC420」などと呼ばれる)であってもよく、RAN410は、NGインタフェース413を介してCN420に接続されてもよい。実施形態では、NGインタフェース413は、RANノード411とUPFとの間でトラフィックデータを搬送するNGユーザプレーン(NG-U)インタフェース414と、RANノード411とAMFとの間のシグナリングインタフェースであるS1制御プレーン(NG-C)インタフェース415との2つの部分に分割することができる。CN420が5GC420である実施形態は、図6に関してより詳細に説明される。
実施形態では、CN420は5G CN(「5GC 420」などと呼ばれる)であってもよく、他の実施形態では、CN420はEPCであってもよい。CN420がEPC(「EPC420」などと呼ばれる)である場合、RAN410は、S1インタフェース413を介してCN420と接続され得る。実施形態では、S1インタフェース413は、RANノード411とS-GWとの間にトラフィックデータを搬送するS1ユーザプレーン(S1-U)インタフェース414と、RANノード411とMMEとの間のシグナリングインタフェースであるS1-MMEインタフェース415との2つの部分に分割されてもよい。CN420がEPC420である例示的なアーキテクチャを図5に示す。
図5は、様々な実施形態による、第1のCN520を含むシステム500の例示的なアーキテクチャを示す。この例では、システム500は、CN520が図4のCN420に対応するEPC520であるLTE規格を実装することができる。更に、UE501は、図4のUE401と同じか又は同様であってもよく、E-UTRAN510は、図4のRAN410と同じか又は同様であり、前述したRANノード411を含み得るRANであってもよい。CN520は、MME521、S-GW522、P-GW523、HSS524、及びSGSN525を備えることができる。
MME521は、レガシーSGSNの制御プレーンと機能が類似していてもよく、UE501の現在位置を追跡するためにMM機能を実施し得る。MME521は、ゲートウェイ選択及びトラッキングエリアリスト管理などのアクセスのモビリティ態様を管理するために、様々なMM手順を実行し得る。MM(E-UTRANシステムでは「EPS MM」又は「EMM」とも呼ばれる)は、UE501の現在位置に関する知識を維持し、ユーザアイデンティティの機密性を提供し、及び/又はユーザ/加入者に他の同様のサービスを実行するために使用される全ての適用可能な手順、方法、データストレージなどを指すことができる。各UE501及びMME521は、MM又はEMMサブ層を含んでもよく、アタッチ手順が正常に完了したときに、UE501及びMME521においてMMコンテキストが確立されてもよい。MMコンテキストは、UE501のMM関連情報を格納するデータ構造又はデータベースオブジェクトであってもよい。MME521は、S6a基準点を介してHSS524と結合されてもよく、S3基準点を介してSGSN525と結合されてもよく、S11基準点を介してS-GW522と結合されてもよい。
SGSN525は、個々のUE501の位置を追跡し、セキュリティ機能を実行することによって、UE501にサービス提供するノードであってもよい。更に、SGSN525は、2G/3GとE-UTRAN 3GPPアクセスネットワークとの間のモビリティのためのEPC間ノードシグナリング、MME521によって指定されたPDN及びS-GW選択、MME521によって指定されたUE501の時間帯機能の処理、及びE-UTRAN 3GPPアクセスネットワークへのハンドオーバのためのMME選択、を行うことができる。MME521とSGSN525との間のS3基準点は、アイドル状態及び/又はアクティブ状態における3GPP間アクセスネットワークモビリティのためのユーザ及びベアラ情報交換を可能にすることができる。
HSS524は、ネットワークユーザのデータベースを備えることができ、それは、ネットワークエンティティの通信セッションの取り扱いをサポートするための加入関連情報を含む。EPC520は、モバイル加入者の数、機器の容量、ネットワークの組織などに応じて、1つ以上のHSS524を備えることができる。例えば、HSS524は、ルーティング/ローミング、認証、認可、命名/アドレス指定解決、位置依存関係などのサポートを提供することができる。HSS524とMME521との間のS6a基準点は、HSS524とMME521との間のEPC520へのユーザアクセスを認証/認可するための加入及び認証データの転送を可能にすることができる。
S-GW522は、RAN510に対するS1インタフェース413(図5における「S1-U」)を終端してもよく、RAN510とEPC520との間でデータパケットをルーティングする。加えて、S-GW522は、RANノード間ハンドオーバのためのローカルモビリティアンカーポイントであってもよく、また、3GPP間モビリティのためのアンカーを提供してもよい。他の責任は、合法の傍受、課金、及び一部のポリシー施行を含んでもよい。S-GW522とMME521との間のS11基準点は、MME521とS-GW522との間の制御プレーンを提供することができる。S-GW522は、S5基準点を介してP-GW523と結合され得る。
P-GW523は、PDN530に対するSGiインタフェースを終端することができる。P-GW523は、IPインタフェース425(例えば、図4を参照)を介して、EPC520と、アプリケーションサーバ430を含むネットワーク(代替的に「AF」と称される)などの外部ネットワークとの間でデータパケットをルーティングしてもよい。実施形態では、P-GW523は、IP通信インタフェース425(例えば、図4を参照)を介してアプリケーションサーバ(図4のアプリケーションサーバ430又は図5のPDN530)に通信可能に結合することができる。P-GW523とS-GW522との間のS5基準点は、P-GW523とS-GW522との間のユーザプレーントンネリング及びトンネル管理を提供し得る。S5基準点はまた、UE501のモビリティに起因して、S-GW522が必要とされるPDN接続性のために、非コロケートのP-GW523に接続する必要がある場合に、S-GW522の再配置に使用されてもよい。P-GW523は、ポリシー施行及び課金データ収集のためのノード(例えば、PCEF(図示せず))を更に含み得る。加えて、P-GW523とパケットデータネットワーク(PDN)530との間のSGi基準点は、例えば、IMSサービスを提供するための、オペレータ外部公衆、プライベートPDN、又はオペレータ内パケットデータネットワークであってもよい。P-GW523は、Gx基準点を介してPCRF526と結合され得る。
PCRF526は、EPC520のポリシー及び課金制御要素である。非ローミングシナリオでは、UE501のインターネットプロトコル接続性アクセスネットワーク(IP-CAN)セッションに関連付けられたホーム公衆地上モバイルネットワーク(HPLMN)内に単一のPCRF526が存在してもよい。トラフィックのローカルブレークアウトを伴うローミングシナリオでは、UE501のIP-CANセッションに関連付けられた2つのPCRF、すなわち、HPLMN内のホームPCRF(H-PCRF)と在圏公衆地上モバイルネットワーク(VPLMN)内の在圏PCRF(V-PCRF)が存在し得る。PCRF526は、P-GW523を介してアプリケーションサーバ530に通信可能に結合されてもよい。アプリケーションサーバ530は、PCRF526に信号を送って、新しいサービスフローを指示し、適切なQoS及び課金パラメータを選択することができる。PCRF526は、適切なTFT及びQCIを有するPCEF(図示せず)にこのルールをプロビジョニングすることができ、PCEFはアプリケーションサーバ530によって指定されたQoS及び課金を開始する。PCRF526とP-GW523との間のGx基準点は、PCRF526からP-GW523のPCEFへのQoSポリシー及び課金ルールの転送を可能にし得る。Rx基準点は、PDN530(又は「AF530」)とPCRF526との間に存在し得る。
図6は、様々な実施形態による第2のCN620を含むシステム600のアーキテクチャを示す。システム600は、前述したUE401及びUE501と同じ又は同様であり得るUE601と、前述したRAN410及びRAN510と同じか又は同様であり得、前述したRANノード411を含み得る(R)AN610と、例えば、オペレータサービス、インターネットアクセス、又はサードパーティサービスであってもよいDN603と、5GC620とを含むように示されている。5GC620は、AUSF622、AMF621、SMF624、NEF623、PCF626、NRF625、UDM627、AF628、UPF602、及びNSSF629を含み得る。
UPF602は、RAT内及びRAT間モビリティのためのアンカーポイント、DN603に相互接続する外部PDUセッションポイント、及びマルチホームPDUセッションをサポートするための分岐ポイントとして機能することができる。UPF602はまた、パケットルーティング及びフォワーディングを実行し、パケット検査を実行し、ポリシールールのユーザプレーン部分を施行し、パケットを合法的に傍受し(UP収集)、トラフィック使用量報告を実行し、ユーザプレーンのQoS処理を実行し(例えば、パケットフィルタリング、ゲーティング、UL/DLレート施行)、アップリンクトラフィック検証を実行し(例えば、SDFからQoSへのフローマッピング)、アップリンク及びダウンリンクにおけるトランスポートレベルパケットマーキングを実行し、ダウンリンクパケットバッファリング及びダウンリンクデータ通知トリガを実行し得る。UPF602は、データネットワークへのルーティングトラフィックフローをサポートするためのアップリンク分類子を含むことができる。DN603は、様々なネットワークオペレータサービス、インターネットアクセス、又はサードパーティサービスを表すことができる。DN603は、先に論じたアプリケーションサーバ430を含んでもよく、又はこれと同様であってもよい。UPF602は、SMF624とUPF602との間のN4基準点を介してSMF624と相互作用することができる。
AUSF622は、UE601の認証のためのデータを記憶し、認証関連機能を処理してもよい。AUSF622は、様々なアクセスタイプのための一般的な認証フレームワークを容易にすることができる。AUSF622は、AMF621とAUSF622との間のN12基準点を介してAMF621と通信することができ、UDM627とAUSF622との間のN13基準点を介してUDM627と通信することができる。加えて、AUSF622は、Nausfサービスベースのインタフェースを提示し得る。
AMF621は、登録管理(例えば、UE601を登録するためなど)、接続管理、到達可能性管理、モビリティ管理、及びAMF関連イベントの合法的傍受、並びにアクセス認証及び認可に関与してもよい。AMF621は、AMF621とSMF624との間のN11基準点の終端点であり得る。AMF621は、UE601とSMF624との間のSMメッセージのトランスポートを提供し、SMメッセージをルーティングするための透過的プロキシとして機能することができる。AMF621はまた、UE601とSMSF(図6には示されず)との間のSMSメッセージのためのトランスポートを提供し得る。AMF621は、AUSF622及びUE601との相互作用と、UE601の認証プロセスの結果として確立された中間鍵の受信とを含んでもよい、SEAFとして機能してもよい。USIMベースの認証が使用される場合、AMF621は、AUSF622からセキュリティ材料を取得してもよい。AMF621はまた、アクセスネットワーク固有の鍵を導出するために使用するSEAからの鍵を受信する、SCM機能を含んでもよい。更に、AMF621は、RAN CPインタフェースの終端点であってもよく、(R)AN610とAMF621との間のN2基準点を含むか又はそれであってもよく、AMF621は、NAS(N1)シグナリングの終端点であることができ、NAS暗号化及び完全性保護を行うことができる。
AMF621はまた、N3 IWFインタフェースを介して、UE601とのNASシグナリングをサポートすることができる。N3IWFを使用して、信頼できないエンティティへのアクセスを提供することができる。N3IWFは、制御プレーンの(R)AN610とAMF621との間のN2インタフェースの終端点であってもよく、ユーザプレーンの(R)AN610とUPF602との間のN3基準点の終端点であってもよい。従って、AMF621は、PDUセッション及びQoSのためにSMF624及びAMF621からのN2シグナリングを処理し、IPsec及びN3トンネリングのためにパケットをカプセル化/カプセル化解除し、アップリンクでN3ユーザプレーンパケットをマークし、N2を介して受信されたそのようなマーキングに関連するQoS要件を考慮して、N3パケットマーキングに対応するQoSを施行することができる。N3IWFはまた、UE601とAMF621との間のN1基準点を介してUE601とAMF621との間のアップリンク及びダウンリンク制御プレーンNASシグナリングを中継し、UE601とUPF602との間のアップリンク及びダウンリンクユーザプレーンパケットを中継することができる。N3IWFはまた、UE601とのIPsecトンネル確立のためのメカニズムを提供する。AMF621は、Namfサービスベースのインタフェースを提示することができ、2つのAMF621間のN14基準点、及びAMF621と5G-EIR(図6には示されず)との間のN17基準点の終端点とすることができる。
UE601は、ネットワークサービスを受信するためにAMF621に登録する必要があり得る。RMは、UE601をネットワーク(例えば、AMF621)に登録又は登録解除し、ネットワーク(例えば、AMF621)内のUEコンテキストを確立するために使用される。UE601は、RM-REGISTERED状態又はRM-DEREGISTERED状態で動作し得る。RM-DEREGISTERED状態では、UE601はネットワークに登録されず、AMF621内のUEコンテキストは、UE601がAMF621によって到達可能ではないように、UE601に対する有効な位置又はルーティング情報を保持しない。RM-REGISTERED状態では、UE601はネットワークに登録され、AMF621内のUEコンテキストは、UE601がAMF621によって到達可能であるように、UE601に対する有効な位置又はルーティング情報を保持することができる。RM-REGISTERED状態では、UE601は、とりわけ、モビリティ登録更新手順を実行し、(例えば、UE601がまだアクティブであることをネットワークに通知するために)周期的更新タイマの満了によってトリガされる周期的登録更新手順を実行し、UE能力情報を更新するか、又はネットワークとプロトコルパラメータを再ネゴシエートするために登録更新手順を実行することができる。
AMF621は、UE601に対する1つ以上のRMコンテキストを記憶することができ、各RMコンテキストは、ネットワークへの特定のアクセスに関連付けられる。RMコンテキストは、とりわけ、アクセスタイプごとの登録状態及び定期更新タイマを示すか又は記憶するデータ構造、データベースオブジェクトなどであってもよい。AMF621はまた、前述した(E)MMコンテキストと同じ又は同様であり得る5GC MMコンテキストを格納し得る。様々な実施形態では、AMF621は、関連付けられたMMコンテキスト又はRMコンテキストにUE601のCEモードB制限パラメータを格納することができる。AMF621はまた、必要に応じて、UEコンテキスト(及び/又はMM/RMコンテキスト)に既に格納されているUEの使用設定パラメータから値を導出することができる。
CMは、N1インタフェースを介してUE601とAMF621との間のシグナリング接続を確立及び解放するために使用され得る。シグナリング接続は、UE601とCN620との間のNASシグナリング交換を可能にするために使用され、UEとAN(例えば、非3GPPアクセスのためのRRC接続又はUE-N3IWF接続)との間のシグナリング接続と、AN(例えば、RAN610)とAMF621との間のUE601のためのN2接続の両方を含む。UE601は、CM-IDLEモード又はCM-CONNECTEDモードの2つのCM状態のいずれかで動作し得る。UE601がCM-IDLE状態/モードで動作しているとき、UE601は、N1インタフェースを介してAMF621とのNASシグナリング接続を確立されていなくてもよく、UE601のための(R)AN610シグナリング接続(例えば、N2及び/又はN3接続)があってもよい。UE601がCM-CONNECTED状態/モードで動作しているとき、UE601は、N1インタフェースを介してAMF621との確立されたNASシグナリング接続を有していてもよく、UE601のための(R)AN610シグナリング接続(例えば、N2及び/又はN3接続)があってもよい。(R)AN610とAMF621との間のN2接続の確立は、UE601をCM-IDLEモードからCM-CONNECTEDモードに遷移させることができ、UE601は、(R)AN610とAMF621との間のN2シグナリングが解放されたときにCM-CONNECTEDモードからCM-IDLEモードに遷移することができる。
SMF624は、SM(例えば、UPFとANノードとの間のトンネル維持を含む、セッションの確立、変更、及び解放)、UE IPアドレス割り当て及び管理(任意選択的な認可を含む)、UP機能の選択及び制御、適切な宛先にトラフィックをルーティングするために、UPFでトラフィックステアリングを構成すること、ポリシー制御機能に向かうインタフェースの終了、ポリシー施行及びQoSの一部の制御、(SMイベント及びLIシステムへのインタフェースの)合法的傍受、NASメッセージのSM部の終了、ダウンリンクデータ通知、N2上でAMFを介してANに送信されたAN固有SM情報の開始、及びセッションのSSCモードの決定に関与してもよい。SMは、PDUセッションの管理を指すことができ、PDUセッション又は「セッション」は、UE601とデータネットワーク名(DNN)によって識別されるデータネットワーク(DN)603との間のPDUの交換を行う又は可能にするPDU接続性サービスを指すことができる。PDUセッションは、UE601の要求時に確立され、UE601及び5GC620の要求に応じて変更され、UE601とSMF624との間のN1基準点を介して交換されたNAS SMシグナリングを使用して、UE601及び5GC620の要求時に解放され得る。5GC620は、アプリケーションサーバからの要求に応じて、UE601における特定のアプリケーションをトリガし得る。トリガメッセージの受信に応答して、UE601は、トリガメッセージ(又はトリガメッセージの関連部分/情報)をUE601内の1つ以上の識別されたアプリケーションに渡すことができる。UE601内の識別されたアプリケーションは、特定のDNNへのPDUセッションを確立することができる。SMF624は、UE601の要求がUE601に関連付けられたユーザサブスクリプション情報に準拠しているかどうかをチェックすることができる。これに関して、SMF624は、UDM627からSMF624レベルサブスクリプションデータに関する更新通知を取得すること及び/又は受信するように要求することができる。
SMF624は、以下のローミング機能を含むことができる:QoS SLA(VPLMN)を適用するためのローカル施行処理、課金データ収集及び課金インタフェース(VPLMN)、(SMイベント及びLIシステムへのインタフェースのVPLMN内の)合法的傍受、外部DNによるPDUセッションの認可/認証のためのシグナリングの伝送のための外部DNとの相互作用のためのサポートを含み得る。2つのSMF624間のN16基準点がシステム600に含まれてもよく、これは、ローミングシナリオにおける在圏ネットワーク内の別のSMF624とホームネットワーク内のSMF624との間であってもよい。加えて、SMF624は、Nsmfサービスベースのインタフェースを提示し得る。
NEF623は、サードパーティ、内部公開/再公開、アプリケーション機能(例えば、AF628)、エッジコンピューティング又はフォッグコンピューティングシステムなどのための、3GPPネットワーク機能によって提供されるサービス及び能力を安全に公開するための手段を提供してもよい。そのような実施形態では、NEF623は、AFを認証、認可、及び/又は抑制することができる。NEF623はまた、AF628と交換された情報、及び内部ネットワーク機能と交換された情報を変換してもよい。例えば、NEF623は、AFサービス識別子と内部5GC情報との間で変換することができる。NEF623はまた、他のネットワーク機能の公開された能力に基づいて、他のネットワーク機能(NF)から情報を受信してもよい。この情報は、構造化されたデータとしてNEF623に、又は標準化されたインタフェースを使用してデータストレージNFで記憶されてもよい。次いで、記憶された情報は、NEF623によって他のNF及びAFに再公開され、かつ/又は分析などの他の目的に使用されることが可能である。更に、NEF623は、Nnefサービスベースのインタフェースを提示することができる。
NRF625は、サービス発見機能をサポートし、NFインスタンスからNF発見要求を受信し、NFインスタンスに発見されたNFインスタンスの情報を提供することができる。NRF625はまた、利用可能なNFインスタンス及びそれらのサポートされたサービスの情報を維持する。本明細書で使用される場合、用語「インスタンス」、「インスタンス化」などは、インスタンスの作成を指すことができ、「インスタンス」は、例えば、プログラムコードの実行中に発生し得るオブジェクトの具体的な発生を指すことができる。加えて、NRF625は、Nnrfサービスベースのインタフェースを提示し得る。
PCF626は、制御プレーン機能(単数又は複数)にポリシールールを提供して、それらを施行することができ、また、統合ポリシーフレームワークをサポートして、ネットワーク挙動を統制することができる。PCF626はまた、UDM627のUDRにおけるポリシー決定に関連する加入情報にアクセスするためにFEを実装してもよい。PCF626は、PCF626とAMF621との間のN15基準点を介してAMF621と通信することができ、ローミングシナリオの場合、在圏ネットワーク内のPCF626ち、AMF621とを含むことができる。PCF626は、PCF626とAF628との間のN5基準点を介してAF628と通信することができ、PCF626とSMF624との間のN7基準点を介してSMF624と通信することがある。システム600及び/又はCN620はまた、(ホームネットワーク内の)PCF626と在圏ネットワーク内のPCF626との間にN24基準点を含むことができる。更に、PCF626は、Npcfサービスベースのインタフェースを提示することができる。
UDM627は、加入関連情報を処理して、ネットワークエンティティの通信セッションの処理をサポートすることができ、UE601の加入データを記憶することができる。例えば、加入データは、UDM627とAMFとの間のN8基準点を介してUDM627とAMF621との間で通信され得る。UDM627は、アプリケーションFE及びUDRの2つの部分を含むことができる(FE及びUDRは図6には示されず)。UDRは、UDM627及びPCF626の加入データ及びポリシーデータ、及び/又はNEF623の公開及びアプリケーションデータ(アプリケーション検出のためのPFD、複数のUE601のためのアプリケーション要求情報を含む)のための構造化データを記憶することができる。Nudrサービスベースのインタフェースは、UDM627、PCF626、及びNEF623が記憶されたデータの特定のセットにアクセスすること、UDRの関連するデータ変更の通知の読み取り、更新(例えば、追加、変更)、削除、及びサブスクライブを行うことを可能にするために、UDR221によって提示され得る。UDMは、クレデンシャル、位置管理、加入管理などの処理を担当するUDM FEを含んでもよい。いくつかの異なるフロントエンドは、異なるトランザクションにおいて同じユーザにサービスを提供することができる。UDM-FEは、UDRに格納されたサブスクリプション情報にアクセスし、認可クレデンシャル処理、ユーザ識別処理、アクセス許可、登録/モビリティ管理、及びサブスクリプション管理を実行する。UDRは、UDM627とSMF624との間のN10基準点を介してSMF624と相互作用することができる。UDM627はまた、SMS管理をサポートすることができ、SMS-FEは、前述したものと同様のアプリケーションロジックを実装する。加えて、UDM627は、Nudmサービスベースのインタフェースを提示し得る。
AF628は、トラフィックルーティングにアプリケーションの影響を与え、NCEへのアクセスを提供し、ポリシー制御のためにポリシーフレームワークと対話することができる。NCEは、エッジコンピューティング実装に使用することができる、NEF623を介して5GC620及びAF628が互いに情報を提供することを可能にする機構であってもよい。そのような実装形態では、ネットワークオペレータ及びサードパーティサービスは、UE601のアタッチのアクセスポイントに近接してホストされて、トランスポートネットワーク上の低減されたエンドツーエンド待ち時間及び負荷によって効率的なサービス配信を達成することができる。エッジコンピューティング実装では、5GCは、UE601に近接したUPF602を選択し、N6インタフェースを介してUPF602からDN603へのトラフィックステアリングを実行することができる。これは、UE加入データ、UE位置、及びAF628によって提供される情報に基づいてもよい。このようにして、AF628は、UPF(再)選択及びトラフィックルーティングに影響を及ぼすことができる。オペレータの配備に基づいて、AF628が信頼されたエンティティであると見なされるとき、ネットワークオペレータは、AF628が関連するNFと直接相互作用することを許可することができる。更に、AF628は、Nafサービスベースのインタフェースを提示することができる。
NSSF629は、UE601にサービスを提供するネットワークスライスインスタンスのセットを選択することができる。NSSF629は、必要に応じて、許可されたNSSAI及びサブスクライブされたS-NSSAIへのマッピングを決定することもできる。NSSF629はまた、好適な構成に基づいて、場合によってはNRF625に問い合わせることによって、UE601にサービス提供するために使用されるAMFセット、又は候補AMF(複数可)621のリストを決定することもできる。UE601に対するネットワークスライスインスタンスのセットの選択は、AMF621によってトリガされてもよく、このAMF621には、その変化につながり得るNSSF629と相互作用することによってUE601が登録される。NSSF629は、AMF621とNSSF629との間のN22基準点を介してAMF621と相互作用することができ、N31基準点(図6には示されていない)を介して在圏ネットワーク内の別のNSSF629と通信することができる。更に、NSSF629は、Nnssfサービスベースのインタフェースを提示することができる。
前述したように、CN620は、SMS加入チェック及び検証に関与して、UE601とSMS-GMSC/IWMSC/SMSルータなどの他のエンティティとの間のSMメッセージを中継することができる、SMSFを含んでもよい。SMSはまた、UE601がSMS転送に利用可能である通知手順のために、AMF621及びUDM627と相互作用する(例えば、UEに到達不可能なフラグを設定し、UE601がSMSに利用可能である場合にUDM627に通知する)ことができる。
CN120はまた、データストレージシステム/アーキテクチャ、5G-EIR、SEPPなど、図6に示されていない他の要素を含んでもよい。データストレージシステムは、SDSF、UDSFなどを含むことができる。任意のNFは、任意のNFとUDSFとの間のN18基準点(図6には示されていない)を介して、非構造化データをUDSF(例えば、UEコンテキスト)に格納し、UDSFから取り出すことができる。個々のNFは、各非構造化データを格納するためにUDSFを共有することができ、又は個々のNFはそれぞれ、個々のNF又はその近くに位置する独自のUDSFを有することができる。更に、UDSFは、Nudsfサービスベースのインタフェース(図6には示されず)を提示することができる。5G-EIRは、特定の機器/エンティティがネットワークからブラックリストに記載されているかどうかを判定するためにPEIのステータスをチェックするNFであってもよく、SEPPは、PLMN間制御プレーンインタフェース上でトポロジ隠蔽、メッセージフィルタリング、及びポリシングを実行する非透過プロキシであってもよい。
更に、NF内のNFサービス間には、より多くの参照点及び/又はサービスベースのインタフェースが存在してもよい。しかしながら、これらのインタフェース及び基準点は、明確にするために図6から省略されている。一例では、CN620は、CN620とCN520との間のインターワーキングを可能にするために、MME(例えば、MME521)とAMF621との間のCN間インタフェースである、Nxインタフェースを含むことができる。他の例示的なインタフェース/基準点は、5G-EIRによって提示されるN5g-EIRサービスベースのインタフェースと、訪問先ネットワーク内のNRFとホームネットワーク内のNRFとの間のN27基準点と、訪問先ネットワーク内のNSSFとホームネットワーク内のNSSFとの間のN31参照点とを含むことができる。
図7は、様々な実施形態によるインフラ設備700の一例を示す。インフラストラクチャ設備700(又は「システム700」)は、基地局、無線ヘッド、前に図示し説明したRANノード411及び/又はAP406などのRANノード、アプリケーションサーバ430、及び/又は本明細書で説明した任意の他のエレメント/デバイスとして実装することができる。他の例では、システム700は、UEにおいて、又はUEによって実装され得る。
システム700は、アプリケーション回路705と、ベースバンド回路710と、1つ以上の無線フロントエンドモジュール(RFEM)715と、メモリ回路720と、電力管理集積回路(PMIC)725と、電力T回路730と、ネットワークコントローラ回路735と、ネットワークインタフェースコネクタ740と、衛星測位回路745と、ユーザインタフェース750とを含む。いくつかの実施形態では、デバイス700は、例えば、メモリ/ストレージ、ディスプレイ、カメラ、センサ、又は入力/出力(I/O)インタフェースなどの追加の要素を含んでもよい。他の実施形態では、以下で説明される構成要素は、2つ以上のデバイスに含まれてもよい。例えば、当該回路は、CRAN、vBBU、又は他の同様の実装のために2つ以上のデバイスに別々に含まれてもよい。
アプリケーション回路705は、これらに限られるわけではないが、1つ以上のプロセッサ(又はプロセッサコア)、キャッシュメモリ、並びに低ドロップアウト電圧レギュレータ(LDO)、割り込みコントローラ、SPI、I2C、又はユニバーサルプログラマブルシリアルインタフェースモジュールなどのシリアルインタフェース、リアルタイムクロック(RTC)、インタバル及びウォッチドッグタイマを含むタイマカウンタ、汎用入出力(I/O又はIO)、Secure Digital(SD)マルチメディアカード(MMC)などのメモリカードコントローラ、ユニバーサルシリアルバス(USB)インタフェース、モバイル産業プロセッサインタフェース(MIPI)インタフェース、及びJoint Test Access Group(JTAG)テストアクセスポートのうちの1つ以上などの回路を含む。アプリケーション回路705のプロセッサ(又はコア)は、メモリ/ストレージ要素に結合されてもよいし、メモリ/ストレージ要素を含んでもよく、様々なアプリケーション又はオペレーティングシステムをシステム700上で実行することを可能にするために、メモリ/ストレージに格納された命令を実行するように構成されてもよい。いくつかの実装形態では、メモリ/記憶素子はオンチップメモリ回路であってもよく、これは、DRAM、SRAM、EPROM、EEPROM、フラッシュメモリ、ソリッドステートメモリ、及び/又は本明細書で説明されるような任意の他のタイプのメモリデバイス技術などの任意の適切な揮発性及び/又は不揮発性メモリを含んでもよい。
アプリケーション回路705のプロセッサは、例えば、1つ以上のプロセッサコア(CPU)、1つ以上のアプリケーションプロセッサ、1つ以上のグラフィック処理ユニット(GPU)、1つ以上の縮小命令セットコンピューティング(RISC)プロセッサ、1つ以上のAcorn RISCマシン(ARM)プロセッサ、1つ以上の複合命令セットコンピューティング(CISC)プロセッサ、1つ以上のデジタル信号プロセッサ(DSP)、1つ以上のFPGA、1つ以上のPLD、1つ以上のASIC、1つ以上のマイクロプロセッサ若しくはコントローラ、又はこれらの任意の好適な組み合わせを含むことができる。いくつかの実施形態では、アプリケーション回路705は、本明細書の様々な実施形態に従って動作する専用プロセッサ/コントローラを含んでもよく、又は専用プロセッサ/コントローラであってもよい。例として、アプリケーション回路705のプロセッサは、1つ以上のIntel Pentium(登録商標)、Core(登録商標)、又はXeon(登録商標)プロセッサ、Advanced Micro Devices(AMD)Ryzen(登録商標)プロセッサ、Accelerated Processing Unit(APU)、又はEpyc(登録商標)プロセッサ、プロセッサのARM Cortex-AファミリなどのARM Holdings、Ltdによって提供されるARMベースのプロセッサ、及び、Cavium(商標)Inc.によって提供されるThunderX2(登録商標)、MIPS Warrior又はP-クラスプロセッサなどのMIPS Technologies,Inc.から提供されるMIPSベースの設計などを含み得る。いくつかの実施形態では、システム700は、アプリケーション回路705を利用しなくてもよく、代わりに、例えば、EPC又は5GCから受信したIPデータを処理するための専用プロセッサ/コントローラを含んでもよい。
いくつかの実装形態では、アプリケーション回路705は、マイクロプロセッサ、プログラマブル処理デバイスなどであり得る、1つ以上のハードウェアアクセラレータを含むことができる。1つ以上のハードウェアアクセラレータは、例えば、コンピュータビジョン(CV)及び/又はディープラーニング(DL)アクセラレータを含むことができる。例として、プログラマブル処理デバイスは、フィールドプログラマブルゲートアレイ(FPGA)などの1つ以上のフィールドプログラマブルデバイス(FPD)、複合PLD(CPLD)、高容量PLD(HCPLD)などのプログラマブルロジックデバイス(PLD)、構造化ASICなどのASIC、プログラマブルSoC(PSoC)、などの回路を含み得る。そのような実装形態では、アプリケーション回路705の回路は、論理ブロック又は論理ファブリック、及び本明細書で説明される様々な実装形態のプロシージャ、メソッド、関数などの様々な機能を実行するようにプログラムされ得る他の相互接続されたリソースを含むことができる。そのような実施形態では、アプリケーション回路705の回路は、ルックアップテーブル(LUT)などに論理ブロック、論理ファブリック、データなどを記憶するために使用されるメモリセル(例えば、消去可能プログラマブル読み出し専用メモリ(EPROM)、電気的消去可能プログラマブル読み出し専用メモリ(EEPROM)、フラッシュメモリ、スタティックメモリ(例えば、スタティックランダムアクセスメモリ(SRAM)、アンチヒューズなど))を含むことができる。
ベースバンド回路710は、例えば、1つ以上の集積回路を含むはんだ付け基板、主回路基板にはんだ付けされた単一のパッケージ集積回路、又は2つ以上の集積回路を含むマルチチップモジュールとして実装されてもよい。ベースバンド回路710の様々なハードウェア電子要素は、図9に関して以下に説明される。
ユーザインタフェース回路750は、システム700とのユーザ相互作用を可能にするように設計された1つ以上のユーザインタフェース、又はシステム700との周辺構成要素相互作用を可能にするように設計された周辺構成要素インタフェースを含むことができる。ユーザインタフェースは、1つ以上の物理又は仮想ボタン(例えば、リセットボタン)、1つ以上のインジケータ(例えば、発光ダイオード(LED))、物理キーボード又はキーパッド、マウス、タッチパッド、タッチスクリーン、スピーカ又は他のオーディオ発光デバイス、マイクロフォン、プリンタ、スキャナ、ヘッドセット、ディスプレイスクリーン又はディスプレイデバイスなどを含むことができるが、これらに限定されない。周辺構成要素インタフェースは、不揮発性メモリポート、ユニバーサルシリアルバス(USB)ポート、オーディオジャック、電源インタフェースなどを含むことができるが、これらに限定されない。
無線フロントエンドモジュール(RFEM)715は、ミリ波(mmWave)RFEM及び1つ以上のサブミリ波無線周波数集積回路(RFIC)を含んでもよい。いくつかの実装形態では、1つ以上のサブミリ波RFICは、ミリ波RFEMから物理的に分離されてもよい。RFICは、1つ以上のアンテナ又はアンテナアレイ(例えば、以下の図9のアンテナアレイ911を参照)への接続を含むことができ、RFEMは、複数のアンテナに接続されることができる。代替実装形態では、ミリ波及びサブミリ波無線機能の両方は、ミリ波アンテナ及びサブミリ波の両方を組み込んだ同じ物理RFEM715内に実装されてもよい。
メモリ回路720は、ダイナミックランダムアクセスメモリ(DRAM)及び/又は同期ダイナミックランダムアクセスメモリ(SDRAM)を含む揮発性メモリ、並びに高速電気的消去可能メモリ(一般にフラッシュメモリと呼ばれる)、相変化ランダムアクセスメモリ(PRAM)、磁気抵抗ランダムアクセスメモリ(MRAM)などを含む不揮発性メモリ(NVM)のうちの1つ以上を含むことができ、Intel(登録商標)及びMicron(登録商標)の三次元(3D)クロスポイント(XPOINT)メモリを組み込むことができる。メモリ回路720は、はんだ付けパッケージ集積回路、ソケットメモリモジュール、及びプラグインメモリカードのうちの1つ以上として実装されてもよい。
PMIC725は、電圧レギュレータ、サージ保護器、電力アラーム検出回路、及びバッテリ又はコンデンサなどの1つ以上の予備電源を含んでもよい。電力アラーム検出回路は、ブラウンアウト(不足電圧)及びサージ(過電圧)状態のうちの1つ以上を検出してもよい。電力T回路730は、ネットワークケーブルから引き出される電力を供給して、単一のケーブルを使用してインフラストラクチャ設備700に電力供給及びデータ接続性の両方を提供することができる。
ネットワークコントローラ回路735は、イーサネット、GREトンネル上のイーサネット、マルチプロトコルラベルスイッチング(MPLS)上のイーサネット、又は何らかの他の好適なプロトコルなどの標準的なネットワークインタフェースプロトコルを使用してネットワークへの接続性を提供することができる。ネットワーク接続性は、電気(一般に「銅配線」と呼ばれる)、光、又は無線であり得る物理接続を使用して、ネットワークインタフェースコネクタ740を介してインフラストラクチャ設備700に/から提供され得る。ネットワークコントローラ回路735は、前述のプロトコルのうちの1つ以上を使用して通信するための1つ以上の専用プロセッサ及び/又はFPGAを含むことができる。いくつかの実装形態では、ネットワークコントローラ回路735は、同じ又は異なるプロトコルを使用して他のネットワークへの接続性を提供するための複数のコントローラを含むことができる。
測位回路745は、全地球航法衛星システム(GNSS)の測位ネットワークによって送信/ブロードキャストされた信号を受信及び復号するための回路を含む。航法衛星コンスタレーション(又はGNSS)の例には、米国の全地球測位システム(GPS)、ロシアの全地球航法システム(GLONASS)、欧州連合のガリレオシステム、中国の北斗航法衛星システム、地域航法システム又はGNSS補強システム(例えば、Indian Constellation(NAVIC)によるナビゲーション、日本の準天頂衛星システム(QZSS)、フランスのDoppler Orbitography and Radio positioning Integrated by Satellite(DORIS)など)などが含まれる。測位回路745は、航法衛星コンスタレーションノードなどの測位ネットワークの構成要素と通信するための様々なハードウェアエレメント(例えば、OTA通信を容易にするために、スイッチ、フィルタ、増幅器、アンテナエレメントなどのハードウェアデバイスを含む)を備える。いくつかの実施形態では、測位回路745は、マスタタイミングクロックを使用してGNSS支援なしで位置追跡/推定を実行するためのMicro-Technology for Positioning,Navigation,and Timing(Micro-PNT)ICを含むことができる。測位回路745はまた、測位ネットワークのノード及び構成要素と通信するために、ベースバンド回路710及び/又はRFEM715の一部であってもよく、又はそれらと相互作用してもよい。測位回路745はまた、位置データ及び/又は時間データをアプリケーション回路705に提供することができ、アプリケーション回路は、データを使用して動作を様々なインフラストラクチャ(例えば、RANノード411など)などと同期させることができる。
図7に示す構成要素は、業界標準アーキテクチャ(ISA)、拡張ISA(EISA)、周辺構成要素相互接続(PCI)、拡張周辺構成要素相互接続(PCIx)、PCIエクスプレス(PCIe)、又は任意の数の他の技術などの任意の数のバス及び/又は相互接続(IX)技術を含むことができるインタフェース回路を使用して互いに通信することができる。バス/IXは、例えば、SoCベースのシステムで使用される独自のバスであってもよい。とりわけ、I2Cインタフェース、SPIインタフェース、ポイントツーポイントインタフェース、及び電力バスなどの他のバス/IXシステムが含まれてもよい。
図8は、様々な実施形態によるプラットフォーム800(又は「デバイス800」)の一例を示す。実施形態では、プラットフォーム800は、UE401、402、501、アプリケーションサーバ430、及び/又は本明細書で説明される任意の他のエレメント/デバイスとしての使用に適し得る。プラットフォーム800は、実施例に示される構成要素の任意の組み合わせを含んでもよい。プラットフォーム800の構成要素は、コンピュータプラットフォーム800に適合された集積回路(IC)、その一部、個別の電子デバイス、又は他のモジュール、ロジック、ハードウェア、ソフトウェア、ファームウェア、又はそれらの組み合わせとして、或いはより大きなシステムのシャーシ内に組み込まれる構成要素として実装されてもよい。図8のブロック図は、コンピュータプラットフォーム800の構成要素の高レベル図を示すことを意図している。しかしながら、示されている構成要素のいくつかは省略されてもよく、追加の構成要素が存在してもよく、示されている構成要素の異なる配置が他の実施態様で発生してもよい。
アプリケーション回路805は、これらに限られるわけではないが、1つ以上のプロセッサ(又はプロセッサコア)、キャッシュメモリ、並びに1つ以上のLDO、割り込みコントローラ、SPI、I2C、又はユニバーサルプログラマブルシリアルインタフェースモジュールなどのシリアルインタフェース、RTC、インタバル及びウォッチドッグタイマを含むタイマカウンタ、汎用I/O、SD MMCなどのメモリカードコントローラ、USBインタフェース、MIPIインタフェース、及びJTAGテストアクセスポートなどの回路を含む。アプリケーション回路805のプロセッサ(又はコア)は、メモリ/ストレージ要素に結合されてもよいし、メモリ/ストレージ要素を含んでもよく、様々なアプリケーション又はオペレーティングシステムをシステム800上で実行することを可能にするために、メモリ/ストレージに格納された命令を実行するように構成されてもよい。いくつかの実装形態では、メモリ/記憶素子はオンチップメモリ回路であってもよく、これは、DRAM、SRAM、EPROM、EEPROM、フラッシュメモリ、ソリッドステートメモリ、及び/又は本明細書で説明されるような任意の他のタイプのメモリデバイス技術などの任意の適切な揮発性及び/又は不揮発性メモリを含んでもよい。
アプリケーション回路705のプロセッサは、例えば、1つ以上のプロセッサコア、1つ以上のアプリケーションプロセッサ、1つ以上のGPU、1つ以上のRISCプロセッサ、1つ以上のARMプロセッサ、1つ以上のCISCプロセッサ、1つ以上のDSP、1つ以上のFPGA、1つ以上のPLD、1つ以上のASIC、1つ以上のマイクロプロセッサ若しくはコントローラ、マルチスレッドプロセッサ、超低電圧プロセッサ、組み込みプロセッサ、いくつかの他の既知の処理エレメント、又はこれらの任意の好適な組み合わせを含み得る。いくつかの実施形態では、アプリケーション回路705は、本明細書の様々な実施形態に従って動作する専用プロセッサ/コントローラを含んでもよく、又は専用プロセッサ/コントローラであってもよい。
例として、アプリケーション回路805のプロセッサは、Quark(商標)、Atom(商標)、i3、i5、i7、若しくはMCUクラスのプロセッサなどのIntel(登録商標)Architecture Core(商標)ベースのプロセッサ、又はカリフォルニア州サンタクララのIntel(登録商標)Corporationから入手可能な別のそのようなプロセッサを含むことができる。アプリケーション回路805のプロセッサはまた、Advanced Micro Devices(AMD)Ryzen(登録商標)プロセッサ又はAccelerated Processing Units(APU)、Apple(登録商標)Inc.製のA5-A9プロセッサ、Qualcomm(登録商標)Technologies,Inc.のSnapdragon(商標)プロセッサ、Texas Instruments,Inc.(登録商標)Open Multimedia Applications Platform(OMAP)(商標)プロセッサ、MIPS Warrior M-クラス、Warrior I-クラス及びWarrior P-クラスプロセッサなどのMIPS Technologies,Inc.からのMIPSベースの設計、ARM Cortex-A、Cortex-R及びプロセッサのCortex-MファミリなどのARM Holdingsから認可されたARMベースの設計、又は同様のもののうちの1つ以上である。いくつかの実装形態では、アプリケーション回路805は、アプリケーション回路805及び他の構成要素が単一の集積回路、又はIntel(登録商標)Corporation製のEdison(商標)若しくはGalileo(商標)SoCボードなどの単一のパッケージに形成されるシステムオンチップ(SoC)の一部であってもよい。
追加的又は代替的に、アプリケーション回路805は、これらに限定されるものではないが、FPGAなどの1つ以上のフィールドプログラマブルデバイス(FPD)、複合PLD(CPLD)、高容量PLD(HCPLD)などのプログラマブルロジックデバイス(PLD)、構造化ASICなどのASIC、プログラマブルSoC(PSoC)、などの回路を含み得る。そのような実施形態では、アプリケーション回路805の回路は、論理ブロック又は論理ファブリック、及び本明細書で説明される様々な実施形態のプロシージャ、メソッド、関数などの様々な機能を実行するようにプログラムされ得る他の相互接続されたリソースを含むことができる。そのような実施形態では、アプリケーション回路805の回路は、ルックアップテーブル(LUT)などに論理ブロック、論理ファブリック、データなどを記憶するために使用されるメモリセル(例えば、消去可能プログラマブル読み出し専用メモリ(EPROM)、電気的消去可能プログラマブル読み出し専用メモリ(EEPROM)、フラッシュメモリ、スタティックメモリ(例えば、スタティックランダムアクセスメモリ(SRAM)、アンチヒューズなど))を含むことができる。
ベースバンド回路810は、例えば、1つ以上の集積回路を含むはんだ付け基板、主回路基板にはんだ付けされた単一のパッケージ集積回路、又は2つ以上の集積回路を含むマルチチップモジュールとして実装されてもよい。ベースバンド回路810の様々なハードウェア電子要素は、図9に関して以下に説明される。
RFEM815は、ミリ波(mmWave)RFEM及び1つ以上のサブミリ波無線周波数集積回路(RFIC)を含んでもよい。いくつかの実装形態では、1つ以上のサブミリ波RFICは、ミリ波RFEMから物理的に分離されてもよい。RFICは、1つ以上のアンテナ又はアンテナアレイ(例えば、以下の図9のアンテナアレイ911を参照)への接続を含むことができ、RFEMは、複数のアンテナに接続されることができる。代替実装形態では、ミリ波及びサブミリ波無線機能の両方は、ミリ波アンテナ及びサブミリ波の両方を組み込んだ同じ物理RFEM815内に実装されてもよい。
メモリ回路820は、所与の量のシステムメモリを提供するために使用される任意の数及び種類のメモリデバイスを含み得る。例として、メモリ回路820は、ランダムアクセスメモリ(RAM)、ダイナミックRAM(DRAM)及び/又は同期ダイナミックRAM(SDRAM)を含む揮発性メモリ、並びに高速電気的消去可能メモリ(一般にフラッシュメモリと呼ばれる)、相変化ランダムアクセスメモリ(PRAM)、磁気抵抗ランダムアクセスメモリ(MRAM)などを含む不揮発性メモリ(NVM)のうちの1つ以上を含むことができる。メモリ回路820は、Joint Electron Devices Engineering Council(JEDEC)の低電力ダブルデータレート(LPDDR)ベースの設計、例えばLPDDR2、LPDDR3、LPDDR4などに従って開発されてもよい。メモリ回路820は、はんだ付けパッケージ集積回路、シングルダイパッケージ(SDP)、デュアルダイパッケージ(DDP)又はクワッドダイパッケージ(Q17P)、ソケット状メモリモジュール、マイクロDIMM又はミニDIMMを含むデュアルインラインメモリモジュール(DIMM)、及び/又はボールグリッドアレイ(BGA)を介してマザーボード上にはんだ付けされたもののうちの1つ以上として実装されてもよい。低電力実装形態では、メモリ回路820は、アプリケーション回路805に関連付けられたオンダイメモリ又はレジスタであってもよい。データ、アプリケーション、オペレーティングシステムなどの情報の永続的記憶を提供するために、メモリ回路820は、とりわけ、ソリッドステートディスクドライブ(SSDD)、ハードディスクドライブ(HDD)、マイクロHDD、抵抗変化メモリ、相変化メモリ、ホログラフィックメモリ、又は化学メモリを含むことができる1つ以上の大容量記憶装置を含んでもよい。例えば、コンピュータプラットフォーム800は、Intel(登録商標)及びMicron(登録商標)からの3次元(3D)クロスポイント(XPOINT)メモリを組み込んでもよい。
取り外し可能なメモリ回路823は、ポータブルデータ記憶装置をプラットフォーム800と結合するために使用されるデバイス、回路、エンクロージャ/筐体、ポート又はレセプタクルなどを含んでもよい。これらのポータブルデータ記憶装置は、大量記憶目的のために使用することができ、例えば、フラッシュメモリカード(例えば、セキュアデジタル(SD)カード、microSDカード、xD画像カードなど)、及びUSBフラッシュドライブ、光ディスク、外部HDDなどを含んでもよい。
プラットフォーム800はまた、外部デバイスをプラットフォーム800と接続するために使用されるインタフェース回路(図示せず)を含んでもよい。インタフェース回路を介してプラットフォーム800に接続された外部デバイスは、センサ回路821及び電気機械構成要素(EMC)822、並びにリムーバブルメモリ回路823に結合された取り外し可能なメモリデバイスを含む。
センサ回路821は、その目的がその環境内でイベント又は変化を検出し、検出されたイベントに関する情報(センサデータ)を、他のデバイス、モジュール、サブシステムなどに送信することであるデバイス、モジュール、又はサブシステムを含む。このようなセンサの例は、とりわけ加速度計、ジャイロスコープ、及び/又は磁力計を含む慣性測定ユニット(IMU)を含む。3軸加速度計、3軸ジャイロスコープ、及び/又は磁力計を備える微小電気機械システム(MEMS)又はナノ電気機械システム(NEMS)、レベルセンサ、フローセンサ、温度センサ(例えば、サーミスタ)、圧力センサ、気圧センサ、重力計、高度計、画像キャプチャデバイス(例えば、カメラ又はレンズレス開口)、光検出測距(LiDAR)センサ、近接センサ(例えば、赤外線検出器など)、深度センサ、周囲光センサ、超音波トランシーバ、マイクロフォン又は他の同様の音声キャプチャデバイス、などを含む。
EMC822は、プラットフォーム800がその状態、位置、及び/又は向きを変更すること、又はメカニズム若しくは(サブ)システムを移動若しくは制御することを可能にすることを目的とするデバイス、モジュール、又はサブシステムを含む。更に、EMC822は、EMC822の現在の状態を示すために、メッセージ/信号を生成しプラットフォーム800の他の構成要素に送信するように構成されてもよい。EMC822の例には、1つ以上の電源スイッチ、電気機械式リレー(EMR)及び/又はソリッドステートリレー(SSR)を含むリレー、アクチュエータ(例えば、バルブアクチュエータなど)、可聴音発生装置、視覚的警告装置、モータ(例えば、DCモータ、ステッパモータなど)、車輪、スラスタ、プロペラ、爪、クランプ、フック、及び/又は他の同様の電気機械部品が含まれる。実施形態では、プラットフォーム800は、1つ以上のキャプチャされたイベント及び/又はサービスプロバイダ及び/又は様々なクライアントから受信した命令又は制御信号に基づいて、1つ以上のEMC822を動作させるように構成される。
いくつかの実装形態では、インタフェース回路は、プラットフォーム800を測位回路845と接続してもよい。測位回路845は、GNSSの測位ネットワークによって送信/ブロードキャストされた信号を受信及び復号するための回路を含む。航法衛星コンスタレーション(又はGNSS)の例には、米国のGPS、ロシアのGLONASS、欧州連合のガリレオシステム、中国の北斗航法衛星システム、地域航法システム又はGNSS補強システム(例えば、NAVIC、日本のQZSS、フランスのDORISなど)などが含まれる。測位回路845は、航法衛星コンスタレーションノードなどの測位ネットワークの構成要素と通信するための様々なハードウェアエレメント(例えば、OTA通信を容易にするために、スイッチ、フィルタ、増幅器、アンテナエレメントなどのハードウェアデバイスを含む)を備える。いくつかの実施形態では、測位回路845は、マスタタイミングクロックを使用してGNSS支援なしで位置追跡/推定を実行するためのMicro-PNT ICを含むことができる。測位回路845はまた、測位ネットワークのノード及び構成要素と通信するために、ベースバンド回路710及び/又はRFEM815の一部であってもよく、又はそれらと相互作用してもよい。測位回路845はまた、位置データ及び/又は時間データをアプリケーション回路805に提供することができ、アプリケーション回路は、データを使用して、ターンバイターンナビゲーションアプリケーションなどのために、様々なインフラストラクチャ(例えば、無線基地局)と動作を同期させることがある。
いくつかの実装形態では、インタフェース回路は、プラットフォーム800を近距離通信(NFC)回路840と接続してもよい。NFC回路840は、無線周波数識別(RFID)規格に基づいて非接触の短距離通信を提供するように構成されており、磁場誘導が、NFC回路840とプラットフォーム800の外部のNFC対応デバイス(例えば、「NFCタッチポイント」)との間の通信を可能にするために使用される。NFC回路840は、アンテナエレメントと結合されたNFCコントローラと、NFCコントローラと結合されたプロセッサとを備える。NFCコントローラは、NFCコントローラのファームウェア及びNFCスタックを実行することにより、NFC回路840にNFC機能を提供するチップ/ICであってもよい。NFCスタックは、NFCコントローラを制御するためにプロセッサによって実行されてもよく、NFCコントローラファームウェアは、近距離RF信号を放射するようにアンテナエレメントを制御するためにNFCコントローラによって実行されてもよい。RF信号は、パッシブNFCタグ(例えば、ステッカー又はリストバンドに埋め込まれたマイクロチップ)に電力を供給して、記憶されたデータをNFC回路840に送信するか、又は、NFC回路840と、プラットフォーム800に近接した別のアクティブNFCデバイス(例えば、スマートフォン又はNFC対応POS端末)との間のデータ転送を開始することができる。
ドライバ回路846は、プラットフォーム800に組み込まれた、プラットフォーム800に取り付けられた、又はそうでなければプラットフォーム800と通信可能に結合された特定のデバイスを制御するように動作するソフトウェア及びハードウェア要素を含むことができる。ドライバ回路846は、プラットフォーム800の他の構成要素が、プラットフォーム800内に存在するか、又はそれに接続され得る様々な入力/出力(I/O)装置と相互作用するか、又はそれらを制御することを可能にする個々のドライバを含むことができる。例えば、ドライバ回路846は、ディスプレイデバイスへのアクセスを制御及び許可するためのディスプレイドライバと、プラットフォーム800のタッチスクリーンインタフェースへのアクセスを制御及び許可するためのタッチスクリーンドライバと、センサ回路821のセンサ読み取り値を取得してセンサ回路821へのアクセスを制御及び許可するためのセンサドライバと、EMC822のアクチュエータ位置を取得し、及び/又はEMC822へのアクセスを制御及び許可するためのEMCドライバと、組み込みキャプチャデバイスへのアクセスを制御及び許可するためのカメラドライバと、1つ以上のオーディオ装置へのアクセスを制御及び許可するためのオーディオドライバとを含むことができる。
電力管理集積回路(PMIC)825(「電力管理回路825」とも呼ばれる)は、プラットフォーム800の様々な構成要素に供給される電力を管理することができる。具体的には、ベースバンド回路810に関して、PMIC825は、電源選択、電圧スケーリング、バッテリ充電、又はDC-DC変換を制御することができる。プラットフォーム800がバッテリ830によって給電可能である場合、例えば、デバイスがUE401、402、501に含まれている場合に、多くの場合、PMIC825が含まれてもよい。
いくつかの実施形態では、PMIC825は、プラットフォーム800の様々な省電力機構を制御するか、又はさもなければその一部とすることができる。例えば、プラットフォーム800がRRC_Connected状態にあって、トラフィックを間もなく受信することが予期されるのでRANノードに依然として接続されている場合、ある非アクティブ期間後、プラットフォームは、間欠受信モード(DRX)として知られる状態に入ることができる。この状態の間は、プラットフォーム800は、短時間電力を落とすことができ、それによって節電することができる。データトラフィック活動が長期間存在しない場合、プラットフォーム800は、RRC_Idle状態に遷移することができ、ネットワークから切断し、チャネル品質フィードバック、ハンドオーバなどの動作を実行しない。プラットフォーム800は、非常に低い電力状態になり、ページングを実行し、ここで再び周期的にウェイクアップしてネットワークをリスンし、次いで再びパワーダウンする。プラットフォーム800は、この状態でデータを受信しなくてもよい。データを受信するために、RRC_Connected状態に遷移しなければならない。付加的な省電力モードにより、ページング間隔より長期間(秒から数時間に及ぶ)、デバイスがネットワークを利用不可にすることを可能にしてもよい。この間、デバイスは、ネットワークに全く接続できず、完全に電力を落とすことができる。この間に送信されるどんなデータも、大きな遅延をもたらし、遅延が許容できるものと想定される。
バッテリ830は、プラットフォーム800に電力を供給することができるが、いくつかの例では、プラットフォーム800は、固定位置に配置されて取り付けられてもよく、送電網に結合された電源を有してもよい。バッテリ830は、リチウムイオンバッテリ、亜鉛空気バッテリ、アルミニウム空気バッテリ、リチウム空気バッテリなどの金属空気バッテリなどであってもよい。V2X用途などのいくつかの実装形態では、バッテリ830は、典型的な鉛酸自動車バッテリであってもよい。
いくつかの実装形態では、バッテリ830は、バッテリ管理システム(Battery Management System、BMS)又はバッテリ監視集積回路を含むか、又はそれに結合された「スマートバッテリ」であってもよい。BMSは、バッテリ830の充電状態(SoCh)を追跡するためにプラットフォーム800に含まれてもよい。BMSは、バッテリ830の他のパラメータを監視して、バッテリ830の健康状態(SoH)及び機能状態(SoF)などの障害予測を提供するために使用されてもよい。BMSは、バッテリ830の情報を、アプリケーション回路805又はプラットフォーム800の他の構成要素に通信してもよい。BMSはまた、アプリケーション回路805がバッテリ830の電圧、又はバッテリ830からの電流の流れを直接監視することを可能にするアナログ-デジタル(ADC)変換器を含んでもよい。バッテリパラメータは、送信周波数、ネットワーク動作、検知周波数などの、プラットフォーム800が実行し得る動作を決定するために使用されてもよい。
電力ブロック、又は送電網に結合された他の電源は、バッテリ830を充電するためにBMSと結合されてもよい。いくつかの実施例では、電力ブロックXS30は、無線電力受信機と置き換えられて、例えば、コンピュータプラットフォーム800内のループアンテナを介して無線で電力を取得することができる。これらの実施例では、無線バッテリ充電回路がBMSに含まれてもよい。選択される特定の充電回路は、バッテリ830のサイズ、従って必要とされる電流に依存し得る。充電は、とりわけ、Airfuel Allianceによって公布されたAirfuel標準、Wireless Power Consortiumによって公布されたQi無線充電標準、又はAlliance for Wireless Powerによって公布されたRezence充電標準を使用して実行することができる。
ユーザインタフェース回路850は、プラットフォーム800内に存在するか、又はそれに接続される様々な入出力(I/O)デバイスを含み、プラットフォーム800とのユーザ相互作用を可能にするように設計された1つ以上のユーザインタフェース、及び/又はプラットフォーム800との周辺構成要素相互作用を可能にするように設計された周辺構成要素インタフェースを含む。ユーザインタフェース回路850は、入力デバイス回路及び出力デバイス回路を含む。入力デバイス回路は、とりわけ、1つ以上の物理的又は仮想的ボタン(例えば、リセットボタン)、物理キーボード、キーパッド、マウス、タッチパッド、タッチスクリーン、マイクロフォン、スキャナ、ヘッドセットなどを含む入力を受け付けるための任意の物理的又は仮想的手段を含む。出力デバイス回路は、センサ読み取り値、アクチュエータ位置、又は他の同様の情報などの情報を表示するか、又は他の方法で情報を伝達するための任意の物理的又は仮想的な手段を含む。出力デバイス回路は、とりわけ、1つ以上の単純な視覚出力/インジケータ(例えば、発光ダイオード(LED))及び複数桁文字視覚出力、又はディスプレイデバイス若しくはタッチスクリーン(例えば、液晶ディスプレイ(LCD)、LEDディスプレイ、量子ドットディスプレイ、プロジェクタなど)などのより複雑な出力を含む、任意の数及び/又は組み合わせのオーディオ又は視覚ディスプレイを含むことができ、文字、グラフィック、マルチメディアオブジェクトなどの出力は、プラットフォーム800の動作から生成される。出力デバイス回路はまた、スピーカ又は他のオーディオ放出デバイス、プリンタ、及び/又は同様のものを含んでもよい。いくつかの実施形態では、センサ回路821は、入力デバイス回路(例えば、画像キャプチャデバイス、モーションキャプチャデバイスなど)として使用されてもよく、1つ以上のEMCは、出力デバイス回路(例えば、触覚フィードバックを提供するためのアクチュエータなど)として使用されてもよい。別の実施例では、アンテナ要素と結合されたNFCコントローラを備えるNFC回路、及び処理デバイスが、電子タグを読み取り、及び/又は別のNFC対応デバイスと接続するために含まれてもよい。周辺構成要素インタフェースとしては、不揮発性メモリポート、USBポート、オーディオジャック、電源インタフェースなどが挙げられるが、これらに限定されない。
図示されていないが、プラットフォーム800の構成要素は、好適なバス又は相互接続(IX)技術を使用して互いに通信することができ、これは、ISA、EISA、PCI、PCIx、PCIe、時間トリガプロトコル(TTP)システム、FlexRayシステム、又は任意の数の他の技術を含む任意の数の技術を含むことができる。バス/IXは、例えば、SoCベースのシステムで使用される独自のバス/IXであってもよい。とりわけ、I2Cインタフェース、SPIインタフェース、ポイントツーポイントインタフェース、及び電力バスなどの他のバス/IXシステムが含まれてもよい。
図9は、様々な実施形態による、ベースバンド回路910及び無線フロントエンドモジュール(RFEM)915の例示的な構成要素を示す。ベースバンド回路910は、図7及び図8のベースバンド回路710及び810にそれぞれ対応する。RFEM915は、図7及び図8のRFEM715及び815にそれぞれ対応する。図示のように、RFEM915は、少なくとも示されるように互いに結合された無線周波数(RF)回路906、フロントエンドモジュール(FEM)回路908、アンテナアレイ911を含んでもよい。
ベースバンド回路910は、RF回路906を介して1つ以上の無線ネットワークとの通信を可能にする様々な無線/ネットワークプロトコル及び無線制御機能を実行するように構成された回路及び/又は制御ロジックを含む。無線制御機能は、信号変調/復調、符号化/復号、無線周波数シフトなどを含み得るが、これらに限定されない。いくつかの実施形態では、ベースバンド回路910の変調/復調回路は、高速フーリエ変換(FFT)、プリコーディング、又はコンスタレーションマッピング/デマッピング機能を含み得る。いくつかの実施形態では、ベースバンド回路910の符号化/復号回路は、畳込み、テールバイティング畳込み、ターボ、ビタビ、又は低密度パリティチェック(LDPC)エンコーダ/デコーダ機能を含んでもよい。変調/復調及びエンコーダ/デコーダ機能の実施形態は、これらの実施例に限定されず、他の実施形態では他の好適な機能を含んでもよい。ベースバンド回路910は、RF回路906の受信信号経路から受信したベースバンド信号を処理し、RF回路906の送信信号経路のためのベースバンド信号を生成するように構成されている。ベースバンド回路910は、ベースバンド信号の生成及び処理のために、並びにRF回路906の動作を制御するために、アプリケーション回路705/805(図7及び図8を参照)とインタフェース接続するように構成される。ベースバンド回路910は、様々な無線制御機能を処理することができる。
ベースバンド回路910の前述の回路及び/又は制御ロジックは、1つ以上の単一又はマルチコアプロセッサを含んでもよい。例えば、1つ以上のプロセッサは、3Gベースバンドプロセッサ904A、4G/LTEベースバンドプロセッサ904B、5G/NRベースバンドプロセッサ904C、又は他の既存世代、開発中の、若しくは将来開発される世代(例えば、第6世代(6G)など)の他のいくつかのベースバンドプロセッサ904Dを含み得る。他の実施形態では、ベースバンドプロセッサ904A~904Dの機能の一部又は全部は、メモリ904Gに格納されたモジュールに含まれ、中央処理装置(CPU)904Eを介して実行されてもよい。他の実施形態では、ベースバンドプロセッサ904A~904Dの機能の一部又は全ては、対応するメモリセルに格納された適切なビットストリーム又は論理ブロックをロードされたハードウェアアクセラレータ(例えば、FPGA、ASICなど)として提供されてもよい。様々な実施形態において、メモリ904Gは、CPU904E(又は他のベースバンドプロセッサ)によって実行されると、CPU904E(又は他のベースバンドプロセッサ)に、ベースバンド回路910のリソースを管理させ、タスクをスケジュールさせるなどのリアルタイムOS(RTOS)のプログラムコードを記憶することができる。RTOSの例は、Enea(登録商標)によって提供されるOperating System Embedded(OSE)(商標)、Mentor Graphics(登録商標)によって提供されるNucleus RTOS(商標)、Mentor Graphics(登録商標)によって提供されるVersatile Real-Time Executive(VRTX)、Express Logic(登録商標)によって提供されるThreadX(商標)、FreeRTOS、Qualcomm(登録商標)によって提供されるREX OS、Open Kernel(OK)Labs(登録商標)によって提供されるOKL4、又は本明細書で説明されるような他の任意の好適なRTOSを含むことができる。更に、ベースバンド回路910は、1つ以上の音声デジタル信号プロセッサ(DSP)904Fを含み得る。音声DSP(単数又は複数)904Fは、圧縮/展開及びエコー除去のための要素を含み、他の実施形態では、他の好適な処理要素を含んでもよい。
いくつかの実施形態では、プロセッサ904A~904Eの各々は、メモリ904Gに/メモリ904Gからデータを送受信するためのそれぞれのメモリインタフェースを含む。ベースバンド回路910は、ベースバンド回路910の外部のメモリとの間でデータを送受信するインタフェースなどの他の回路/デバイスに通信可能に結合する1つ以上のインタフェースと、図7~図9のアプリケーション回路705/805との間でデータを送受信するアプリケーション回路インタフェースと、図9のRF回路906との間でデータを送受信するRF回路インタフェースと、1つ以上の無線ハードウェア要素(例えば、近距離無線通信(NFC)構成要素、Bluetooth(登録商標)/Bluetooth(登録商標)低エネルギー構成要素、WiFi(登録商標)構成要素、及び/又は同様のもの)との間でデータを送受信するための無線ハードウェア接続インタフェースと、PMIC825との間で電力又は制御信号を送受信する電力管理インタフェースと、を更に含み得る。
代替実施形態(上述の実施形態と組み合わされてもよい)では、ベースバンド回路910は、相互接続サブシステムを介して互いに、並びにCPUサブシステム、オーディオサブシステム、及びインタフェースサブシステムに結合された、1つ以上のデジタルベースバンドシステムを含む。デジタルベースバンドサブシステムはまた、別の相互接続サブシステムを介してデジタルベースバンドインタフェース及び混合信号ベースバンドサブシステムに結合されてもよい。相互接続サブシステムのそれぞれは、バスシステム、ポイントツーポイント接続、ネットワークオンチップ(NOC)構造、及び/又は本明細書で論じられるものなどのいくつかの他の好適なバス若しくは相互接続技術を含んでもよい。オーディオサブシステムは、DSP回路、バッファメモリ、プログラムメモリ、音声処理アクセラレータ回路、アナログ-デジタル及びデジタル-アナログ変換回路などのデータ変換回路、増幅器及びフィルタのうちの1つ以上を含むアナログ回路、及び/又は他の同様の構成要素を含み得る。本開示の一態様では、ベースバンド回路910は、デジタルベースバンド回路及び/又は無線周波数回路(例えば、無線フロントエンドモジュール915)のための制御機能を提供するために、制御回路(図示せず)の1つ以上のインスタンスを有するプロトコル処理回路を含むことができる。
図9には示されていないが、いくつかの実施形態では、ベースバンド回路910は、1つ以上の無線通信プロトコル(例えば、「マルチプロトコルベースバンドプロセッサ」又は「プロトコル処理回路」)を実行するための個々の処理デバイス(単数又は複数)及びPHY層機能を実装するための個々の処理デバイス(単数又は複数)を含む。これらの実施形態では、PHYレイヤ機能は、前述の無線制御機能を含む。これらの実施形態では、プロトコル処理回路は、1つ以上の無線通信プロトコルの様々なプロトコルレイヤ/エンティティを動作又は実装させる。第1の実施例では、プロトコル処理回路は、ベースバンド回路910及び/又はRF回路906がミリ波通信回路又は何らかの他の好適なセルラ通信回路の一部である場合に、LTEプロトコルエンティティ及び/又は5G/NRプロトコルエンティティを動作させることができる。第1の実施例では、プロトコル処理回路は、MAC、RLC、PDCP、SDAP、RRC、及びNAS機能を動作させる。第2の実施例では、プロトコル処理回路は、ベースバンド回路910及び/又はRF回路906がWi-Fi通信システムの一部である場合に、1つ以上のIEEEベースのプロトコルを動作させることができる。第2の実施例では、プロトコル処理回路は、WiFi MAC及び論理リンク制御(LLC)機能を動作させる。プロトコル処理回路は、プロトコル機能を動作させるためのプログラムコード及びデータを記憶するための1つ以上のメモリ構造(例えば、904G)と、プログラムコードを実行し、データを使用して様々な動作を実行する1つ以上の処理コアを含んでもよい。ベースバンド回路910はまた、2つ以上の無線プロトコルに関する無線通信をサポートすることができる。
本明細書で論じるベースバンド回路910の様々なハードウェア要素は、例えば、1つ以上の集積回路(IC)を含むはんだ付け基板、主回路基板にはんだ付けされた単一のパッケージIC、又は2つ以上のICを含むマルチチップモジュールとして実装されてもよい。一実施例では、ベースバンド回路910の構成要素は、単一のチップ又はチップセット内で好適に組み合わされてもよいし、同じ回路基板上に配置されてもよい。別の実施例では、ベースバンド回路910及びRF回路906の構成要素の一部又は全部は、例えば、システムオンチップ(SoC)又はシステムインパッケージ(SiP)に、一緒に実装されてもよい。別の実施例では、ベースバンド回路910の構成要素の一部又は全部は、RF回路906(又はRF回路906の複数のインスタンス)と通信可能に結合された別個のSoCとして実装されてもよい。更に別の実施例では、ベースバンド回路910及びアプリケーション回路705/805の構成要素の一部又は全部は、同じ回路基板(例えば、「マルチチップパッケージ」)に実装された個々のSoCとして一緒に実装されてもよい。
いくつかの実施形態では、ベースバンド回路910は、1つ以上の無線技術と互換性のある通信を提供することができる。例えば、いくつかの実施形態では、ベースバンド回路910は、E-UTRAN又は他のWMAN、WLAN、WPANとの通信をサポートすることができる。ベースバンド回路910が2つ以上の無線プロトコルの無線通信をサポートするように構成される実施形態は、マルチモードベースバンド回路と称される場合がある。
RF回路906は、非固体媒体を通した変調電磁放射を用いて無線ネットワークとの通信を可能にすることができる。様々な実施形態では、RF回路906は、無線ネットワークとの通信を容易にするために、スイッチ、フィルタ、増幅器などを含んでもよい。RF回路906は、FEM回路908から受信したRF信号をダウンコンバートし、ベースバンド信号をベースバンド回路910に提供するための回路を含み得る受信信号経路を含み得る。RF回路906はまた、ベースバンド回路910によって提供されるベースバンド信号をアップコンバートし、送信のためにRF出力信号をFEM回路908に提供するための回路を含み得る送信信号経路も含んでもよい。
いくつかの実施形態では、RF回路906の受信信号経路は、ミキサ回路906a、増幅器回路906b及びフィルタ回路906cを含み得る。いくつかの実施形態では、RF回路906の送信信号経路は、フィルタ回路906c及びミキサ回路906aを含み得る。RF回路906はまた、受信信号経路及び送信信号経路のミキサ回路906aによって使用される周波数を合成するための合成器回路906dを含んでもよい。いくつかの実施形態では、受信信号経路のミキサ回路906aは、合成器回路906dによって提供される合成周波数に基づいて、FEM回路908から受信したRF信号をダウンコンバートするように構成されてもよい。増幅器回路906bは、ダウンコンバートされた信号を増幅するように構成することができ、フィルタ回路906cは、ダウンコンバートされた信号から不要な信号を除去して出力ベースバンド信号を生成するように構成されたローパスフィルタ(LPF)又はバンドパスフィルタ(BPF)であってもよい。出力ベースバンド信号は、更に処理するためにベースバンド回路910に提供されてもよい。いくつかの実施形態では、出力ベースバンド信号は、ゼロ周波数ベースバンド信号であってもよいが、これは必須ではない。いくつかの実施形態では、受信信号経路のミキサ回路906aは、受動ミキサを含んでもよいが、実施形態の範囲はこの点で限定されない。
いくつかの実施形態では、送信信号経路のミキサ回路906aは、合成器回路906dによって提供される合成周波数に基づいて入力ベースバンド信号をアップコンバートして、FEM回路908のためのRF出力信号を生成するように構成されてもよい。ベースバンド信号は、ベースバンド回路910によって提供されてもよく、フィルタ回路906cによってフィルタリングされてもよい。
いくつかの実施形態では、受信信号経路のミキサ回路906a及び送信信号経路のミキサ回路906aは、2つ以上のミキサを含んでもよく、直交ダウンコンバージョン及びアップコンバージョンのためにそれぞれ配置されてもよい。いくつかの実施形態では、受信信号経路のミキサ回路906a及び送信信号経路のミキサ回路906aは、2つ以上のミキサを含んでもよく、イメージ除去(例えば、ハートレー型イメージ除去)のために配置されてもよい。いくつかの実施形態では、受信信号経路のミキサ回路906a及び送信信号経路のミキサ回路906aは、それぞれ直接ダウンコンバージョン及び直接アップコンバージョンのために配置されてもよい。いくつかの実施形態では、受信信号経路のミキサ回路906a及び送信信号経路のミキサ回路906aは、スーパーヘテロダイン動作のために構成されてもよい。
いくつかの実施形態では、出力ベースバンド信号及び入力ベースバンド信号はアナログベースバンド信号であってもよいが、実施形態の範囲はこの点で限定されない。いくつかの代替実施形態では、出力ベースバンド信号及び入力ベースバンド信号は、デジタルベースバンド信号であってもよい。これらの代替実施形態では、RF回路906は、アナログデジタル変換器(ADC)及びデジタルアナログ変換器(DAC)回路を含むことができ、ベースバンド回路910は、RF回路906と通信するためのデジタルベースバンドインタフェースを含むことができる。
いくつかのデュアルモード実施形態では、各スペクトルの信号を処理するために別個の無線IC回路が提供されてもよいが、実施形態の範囲はこの点で限定されない。
いくつかの実施形態では、合成器回路906dは、分数N合成器であってもよいし、又は分数N/N+1合成器であってもよいが、他の種類の周波数合成器が好適である場合があるので、本実施形態の範囲はこの点で限定されない。例えば、合成器回路906dは、デルタ-シグマ合成器、周波数乗算器、又は周波数分割器を有する位相ロックループを備える合成器であってもよい。
合成器回路906dは、周波数入力及び分割器制御入力に基づいて、RF回路906のミキサ回路906aによって使用される出力周波数を合成するように構成されてもよい。いくつかの実施形態では、合成器回路906dは、分数N/N+1合成器であってもよい。
いくつかの実施形態では、周波数入力は、電圧制御型発振器(VCO)によって提供されてもよいが、それは必須ではない。分割器制御入力は、所望の出力周波数に応じてベースバンド回路910又はアプリケーション回路705/805のいずれかによって提供されてもよい。いくつかの実施形態では、ディバイダ制御入力(例えば、N)は、アプリケーション回路705/805によって示されるチャネルに基づいてルックアップテーブルから決定されてもよい。
RF回路906の合成器回路906dは、ディバイダ、遅延ロックループ(DLL)、マルチプレクサ、及び位相アキュムレータを含み得る。いくつかの実施形態では、分割器は、デュアルモジュラスディバイダ(dual modulus divider、DMD)であってもよく、位相アキュムレータは、デジタル位相アキュムレータ(digital phase accumulator、DPA)であってもよい。いくつかの実施形態では、DMDは、入力信号を(例えば、実行に基づいて)N又はN+1のいずれかに分割して、フラクショナル分割比を提供するように構成されてもよい。いくつかの例示的実施形態では、DLLは、カスケード式同調可能な遅延素子、位相検出器、チャージポンプ、及びD型フリップフロップのセットを含み得る。これらの実施形態では、遅延素子は、VCO周期を、Ndの等しい位相のパケットに分割するように構成することができ、ここでNdは遅延線内の遅延素子の数である。このようにして、DLLは、遅延線を通した合計遅延が1つのVCOサイクルであることを保証することに寄与すべく、負のフィードバックを提供する。
いくつかの実施形態では、合成器回路906dは、出力周波数としてキャリア周波数を生成するように構成されてもよく、他の実施形態では、出力周波数は、キャリア周波数の倍数(例えば、キャリア周波数の2倍、キャリア周波数の4倍)であってもよく、直交発生器及びディバイダ回路と併せて使用して、互いに対して複数の異なる位相を有するキャリア周波数で複数の信号を生成することができる。いくつかの実施形態では、出力周波数はLO周波数(fLO)であってもよい。いくつかの実施形態では、RF回路906は、IQ/極性変換器を含んでもよい。
FEM回路908は、アンテナアレイ911から受信したRF信号上で動作し、受信信号を増幅し、更に処理するために受信信号の増幅バージョンをRF回路906に提供するように構成された回路を含み得る受信信号経路を含んでもよい。FEM回路908はまた、アンテナアレイ911の1つ以上のアンテナエレメントにより送信されるためにRF回路906によって提供される、送信のための信号を増幅するように構成された回路を含み得る送信信号経路を含んでもよい。様々な実施形態では、送信又は受信信号経路を通じた増幅は、RF回路906のみにおいて、FEM回路908のみにおいて、又はRF回路906及びFEM回路908の両方において行われてもよい。
いくつかの実施形態では、FEM回路908は、送信モードと受信モード動作との間で切り替えるためのTX/RXスイッチを含んでもよい。FEM回路908は、受信信号経路及び送信信号経路を含み得る。FEM回路908の受信信号経路は、受信されたRF信号を増幅し、増幅された受信RF信号を出力として(例えば、RF回路906に)提供するためのLNAを含んでもよい。FEM回路908の送信信号経路は、(例えば、RF回路906によって提供される)入力RF信号を増幅するための電力増幅器(PA)と、アンテナアレイ911のうちの1つ以上のアンテナエレメントによる後続する送信のためにRF信号を生成するための1つ以上のフィルタとを含むことができる。
アンテナアレイ911は、各々が電気信号を無線で伝わる電波に変換し、受信した電波を電気信号に変換するように構成された、1つ以上のアンテナエレメントを備える。例えば、ベースバンド回路910によって提供されるデジタルベースバンド信号は、アナログRF信号(例えば、変調波形)に変換され、増幅され、1つ以上のアンテナエレメント(図示せず)を含むアンテナアレイ911のアンテナエレメントを介して送信される。アンテナエレメントは、無指向性、指向性、又はこれらの組み合わせであってもよい。アンテナエレメントは、本明細書で知られている及び/又は説明されているように、多数の配列で形成されてもよい。アンテナアレイ911は、1つ以上のプリント回路基板の表面上に作製されるマイクロストリップアンテナ又はプリントアンテナを含み得る。アンテナアレイ911は、様々な形状の金属箔のパッチ(例えば、パッチアンテナ)として形成されてもよく、金属伝送線路などを使用してRF回路906及び/又はFEM回路908と結合されてもよい。
アプリケーション回路705/805のプロセッサ及びベースバンド回路910のプロセッサを使用して、プロトコルスタックの1つ以上のインスタンスの要素を実行することができる。例えば、ベースバンド回路910のプロセッサを単独で又は組み合わせて使用することができ、層3、層2、又は層1の機能を実行することができる一方で、アプリケーション回路705/805のプロセッサは、これらのレイヤから受信したデータ(例えば、パケットデータ)を利用してもよく、更に、レイヤ4の機能(例えば、TCP及びUDPレイヤ)を実行してもよい。本明細書で言及するように、層3は、以下に更に詳細に記載するRRC層を含んでもよい。本明細書で言及するように、層2は、以下に更に詳細に記載するMAC層、RLC層及びPDCP層を含んでもよい。本明細書で言及するように、層1は、以下に更に詳細に記載する、UE/RANノードのPHY層を含み得る。
図10は、様々な実施形態による、無線通信デバイスにおいて実施され得る様々なプロトコル機能を示す。特に、図10は、様々なプロトコル層/エンティティ間の相互接続を示す配列1000を含む。図10の以下の説明は、5G/NRシステム規格及びLTEシステム規格と連携して動作する様々なプロトコル層/エンティティについて提供されるが、図10の態様の一部又は全部は、他の無線通信ネットワークシステムにも適用可能であり得る。
配列1000のプロトコル層は、図示されていない他の上位層機能に加えて、PHY1010、MAC1020、RLC1030、PDCP1040、SDAP1047、RRC1055、及びNAS層1057のうちの1つ以上を含むことができる。プロトコル層は、2つ以上のプロトコル層の間の通信を提供することができる1つ以上のサービスアクセスポイント(例えば、図10の項目1059、1056、1050、1049、1045、1035、1025及び1015)を含むことができる。
PHY1010は、1つ以上の他の通信デバイスとの間で受信又は送信され得る物理層信号1005を送受信することができる。物理層信号1005は、本明細書で説明したような、1つ以上の物理チャネルを含むことができる。PHY1010は、リンク適応又は適応変調及び符号化(AMC)、電力制御、(例えば、初期同期及びハンドオーバ目的のための)セル探索、並びに、RRC1055などの上位層によって使用される他の測定を更に実行してもよい。PHY1010は、また、トランスポートチャネル上の誤り検出、トランスポートチャネルの前方誤り訂正(FEC)符号化/復号、物理チャネルの変調/復調、インターリーブ、レートマッチング、物理チャネルへのマッピング、及びMIMOアンテナ処理を更に実行してもよい。実施形態では、PHY1010のインスタンスは、1つ以上のPHY-SAP1015を介してMAC1020のインスタンスからの要求を処理し、指示を提供することができる。いくつかの実施形態によれば、PHY-SAP1015を介して通信される要求及び指示は、1つ以上のトランスポートチャネルを含むことができる。
MAC1020のインスタンスは、1つ以上のMAC-SAP1025を介してRLC1030のインスタンスからの要求を処理し、インスタンスに指示を提供することができる。MAC-SAP1025を介して通信されるこれらの要求及び指示は、1つ以上の論理チャネルを含むことができる。MAC1020は、論理チャネルとトランスポートチャネルとの間のマッピング、トランスポートチャネルを介してPHY1010に配信されるTB上への1つ以上の論理チャネルからのMAC SDUの多重化、トランスポートチャネルを介してPHY1010から配信されるTBから1つ以上の論理チャネルへのMAC SDUの逆多重化、TB上へのMAC SDUの多重化、スケジューリング情報報告、HARQによる誤り訂正、及び論理チャネル優先順位付けを実行することができる。
RLC1030のインスタンスは、1つ以上の無線リンク制御サービスアクセスポイント(RLC-SAP)1035を介してPDCP1040のインスタンスからの要求を処理し、PDCPのインスタンスに指示を提供することができる。RLC-SAP1035を介して通信されるこれらの要求及び指示は、1つ以上のRLCチャネルを含むことができる。RLC1030は、透過モード(Transparent Mode、TM)、非確認モード(Unacknowledged Mode、UM)、及び確認モード(Acknowledged Mode、AM)を含む、複数の動作モードで動作することができる。RLC1030は、上位層プロトコルデータユニット(PDU)の転送、AMデータ転送のための自動再送要求(ARQ)による誤り訂正、並びに、UM及びAMデータ転送のためのRLC SDUの連結、分割、及び再組み立てを実行することができる。RLC1030はまた、AMデータ転送のためのRLCデータPDUの再分割を実行し、UM及びAMデータ転送のためのRLCデータPDUを並べ替え、UM及びAMデータ転送のための複製データを検出し、UM及びAMデータ転送のためのRLC SDUを破棄し、AMデータ転送のためのプロトコルエラーを検出し、RLC再確立を実行してもよい。
PDCP1040のインスタンスは、RRC1055のインスタンス及び/又はSDAP1047のインスタンスへの要求を処理し、指示を、1つ以上のパケットデータ・コンバージェンス・プロトコル・サービス・アクセスポイント(PDCP-SAP)1045を介して提供することができる。PDCP-SAP1045を介して通信されるこれらの要求及び指示は、1つ以上の無線ベアラを備え得る。PDCP1040は、IPデータのヘッダ圧縮及び展開を実行し、PDCPシーケンス番号(SN)を維持し、下位層の再確立における上位層PDUのインシーケンス配信を実行し、RLC AM上にマッピングされた無線ベアラのための下位層の再確立における下位層SDUの複製を除去し、制御プレーンデータを暗号化及び解読し、制御プレーンデータの完全性保護及び完全性検証を実行し、データのタイマベースの破棄を制御し、セキュリティ動作(例えば、暗号化、解読、完全性保護、完全性検証など)を実行することができる。
SDAP1047のインスタンスは、1つ以上のSDAP-SAP1049を介して、1つ以上の上位層プロトコルエンティティからの要求を処理し、指示を提供することができる。SDAP-SAP1049を介して通信されるこれらの要求及び指示は、1つ以上のQoSフローを含むことができる。SDAP1047は、QoSフローをDRBにマッピングすることができ、その逆も可能であり、DLパケット及びULパケット内のQFIをマークすることもできる。単一のSDAPエンティティ1047は、個々のPDUセッションのために構成されてもよい。UL方向において、NG-RAN410は、反射マッピング又は明示的マッピングの2つの異なる方法でDRBへのQoSフローのマッピングを制御することができる。反射マッピングのために、UE401のSDAP1047は、各DRBに対するDLパケットのQFIを監視してもよく、UL方向に流れるパケットに対して同じマッピングを適用することができる。DRBに関しては、UE401のSDAP1047は、QoSフローID(単数又は複数)及びそのDRBに関するDLパケット内で観測されたPDUセッションに対応するQoSフロー(単数又は複数)に属するULパケットをマッピングすることができる。反射マッピングを有効にするために、NG-RAN610は、Uuインタフェース上のDLパケットをQoSフローIDでマークすることができる。明示的なマッピングは、RRC1055が明示的なQoSフローからDRBへのマッピングルールを用いてSDAP1047を構成することを含んでもよく、これは格納され、SDAP1047によって追従されてもよい。実施形態では、SDAP1047は、NR実装でのみ使用されてもよく、LTE実装では使用されなくてもよい。
RRC1055は、1つ以上の管理サービスアクセスポイント(M-SAP)を介して、PHY1010、MAC1020、RLC1030、PDCP1040、及びSDAP1047の1つ以上のインスタンスを含み得る、1つ以上のプロトコル層の態様を構成し得る。実施形態では、RRC1055のインスタンスは、1つ以上のRRC-SAP1056を介して、1つ以上のNASエンティティ1057からの要求を処理し、指示を提供することができる。RRC1055の主なサービス及び機能は、システム情報(例えば、MIB又はNASに関連するSIBに含まれる)のブロードキャスト、アクセス層(access stratum、AS)に関するシステム情報のブロードキャスト、UE401とRAN410との間のRRC接続のページング、確立、維持、及び解放(例えば、RRC接続ページング、RRC接続確立、RRC接続変更、RRC接続解放)、ポイントツーポイント無線ベアラの確立、構成、維持、及び解放、鍵管理を含むセキュリティ機能、RAT間モビリティ、並びにUE測定報告のための測定構成を含み得る。MIB及びSIBは、それぞれ個々のデータフィールド又はデータ構造を含むことができる1つ以上のIEを含んでもよい。
NAS1057は、UE401とAMF621との間の制御プレーンの最上位層を形成してもよい。NAS1057は、UE401とLTEシステムのP-GWとの間のIP接続性を確立及び維持するために、UE401のモビリティ及びセッション管理手順をサポートしてもよい。
様々な実施形態によれば、配列1000の1つ以上のプロトコルエンティティは、上述のデバイス間の制御プレーン又はユーザプレーン通信プロトコルスタックに使用される、UE401、RANノード411、NR実装のAMF621又はLTE実装のMME521、NR実装のUPF602又はLTE実装のS-GW522及びP-GW523などで実装されてもよい。そのような実施形態では、UE401、gNB411、AMF621などのうちの1つ以上に実装され得る1つ以上のプロトコルエンティティは、そのような通信を実行するために、それぞれの下位層プロトコルエンティティのサービスを使用して別のデバイス内又は上に実装され得るそれぞれのピアプロトコルエンティティと通信することができる。いくつかの実施形態では、gNB411のgNB-CUは、1つ以上のgNB-DUの動作を制御するgNBのRRC1055、SDAP1047、及びPDCP1040をホストすることができ、gNB411のgNB-DUは、gNB411のRLC1030、MAC1020、及びPHY1010を各々ホストすることができる。
第1の例では、制御プレーンプロトコルスタックは、最上位層から最下位層の順に、NAS1057、RRC1055、PDCP1040、RLC1030、MAC1020、及びPHY1010を備えることができる。この実施例では、上位層1060は、IP層1061、SCTP1062、及びアプリケーション層シグナリングプロトコル(AP)1063を含むNAS1057の上に構築することができる。
NR実装では、AP1063は、NG-RANノード411とAMF621との間に定義されたNGインタフェース413用のNGアプリケーションプロトコル層(NGAP又はNG-AP)1063であってもよいし、AP1063は、2つ以上のRANノード411の間に定義されたXnインタフェース412用のXnアプリケーションプロトコル層(XnAP又はXn-AP)1063であってもよい。
NG-AP1063は、NGインタフェース413の機能をサポートしてもよく、エレメンタリープロシージャ(Elementary Procedures)(EP)を含んでもよい。NG-AP EPは、NG-RANノード411とAMF621との間の相互作用のユニットとすることができる。NG-AP1063サービスは、UE関連サービス(例えば、UE401、402に関連するサービス)及び非UE関連サービス(例えば、NG-RANノード411とAMF621との間のNGインタフェースインスタンス全体に関連するサービス)の2つのグループを含み得る。これらのサービスは、これらに限定されないが、特定のページングエリアに含まれるNG-RANノード411にページング要求を送信するためのページング機能、AMF621がAMF621及びNG-RANノード411内のUEコンテキストを確立、変更、及び/又は解放することを可能にするためのUEコンテキスト管理機能、NG-RAN内のモビリティをサポートするシステム内HO及びEPSシステムとの間のモビリティをサポートするシステム間HOのための、ECM接続モードにおけるUE401のためのモビリティ機能、UE401とAMF621との間でNASメッセージをトランスポート又は再ルーティングするためのNASシグナリングトランスポート機能、AMF621とUE401との間の関連付けを判定するためのNASノード選択機能、NGインタフェースを設定し、NGインタフェースを介してエラーを監視するためのNGインタフェース管理機能(単数又は複数)、NGインタフェースを介して警告メッセージを転送し、又は警告メッセージの進行中のブロードキャストをキャンセルする手段を提供するための警告メッセージ送信機能、CN420を介して2つのRANノード411間でRAN構成情報(例えば、SON情報、性能測定(PM)データなど)を要求及び転送する構成転送機能、及び/又は他の同様の機能を含み得る。
XnAP1063は、Xnインタフェース412の機能をサポートすることができ、XnAP基本モビリティ手順及びXnAPグローバル手順を含んでもよい。XnAP基本モビリティ手順は、ハンドオーバ準備及びキャンセル手順、SNステータス転送手順、UEコンテキスト取得及びUEコンテキスト解放手順、RANページング手順、デュアルコネクティビティ関連手順など、NG RAN411(又はE-UTRAN510)内でUEモビリティを処理するために使用される手順を含むことができる。XnAPグローバル手順は、Xnインタフェースセットアップ手順及びリセット手順、NG-RAN更新手順、セルアクティブ化手順など、特定のUE401に関連しない手順を含み得る。
LTE実装形態では、AP1063は、E-UTRANノード411とMMEとの間に定義されるS1インタフェース413に対するS1アプリケーションプロトコル層(S1-AP)1063であってもよく、又はAP1063は、2つ以上のE-UTRANノード411の間に定義されるX2インタフェース412に対するX2アプリケーションプロトコル層(X2AP又はX2-AP)1063であってもよい。
S1アプリケーションプロトコル層(S1-AP)1063は、S1インタフェースの機能をサポートすることができ、前述のNG-APと同様に、S1-APは、S1-AP EPを含むことができる。S1-AP EPは、E-UTRANノード411とLTE CN420内のMME521との間の相互作用のユニットとすることができる。S1-AP1063サービスは、2つのグループ、UE関連サービス及び非UE関連サービス、を含んでもよい。これらのサービスは、E-UTRAN無線アクセスベアラ(E-UTRAN Radio Access Bearer、E-RAB)管理、UE能力インジケーション、モビリティ、NASシグナリング伝送、RAN情報管理(RAN Information Management、RIM)、及び構成転送を含むが、これらに限定されない機能を実行する。
X2AP1063は、X2インタフェース412の機能をサポートすることができ、X2AP基本モビリティ手順及びX2APグローバル手順を含むことができる。X2AP基本モビリティ手順は、ハンドオーバ準備及びキャンセル手順、SNステータス転送手順、UEコンテキスト取得及びUEコンテキスト解放手順、RANページング手順、デュアルコネクティビティ関連手順など、E-UTRAN420内でUEモビリティを処理するために使用される手順を含み得る。X2APグローバル手順は、X2インタフェースセットアップ及びリセット手順、負荷指示手順、エラー指示手順、セルアクティブ化手順など、特定のUE401に関連しない手順を含み得る。
SCTP層(或いはSCTP/IP層と呼ばれる)1062は、アプリケーション層メッセージ(例えば、NR実装におけるNGAP若しくはXnAPメッセージ、又はLTE実装におけるS1-AP若しくはX2APメッセージ)の保証された配信を提供することができる。SCTP1062は、IP1061によってサポートされるIPプロトコルに部分的に基づいて、RANノード411とAMF621/MME521との間のシグナリングメッセージの信頼できる配信を保証することができる。インターネットプロトコル層(IP)1061は、パケットアドレス指定及びルーティング機能を実行するために使用され得る。いくつかの実装形態では、IP層1061は、PDUを配信及び伝達するためにポイントツーポイント送信を使用することができる。これに関して、RANノード411は、情報を交換するためにMME/AMFとのL2及びL1層通信リンク(例えば、有線又は無線)を備えてもよい。
第2の例では、ユーザプレーンプロトコルスタックは、最上位層から最下位層の順に、SDAP1047、PDCP1040、RLC1030、MAC1020、及びPHY1010を備えることができる。ユーザプレーンプロトコルスタックは、LTE実装形態では、UE401、RANノード411及びUPF602の間の通信のために使用されてもよく、又はS-GW522とP-GW523との間の通信のために使用されてもよい。この例では、上位層1051は、SDAP1047の上に構築されてもよく、ユーザデータグラムプロトコル(UDP)及びIPセキュリティ層(UDP/IP)1052、ユーザプレーン層(GTP-U)のための汎用パケット無線サービス(GPRS)トンネリングプロトコル1053、及びユーザプレーンPDU層(UP PDU)1063を含んでもよい。
トランスポートネットワーク層1054(「トランスポート層」とも呼ばれる)はIPトランスポート上に構築されてもよく、UDP/IP層1052(UDP層及びIP層を含む)の上にGTP-U1053を使用して、ユーザプレーンPDU(UP-PDU)を搬送してもよい。IPレイヤ(「インターネットレイヤ」とも呼ばれる)は、パケットアドレス指定及びルーティング機能を実行するために使用されてもよい。IPレイヤは、例えば、IPv4、IPv6、又はPPPフォーマットのうちのいずれかにおいて、IPアドレスをユーザデータパケットに割り当てることができる。
GTP-U1053は、GPRSコアネットワーク内及び無線アクセスネットワークとコアネットワークとの間にユーザデータを運ぶために使用され得る。伝送されるユーザデータは、例えば、IPv4、IPv6、又はPPPフォーマットのうちのいずれかのパケットであってもよい。UDP/IP1052は、データ完全性のチェックサム、ソース及び宛先で異なる機能に対処するためのポート番号、並びに選択されたデータフロー上の暗号化及び認証を提供することができる。RANノード411及びS-GW522は、L1層(例えば、PHY1010)、L2層(例えば、MAC1020、RLC1030、PDCP1040、及び/又はSDAP1047)、UDP/IP層1052、及びGTP-U1053を含むプロトコルスタックを介してユーザプレーンデータを交換するためにS1-Uインタフェースを利用することができる。S-GW522及びP-GW523は、S5/S8aインタフェースを利用して、L1層、L2層、UDP層/IP層1052、及びGTP-U1053を含むプロトコルスタックを介してユーザプレーンデータを交換することができる。前述したように、NASプロトコルは、UE401とP-GW523との間のIP接続を確立及び維持するために、UE401のモビリティ及びセッション管理手順をサポートすることができる。
更に、図10には示されていないが、AP1063及び/又はトランスポートネットワーク層1054の上にアプリケーション層が存在してもよい。アプリケーション層は、UE401、RANノード411、又は他のネットワーク要素のユーザが、例えば、アプリケーション回路705又はアプリケーション回路805によって実行されるソフトウェアアプリケーションと相互作用する層であってもよい。アプリケーション層はまた、ベースバンド回路910などのUE401又はRANノード411の通信システムと相互作用するためのソフトウェアアプリケーションのための1つ以上のインタフェースを提供してもよい。いくつかの実装形態では、IP層及び/又はアプリケーション層は、開放型システム間相互接続(OSI)モデル(例えば、OSI層7-アプリケーション層、OSI層6-プレゼンテーション層、及びOSI層5-セッション層)の層5~7又はその一部と同じ又は類似の機能を提供することができる。
図11は、様々な実施形態によるコアネットワークの構成要素を示す。CN520の構成要素は、機械可読媒体又はコンピュータ可読媒体(例えば、非一時的機械可読記憶媒体)から命令を読み取って実行するための構成要素を含む、1つの物理ノード又は別個の物理ノードに実装されてもよい。実施形態では、CN620の構成要素は、CN520の構成要素に関して本明細書で説明したのと同じ又は同様の方法で実装されてもよい。いくつかの実施形態では、NFVを利用して、1つ以上のコンピュータ可読記憶媒体(以下で更に詳細に説明する)に格納された実行可能命令を介して、上述のネットワークノード機能のいずれか又は全てを仮想化する。CN520の論理インスタンス化は、ネットワークスライス1101と呼ばれることがあり、CN520の個々の論理インスタンス化は、特定のネットワーク能力及びネットワーク特性を提供することができる。CN520の一部分の論理インスタンス化は、ネットワークサブスライス1102と呼ぶことができる(例えば、ネットワークサブスライス1102は、P-GW523及びPCRF526を含むように示されている)。
本明細書で使用される場合、用語「インスタンス」、「インスタンス化」などは、インスタンスの作成を指すことができ、「インスタンス」は、例えば、プログラムコードの実行中に発生し得るオブジェクトの具体的な発生を指すことができる。ネットワークインスタンスは、異なるIPドメイン又は重複しているIPアドレスの場合にトラフィック検出及びルーティングに使用され得るドメインを識別する情報を指し得る。ネットワークスライスインスタンスは、ネットワーク機能(NF)インスタンス及びネットワークスライスを展開するために必要なリソース(例えば、計算、ストレージ、及びネットワーキングリソース)のセットを指すことができる。
5Gシステム(例えば、図6を参照)に関して、ネットワークスライスは常にRAN部分とCN部分とを含む。ネットワークスライシングのサポートは、異なるスライスに対するトラフィックが異なるPDUセッションによって扱われるという原理に依存する。ネットワークは、スケジューリングによって、また異なるL1/L2構成を提供することによって、異なるネットワークスライスを実現することができる。UE601は、NASによって提供されている場合に、適切なRRCメッセージにおけるネットワークスライス選択のための支援情報を提供する。ネットワークは多数のスライスをサポートすることができるが、UEは8スライスを同時にサポートする必要はない。
ネットワークスライスは、CN620制御プレーン及びユーザプレーンNF、サービングPLMN内のNG-RAN610、及びサービングPLMN内のN3IWF機能を含み得る。個々のネットワークスライスは、異なるS-NSSAIを有してもよく、及び/又は異なるSSTを有してもよい。NSSAIは、1つ以上のS-NSSAIを含み、各ネットワークスライスは、S-NSSAIによって一意に識別される。ネットワークスライスは、サポートされる機能及びネットワーク機能の最適化について異なり得、及び/又は複数のネットワークスライスインスタンスは、UE601の異なるグループ(例えば、企業ユーザ)について同じサービス/機能を配信し得る。例えば、個々のネットワークスライスは、異なるコミットされたサービスを配信してもよく、及び/又は特定の顧客又は企業専用であってもよい。この実施例では、各ネットワークスライスは、同じSSTを有するが異なるスライス微分子を有した、異なるNSSAIを有し得る。更に、単一のUEは、5G ANを介して同時に1つ以上のネットワークスライスインスタンスでサービスされ、8つの異なるS-NSSAIに関連付けられ得る。更に、個々のUE601にサービス提供するAMF621インスタンスは、そのUEにサービス提供するネットワークスライスインスタンスの各々に属し得る。
NG-RAN610におけるネットワークスライシングは、RANスライス認識を含む。RANスライス認識は、事前構成された異なるネットワークスライスに関するトラフィックの微分された処理を含む。NG-RAN610におけるスライス認識は、PDUセッションリソース情報を含む全てのシグナリングにおいて、PDUセッションに対応するS-NSSAIを示すことによって、PDUセッションレベルで導入される。NG-RAN機能(例えば、各スライスを含むネットワーク機能のセット)に関して、NG-RAN610がスライスイネーブルをどのようにサポートするかは実装に依存する。NG-RAN610は、UE601又は5GC620によって提供される支援情報を使用してネットワークスライスのRAN部分を選択し、これは、PLMN内の事前構成されたネットワークスライスのうちの1つ以上を曖昧さなく識別する。NG-RAN610はまた、SLAに従ってスライス間のリソース管理及びポリシー施行をサポートする。単一のNG-RANノードは、複数のスライスをサポートすることができ、NG-RAN610はまた、各サポートされたスライスに対して、実施されているSLAの適切なRRMポリシーを適用してもよい。NG-RAN610はまた、スライス内でQoSの差別化をサポートすることができる。
NG-RAN610はまた、利用可能であれば、初期アタッチ中にAMF621を選択するためにUE支援情報を使用することができる。NG-RAN610は、初期NASをAMF621にルーティングするために支援情報を使用する。NG-RAN610が支援情報を使用してAMF621を選択できない場合、又はUE601がそのような情報を提供しない場合、NG-RAN610は、AMF621のプールの中にあり得るデフォルトAMF621にNASシグナリングを送信する。後続のアクセスのために、UE601は、5GC620によってUE601に割り当てられた一時的ID(temp ID)を提供して、一時的IDが有効である限り、NG-RAN610がNASメッセージを適切なAMF621にルーティングすることを可能にする。NG-RAN610は、一時的IDに関連付けられたAMF621を認識し、それに到達することができる。そうでなければ、初期アタッチのための方法が当てはまる。
NG-RAN610は、スライス間のリソース分離をサポートする。NG-RAN610リソース分離は、RRMポリシー及び保護機構によって達成されてもよく、これは、1つのスライスが別のスライスのためのサービスレベル合意を破る場合に共有リソースの不足を回避する必要がある。いくつかの実装形態では、NG-RAN610リソースを特定のスライスに完全に専用にすることが可能である。NG-RAN610がどのようにリソース分離をサポートするかは実装に依存する。
いくつかのスライスは、ネットワークの一部でのみ利用可能であってもよい。その近隣のセルでサポートされるスライスのNG-RAN610における認識は、接続モードにおける周波数間モビリティに有益であり得る。スライス可用性は、UEの登録エリア内で変化しないようにできる。NG-RAN610及び5GC620は、所与のエリアで利用可能であってもなくてもよいスライスに対するサービス要求を処理する役割を果たす。スライスへのアクセスの許可又は拒否は、スライスのサポート、リソースの可用性、NG-RAN610による要求されたサービスのサポートなどの要因に依存し得る。
UE601は、複数のネットワークスライスに同時に関連付けられてもよい。UE601が複数のスライスに同時に関連付けられる場合、ただ1つのシグナリング接続が維持され、周波数内セル再選択のために、UE601は最良のセルにキャンプオンを試みる。周波数間セル再選択のために、UE601がキャンプオンしている周波数を制御するために、専用の優先度を使用することができる。5GC620は、UE601がネットワークスライスにアクセスする権利を有することを検証することになる。初期コンテキストセットアップ要求メッセージを受信する前に、NG-RAN610は、UE601がアクセスを要求している特定のスライスの認識に基づいて、いくつかの暫定/ローカルポリシーを適用することを許可され得る。初期コンテキストセットアップ中に、NG-RAN610は、リソースが要求されているスライスについて通知される。
NFVアーキテクチャ及びインフラストラクチャは、1つ以上のNFを仮想化するために使用されてもよく、代替的に専有ハードウェアによって実行されて、業界標準のサーバハードウェア、記憶ハードウェア、又はスイッチの組み合わせを含む物理リソース上に仮想化されてもよい。言い換えれば、NFVシステムを使用して、1つ以上のEPC構成要素/機能の仮想又は再構成可能な実装を実行することができる。
図12は、いくつかの例示的実施形態に係る、機械可読媒体又はコンピュータ可読媒体(例えば、非一時的機械可読記憶媒体)から命令を読み取り、本明細書で論じる方法論のうちのいずれか1つ以上を実行することができる構成要素を示すブロック図である。具体的には、図12は、1つ以上のプロセッサ(又はプロセッサコア)1210、1つ以上のメモリ/記憶装置1220及び1つ以上の通信リソース1230を含み、各々が、バス1240を介して通信可能に結合され得るハードウェアリソース1200の図式表現を示す。ノード仮想化(例えば、NFV)が利用される実施形態では、ハイパーバイザ1202が、ハードウェアリソース1200を利用するための1つ以上のネットワークスライス/サブスライスの実行環境を提供するために実行されてもよい。
プロセッサ1210は、例えば、プロセッサ1212及びプロセッサ1214を含み得る。プロセッサ1210(単数又は複数)は、例えば、中央処理装置(CPU)、縮小命令セットコンピューティング(RISC)プロセッサ、複合命令セットコンピューティング(CISC)プロセッサ、グラフィック処理ユニット(GPU)、DSP、例えばベースバンドプロセッサ、ASIC、FPGA、高周波集積回路(RFIC)、(本明細書で論じたものを含む)別のプロセッサ、又はこれらの任意の好適な組み合わせであり得る。
メモリ/記憶装置1220は、メインメモリ、ディスクストレージ、又はそれらの任意の好適な組み合わせを含むことができる。メモリ/記憶装置1220は、ダイナミックランダムアクセスメモリ(DRAM)、スタティックランダムアクセスメモリ(SRAM)、消去可能プログラマブル読み出し専用メモリ(EPROM)、電気的消去可能プログラマブル読み出し専用メモリ(EEPROM)、フラッシュメモリ、ソリッドステートストレージなどの任意の種類の揮発性又は不揮発性メモリを含んでもよいが、これらに限定されない。
通信リソース1230は、ネットワーク1208を介して1つ以上の周辺機器1204又は1つ以上のデータベース1206と通信するための、相互接続又はネットワークインタフェースコンポーネント又は他の好適なデバイスを含み得る。例えば、通信リソース1230は、(例えば、USBを介した結合のための)有線通信構成要素、セルラ通信構成要素、NFC構成要素、Bluetooth(登録商標)(又はBluetooth(登録商標)Low Energy)構成要素、Wi-Fi(登録商標)構成要素、及び他の通信構成要素を含み得る。
命令1250は、プロセッサ1210の少なくともいずれかに、本明細書で論じる方法論のうちの任意の1つ以上を実行させるための、ソフトウェア、プログラム、アプリケーション、アプレット、アプリ、又は他の実行可能コードを含んでもよい。命令1250は、完全に又は部分的に、プロセッサ1210(例えば、プロセッサのキャッシュメモリ内に)、メモリ/記憶装置1220、又はそれらの任意の好適な組み合わせのうちの少なくとも1つの中に存在してもよい。更に、命令1250の任意の部分は、周辺機器1204又はデータベース1206の任意の組み合わせからハードウェアリソース1200に転送されてもよい。したがって、プロセッサ1210のメモリ、メモリ/記憶装置1220、周辺機器1204、及びデータベース1206は、コンピュータ可読媒体及び機械可読媒体の例である。
手順例
いくつかの実施形態では、図4~図11及び図12、又は本明細書の何らかの他の図の電子デバイス、ネットワーク、システム、チップ若しくは構成要素、又はその一部若しくは実装は、本明細書に記載の1つ以上のプロセス、技術、若しくは方法、又はその一部を実行するように構成され得る。1つのそのようなプロセスを図13に示す。例えば、プロセスは、ビーム放射及びパネル選択に関する情報を報告することと、ダウンリンク受信及びアップリンク送信のためのビーム及びパネル指示を受信することと、を含んでもよい。
1つ以上の実施形態については、前述の図のうちの1つ以上に記載されている構成要素のうちの少なくとも1つは、以下の例示的なセクションに記載されているような1つ以上の動作、技術、プロセス、及び/又は方法を実行するように構成され得る。例えば、前述の図のうちの1つ以上に関連して上述したベースバンド回路は、以下に記載される例のうちの1つ以上に従って動作するように構成されてもよい。別の例として、前述の図のうちの1つ以上に関連して上述したようなUE、基地局、ネットワークエレメントなどに関連付けられた回路は、例示的なセクションにおいて以下に記載される例のうちの1つ以上に従って動作するように構成され得る。
実施例
実施例1は、
ビーム放射に関する情報を報告する手段と、
パネル選択に関する情報を報告する手段と、
ダウンリンク受信及びアップリンク送信のためのビーム及びパネル指示を受信する手段と、を備える装置を含んでもよい。
実施例2は、SSB/CSI-RSリソースがアップリンクビーム指示のために使用され得るかどうかを報告する手段を更に備える、実施例1又は本明細書の何らかの他の実施例の装置を含んでもよい。
実施例3は、CRI/SSBRIごとに最大電力低減(MPR)レベルを報告する手段を更に備える、実施例1又は本明細書の何らかの他の実施例の装置を含んでもよい。
実施例4は、アップリンクビーム指示に対して、受信する手段が、RRCシグナリング、MAC CE、又はDCIのうちの少なくとも1つを介して、PUSCH/SRS/PUCCH/PRACHのために、それぞれのアップリンクビームについて少なくとも1つのアンテナポート(単数又は複数)グループ(単数又は複数)を更に受信する、実施例1又は本明細書の何らかの他の実施例の装置を含んでもよい。
実施例5は、それぞれのSRSリソースセットについて少なくとも1つのアンテナポート(単数又は複数)グループ(単数又は複数)の指示を受信する手段を更に備える、実施例1又は本明細書の何らかの他の実施例の装置を含んでもよい。
実施例6は、装置が、コードブックベース又は非コードブックベースの送信のための複数のSRSリソースセットで構成される、実施例5又は本明細書の何らかの他の実施例の装置を含んでもよい。
実施例7は、アップリンクビーム指示のためにSSB又はCSI-RSリソースインデックスを識別するために使用されるビーム回復要求を送信する手段を更に備える、実施例1又は本明細書の何らかの他の実施例の装置を含んでもよい。
実施例8は、送信する手段が、PUCCH又はPRACHのうちの1つにビーム回復要求を送信する、実施例7又は本明細書の何らかの他の実施例の装置を含んでもよい。
実施例9は、ビーム回復要求応答を受信する手段を更に含み、応答はC-RNTI又は既定の/設定されたRNTIによってスクランブルされたPDCCHによって搬送される、実施例7又は本明細書の何らかの他の実施例の装置を含んでもよい。
実施例10は、応答が、上位層シグナリングによって設定された専用の探索空間若しくは制御リソースセット又は全ての設定された探索空間内で送信される、実施例9又は本明細書の何らかの他の実施例の装置を含んでもよい。
実施例11は、設定された時間ウィンドウにおいてビーム回復要求応答が受信されない場合、アップリンクビーム回復要求を再送信する手段を更に備える、実施例7又は本明細書の何らかの他の実施例の装置を含んでもよい。
実施例11.5は、ユーザ機器(UE)内に、又はその一部に提供される、請求項1~11のいずれか一項に記載の装置を含んでもよい。
実施例12は、ビーム放射に関する情報を報告し、パネル選択に関する情報を報告し、ダウンリンク受信及びアップリンク送信のためのビーム及びパネルを決定するための回路を備えるユーザ機器(UE)を含んでもよい。
実施例13は、ビーム報告に対して、RRCシグナリング又は媒体アクセス制御制御要素(MAC-CE)又はダウンリンク制御情報(DCI)又はそれらの組み合わせによって、ビームについて放射及び/又はパネル関連情報をUEが報告すべきかどうかをgNBが指示することができる、実施例12又は本明細書の何らかの他の実施例の方法を含んでもよい。
実施例14は、報告されたビームがアップリンク送信のために選択され得るかどうかをgNBが指示することができる、実施例13又は本明細書の何らかの他の実施例の方法を含んでもよい。
実施例15は、報告されたビームがアップリンク送信のために選択され得るように設定される場合、対応するビーム報告インスタンス内の報告されたビームは放射安全であるべきであり、そうでない場合、報告されたビームは、このビーム報告インスタンスがダウンリンクビーム選択のみのためであるとみなされ得るように、アップリンク送信に使用されなくてもよい、実施例14又は本明細書の何らかの他の実施例の方法を含んでもよい。
実施例16は、1つの報告されたSSB/CSI-RSインデックスがアップリンクビーム指示のために選択され得るかどうかをUEが報告すべきかどうかをgNBが指示することができる、実施例13又は本明細書の何らかの他の実施例の方法を含んでもよい。
実施例17は、それぞれのビーム報告インスタンスにおいて、設定された場合、SSB/CSI-RSリソースがアップリンクビーム指示のために使用され得るかどうかをUEが報告することができる、実施例12又は本明細書の何らかの他の実施例の方法を含んでもよい。
実施例18は、それぞれのCRI/SSBRIに対して、UEが最大電力低減(MPR)レベルをgNBに報告することができる、実施例12又は本明細書の何らかの他の実施例の方法を含んでもよい。
実施例19は、アップリンクビーム指示に対して、RRCシグナリング及び/又はMAC CE及び/又はDCIによって、PUSCH/SRS/PUCCH/PRACHのために、それぞれのアップリンクビームについてUEアンテナポート(単数又は複数)グループ(単数又は複数)をgNBが指示することができる、実施例12又は本明細書の何らかの他の実施例の方法を含んでもよい。
実施例20は、アンテナポート(単数又は複数)グループ(単数又は複数)はまた、それぞれのSRSリソースセットについて指示され得る、実施例12又は本明細書の何らかの他の実施例の方法を含んでもよい。
実施例21は、UEがコードブックベース又は非コードブックベースの送信のための複数のSRSリソースセットで構成され得る、実施例20又は本明細書の何らかの他の実施例の方法を含んでもよい。
実施例22は、ビーム回復要求が、PUCCH又はPRACHによって搬送されてもよく、これはアップリンクビーム指示のためのSSB又はCSI-RSリソースインデックス(単数又は複数)を識別するために使用される、実施例12又は本明細書の何らかの他の実施例の方法を含んでもよい。
実施例23は、PUCCHベースの方式に対して、SSB/CSI-RSリソースインデックス(単数又は複数)が明示的に指示され得る、実施例12又は本明細書の何らかの他の実施例の方法を含んでもよい。
実施例24は、アップリンクビーム指示の失敗したSSB/CSI-RSリソースインデックスも送信され得る、実施例23又は本明細書の何らかの他の実施例の方法を含んでもよい。
実施例25は、ビーム回復要求応答がC-RNTI又は既定/設定されたRNTIによってスクランブルされたPDCCHによって搬送され得る、実施例23又は本明細書の何らかの他の実施例の方法を含んでもよい。
実施例26は、この応答が、上位層シグナリングによって設定された専用の探索空間若しくは制御リソースセット又は全ての設定された探索空間内で送信され得る、実施例25又は本明細書の何らかの他の実施例の方法を含んでもよい。
実施例27は、設定された時間ウィンドウにおいてビーム回復要求応答が受信されない場合、UEはアップリンクビーム回復要求を再送信することができる、実施例22又は本明細書の何らかの他の実施例の方法を含んでもよい。
実施例28は、UEがN回の再送信を許可され、Nが上位層シグナリングによって予め定義又は設定され得る、実施例22又は本明細書の何らかの他の実施例の方法を含んでもよい。
実施例29は、PDCCH命令によるPRACHについて、アンテナポートグループインデックスがダウンリンク制御情報(DCI)によって指示され得る、実施例12又は本明細書の何らかの他の実施例の方法を含んでもよい。
実施例30は、UEが、アンテナポートグループインデックスによって指示されるパネルからのDCIによって指示されるSSBインデックスに関連付けられたTxビームに基づいてPRACHを送信する、実施例29又は本明細書の何らかの他の実施例の方法を含んでもよい。
実施例31は、PRACHをトリガする対応するPDCCHの送信設定指示(TCI)状態で設定された基準信号に関連付けられたTxビームを用いて、指示されたパネルからPRACHが送信され得る、実施例29又は本明細書の何らかの他の実施例の方法を含んでもよい。
実施例32は、PDCCH命令によるPRACHのアンテナポートグループインデックスが、上位層シグナリングによって設定され得る、実施例12又は本明細書の何らかの他の実施例の方法を含んでもよい。
実施例33は、PDCCH命令によるPRACHのアンテナポートグループインデックスが、対応するSSBのビーム報告における最新の報告されたパネルインデックスに基づくことができる、実施例12又は本明細書の何らかの他の実施例の方法を含んでもよい。
実施例34は、PDCCH命令によるPRACHのアンテナポートグループインデックスが、指示されたSSBに基づく指示された空間関係情報に基づくことができる、実施例12又は本明細書の何らかの他の実施例の方法を含んでもよい。
実施例35は、実施例1~34のいずれかに記載の、若しくはこれらに関連する方法、又は本明細書に記載のいずれかの他の方法若しくはプロセス、の1つ以上の要素を実行する手段を備える装置を含んでもよい。
実施例36は、命令を含む1つ以上の非一時的コンピュータ可読媒体であって、電子デバイスの1つ以上のプロセッサによって命令が実行されると、命令は電子デバイスに、実施例1~34のいずれかに記載の、若しくはこれらに関連する方法、又は本明細書に記載のいずれかの他の方法若しくはプロセス、の1つ以上の要素を実行させる、1つ以上の非一時的コンピュータ可読媒体を含んでもよい。
実施例37は、実施例1~34のいずれかに記載の、若しくはこれらに関連する方法、又は本明細書に記載のいずれかの他の方法若しくはプロセスの1つ以上の要素を実行するためのロジック、モジュール、又は回路を備える装置を含んでもよい。
実施例38は、実施例1~34のいずれかに記載の、若しくはこれらに関連する方法、技術、又はプロセス、又はこれらの一部若しくは部分を含んでもよい。
実施例39は、1つ以上のプロセッサと、1つ以上のプロセッサによって実行されると、1つ以上のプロセッサに実施例1~34のいずれかに記載の、若しくはこれらに関連する方法、技術、又はプロセス、又はこれらの部分を実行させる命令を含む1つ以上のコンピュータ可読媒体と、を備える装置を含んでもよい。
実施例40は、実施例1~34のいずれかに記載の、若しくはこれらに関連する信号、又はその一部若しくは部分を含んでもよい。
実施例41は、本明細書に図示され説明されるような無線ネットワークにおける信号を含んでもよい。
実施例42は、本明細書に図示され説明されるような無線ネットワーク内で通信する方法を含んでもよい。
実施例43は、本明細書に図示され説明されるような無線通信を提供するためのシステムを含んでもよい。
実施例44は、本明細書に図示され説明されるような無線通信を提供するためのデバイスを含んでもよい。
上記の実施例のいずれも、特に明記しない限り、任意の他の実施例(又は実施例の組み合わせ)と組み合わせることができる。1つ以上の実装形態の前述の説明は、例示及び説明を提供するが、網羅的であることを意図するものではなく、又は、開示される正確な形態に実装形態の範囲を限定することを意図するものではない。修正及び変形は、上記の教示を考慮して可能であるか、又は本開示と整合した実践的実施形態から得ることができる。
略語
本文書の目的のために、以下の略語を本明細書で論じる例及び実施形態に適用することができるが、限定することを意味するものではない。
3GPP 第3世代パートナーシッププロジェクト
4G 第4世代
5G 第5世代
5GC 5Gコアネットワーク
ACK 確認
AF アプリケーション機能
AM 確認モード
AMBR アグリゲート最大ビットレート
AMF アクセス・移動管理機能
AN アクセスネットワーク
ANR 自動近隣関係
AP アプリケーションプロトコル、アンテナポート、アクセスポイント
API アプリケーションプログラミングインタフェース
APN アクセスポイント名
ARP 割り当て及び保持優先度
ARQ 自動再送要求
AS アクセス層
ASN.1 抽象構文表記1
AUSF 認証サーバ機能
AWGN 付加白色ガウスノイズ
BCH ブロードキャストチャネル
BER ビット誤り率
BFD ビーム故障検出
BLER ブロック誤り率
BPSK 2値位相シフトキーイング
BRAS ブロードバンドリモートアクセスサーバ
BSS 業務支援システム
BS 基地局
BSR バッファ状態レポート
BW 帯域幅
BWP 帯域幅部分
C-RNTI セル無線ネットワーク一時アイデンティティ
CA キャリアアグリゲーション、認証局
CAPEX 設備投資
CBRA 競合ベースのランダムアクセス
CC コンポーネントキャリア、国コード、暗号チェックサム
CCA クリアチャネルアセスメント
CCE 制御チャネル要素
CCCH 共通制御チャネル
CE カバレッジ拡張
CDM コンテンツ配信ネットワーク
CDMA 符号分割多元接続
CFRA コンテンションフリーランダムアクセス
CG セルグループ
CI セルアイデンティティ
CID セルID(例えば、位置決め方法)
CIM 共通情報モデル
CIR キャリア対干渉比
CK 暗号鍵
CM 接続管理、条件付き必須
CMAS 商用モバイル警告サービス
CMD コマンド
CMS クラウド管理システム
CO 条件付きオプション
CoMP 協調マルチポイント
CORESET 制御リソースセット
COTS いつでも買える市販品
CP 制御プレーン、サイクリックプレフィックス、接続ポイント
CPD 接続点記述子
CPE 顧客宅内機器
CPICH 共通パイロットチャネル
CQI チャネル品質インジケータ
CPU CSI処理部、中央処理部
C/R コマンド/応答フィールドビット
CRAN クラウド無線アクセスネットワーク、クラウドRAN
CRB 共通リソースブロック
CRC 巡回冗長検査
CRI チャネル状態情報リソースインジケータ、CSI-RSリソースインジケータ
C-RNTI セルRNTI
CS 回路切換
CSAR クラウドサービスアーカイブ
CSI チャネル状態情報
CSI-IM CSI干渉測定値
CSI-RS CSI基準信号
CSI-RSRP CSI基準信号受信電力
CSI-RSRQ CSI基準信号受信品質
CSI SINR CSI信号対干渉及びノイズ比
CSMA キャリアセンス多元接続
CSMA/CA 衝突回避を伴うCSMA
CSS 共通探索空間、セル固有探索空間
CTS 送信クリア
CW コードワード
CWS 競合ウィンドウサイズ
D2D デバイス間
DC デュアルコネクティビティ、直流
DCI ダウンリンク制御情報
DF Deployment Flavour
DL ダウンリンク
DMTF 分散管理タスクフォース
DPDK データプレーン開発キット
DM-RS、DMRS 復調基準信号
DN データネットワーク
DRB データ無線ベアラ
DRS 発見基準信号
DRX 不連続受信
DSL ドメイン固有言語デジタル加入者回線
DSLAM DSLアクセスマルチプレクサ
DwPTS ダウンリンクパイロット時間スロット
E-LAN Ethernetローカルエリアネットワーク
E2E エンドツーエンド
ECCA 拡張クリアチャネル評価、拡張CCA
ECCE 拡張制御チャネル要素、拡張CCE
ED エネルギー検出
EDGE GSM進化のための拡張データ(GSMエボリューション)
EGMF Exposure Governance Management Function
EGPRS 拡張GPRS
EIR 機器アイデンティティレジスタ
eLAA enhanced免許アシストアクセス、enhanced LAA
EM 要素マネージャ
eMBB 拡張モバイルブロードバンド
EMS 要素管理システム
eNB 進化型ノードB、E-UTRANノードB
EN-DC E-UTRA-NRデュアルコネクティビティ
EPC 進化型パケットコア
EPDCCH エンハンストPDCCH、エンハンスト物理ダウンリンク制御チャネル
EPRE リソース要素ごとのエネルギー
EPS 進化型パケットシステム
EREG 強化されたREG、強化されたリソース要素グループ
ETSI 欧州電気通信標準化機構
ETWS 地震・津波警報システム
eUICC 埋め込みUICC、埋め込みユニバーサル集積回路カード
E-UTRA 進化型UTRA
E-UTRAN 進化型UTRAN
EV2X エンハンストV2X
F1AP F1アプリケーションプロトコル
F1-C F1制御プレーンインタフェース
F1-U F1ユーザプレーンインタフェース
FACCH 高速付随制御チャネル
FACCH/F 高速付随制御チャネル/フルレート
FACCH/H 高速付随制御チャネル/ハーフレート
FACH 順方向アクセスチャネル
FAUSCH 高速アップリンクシグナリングチャネル
FB 機能ブロック
FBI フィードバック情報
FCC 連邦通信委員会
FCCH 周波数補正チャネル
FDD 周波数分割複信
FDM 周波数分割多重化
FDMA 符号分割多元接続
FE フロントエンド
FEC 順方向誤り訂正
FFS 更なる研究
FFT 高速フーリエ変換
feLAA further enhancedライセンス支援アクセス、further enhanced LAA
FN フレーム番号
FPGA フィールドプログラマブルゲートアレイ
FR 周波数範囲
G-RNTI GERAN無線ネットワーク一時アイデンティティ
GERAN GSM EDGE RAN、GSM EDGE無線アクセスネットワーク
GGSN ゲートウェイGPRSサポートノード
GLONASS GLObal’naya NAvigattionnaya Sputnikovaya Sistema(全地球航法衛星システム)
gNB 次世代ノードB
gNB-CU gNB-集中ユニット、次世代NodeB集中ユニット
gNB-DU gNB分散ユニット、次世代NodeB分散ユニット
GNSS 全球測位衛星システム
GPRS 汎用パケット無線サービス
GSM モバイル通信用グローバルシステム、グループスペシャルモバイル
GTP GPRSトンネリングプロトコル
GTP-U ユーザプレーン用GPRSトンネリングプロトコル
GTS スリープ要求信号(WUS関連)
GUMMEI グローバルに一意のMME識別子
GUTI グローバルに一意の一時UEアイデンティティ
HARQ ハイブリッドARQ、ハイブリッド自動再送要求
HANDO、HO ハンドオーバ
HFN ハイパーフレーム番号
HHO ハードハンドオーバ
HLR ホームロケーションレジスタ
HN ホームネットワーク
HO ハンドオーバ
HPLMN ホームパブリックランドモバイルネットワーク
HSDPA 高速ダウンリンクパケットアクセス
HSN ホッピングシーケンス番号
HSPA 高速パケットアクセス
HSS ホーム加入者サーバ
HSUPA 高速アップリンクパケットアクセス
HTTP ハイパーテキスト転送プロトコル
HTTPS ハイパーテキスト転送プロトコルセキュア(httpsはSSL上のhttp/1.1、すなわちポート443である)
I-Block 情報ブロック
ICCID 集積カード識別
ICIC セル間干渉調整
ID アイデンティティ、識別子
IDFT 逆離散フーリエ変換
IE 情報要素
IBE 帯域内放射
IEEE 米国電気電子学会
IEI 情報要素識別子
IEIDL 情報要素識別子データ長
IETF インターネット技術タスクフォース
IF インフラストラクチャ
IM 干渉測定、相互変調、IPマルチメディア
IMC IMSクレデンシャル
IMEII 国際モバイル機器アイデンティティ
IMGI 国際移動体グループアイデンティティ
IMPI IPマルチメディアプライベートアイデンティティ
IMPU IPマルチメディアパブリックアイデンティティ
IMS IPマルチメディアサブシステム
IMSI 国際移動電話加入者識別番号
IoT モノのインターネット
IP インターネットプロトコル
Ipsec IPセキュリティ、インターネットプロトコルセキュリティ
IP-CAN IP接続アクセスネットワーク
IP-M IPマルチキャスト
IPv4 インターネットプロトコルバージョン4
IPv6 インターネットプロトコルバージョン6
IR 赤外線
IS 同期している
IRP 積分基準点
ISDN 統合サービスデジタルネットワーク
ISIM IMサービスアイデンティティモジュール
ISO 国際標準化機構
ISP インターネットサービスプロバイダ
IWF 相互作用関数
I-WLAN 相互接続WLAN
K 畳込符号の制約長、USIM個別キー
kB キロバイト(1000バイト)
kbps キロビット/秒
Kc 暗号鍵
Ki 個別加入者認証鍵
KPI 主要能力評価指標
KQI 主要品質インジケータ
KSI キーセット識別子
ksps キロシンボル/秒
KVM カーネル仮想マシン
L1 層1(物理層)
L1-RSRP 層1基準信号受信電力
L2 層2(データリンク層)
L3 層3(ネットワーク層)
LAA 免許支援アクセス
LAN ローカルエリアネットワーク
LBT リッスンビフォアトーク
LCM ライフサイクル管理
LCR 低チップレート
LCS 場所サービス
LCID 論理チャネルID
LI 層インジケータ
LLC 論理リンク制御、低層互換性
LPLMN ローカルPLMN
LPP LTE位置決めプロトコル
LSB 最下位ビット
LTE ロングタームエボリューション
LWA LTE-WLANアグリゲーション
LWIP IPsecトンネルとのLTE/WLAN無線レベル統合
LTE ロングタームエボリューション
M2M マシンツーマシン
MAC メディアアクセス制御(プロトコル層コンテキスト)
MAC メッセージ認証コード(セキュリティ/暗号コンテキスト)
MAC-A 認証及び鍵一致に使用されるMAC(TSG T WG3コンテキスト)
MAC-I シグナリングメッセージのデータ完全性に使用されるMAC(TSG T WG3コンテキスト)
MANO 管理及びオーケストレーション
MBMS マルチメディアブロードキャストマルチキャストサービス
MBSFN マルチメディアブロードキャストマルチキャストサービスシングル周波数ネットワーク
MCC モバイルカントリコード
MCG マスタセルグループ
MCOT 最大チャネル占有時間
MCS 変調及び符号化スキーム
MDAF 管理データ分析機能
MDAS 管理データ分析サービス
MDT 駆動試験の最小化
ME モバイル機器
MeNB マスタeNB
MER メッセージ誤り率
MGL 測定ギャップ長
MGRP 測定ギャップ反復期間
MIB マスタ情報ブロック、管理情報ベース
MIMO 多重入力多重出力
MLC モバイルロケーションセンタ
MM モビリティ管理
MME モビリティ管理エンティティ
MN マスタノード
MO 測定オブジェクト、モバイル発信
MPBCH MTC物理報知チャネル
MPDCCH MTC物理ダウンリンク制御チャネル
MPDSCH MTC物理ダウンリンク共有チャネル
MPRACH MTC物理ランダムアクセスチャネル
MPDSCH MTC物理アップリンク共有チャネル
MPLS マルチプロトコルラベルスイッチング
MS 移動局
MSB 最上位ビット
MSC モバイル切換センタ
MSI 最小システム情報、MCHスケジューリング情報
MSID 移動局識別子
MSIN 移動局識別番号
MSISDN モバイル加入者ISDN番号
MT モバイル終端、モバイルターミネーション
MTC マシン型通信
mMTC 大規模MTC、大規模マシン型通信
MU-MIMO マルチユーザMIMO
MWUS MTCウェイクアップ信号、MTC WUS
NACK 否定応答
NAI ネットワークアクセス識別子
NAS 非アクセス層
NCT ネットワーク接続トポロジ
NEC ネットワーク能力開示
NE-DC NR-E-UTRAデュアルコネクティビティ
NEF ネットワーク開示機能
NF ネットワーク機能
NFP ネットワーク転送経路
NFPD ネットワーク転送経路記述子
NFV ネットワーク機能仮想化
NFVI NFVインフラストラクチャ
NFVO NFVオーケストレータ
NG 次世代
NGEN-DC NG-RAN E-UTRA-NRデュアルコネクティビティ
NM ネットワークマネージャ
NMS ネットワーク管理システム
N-PoP ネットワークポイントオブプレゼンス
NMIB,N-MIB 狭帯域MIB
NPBCH 狭帯域物理ブロードキャストチャネル
NPDCCH 狭帯域物理ダウンリンク制御チャネル
NPDSCH 狭帯域物理ダウンリンク共有チャネル
NPRACH 狭帯域物理ランダムアクセスチャネル
NPUSCH 狭帯域物理アップリンク共有チャネル
NPSS 狭帯域プライマリ同期信号
NSSS 狭帯域セカンダリ同期信号
NR 新無線、近隣関係
NRF NFリポジトリ機能
NRS 狭帯域基準信号
NS ネットワークサービス
NSA 非スタンドアロン動作モード
NSD ネットワークサービス記述子
NSR ネットワークサービスレコード
NSSAI ネットワークスライス選択支援情報
S-NNSAI シングルNSSAI
NSSF ネットワークスライス選択機能
NW ネットワーク
NWUS 狭帯域ウェイクアップ信号、狭帯域WUS
NZP 非ゼロ電力
O&M 運用及び保守
ODU2 光チャネルデータユニット-タイプ2
OFDM 直交周波数分割多重化
OFDMA 直交周波数分割多元接続
OOB 帯域外
OOS 同期外れ
OPEX 運転費
OSI その他システム情報
OSS オペレーションサポートシステム
OTA over-the-air
PAPR ピーク対平均電力比
PAR ピーク対平均比
PBCH 物理ブロードキャストチャネル
PC 電力制御、パーソナルコンピュータ
PCC プライマリコンポーネントキャリア、プライマリCC
PCell プライマリセル
PCI 物理セルID、物理セルアイデンティティ
PCEF ポリシー及び課金実施機能
PCF ポリシー制御機能
PCRF ポリシー制御及び課金ルール機能
PDCP パケットデータコンバージェンスプロトコル、パケットデータコンバージェンスプロトコル層
PDCCH 物理ダウンリンク制御チャネル
PDCP パケットデータコンバージェンスプロトコル
PDN パケットデータネットワーク、パブリックデータネットワーク
PDSCH 物理ダウンリンク共有チャネル
PDU プロトコルデータユニット
PEI 永久機器識別子
PFD パケットフロー記述
P-GW PDNゲートウェイ
PHICH 物理ハイブリッドARQインジケータチャネル
PHY 物理層
PLMN 公衆陸上移動網
PIN 個人識別番号
PM 性能測定
PMI プリコーディング行列インジケータ
PNF 物理ネットワーク機能
PNFD 物理ネットワーク機能記述子
PNFR 物理ネットワーク機能記録
POC セルラを介するPTT
PP,PTP ポイントツーポイント
PPP ポイントツーポイントプロトコル
PRACH 物理RACH
PRB 物理リソースブロック
PRG 物理リソースブロックグループ
ProSe 近接サービス、近接ベースのサービス
PRS 位置決め基準信号
PRR パケット受信無線機
PS パケットサービス
PSBCH 物理サイドリンクブロードキャストチャネル
PSDCH 物理サイドリンクダウンリンクチャネル
PSCCH 物理サイドリンク制御チャネル
PSSCH 物理サイドリンク共有チャネル
PSCell プライマリSCell
PSS プライマリ同期信号
PSTN 公衆交換電話網
PT-RS 位相追跡基準信号
PTT プッシュツートーク
PUCCH 物理アップリンク制御チャネル
PUSCH 物理アップリンク共有チャネル
QAM 直交振幅変調
QCI 識別子のQoSクラス
QCL 準コロケーション
QFI QoSフローID、QoSフロー識別子
QoS サービス品質
QPSK 直交(四値)位相シフトキーイング
QZSS 準天頂衛星システム
RA-RNTI ランダムアクセスRNTI
RAB 無線アクセスベアラ、ランダムアクセスバースト
RACH ランダムアクセスチャネル
RADIUS ユーザサービスにおけるリモート認証ダイヤル
RAN 無線アクセスネットワーク
RAND 乱数(認証に使用)
RAR ランダムアクセス応答
RAT 無線アクセス技術
RAU ルーティングエリア更新
RB リソースブロック、無線ベアラ
RBG リソースブロックグループ
REG リソース要素グループ
Rel 解放
REQ 要求
RF 無線周波数
RI ランクインジケータ
RIV リソースインジケータ値
RL 無線リンク
RLC 無線リンク制御、無線リンク制御層
RLC AM RLC肯定応答モード
RLC UM RLC非肯定応答モード
RLF 無線リンク障害
RLM 無線リンクモニタリング
RLM-RS RLMのための基準信号
RM 登録管理
RMC 基準測定チャネル
RMSI 残存MSI、残存最小システム情報
RN 中継ノード
RNC 無線ネットワークコントローラ
RNL 無線ネットワーク層
RNTI 無線ネットワーク一時識別子
ROHC ロバストヘッダ圧縮
RRC 無線リソース制御、無線リソース制御層
RRM 無線リソース管理
RS 基準信号
RSRP 基準信号受信電力
RSRQ 基準信号受信品質
RSSI 受信信号強度インジケータ
RSU 路側機
RSTD 基準信号時間差
RTP リアルタイムプロトコル
RTS 送信準備完了
RTT 往復時間
Rx 受信、受信機
S1AP S1アプリケーションプロトコル
S1-MME 制御プレーン用S1
S1-U ユーザプレーン用S1
S-GW サービングゲートウェイ
S-RNTI SRNC無線ネットワーク一時アイデンティティ
S-TMSI SAE一時移動局識別子
SA スタンドアロン動作モード
SAE システムアーキテクチャ発展
SAP サービスアクセスポイント
SAPD サービスアクセスポイント記述子
SAPI サービスアクセスポイント識別子
SCC セカンダリコンポーネントキャリア、セカンダリCC
SCell セカンダリセル
SC-FDMA シングルキャリア周波数分割多元接続
SCG セカンダリセルグループ
SCM セキュリティコンテキスト管理
SCS サブキャリア間隔
SCTP ストリーム制御伝送プロトコル
SDAP サービスデータ適応プロトコル、サービスデータ適応プロトコル層
SDL 補助ダウンリンク
SDNF 構造化データストレージネットワーク機能
SDP サービスディスカバリプロトコル(Bluetooth関連)
SDSF 構造化データ記憶機能
SDU サービスデータユニット
SEAF セキュリティアンカー機能
SeNB セカンダリeNB
SEPP セキュリティエッジ保護プロキシ
SFI スロットフォーマットインジケーション
SFTD 空間周波数時間ダイバーシティ、SFN及びフレームタイミング差
SFN システムフレーム番号
SgNB セカンダリgNB
SGSN サービングGPRSサポートノード
S-GW サービングゲートウェイ
SI システム情報
SI-RNTI システム情報RNTI
SIB システム情報ブロック
SIM 加入者識別モジュール
SIP セッション開始プロトコル
SiP システムインパッケージ
SL サイドリンク
SLA サービス水準合意
SM セッション管理
SMF セッション管理機能
SMS ショートメッセージサービス
SMSF SMS機能
SMTC SSBベースの測定タイミング構成
SN セカンダリノード、シーケンス番号
SoC システムオンチップ
SON 自己組織ネットワーク
SpCell 専用セル
SP-CSI-RNTI 反永続的CSI RNTI
SPS 反永続的スケジューリング
SQN シーケンス番号
SR スケジューリング要求
SRB シグナリング無線ベアラ
SRS サウンディング基準信号
SS 同期信号
SSB 同期信号ブロック、SS/PBCHブロック
SSBRI SS/PBCHブロックリソースインジケータ、同期信号ブロックリソースインジケータ
SSC セッション及びサービス連続性
SS-RSRP 同期化信号ベースの基準信号受信電力
SS-RSRQ 同期信号ベースの基準信号受信品質
SS-SINR 同期信号ベースの信号対ノイズ及び干渉比
SSS セカンダリ同期信号
SSSG 探索空間セットグループ
SSSIF 探索空間セットインジケータ
SST スライス/サービスタイプ
SU-MIMO シングルユーザMIMO
SUL 補助アップリンク
TA タイミングアドバンス、トラッキングエリア
TAC 追跡エリアコード
TAG タイミングアドバンスグループ
TAU 追跡エリア更新
TB トランスポートブロック
TBS トランスポートブロックサイズ
TBD To Be Defined
TCI 送信構成インジケータ
TCP 伝送通信プロトコル
TDD 時分割複信
TDM 時分割多重
TDMA 時分割多元接続
TE 端末装置
TEID トンネルエンドポイント識別子
TFT トラフィックフローテンプレート
TMSI 一時モバイル加入者アイデンティティ
TNL トランスポートネットワーク層
TPC 送信電力制御
TPMI 送信プリコーディング行列インジケータ
TR 技術報告書
TRP,TRxP 送信受信点
TRS 追跡基準信号
TRx トランシーバ
TS 技術仕様書、技術規格
TTI 送信時間間隔
Tx 送信、送信機
U-RNTI UTRAN無線ネットワーク一時アイデンティティ
UART ユニバーサル非同期受信機及び送信機
UCI アップリンク制御情報
UE ユーザ機器
UDM 統合データ管理
UDP ユーザデータグラムプロトコル
UDSF 非構造化データストレージネットワーク機能
UICC ユニバーサル集積回路カード
UL アップリンク
UM 非肯定応答モード
UML 統一モデル言語
UMTS ユニバーサル移動体通信システム
UP ユーザプレーン
UPF ユーザプレーン機能
URI ユニフォームリソース識別子
URL ユニフォームリソースロケータ
URLLC 超高信頼及び低レイテンシ
USB ユニバーサルシリアルバス
USIM ユニバーサル加入者アイデンティティモジュール
USS UE 固有探索空間
UTRA UMTS端末無線アクセス
UTRAN ユニバーサル地上無線アクセスネットワーク
UwPTS アップリンクパイロットタイムスロット
V2I ビークルツーインフラストラクチャ
V2P ビークルツー歩行者
V2V ビークルツービークル
V2X ビークルツーエブリシング
VIM 仮想化インフラストラクチャマネージャ
VL 仮想リンク、
VLAN 仮想LAN、仮想ローカルエリアネットワーク
VM 仮想マシン
VNF 仮想化ネットワーク機能
VNFFG VNF転送グラフ
VNFFGD VNF転送グラフ記述子
VNFM VNFマネージャ
VoIP ボイスオーバーIP、ボイスオーバーインターネットプロトコル
VPLMN 訪問先公衆移動陸上網
VPN 仮想プライベートネットワーク
VRB 仮想リソースブロック
WiMAX ワールドワイド・インターオペラビリティ・フォー・マイクロウェーブ・アクセス
WLAN 無線ローカルエリアネットワーク
WMAN 無線メトロポリタンエリアネットワーク
WPAN 無線パーソナルエリアネットワーク
X2-C X2-制御プレーン
X2-U X2-ユーザプレーン
XML 拡張可能なマークアップ言語
XRES 予想ユーザ応答
XOR 排他的論理和
ZC Zadoff-Chu
ZP ゼロ電力
専門用語
本明細書の目的のために、以下の用語及び定義は、本明細書で論じる例及び実施形態に適用可能である。
本明細書で使用される「回路」という用語は、電子回路、論理回路、プロセッサ(共有、専用、又はグループ)及び/又はメモリ(共有、専用、又はグループ)、特定用途向け集積回路(ASIC)、フィールドプログラマブルデバイス(FPD)(例えば、フィールドプログラマブルゲートアレイ(FPGA)、プログラマブルロジックデバイス(PLD)、複合PLD(CPLD)、大容量PLD(HCPLD)、構造化ASIC、又はプログラマブルSoC)、デジタルシグナルプロセッサ(DSP)などの、記載の機能を提供するように構成されたハードウェア構成要素を指すか、その一部であるか、又は含む。いくつかの実施形態では、回路は、1つ以上のソフトウェア又はファームウェアプログラムを実行して、記載された機能の少なくとも一部を提供することができる。「回路」という用語はまた、1つ以上のハードウェア要素(又は、電気若しくは電子システムにおいて使用される回路の組み合わせ)と、そのプログラムコードの機能を実行するために使用されるプログラムコードとの組み合わせを指すことができる。これらの実施形態では、ハードウェア要素とプログラムコードとの組み合わせは、特定のタイプの回路と称されてもよい。
本明細書で使用される「プロセッサ回路」という用語は、一連の算術演算若しくは論理演算、又はデジタルデータの記録、記憶、及び/又は転送を順次自動的に実行することができる回路を指すか、その一部であるか、又は含む。「プロセッサ回路」という用語は、1つ以上のアプリケーションプロセッサ、1つ以上のベースバンドプロセッサ、物理中央処理装置(CPU)、シングルコアプロセッサ、デュアルコアプロセッサ、トリプルコアプロセッサ、クアドコアプロセッサ、及び/又はプログラムコード、ソフトウェアモジュール、及び/又は機能プロセスなどのコンピュータ実行可能命令を実行又は動作させることができる任意の他のデバイスを指すことができる。「アプリケーション回路」及び/又は「ベースバンド回路」という用語は、「プロセッサ回路」と同義であると考えられ、「プロセッサ回路」と呼ばれることがある。
本明細書で使用される「インタフェース回路」という用語は、2つ以上の構成要素又はデバイス間の情報の交換を可能にする回路を指すか、その一部であるか、又は含む。用語「インタフェース回路」は、1つ以上のハードウェアインタフェース、例えば、バス、I/Oインタフェース、周辺構成要素インタフェース、ネットワークインタフェースカード、及び/又は同様のものを指すことがある。
本明細書で使用される「ユーザ機器」又は「UE」という用語は、無線通信機能を有するデバイスを指し、通信ネットワーク内のネットワークリソースのリモートユーザを表すことができる。「ユーザ機器」又は「UE」という用語は、クライアント、モバイル、モバイルデバイス、モバイル端末、ユーザ端末、モバイルユニット、モバイルステーション、モバイルユーザ、加入者、ユーザ、リモートステーション、アクセスエージェント、ユーザエージェント、受信機、無線機器、再構成可能無線機器、再構成可能モバイルデバイスなどと同義であると考えられてもよく、これらで呼ばれてもよい。更に、「ユーザ機器」又は「UE」という用語は、任意のタイプの無線/有線デバイス又は無線通信インタフェースを含む任意のコンピューティングデバイスを含んでもよい。
本明細書で使用される「ネットワーク要素」という用語は、有線又は無線通信ネットワークサービスを提供するために使用される物理的又は仮想化された機器及び/又はインフラストラクチャを指す。「ネットワーク要素」という用語は、ネットワーク化されたコンピュータ、ネットワーク化されたハードウェア、ネットワーク機器、ネットワークノード、ルータ、スイッチ、ハブ、ブリッジ、無線ネットワークコントローラ、RANデバイス、RANノード、ゲートウェイ、サーバ、仮想化されたVNF、NFVIなどと同義であると考えられてもよく、及び/又はそれらと呼ばれてもよい。
本明細書で使用するとき、用語「コンピュータシステム」は、任意のタイプの相互接続された電子デバイス、コンピュータデバイス、又はそれらの構成要素を指す。更に、「コンピュータシステム」及び/又は「システム」という用語は、互いに通信可能に結合されたコンピュータの様々な構成要素を指すことができる。更に、「コンピュータシステム」及び/又は「システム」という用語は、互いに通信可能に結合され、コンピューティングリソース及び/又はネットワーキングリソースを共有するように構成された複数のコンピュータデバイス及び/又は複数のコンピューティングシステムを指すことができる。
本明細書で使用される「機器」、「コンピュータ機器」などの用語は、特定のコンピューティングリソースを提供するように特に設計されたプログラムコード(例えば、ソフトウェア又はファームウェア)を有するコンピュータデバイス又はコンピュータシステムを指す。「仮想機器」は、コンピュータ機器を仮想化又はエミュレートする、又は特定のコンピューティングリソースを提供するために専用のハイパーバイザを備えたデバイスによって実装される仮想マシンイメージである。
本明細書で使用される「リソース」という用語は、コンピュータデバイス、機械的デバイス、メモリ空間、プロセッサ/CPU時間、プロセッサ/CPU使用量、プロセッサ及びアクセラレータ負荷、ハードウェア時間又は使用量、電力、入出力動作、ポート又はネットワークソケット、チャネル/リンク割り当て、スループット、メモリ使用量、ストレージ、ネットワーク、データベース及びアプリケーション、ワークロードユニットなどの、物理又は仮想デバイス、コンピューティング環境内の物理又は仮想コンポーネント、及び/又は特定のデバイス内の物理又は仮想コンポーネントを指す。「ハードウェアリソース」は、物理ハードウェア要素によって提供される計算、記憶、及び/又はネットワークリソースを指すことができる。「仮想化リソース」は、仮想化インフラストラクチャによってアプリケーション、デバイス、システムなどに提供される計算、ストレージ、及び/又はネットワークリソースを指すことができる。「ネットワークリソース」又は「通信リソース」という用語は、通信ネットワークを介してコンピュータデバイス/システムによってアクセス可能なリソースを指すことができる。「システムリソース」という用語は、サービスを提供するための任意の種類の共有エンティティを指すことができ、コンピューティングリソース及び/又はネットワークリソースを含むことができる。システムリソースは、そのようなシステムリソースが単一のホスト又は複数のホスト上に存在し、明確に識別可能であるサーバを介してアクセス可能な、コヒーレント機能、ネットワーク・データ・オブジェクト又はサービスのセットと考えることができる。
本明細書で使用される場合、用語「チャネル」は、データ又はデータストリームを通信するために使用される有形又は非有形のいずれかの伝送媒体を指す。「チャネル」という用語は、「通信チャネル」、「データ通信チャネル」、「伝送チャネル」、「データ伝送チャネル」、「アクセスチャネル」、「データアクセスチャネル」、「リンク」、「データリンク」、「キャリア」、「高周波キャリア」、及び/又はデータが通信される経路又は媒体を示す任意の他の同様の用語と同義及び/又は同等であり得る。更に、本明細書で使用される場合、用語「リンク」は、情報を送受信する目的で、RATを介した2つのデバイス間の接続を指す。
本明細書で使用される「インスタンス化する」、「インスタンス化」などの用語は、インスタンスの作成を指す。「インスタンス」はまた、例えばプログラムコードの実行中に発生し得るオブジェクトの具体的なの発生を指す。
「結合された(coupled)」、「通信可能に結合された(communicatively coupled)」という用語は、その派生語と共に本明細書で使用される。用語「結合された」は、2つ以上の要素が互いに直接物理的又は電気的に接触していることを意味することができ、2つ以上の要素が互いに間接的に接触しつつ、互いに連携若しくは相互作用することを意味することができ、かつ/又は、互いに結合されていると言われる要素の間に1つ以上の他の要素が結合又は接続されていることを意味することができる。用語「直接結合された」は、2つ以上の要素が互いに直接接触していることを意味し得る。「通信可能に結合された」という用語は、2つ以上の要素が、有線又は他の相互接続を介して、無線通信チャネル又はインクを介して、及び/又は同様のものを含む通信手段によって互いに接触することができることを意味することができる。
「情報要素」という用語は、1つ以上のフィールドを含む構造要素を指す。「フィールド」という用語は、情報要素、又はコンテンツを含むデータ要素の個々のコンテンツを指す。
「SMTC」という用語は、SSB-MeasurementTimingConfigurationによって構成されたSSBベースの測定タイミング構成を指す。
「SSB」という用語は、SS/PBCHブロックを指す。
「プライマリセル」という用語は、プライマリ周波数で動作するMCGセルを指し、UEは、初期接続確立手順を実行するか、又は接続再確立手順を開始する。
「プライマリSCGセル」とは、DC動作用の同期手順を用いて再構成を行う際に、UEがランダムアクセスを行うSCGセルを指す。
「セカンダリセル」という用語は、CAで構成されたUEのための専用セルの上に追加の無線リソースを提供するセルを指す。
「セカンダリセルグループ」という用語は、DCで構成されたUEのためのPSCell及び0個以上のセカンダリセルを含むサービングセルのサブセットを指す。
「サービングセル」という用語は、CA/DCで構成されていないRRC_CONNECTEDにおけるUEのためのプライマリセルを指し、プライマリセルから構成されるサービングセルは1つのみである。
「サービングセル」という用語は、特殊セルと、CA/で構成されたRRC_CONNECTEDにおけるUE用の全てのセカンダリセルとを含むセルのセットを指す。
「専用セル」という用語は、DC動作のためのMCGのPCell又はSCGのPSCellを指す。そうでない場合、「専用セル」という用語はPセルを指す。
上述したように、本技術の態様は、例えば機能性の改善又は向上のために、様々なソースから入手可能なデータを収集及び使用することを含んでもよい。本開示は、いくつかの例において、この収集されたデータが、特定の人を一意に特定する個人情報データ、又は特定の人に連絡する若しくはその所在を突き止めるために使用できる個人情報データを含み得ることを考察する。そのような個人情報データは、人口統計データ、位置ベースのデータ、電話番号、電子メールアドレス、ツイッターID、住所、ユーザの健康又はフィットネスレベル(例えば、バイタルサイン測定、服薬情報、運動情報)に関するデータ若しくは記録、誕生日、又は任意の他の識別情報若しくは個人情報を含むことができる。本開示は、本技術におけるそのような個人情報データの使用がユーザの利益になる使用であり得る点を認識するものである。
本開示は、そのような個人情報データの収集、分析、開示、伝送、記憶、又は他の使用に関与するエンティティが、確固たるプライバシーポリシー及び/又はプライバシー慣行を遵守するものとなることを想到する。具体的には、そのようなエンティティは、個人情報データを秘密として厳重に保守するための、業界又は政府の要件を満たしているか又は上回るものとして一般に認識されている、プライバシーのポリシー及び慣行を実施し、一貫して使用するべきである。そのようなポリシーは、ユーザによって容易にアクセス可能とするべきであり、データの収集及び/又は使用が変化するにつれて更新されるべきである。ユーザからの個人情報は、そのエンティティの合法的かつ正当な使用のために収集されるべきであり、それらの合法的使用を除いては、共有又は販売されるべきではない。更には、そのような収集/共有は、ユーザに告知して同意を得た後にのみ実施されるべきである。更には、そのようなエンティティは、そのような個人情報データへのアクセスを保護して安全化し、その個人情報データへのアクセスを有する他者が、それらのプライバシーポリシー及び手順を遵守することを保証するための、あらゆる必要な措置を講じることを考慮するべきである。更には、そのようなエンティティは、広く受け入れられているプライバシーのポリシー及び慣行に対する自身の遵守を証明するために、第三者による評価を自らが受けることができる。更には、ポリシー及び慣行は、収集及び/又はアクセスされる具体的な個人情報データのタイプに適合されるべきであり、また、管轄権固有の考慮事項を含めた、適用可能な法令及び規格に適合されるべきである。例えば、米国では、特定の健康データの収集又はアクセスは、医療保険の相互運用性と説明責任に関する法律(Health Insurance Portability and Accountability Act;HIPAA)などの、連邦法及び/又は州法によって管理することができ、その一方で、他国における健康データは、他の規制及びポリシーの対象となり得るものであり、それに従って対処されるべきである。それゆえ、各国において、異なる個人データのタイプに関して異なるプライバシー慣行が保たれるべきである。
前述のことがらにも関わらず、本開示はまた、個人情報データの使用又は個人情報データへのアクセスを、ユーザが選択的に阻止する実施形態も想到する。すなわち、本開示は、そのような個人情報データへのアクセスを防止又は阻止するように、ハードウェア要素及び/又はソフトウェア要素を提供することができると想到する。例えば、本技術は、ユーザが、サービスの登録中又はその後のいつでも、個人情報データの収集への参加の「オプトイン」又は「オプトアウト」を選択することを可能にするように構成することができる。「オプトイン」及び「オプトアウト」の選択肢を提供することに加えて、本開示は、個人情報のアクセス又は使用に関する通知を提供することを想到する。例えば、ユーザの個人情報データにアクセスすることとなるアプリのダウンロード時にユーザに通知され、その後、個人情報データがアプリによってアクセスされる直前に再びユーザに注意してもよい。
更には、本開示の意図は、個人情報データを、非意図的若しくは無許可アクセス又は使用の危険性を最小限に抑える方法で、管理及び処理するべきであるという点である。データの収集を制限し、データがもはや必要とされなくなった時点で削除することによって、危険性を最小限に抑えることができる。更には、適用可能な場合、特定の健康関連アプリケーションにおいて、ユーザのプライバシーを保護するために、データの非特定化を使用することができる。非特定化は、適切な場合には、特定の識別子(例えば、生年月日など)を除去すること、記憶されたデータの量又は特異性を制御すること(例えば、位置データを住所レベルよりも都市レベルで収集すること)、データがどのように記憶されるかを制御すること(例えば、データをユーザ全体にわたって集約すること)及び/又は他の方法によって、容易にすることができる。
それゆえ、本開示は、1つ以上の様々な開示された実施形態を実施するための、個人情報データの使用を広範に網羅するものであるが、本開示はまた、そのような個人情報データにアクセスすることを必要とせずに、それらの様々な実施形態を実施することも可能であることを考慮している。すなわち、本技術の様々な実施形態は、そのような個人情報データの全て又は一部分が欠如することにより、実施不可能となるものではない。

Claims (20)

  1. ビーム選択を実行する装置であって、
    無線フロントエンド回路と、
    前記無線フロントエンド回路に結合されたプロセッサ回路であって、
    基地局から、少なくとも1つのアップリンクビームに対する報告の要求を受信し、
    前記少なくとも1つのアップリンクビームに対する前記報告の前記要求を受信したことに応じて、前記少なくとも1つのアップリンクビームに対する前記報告を生成し、前記少なくとも1つのアップリンクビームに対する前記報告は、前記少なくとも1つのアップリンクビームに対応するリソースがアップリンクビーム指示のために利用可能であるという指示を含み、前記リソースが同期信号ブロック(SSB)リソース又はチャネル状態情報基準信号(CSI-RS)リソースであり、
    前記無線フロントエンド回路を使用して、前記少なくとも1つのアップリンクビームに対する前記報告を前記基地局に送信し、
    前記基地局から、前記少なくとも1つのアップリンクビームが、前記少なくとも1つのアップリンクビームに対する前記報告に基づいてアップリンク送信のために選択可能であるという指示を受信する、
    ように構成されたプロセッサ回路と、
    を備える、ビーム選択を実行する装置。
  2. 前記報告が、前記少なくとも1つのアップリンクビームに対応する前記リソースに対する放射情報を含む、請求項1に記載の装置。
  3. 前記報告が、前記少なくとも1つのアップリンクビームに対応する前記リソースに対するアンテナポートグループを含む、請求項1に記載の装置。
  4. 前記報告が、前記少なくとも1つのアップリンクビームに対応する前記リソースに対する最大電力低減(MPR)レベルを含む、請求項1に記載の装置。
  5. 前記報告の前記要求を受信するために、前記プロセッサ回路が、前記基地局から、無線リソース制御(RRC)シグナリング、媒体アクセス制御制御要素(MAC-CE)、又はダウンリンク制御情報(DCI)を介して、前記報告の前記要求を受信するように更に構成される、請求項1に記載の装置。
  6. 前記少なくとも1つのアップリンクビームがアップリンク送信のために選択可能であるという前記指示を受信するために、前記プロセッサ回路が、
    前記基地局から、無線リソース制御(RPC)シグナリング、媒体アクセス制御制御要素(MAC-CE)、又はダウンリンク制御情報(DCI)を介して、前記少なくとも1つのアップリンクビームに対するアンテナポートグループを受信する、ように更に構成される、請求項1に記載の装置。
  7. 前記プロセッサ回路が、
    前記少なくとも1つのアップリンクビームが放射安全でないか、又は前記少なくとも1つのアップリンクビームの品質値が閾値を下回ることを判定し、
    前記無線フロントエンド回路を使用して、アップリンクビーム指示のために利用可能な第2のアップリンクビームに対応する第2のリソースを識別するビーム回復要求を前記基地局に送信し、前記第2のリソースはSSBリソース又はCSI-RSリソースであり、
    前記基地局から、前記第2のアップリンクビームがアップリンク送信のために選択可能であることを指示するビーム回復要求応答を受信する、
    ように更に構成される、請求項1に記載の装置。
  8. ビーム選択を実行する方法であって、
    基地局から、少なくとも1つのアップリンクビームに対する報告の要求を受信することと、
    前記少なくとも1つのアップリンクビームに対する前記報告の前記要求を受信したことに応じて、前記少なくとも1つのアップリンクビームに対する前記報告を生成することであって、前記少なくとも1つのアップリンクビームに対する前記報告は、前記少なくとも1つのアップリンクビームに対応するリソースがアップリンクビーム指示のために利用可能であるという指示を含み、前記リソースが同期信号ブロック(SSB)リソース又はチャネル状態情報基準信号(CSI-RS)リソースである、生成することと、
    前記少なくとも1つのアップリンクビームに対する前記報告を前記基地局に送信することと、
    前記基地局から、前記少なくとも1つのアップリンクビームが、前記少なくとも1つのアップリンクビームに対する前記報告に基づいてアップリンク送信のために選択可能であるという指示を受信することと、
    を含む、ビーム選択を実行する方法。
  9. 前記報告が、前記少なくとも1つのアップリンクビームに対応する前記リソースに対する放射情報を含む、請求項8に記載の方法。
  10. 前記報告が、前記少なくとも1つのアップリンクビームに対応する前記リソースに対するアンテナポートグループを含む、請求項8に記載の方法。
  11. 前記報告が、前記少なくとも1つのアップリンクビームに対応する前記リソースに対する最大電力低減(MPR)レベルを含む、請求項8に記載の方法。
  12. 前記報告の前記要求を前記受信することが、
    前記基地局から、無線リソース制御(RRC)シグナリング、媒体アクセス制御制御要素(MAC-CE)、又はダウンリンク制御情報(DCI)を介して、前記報告の前記要求を受信することを更に含む、請求項8に記載の方法。
  13. 前記少なくとも1つのアップリンクビームがアップリンク送信のために選択可能であるという前記指示を前記受信することが、
    前記基地局から、無線リソース制御(RPC)シグナリング、媒体アクセス制御制御要素(MAC-CE)、又はダウンリンク制御情報(DCI)を介して、前記少なくとも1つのアップリンクビームに対するアンテナポートグループを受信することを更に含む、請求項8に記載の方法。
  14. 前記少なくとも1つのアップリンクビームが放射安全でないか、又は前記少なくとも1つのアップリンクビームの品質値が閾値を下回ることを判定することと、
    前記基地局に、アップリンクビーム指示のために利用可能な第2のアップリンクビームに対応する第2のリソースを識別するビーム回復要求を送信することであって、前記第2のリソースがSSBリソース又はCSI-RSリソースである、送信することと、
    前記基地局から、前記第2のアップリンクビームがアップリンク送信のために選択可能であることを指示するビーム回復要求応答を受信することと、
    を更に含む、請求項8に記載の方法。
  15. 記憶された命令を有する非一時的コンピュータ可読媒体であって、前記命令が、1つ以上のプロセッサによって実行されると、前記1つ以上のプロセッサに、
    基地局から、少なくとも1つのアップリンクビームに対する報告の要求を受信させ、
    前記少なくとも1つのアップリンクビームに対する前記報告の前記要求を受信したことに応じて、前記少なくとも1つのアップリンクビームに対する前記報告を生成し、前記少なくとも1つのアップリンクビームに対する前記報告は、前記少なくとも1つのアップリンクビームに対応するリソースがアップリンクビーム指示のために利用可能であるという指示を含み、前記リソースが同期信号ブロック(SSB)リソース又はチャネル状態情報基準信号(CSI-RS)リソースであり、
    前記少なくとも1つのアップリンクビームに対する前記報告を前記基地局に送信させ、
    前記基地局から、前記少なくとも1つのアップリンクビームが、前記少なくとも1つのアップリンクビームに対する前記報告に基づいてアップリンク送信のために選択可能であるという指示を受信させること、を含む非一時的コンピュータ可読媒体。
  16. 前記報告が、前記少なくとも1つのアップリンクビームに対応する前記リソースに対する放射情報を含む、請求項15に記載の非一時的コンピュータ可読デバイス。
  17. 前記報告が、前記少なくとも1つのアップリンクビームに対応する前記リソースに対するアンテナポートグループを含む、請求項15に記載の非一時的コンピュータ可読デバイス。
  18. 前記報告が、前記少なくとも1つのアップリンクビームに対応する前記リソースに対する最大電力低減(MPR)レベルを含む、請求項15に記載の非一時的コンピュータ可読デバイス。
  19. 前記報告の前記要求を前記受信させることが、
    前記基地局から、無線リソース制御(RPC)シグナリング、媒体アクセス制御制御要素(MAC-CE)、又はダウンリンク制御情報(DCI)を介して前記報告の前記要求を受信させることを更に含む、請求項15に記載の非一時的コンピュータ可読デバイス。
  20. 前記少なくとも1つのアップリンクビームがアップリンク送信のために選択可能であるという前記指示を前記受信させることが、
    前記基地局から、無線リソース制御(RPC)シグナリング、媒体アクセス制御制御要素(MAC-CE)、又はダウンリンク制御情報(DCI)を介して、前記少なくとも1つのアップリンクビームに対するアンテナポートグループを受信させることを更に含む、請求項15に記載の非一時的コンピュータ可読デバイス。
JP2021547226A 2019-02-14 2020-02-13 放射及びパネル認識ビーム選択 Pending JP2022520580A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023215652A JP2024038007A (ja) 2019-02-14 2023-12-21 放射及びパネル認識ビーム選択

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962805873P 2019-02-14 2019-02-14
US62/805,873 2019-02-14
PCT/US2020/018190 WO2020168130A1 (en) 2019-02-14 2020-02-13 Emission and panel aware beam selection

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023215652A Division JP2024038007A (ja) 2019-02-14 2023-12-21 放射及びパネル認識ビーム選択

Publications (1)

Publication Number Publication Date
JP2022520580A true JP2022520580A (ja) 2022-03-31

Family

ID=69811919

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021547226A Pending JP2022520580A (ja) 2019-02-14 2020-02-13 放射及びパネル認識ビーム選択
JP2023215652A Pending JP2024038007A (ja) 2019-02-14 2023-12-21 放射及びパネル認識ビーム選択

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023215652A Pending JP2024038007A (ja) 2019-02-14 2023-12-21 放射及びパネル認識ビーム選択

Country Status (4)

Country Link
US (1) US20220190902A1 (ja)
JP (2) JP2022520580A (ja)
CN (1) CN113475004A (ja)
WO (1) WO2020168130A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7214001B2 (ja) * 2019-02-22 2023-01-27 ペキン シャオミ モバイル ソフトウェア カンパニー, リミテッド データ伝送方法、装置及び記憶媒体
US11558307B2 (en) * 2019-05-02 2023-01-17 Lg Electronics Inc. Method and apparatus for reporting processing delay related information in wireless communication system
US11882576B2 (en) * 2020-05-01 2024-01-23 Qualcomm Incorporated Techniques for dynamic signaling for wireless coverage enhancement
US11652589B2 (en) * 2020-05-22 2023-05-16 Qualcomm Incorporated Techniques for coherent joint transmission for a multi-transmit and receive point (TRP) with a different physical cell identifier (PCID) by using a type-II port selection codebook
US11690083B2 (en) * 2020-06-09 2023-06-27 Qualcomm Incorporated Grouping user equipment based on downlink power
US11751186B2 (en) * 2020-07-21 2023-09-05 Qualcomm Incorporated Single layer uplink non-codebook based precoding optimization
US11652531B2 (en) * 2020-10-12 2023-05-16 Qualcomm Incorporated Techniques for determining one or more antenna panels to use in receiving beams
US20240064700A1 (en) * 2021-01-15 2024-02-22 Lenovo (Beijing) Limited Methods and apparatuses for paging
WO2022205056A1 (en) * 2021-03-31 2022-10-06 Qualcomm Incorporated User equipment capability reporting for joint downlink and uplink beam reports
US20240155719A1 (en) * 2021-05-18 2024-05-09 Qualcomm Incorporated Uplink channel transmissions using per-transmit-receive-point-and-panel power control parameters
US20230199649A1 (en) * 2021-12-17 2023-06-22 Qualcomm Incorporated Signaling to wake up a cell
CN116782119A (zh) * 2022-03-11 2023-09-19 索尼集团公司 用于定位中的上行参考信号传输配置的设备和方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017176438A1 (en) * 2016-04-04 2017-10-12 Intel IP Corporation Paging design for stand-alone beamformed system
US10735157B2 (en) * 2017-02-03 2020-08-04 Futurewei Technologies, Inc. UE-assisted SRS resource allocation
KR102575972B1 (ko) * 2017-05-04 2023-09-08 삼성전자주식회사 다운링크/업링크(dl/ul) 간 빔 연계 방법 및 장치
US10631256B2 (en) * 2017-09-25 2020-04-21 Apple Inc. Power headroom of grantless uplink
US20210159966A1 (en) * 2018-04-04 2021-05-27 Idac Holdings, Inc. Beam indication for 5g new radio
CN115133959A (zh) * 2018-04-06 2022-09-30 诺基亚技术有限公司 用于多面板ue的波束指示
US11909489B2 (en) * 2019-01-04 2024-02-20 Huawei Technologies Co., Ltd. System and method for beam management with emissions limitations

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "On Beam Management Enhancement[online]", 3GPP TSG RAN WG1 ADHOC_NR_AH_1901 R1-1900503, JPN6022035081, 12 January 2019 (2019-01-12), ISSN: 0004987307 *

Also Published As

Publication number Publication date
JP2024038007A (ja) 2024-03-19
US20220190902A1 (en) 2022-06-16
WO2020168130A1 (en) 2020-08-20
CN113475004A (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
EP3909186B1 (en) Network coordination for crosslink interference mitigation
JP7232346B2 (ja) Ne-dcモードの測定ギャップ設計
JP7444892B2 (ja) 2ステップrachのためのフォールバック手順
JP2022519564A (ja) 3gppシステムにおける識別及び動作のためのuasサービスの有効化
JP2022520403A (ja) ユーザ機器(ue)節電のための基準信号(rs)監視の適応システム及び方法
KR20210154251A (ko) 비허가 스펙트럼 상에서 동작하는 뉴 라디오(nr) 시스템들에 대한 업링크 lbt 실패들을 핸들링하는 장치 및 방법
KR20210111308A (ko) 단일 다운링크 제어 정보(dci) 다중 송신 수신 포인트(trp) 송신에 대한 복조 기준 신호(dmrs) 표시
JP2022521702A (ja) 新無線(nr)におけるue内多重化のためのシステム及び方法
JP2022527193A (ja) 送信構成指示(tci)状態及びビーム切り替え
JP2022520580A (ja) 放射及びパネル認識ビーム選択
JP2022519565A (ja) クロスリンク干渉(cli)測定報告
JP2022519497A (ja) 無線アクセスネットワーク内の5G New Radio(NR)アクセスネットワークを用いてWI FIアクセスネットワークを収斂させる機構
JP2022514840A (ja) ビームフォーミング情報を用いて高速モビリティを可能にする方法
JP7304422B2 (ja) 2ステップランダムアクセス手順においてメッセージング用のmacフォーマットを生成するための装置及び方法
JP2022521213A (ja) ハンドオーバ割り込みを低減するためのシステム及び方法
JP2023179605A (ja) 基準信号を介してリモート干渉管理情報を伝達する方法
JP2022530816A (ja) 無認可スペクトル上で動作する新無線システムにおけるアップリンク送信
JP7364683B2 (ja) サウンディング基準信号(srs)リソースを提供するユーザ機器を動的に構成するためのシステム及び方法
JP2022522201A (ja) パケットデータ統合プロトコル(Packet Data Convergence Protocol(PDCP))における情報指向ネットワーク名の圧縮及び展開のための方法及びシステム
KR102488489B1 (ko) 무선 리소스 관리 테스팅에서의 기준 신호 셋업 추적
JP2022520365A (ja) Cli-rssi測定リソース構成
CN113678502A (zh) 用于新无线电(nr)中的双连接和载波聚合的装置和方法
JP7342139B2 (ja) セカンダリセルビーム回復のための方法及びシステム
JP2022517936A (ja) 単一キャリア波形の位相追跡基準信号設計
JP7245345B2 (ja) セル再選択のための同期信号ブロック周期性

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230510

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230821