JP2022517936A - 単一キャリア波形の位相追跡基準信号設計 - Google Patents

単一キャリア波形の位相追跡基準信号設計 Download PDF

Info

Publication number
JP2022517936A
JP2022517936A JP2021539628A JP2021539628A JP2022517936A JP 2022517936 A JP2022517936 A JP 2022517936A JP 2021539628 A JP2021539628 A JP 2021539628A JP 2021539628 A JP2021539628 A JP 2021539628A JP 2022517936 A JP2022517936 A JP 2022517936A
Authority
JP
Japan
Prior art keywords
circuit
network
data
crm
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021539628A
Other languages
English (en)
Other versions
JP7200386B2 (ja
Inventor
ギャン ション
ジエ ズー
ユシュ ザン
デウォン リ
グオトン ワン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apple Inc
Original Assignee
Apple Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apple Inc filed Critical Apple Inc
Publication of JP2022517936A publication Critical patent/JP2022517936A/ja
Application granted granted Critical
Publication of JP7200386B2 publication Critical patent/JP7200386B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

1つ以上のコンピュータ可読媒体(CRM)が開示される。CRMは、基地局の1つ以上のプロセッサによる命令の実行時に、基地局に、位相シフト補償のための位相追跡基準信号(PT-RS)を生成し、キャリア周波数を含む単一キャリアベースの波形を使用して、物理ダウンリンク共有チャネル(PDSCH)でPT-RSを送信することを行わせる命令を含む。単一キャリアベースの波形は、SC-FDE又はDFT-s-OFDMであってもよい。

Description

(関連出願の相互参照)
本出願は、2019年1月7日に出願された米国特許仮出願第62/789,282号の35USC119(e)の下での利益を主張し、その全体が参照により本明細書に組み込まれる。
様々な実施形態は、一般に、無線通信の分野に関連し得る。
モバイル通信は、初期の音声システムから、今日の高度に洗練された統合通信プラットフォームへと大幅に進化している。次世代の無線通信システム、5G、又はニューレディオ(NR)は、様々なユーザ及びアプリケーションによっていつでもどこでも、情報へのアクセス及びデータの共有を提供する。NRは、統一されたネットワーク/システムであることと、大幅に相異なり時には相反する性能次元及びサービスを満たすこととが期待されている。このような多様な多次元要件は、異なるサービス及びアプリケーションによって駆動される。一般に、NRは、人々の生活をより良好でシームレスな無線接続ソリューションで豊かにするために、追加の潜在的な新たな無線アクセス技術(RAT)と共に3GPP LTEアドバンストに基づいて進化するであろう。NRは、あらゆるものが無線によって接続され、高速で豊富なコンテンツ及びサービスを配信することを可能にする。
一般に、一態様では、実施形態は、1つ以上のコンピュータ可読媒体(CRM)に関連する。CRMは、基地局の1つ以上のプロセッサによる命令の実行時に、基地局に、位相シフト補償のための位相追跡基準信号(PT-RS)を生成し、キャリア周波数を含む単一キャリアベースの波形を使用して、物理ダウンリンク共有チャネル(PDSCH)でPT-RSを送信すること、を行わせる命令を含む。
一般に、一態様では、実施形態は、ユーザ機器(UE)を動作させるための方法に関する。この方法は、位相シフト補償のための位相追跡基準信号(PT-RS)を生成することと、周波数領域等化器を備えた単一キャリア(SC-FDE)を使用して、物理アップリンク共有チャネル(PUSCH)でPT-RSを送信することと、を含む。
一般に、一態様では、実施形態は、基地局の装置に関する。この装置は、位相シフト補償のための位相追跡基準信号(PT-RS)を生成するように構成されたプロセッサ回路と、キャリア周波数を含む単一キャリアベースの波形を使用して、物理ダウンリンク共有チャネル(PDSCH)でPT-RSを送信するように構成された無線周波数回路と、を備える。
1つ以上の実施形態に係る複数の送信方式を示す。 1つ以上の実施形態に係る、PT-RS及びデータの別個の符号化及び変調チェーンの一例を示す。 1つ以上の実施形態に係る、PT-RS及びデータの同じ符号化及び別個の変調チェーンの一例を示す。 1つ以上の実施形態に係るSC-FED波形のPT-RSパターンの一例を示す。 1つ以上の実施形態に係るシステムの例示的なアーキテクチャを示す。 1つ以上の実施形態に係るシステムの例示的なアーキテクチャを示す。 1つ以上の実施形態に係るシステムの例示的なアーキテクチャを示す。 1つ以上の実装形態に係る例示的なインフラストラクチャ設備を示す。 1つ以上の実装形態に係る例示的なプラットフォームを示す。 1つ以上の実施形態に係るベースバンド回路及び無線フロントエンドモジュール(RFEM)の例示的な構成要素を示す。 1つ以上の実施形態に係る無線通信デバイスにおいて実施され得る様々なプロトコル機能を示す。 様々な実施形態に係るコアネットワークの構成要素を示す。 1つ以上の実施形態に係る、NFVをサポートするためのシステムの構成要素を示す。 機械可読媒体又はコンピュータ可読媒体から命令を読み取ることができる例示的な構成要素を示す。 1つ以上の実施形態に係るフローチャートを示す。 1つ以上の実施形態に係るフローチャートを示す。 1つ以上の実施形態に係るフローチャートを示す。
以下の詳細な説明は、添付の図面を参照する。同じ参照番号が、同じ又は類似の要素を識別するために、異なる図面において使用される場合がある。以下の記載において、限定するためにではなく説明の目的上、様々な実施形態の様々な態様の完全な理解を提供するために、特定の構造、アーキテクチャ、インタフェース、技法などの具体的な詳細を説明する。しかし、様々な実施形態の様々な態様が、これらの具体的な詳細から逸脱した他の実施例において実施され得ることは、本開示の利益を有する技術分野の当業者には明らかであろう。場合によっては、様々な実施形態の説明を不必要な詳細によって不明瞭にしないように、周知のデバイス、回路、及び方法の説明は省略される。本開示の目的のために、「A又はB」は、(A)、(B)、又は(A及びB)を意味する。更に、略語のリストが、詳細な説明の最後に提供される。
1つ以上の実施形態では、NRリリース15において、システム設計は、DL及びULに対する巡回プレフィックス直交周波数分割多重(CP-OFDM)の波形選択を有する52.6GHzまでのキャリア周波数、並びに更に、ULに対する離散フーリエ変換拡散OFDM(DFT-s-OFDM)に基づく。しかしながら、52.6GHzを超えるキャリア周波数では、低電力増幅器(PA)効率及び大位相ノイズを含む問題を取り扱うために、単一キャリアベースの波形が必要とされることが想定される。
1つ以上の実施形態では、DFT-s-OFDM及び周波数領域等化器(SC-FDE)を備えた単一キャリアを含む単一キャリアベースの波形を、DL及びULの両方に対して考慮することができる。図1は、それぞれ、OFDM及びSCFDEシステムの送信方式を示す。DFT-s-OFDMを含むOFDMベースの送信方式では、巡回プレフィックス(CP)189が各ブロックの先頭に挿入されてもよく、ブロック内の最後のデータシンボルがCPとして繰り返される。典型的には、CPの長さは、シンボル間干渉(ISI)を克服するために、最大予想遅延スプレッドを超える。
SC-FDE送信方式では、既知のシーケンス(ガード間隔(GI)198、ユニークワード(UW)など)は、1つのブロックの開始及び終了の両方に挿入されてもよい。更に、周波数領域内の線形等化器を使用して、受信機の複雑さを低減することができる。OFDMと比較して、SC-FDE送信方式は、ピーク対平均電力比(PAPR)を低減することができ、したがって、より安価な電力増幅器の使用を可能にする。
1つ以上の実施形態では、NRリリース15において、位相追跡基準信号(PT-RS)が物理ダウンリンク共有チャネル(PDSCH)及び物理アップリンク共有チャネル(PUSCH)に挿入され、位相ノイズ及び周波数オフセットによって引き起こされる各シンボルにおける位相シフト補償に使用することができる。時間及び周波数におけるPT-RSパターンは、変調及び符号化方式(MCS)及びデータ送信帯域幅に従って決定することができる。
1つ以上の実施形態では、DFT-s-OFDM波形を使用してPUSCHに関連付けられたPT-RSについては、DFT動作前に、PT-RSをデータに挿入することができる。更に、グループベースのPT-RSパターンをDFT-s-OFDM波形に用いてもよい。この場合、PT-RSサンプルの複数のグループがシンボル内に分布し、各グループは、PT-RSのための2つ又は4つのサンプルを有する。
1つ以上の実施形態では、52.6GHzを上回るキャリア周波数で動作するシステムの場合、DFT-s-OFDM波形がDL送信に適用され、SC-FDE波形がDL及びUL送信の両方に使用されるとき、単一キャリアベースの波形に対するPT-RS設計の向上が必要とされ得る。
1つ以上の実施形態は、52.6GHzのキャリア周波数を超えて動作するシステムのための単一キャリア波形のPT-RS設計に向けられる。これらの実施形態は、DL送信のためのDFT-s-OFDM波形のPT-RS設計、並びにDL及びUL送信の両方のためのSC-FDE波形のPT-RS設計を含むことができる。
DL送信のためのDFT-s-OFDM波形のPT-RS設計
上述のように、DL送信のためのDFT-s-OFDM波形のPT-RS設計の実施形態を含め、52.6GHzを上回るキャリア周波数で動作するシステムのDL送信に、DFT-s-OFDM波形を使用することができる。
1つ以上の実施形態では、グループベースのPT-RSパターンが、DL送信のためのDFT-s-OFDM波形に適用されてもよく、各グループはDFT動作の前に時間領域においてK個の連続するサンプルを占有する。UL DFT-s-OFDM波形のPT-RSを用いてもよい。別の例では、PT-RSは、一様な様式で、シンボルのサンプルの途中に挿入されるべきである。
1つ以上の実施形態では、PT-RSの存在は、対応するPDSCH及び/又はPUSCHをスケジューリングする無線ネットワーク一時識別子(RNTI)に依存し得る。初期アクセス中、P-RNTI、SI-RNTI及びRA-RANTIを有するPDCCHによってスケジューリングされたPDSCHを含む共通制御メッセージについては、PT-RSが存在しない。同様に、TC-RNTIを有するPDCCHによってスケジューリングされたPUSCH送信の場合、PT-RSは存在しない。或いは、PDCCHが既定のパターンに基づいてそれらのタイプのRNTIと関連付けられているときには、PT-RSが存在してもよい。
1つ以上の実施形態では、デフォルトのPT-RSパターンが、DFT-s-OFDM波形の時間及び周波数で定義されてもよい。C-RNTI、CS-RNTI及び/又はMCS-RNTIを有するPDCCHによってスケジューリングされるPDSCH又はPUSCH、及びPDCCHフォーマットが、例えば、DCIフォーマット0_0及び1_0を含む、フォールバックDCIフォーマットである場合、デフォルトのPT-RSパターンが適用されてもよく、又は、PT-RSは存在しないものとする。
なお、DFT-s-OFDM波形のPT-RS及びデフォルトのPT-RSパターンの存在を決定するための上記の選択肢はまた、SC-FDE波形のためのものに適用されてもよいことに留意されたい。
1つ以上の実施形態では、複数の送受信ポイント(マルチTRP)又は複数のパネルベースの動作に関して、直交カバーコード(OCC)が、異なるパネル又は異なるTRPからのPT-RSの送信に適用されてもよい。OCCは、DMRSアンテナポート(複数可)グループインデックスg及び/又はDMRSアンテナポートpによって決定されてもよい。一実施例では、OCCインデックスは、p mod Kによって決定され得る。別の実施例では、OCCインデックスは、(p mod K + g) mod Kによって決定され得る。
グループサイズKは、最大DMRSポート数によって決定され得る。一実施例では、Kは、PT-RSが存在するときのDMRSポートの数と同じであるべきである。
1つ以上の実施形態では、異なるRNTIが異なるTRPによって構成される場合、OCCは、PDCCHに関連付けられたRNTIによって決定されてもよく、又は上位層シグナリングによって構成されてもよい。一実施例では、OCCインデックスは、RNTI mod Kによって決定され得る。
なお、OCCの適用及びOCC指示のための上記の実施形態は、SC-FDE波形にも適用され得ることに留意されたい。
DL及びUL送信のためのSC-FDE波形のPT-RS設計
1つ以上の実施形態では、SC-FDE波形を含む単一キャリア波形について、データ伝送は、一般に、周波数領域等化(FDE)のためブロックベースである。チャネル等化計算コストを低減するために、既知のシーケンス又はユニークワード(UW)のGIが、各データブロックの前後に挿入される。この場合、受信機に既知のGIを使用して、位相ノイズ及び周波数オフセットによって引き起こされる位相シフトを補償することができる。しかしながら、GIがデータ伝送の前後に位置するとき、比較的大きいブロックサイズのGIに依存するだけで共通の位相誤差を推定及び補償することは必ずしも十分ではない場合がある。この点で、共通位相誤差を細かく推定及び補償し、それによって性能を改善するために、PT-RSをデータブロック内に挿入することができる。SC-FDE波形のためのPT-RSの定義は、そのシーケンス生成方法及びパターンからなる。パターンは、データブロック内のPT-RSサンプルのグループ密度及び発生グループのサンプルの数を決定する。
1つ以上の実施形態では、PT-RSシーケンスは、以下のパラメータ、すなわち、サブブロック/ブロック/スロット/フレームインデックス、PT-RSが関連付けられているDMRSポートのためのDMRSシーケンス生成に使用される仮想セルID又は物理セルID又はRNTI又は上位層構成ID、のうちの少なくとも1つに従って生成される。
1つ以上の実施形態では、PT-RSシーケンス生成は、次のように初期化されてもよい。
Figure 2022517936000002
ここで、
Figure 2022517936000003
はスロット内のブロックの数であり、
Figure 2022517936000004
はスロットインデックスであり、lはPT-RSを含む最低ブロックインデックスである。
IDは、上位層によって構成され、構成されていない場合には物理セルIDと等しい。
1つ以上の実施形態において、PT-RSは、GIシーケンスに基づいて生成され得る。1つの選択肢では、PT-RSシーケンスは、GIシーケンスの反復バージョンであってもよい。PT-RSの長さがGIの長さ未満である場合、PT-RSシーケンスは、GIシーケンスの第1の部分である。
追加的に又は代替的に、同じ変調シンボルをPT-RS送信に使用してもよい。より具体的には、データブロックの前のGI内の最後のシンボルが繰り返され、PT-RS送信に使用され得る。
1つ以上の実施形態では、PT-RSの送信のためにパワーブーストを適用することができる。一実施例では、TS38.214[1]の表6.2.3.2-1に定義されるような電力スケーリングファクタを、PT-RSの送信に用いてもよい。
同様に、パワーブーストは、GIの送信に適用されてもよい。
1つ以上の実施形態において、PT-RSは、データ送信のための情報ビットの一部に基づいて生成されてもよい。受信機がPT-RSを正常に復号し、位相誤差補償のために復号されたPT-RSを使用することを可能にするために、PT-RS送信の変調次数は、関連するデータ送信の変調次数よりも低くてもよい。例えば、高次変調、例えば64QAMがデータ送信に使用される場合、QPSKが、PT-RSの送信に使用され得る。
1つ以上の実施形態では、PT-RSの変調次数は、仕様で予め定められてもよく、例えば、BPSK又はQPSKが、PT-RSの送信に用いられてもよい。別の選択肢では、PT-RSの変調次数は、上位層によって構成されてもよく、又は、DCI又はそれらの組み合わせによって動的に指示されてもよい。更に別の選択肢では、PT-RSの変調次数は、データ送信の変調次数に従って決定されてもよい。例えば、データ送信の変調次数が6すなわち64QAMである場合、PT-RSの変調次数は、4すなわち16QAMであり、データ送信の変調次数が4すなわち16QAMである場合、PT-RSの変調次数は、2すなわちQPSKである。
1つ以上の実施形態では、PT-RSシーケンスを生成するために、2つの選択肢が考慮され得る。1つの選択肢では、別個の符号化及び変調チェーンが、それぞれ、PT-RS及びデータの送信に使用される。具体的には、情報ビットは2つの部分に分割され、第1の部分は符号化され、変調され、PT-RSサンプルにマッピングされ、第2の部分は符号化され、変調され、データサンプルにマッピングされる。なお、PT-RSとデータとの符号化方式は、同じであっても異なっていてもよい。PT-RSの符号語は、SC-FDE波形ブロックに対応する。図2は、PT-RS及びデータのための別個の符号化及び変調チェーンの一例を示す。図2を参照すると、demux201の後、第1のエンコーダ202は、変調器206によって変調される前にPT-RSを符号化し、第2のエンコーダ204は、変調器208によって変調される前にデータを符号化する。
1つ以上の実施形態では、PT-RS及びデータの送信のために、同じ符号化が適用されるが、別個の変調方式が適用される。具体的には、符号化後、符号化ビットは2つの部分に分割され、第1の部分は、変調されてPT-RSサンプルにマッピングされ、第2の部分は、変調されてデータサンプルにマッピングされる。図3は、PT-RS及びデータの同じ符号化及び別個の変調チェーンの一例を示す。この例におけるPT-RSビットは、変調の前に更に符号化されてもよく、これらの2つの選択肢の組み合わせをもたらす。図3を参照すると、LDPCエンコーダ302は、demux304の前で、PT-RS及びデータの両方を含む情報ビットを符号化して、別個のPT-RS及びデータを提供する。その後、変調器306はPT-RSを変調し、変調器308はデータを変調する。
1つ以上の実施形態では、制御情報は、PT-RSによって伝達され得る。一例では、物理アップリンク共有チャネル(PUSCH)にピギーバックされたアップリンク制御情報は、PT-RSによって伝達されてもよい。この場合、UCIの送信には、PUSCHと比較してより低い変調次数を用いることができる。
1つ以上の実施形態において、時間領域におけるPT-RSパターンは、スケジューリングされたデータ送信及び/又は送信持続時間のMCSに従って決定されてもよく、かつ/又は無線リソース制御(RRC)シグナリングを介して上位層によって構成されるか、若しくはダウンリンク制御情報(DCI)で動的に指示されるか、又はそれらの組み合わせであってもよい。なお、送信持続時間は、データ送信のためにスケジューリングされたブロック又はサブブロックの数に関して定義され得ることに留意されたい。
追加的に又は代替的に、帯域幅部分(BWP)がデータチャネルの送信に用いられる場合、時間領域におけるPT-RSパターンは、BWPの帯域幅に従って決定されてもよい。一般的に、BWPが大きいほど、PT-RSパターンはより高密度である。PT-RSは、一般に、データブロック内に分布したいくつかのグループに分割される。PT-RSグループは、いくつかの特定のパターンに基づいてランダムに分布又は拡散されてもよい。PT-RSグループ内のサンプルの数は、同じであっても異なっていてもよい。
1つ以上の実施形態では、PT-RSの存在は、関連するデータ送信のMCSに依存する。MCSがMCS閾値以下である場合、PT-RSは存在しない。MCS閾値は、仕様において事前に定義され得る。別の例では、BPSK及び/又はQPSK変調を用いたデータ送信の場合、PT-RSは存在しない。
1つ以上の実施形態では、SC-FDE波形送信のPT-RSグループパターンは、1つのデータブロック内のサンプルの数に依存する。表1は、SC-FDE波形のPT-RSパターンの一例を示す。表において、Nsamples,i及びNsamples,i+1はある正の整数であり、上位層によって構成されてもよい。Nsamplesは、対応するデータ送信のためのSC-FDE波形のブロックに使用されるサンプルの数であり、これは、上位層によって構成されても、若しくはDCIで動的に指示されても、又はそれらの組み合わせでもよい。
1つ以上の実施形態では、グループ数NGroup,i、及び各グループ内のサンプル数KSamples,Iが事前に定義されてもよい。スケジューリングされたデータ送信持続時間がNsamples,0未満である場合、対応するデータ送信のためのPT-RSは存在しない。PT-RSグループは、データブロック内に一様に分布してもよい。
Figure 2022517936000005
1つ以上の実施形態では、サンプリングレート適応が適用されるとき、すなわち、ブロック内のサンプルの数が低減されると、対応するデータ送信に関連付けられたPT-RSグループパターンが、それに応じて調整され得る。1つの選択肢では、1つのブロック内のPT-RSグループ数及びPT-RSグループ当たりのサンプル数を決定するために、スケジューリングされたデータ送信のためのブロック内のサンプル数又はサンプルの総数が表1に含まれる。
追加的に又は代替的に、PT-RSグループパターンは、サンプリングレート適応比に従って調整されてもよい。一実施例では、サンプリングレート適応に基づいて、サンプルの数はMratio分の1に低減され、PT-RSのグループ数及び各グループ内のサンプル数はそれに応じて
Figure 2022517936000006
にそれぞれ低減されてもよい。式中NGroups及びKsampleは、基準サンプリングレートについて表1に定義されたグループ数及びグループ当たりのサンプル数である。
1つ以上の実施形態では、SC-FDE波形については、GIが、共通の位相誤差補償のためにPT-RSと共に使用され得る。この場合、PT-RSは、GIに隣接して配置されなくてもよい。更に、PT-RSは、1つのデータブロック又はサブブロックの途中に位置してもよい。
1つ以上の実施形態では、PT-RSグループは、1つのデータ又はサブブロック内に一様に分布する。グループ数をNgroup、各グループ内のサンプル数をKsample、ブロック内のデータのサンプルの総数をKdataと仮定すると、ブロック内のPT-RSサンプルの位置は次式とすることができる。
Figure 2022517936000007
式中、s=1,2,...,Ngroupであり、k=0,1,...,Ksample-1又はk=-Ksample,...,-1である。別の例では、
Figure 2022517936000008
である。
図4は、SC-FED波形のPT-RSパターンの一例を示す。図4では、PT-RSグループ402の数は、1つのデータブロック404内に一様に分布する。また、PT-RSグループの数は、2(402a及び402b)であり、グループ当たりのサンプル数は、4である。
1つ以上の実施形態では、PT-RSグループの開始位置は、PT-RSが関連付けられたセルID及び/又はRNTI及び/又はDMRSポートインデックス、及び/又は、PT-RSが関連付けられたDMRSポートに対するDMRSシーケンス生成のための上位層構成ID、の関数として決定されてもよい。
1つ以上の実施形態では、PT-RSの開始サンプルは、次式で与えられてもよい。
Figure 2022517936000009
式中、nRNTIは、送信をスケジューリングするDCIに関連するRNTIであり、krefは、PT-RSの開始サンプルであり、Nrefは、上位層によって構成されてもよく、又は仕様において事前に定義されてもよい。一実施例では、次式の通りである。
Figure 2022517936000010
図5は、いくつかの実施形態に係るネットワークのシステム100の例示的なアーキテクチャを示す。以下の説明は、LTEシステム規格及び3GPP技術仕様によって提供されるような5G又はNRシステム標準と併せて動作する例示的なシステム100について提供される。しかしながら、例示的な実施形態は、この点に関して限定されず、説明される実施形態は、将来の3GPPシステム(例えば、第6世代(6G))システム、IEEE 802.16プロトコル(例えば、WMAN、WiMAXなど)などの、本明細書に記載の原理から恩恵を受ける他のネットワークに適用することができる。
図5に示すように、システム100は、UE101a及びUE101b(まとめて「UE101」と呼ばれる)を含む。この例では、UE101は、スマートフォン(例えば、1つ以上のセルラネットワークに接続可能な携帯式タッチスクリーンモバイルコンピューティングデバイス)として図示されているが、民生用電子デバイス、携帯電話、スマートフォン、フィーチャフォン、タブレットコンピュータ、ウェアラブルコンピュータデバイス、携帯情報端末(PDA)、ページャ、無線ハンドセット、デスクトップコンピュータ、ラップトップコンピュータ、車両内インフォテインメント(IVI)、車内エンターテインメント(ICE)デバイス、インストルメントクラスタ(IC)、ヘッドアップディスプレイ(HUD)デバイス、車載診断(OBD)デバイス、ダッシュトップモバイル機器(DME)、モバイルデータ端末(MDT)、電子エンジン管理システム(EEMS)、電子/エンジン制御ユニット(ECU)、電子エンジン/エンジン制御モジュール(ECM)、組み込みシステム、マイクロコントローラ、制御モジュール、エンジン管理システム(EMS)、ネットワーク化又は「スマート」電化製品、MTCデバイス、M2M、IoTデバイス、及び/又は同様のものなどの任意のモバイル又は非モバイルコンピューティングデバイスを含んでもよい。
いくつかの実施形態では、UE101のいずれかは、IoT UEを含むことができ、それは、短期UE接続を利用する低電力IoTアプリケーション用に設計されたネットワークアクセスレイヤを含み得る。IoT UEは、PLMN、ProSe又はD2D通信、センサネットワーク、又はIoTネットワークを介して、MTCサーバ又はデバイスとデータを交換するためのM2M又はMTCなどの技術を利用することができる。M2M又はMTCデータ交換は、データの機械起動の交換であってもよい。IoTネットワークは、相互に接続するIoT UEを記載し、それは、短期接続による、(インターネットインフラストラクチャ内の)一意に識別可能な埋め込み型コンピューティングデバイスを含み得る。IoT UEは、IoTネットワークの接続を容易にするために、バックグラウンドアプリケーション(例えば、キープアライブメッセージ、ステータス更新など)を実行してもよい。
UE101は、RAN110に接続されるように、例えば通信可能に結合されるように、構成され得る。実施形態では、RAN110は、NG RAN若しくは5G RAN、E-UTRAN、又はUTRAN若しくはGERANなどのレガシーRANであってもよい。本明細書で使用するとき、用語「NG RAN」などは、NR又は5Gシステム100で動作するRAN110を指し、用語「E-UTRAN」などは、LTE又は4Gシステム100で動作するRAN110を指してもよい。UE101は、それぞれ接続(又はチャネル)103及び104を利用し、これらはそれぞれ、物理通信インタフェース又はレイヤ(以下で更に詳細に議論する)を含む。
この実施例では、接続103及び104は、通信可能な結合を可能にするためのエアインタフェースとして示されており、GSMプロトコル、CDMAネットワークプロトコル、PTTプロトコル、POCプロトコル、UMTSプロトコル、3GPP LTEプロトコル、5Gプロトコル、NRプロトコル、及び/又は本明細書で論じる他の通信プロトコルのいずれかなどのセルラ通信プロトコルと一致し得る。実施形態では、UE101は、更に、ProSeインタフェース105を介して通信データを直接交換することができる。ProSeインタフェース105は、代替的にSLインタフェース105と称されてもよく、PSCCH、PSSCH、PSDCH、及びPSBCHを含むがこれらに限定されない1つ以上の論理チャネルを含んでもよい。
UE101bは、接続107を介してAP106(「WLANノード106」「WLAN106」「WLAN端末106」、「WT106」などとも呼ばれる)にアクセスするように構成されていることが示されている。接続107は、任意のIEEE802.11プロトコルと合致する接続などのローカルワイヤレス接続を含むことができ、AP106は、WiFi(Wireless Fidelity)(登録商標)ルータを備えるであろう。本例では、AP106は、図示するように、ワイヤレスシステムのコアネットワークに接続せずにインターネットに接続される(以下で更に詳細に説明する)。様々な実施形態では、UE101b、RAN110及びAP106は、LWA動作及び/又はLWIP動作を利用するように構成することができる。LWA動作は、LTE及びWLANの無線リソースを利用するために、RANノード111a~111bによって構成されているRRC接続状態のUE101bを伴い得る。LWIP動作は、接続107を介して送信されたパケット(例えば、IPパケット)を認証及び暗号化するために、IPsecプロトコルトンネリングを介してWLAN無線リソース(例えば、接続107)を使用してUE101bに関与し得る。IPsecトンネリングは、元のIPパケットの全体をカプセル化し、新しいパケットヘッダを追加することを含んでもよく、それによってIPパケットのオリジナルヘッダを保護することを含んでもよい。
RAN110は、接続103及び104を可能にする1つ以上のANノード又はRANノード111a及び111b(まとめて「RANノード111」と呼ぶ)を含むことができる。本明細書で使用するとき、用語「アクセスノード」、「アクセスポイント」などは、ネットワークと1人以上のユーザとの間のデータ及び/又は音声接続のための無線ベースバンド機能を提供する機器を説明することができる。これらのアクセスノードは、BS、gNB、RANノード、eNB、NodeB、RSU、TRxP又はTRPなどと称される場合があり、地理的エリア(例えば、セル)内にカバレッジを提供する地上局(例えば、地上アクセスポイント)又は衛星局を備えることができる。本明細書で使用するとき、用語「NG RANノード」などは、NR又は5Gシステム100(例えば、gNB)で動作するRANノード111を指してもよく、用語「E-UTRANノード」などは、LTE又は4Gシステム100(例えば、eNB)で動作するRANノード111を指し得る。様々な実装形態によれば、RANノード111は、マクロセルと比較してより小さいカバレッジエリア、より小さいユーザ容量、又はより高い帯域幅を有するフェムトセル、ピコセル、又は他の同様のセルを提供するための、マクロセル基地局、及び/又は低電力(LP)基地局などの専用物理デバイスのうちの1つ以上として実装され得る。
いくつかの実装形態では、RANノード111の全て又は一部は、仮想ネットワークの一部としてサーバコンピュータ上で実行される1つ以上のソフトウェアエンティティとして実装されてもよく、このソフトウェアエンティティは、CRAN及び/又は仮想ベースバンドユニットプール(vBBUP)と称され得る。これらの実装形態では、CRAN又はvBBUPは、RRC及びPDCPレイヤが、CRAN/vBBUPによって動作され、他のL2プロトコルエンティティは個々のRANノード111によって動作されるPDCP分割などのRAN機能分割、RRC、PDCP、RLC、及びMACレイヤがCRAN/vBBUPによって動作され、PHYレイヤが個別のRANノード111によって動作される、MAC/PHY分割、又はRRC、PDCP、RLC、MACレイヤ、及びPHYレイヤの上部がCRAN/vBBUPによって動作され、PHYレイヤの下部が個々のRANノード111によって動作される、「下位PHY」分割、を実装し得る。この仮想化されたフレームワークは、RANノード111の解放されたプロセッサコアが、他の仮想化されたアプリケーションを実行することを可能にする。いくつかの実装形態では、個々のRANノード111は、個々のF1インタフェース(図5に示されていない)を介してgNB-CUに接続された個々のgNB-DUを表し得る。これらの実装形態では、gNB-DUは、1つ以上のリモート無線ヘッド又はRFEM(例えば、図7Aを参照)を含むことができ、gNB-CUは、RAN110(図示せず)に配置されたサーバによって、又はCRAN/vBBUPと同様の方法でサーバプールによって動作することができる。追加的又は代替的に、RANノード111のうちの1つ以上は次世代eNB(ng-eNB)であってもよく、次世代eNBは、UE101に向けてE-UTRAユーザプレーン及び制御プレーンプロトコル端末を提供し、NGインタフェース(以下で説明する)を介して5GC(例えば、図6BのCN220B)に接続されるRANノードである。
V2Xシナリオでは、RANノード111のうちの1つ以上は、RSUとすることができるか、又はその役割を果たし得る。用語「Road Side Unit」又は「RSU」は、V2X通信に使用される任意の輸送インフラストラクチャエンティティを指し得る。RSUは、適切なRANノード又は静止(又は比較的静止)UEにおいて又はそれによって実装されてもよく、UEにおいて又はそれによって実装されるRSUは「UEタイプRSU」と呼ばれてもよく、eNBにおいて又はそれによって実装されるRSUは「eNBタイプRSU」と呼ばれてもよく、gNBにおいて又はそれによって実装されるRSUは「gNBタイプRSU」などと呼ばれてもよい。一例では、RSUは、通過車両UE101(vUE101)に接続性サポートを提供する路側に位置する無線周波数回路に結合されたコンピューティングデバイスである。RSUはまた、交差点マップ形状、交通統計、媒体、並びに進行中の車両及び歩行者の交通を検知及び制御するためのアプリケーション/ソフトウェアを記憶するための内部データ記憶回路を含むことができる。RSUは、5.9GHz Direct Short Range Communication(DSRC)帯域で動作して、衝突回避、トラフィック警告などの高速イベントに必要な非常に短い待ち時間の通信を提供することができる。追加的又は代替的に、RSUは、前述の短い待ち時間通信、並びに他のセルラ通信サービスを提供するために、セルラV2X帯域で動作することができる。追加的又は代替的に、RSUは、Wi-Fiホットスポット(2.4GHz帯域)として動作することができ、及び/又は1つ以上のセルラネットワークへの接続性を提供して、アップリンク及びダウンリンク通信を提供することができる。RSUのコンピューティングデバイス及び無線周波数回路の一部又は全ては、屋外設置に適した耐候性エンクロージャにパッケージ化することができ、交通信号コントローラ及び/又はバックホールネットワークに有線接続(例えば、イーサネット)を提供するためのネットワークインタフェースコントローラを含むことができる。
RANノード111のいずれかは、エアインタフェースプロトコルを終端させることができ、UE101の第1の接触点とすることができる。いくつかの実施形態では、RANノード111のいずれも、RAN110のための様々な論理機能を果たすことができ、その機能は、限定されないが、無線ベアラ管理、アップリンク及びダウンリンク動的無線リソース管理並びにデータパケットスケジューリング、並びにモビリティ管理などの無線ネットワークコントローラ(RNC)機能を含む。
実施形態では、UE101は、様々な通信技術に従ったマルチキャリア通信チャネルにより、OFDM通信信号を用いて、互いに又はRANノード111のいずれかと通信するように構成することができ、この様々な通信技術は、例えば、(例えば、ダウンリンク通信用の)OFDMA通信技術、又は(例えば、アップリンク及びProSe又はサイドリンク通信用の)SC-FDMA通信技術であるが、これらに限定されず、実施形態の範囲は、この点において限定されない。OFDM信号は、複数の直交サブキャリアを含むことができる。
いくつかの実施形態では、ダウンリンクリソースグリッドは、RANノード111のいずれかからUE101へのダウンリンク送信のために使用することができ、一方、アップリンク送信は、同様の技術を利用することができる。グリッドは、リソースグリッド又は時間周波数リソースグリッドと呼ばれる時間周波数グリッドとすることができ、それは、各スロット内のダウンリンクの物理リソースである。このような時間-周波数平面表現は、OFDMシステムの一般的な慣習であり、それは無線リソース割り当ての直感的なものにする。リソースグリッドの各列及び各行は、それぞれ、1つのOFDMシンボル及び1つのOFDMサブキャリアに対応する。タイムドメイン内のリソースグリッドの持続時間は、無線フレーム内の1つのスロットに対応する。リソースグリッドの最小時間周波数単位は、リソースエレメントと表記する。各リソースグリッドは、多数のリソースブロックを含み、それは、リソースエレメントへの特定の物理チャネルのマッピングを説明する。各リソースブロックは、リソースエレメントの集合を含み、周波数領域において、これは、現在割り当てられ得るリソースの最小量を表すことができる。このようなリソースブロックを用いて伝達されるいくつかの異なる物理ダウンリンクチャネルが存在する。
様々な実施形態によれば、UE101、102及びRANノード111、112は、認可媒体(「認可スペクトル」及び/又は「認可帯域」とも呼ばれる)及び無認可共有媒体(「無認可スペクトル」及び/又は「無認可帯域」とも呼ばれる)を介してデータを通信(例えば、送信及び受信)する。認可スペクトルは、約400MHz~約3.8GHzの周波数範囲で動作するチャネルを含んでもよく、無認可スペクトルは、5GHz帯域を含んでもよい。
無認可スペクトルで動作するために、UE101、102及びRANノード111、112は、LAA、eLAA、及び/又はfeLAA機構を使用して動作することができる。これらの実装では、UE101、102及びRANノード111、112は、無認可スペクトル内の1つ以上のチャネルが無認可スペクトルで送信する前に利用不可能であるか、又は別の方法で占有されているかどうかを判定するために、1つ以上の既知の媒体検知動作及び/又はキャリア検知動作を実行してもよい。媒体/キャリア検知動作は、listen-before-talk(LBT)プロトコルに従って実行することができる。
LBTは、機器(例えば、UE101、102、RANノード111、112など)が媒体(例えば、チャネル又はキャリア周波数)を検知し、媒体がアイドル状態であることが検知されたとき(又は、媒体内の特定のチャネルが占有されていないと検知されたとき)を検知する機構である。媒体検知動作は、チャネルが占有されているか又はクリアされているかどうかを決定するために、チャネル上の他の信号の有無を決定するために少なくともEDを利用するCCAを含んでもよい。このLBT機構により、無認可スペクトル及び他のLAAネットワークにおいて、セルラ/LAAネットワークが現用システムと共存することを可能にする。EDは、ある期間にわたって意図された送信帯域にわたってRFエネルギーを検知することと、検知されたRFエネルギーを所定の閾値又は設定された閾値と比較することを含んでもよい。
典型的には、5GHz帯域における現用システムは、IEEE 802.11技術に基づいてWLANである。WLANは、CSMA/CAと呼ばれる、コンテンションベースのチャネルアクセス機構を採用する。ここで、WLANノード(例えば、UE101又は102、AP106などの移動局(MS))が送信することを意図する場合、WLANノードは、送信前にCCAを最初に実行してもよい。更に、複数のWLANノードがチャネルをアイドル状態として検知し、同時に送信する状況における衝突を回避するためにバックオフ機構が使用される。バックオフ機構は、CWS内でランダムに引き寄せられたカウンタであってもよく、これは、衝突の発生時に指数関数的に増加し、送信が成功したときに最小値にリセットされる。LAA用に設計されたLBT機構は、WLANのCSMA/CAと幾分類似している。いくつかの実装形態では、PDSCH又はPUSCH送信をそれぞれ含むDL又はUL送信バーストのためのLBT手順は、XECCAスロットとYECCAスロットとの間の長さが可変であるLAA競合ウィンドウを有することができ、X及びYは、LAAのためのCWSの最小値及び最大値である。一例では、LAA送信のための最小CWSは、9マイクロ秒(μs)であってもよいが、CWS及びMCOTのサイズ(例えば、送信バースト)は、政府規制要件に基づいてもよい。
LAA機構は、LTEアドバンストシステムのCA技術に基づいて構築されている。CAでは、各集約されたキャリアはCCと呼ばれる。CCは、1.4、3、5、10、15、又は20MHzの帯域幅を有することができ、最大5つのCCを集約することができ、従って、最大集約された帯域幅は100MHzである。FDDシステムでは、集約されたキャリアの数は、DLとULとで異なることがあり、UL CCの数は、DL要素キャリアの数以下である。場合によっては、個々のCCは、他のCCとは異なる帯域幅を有することができる。TDDシステムでは、CCの数及び各CCの帯域幅は、通常、DL及びULに対して同じである。
CAはまた、個々のCCを提供する個々のサービングセルを含む。例えば、異なる周波数帯域におけるCCは、異なる経路喪失を経験するので、サービングセルの有効通信範囲は異なり得る。一次サービスセル又はPCellは、UL及びDLの両方にPCCを提供することができ、RRC及びNAS関連のアクティビティを処理することができる。他のサービングセルはSCellと呼ばれ、各SCellは、ULとDLの両方に個別のSCCを提供し得る。PCCを変更することは、UE101、102がハンドオーバを受けることを必要とし得る一方、SCCは、必要に応じて追加及び除去され得る。LAA、eLAA、及びfeLAAでは、SCellの一部又は全部は、無認可スペクトル(「LAA SCell」と呼ばれる)で動作することができ、LAA SCellは、認可スペクトルで動作するPCellによって支援される。UEが2つ以上のLAA SCellで構成される場合、UEは、同じサブフレーム内の異なるPUSCH開始位置を示す、構成されたLAA SCell上でULグラントを受信することができる。
PDSCHは、ユーザデータ及び上位層シグナリングをUE101に伝達する。PDCCHは、とりわけ、PDSCHチャネルに関連するトランスポートフォーマット及びリソース割り当てに関する情報を搬送する。また、それは、アップリンク共有チャネルに関するトランスポートフォーマット、リソース割り当て、及びHARQ情報について、UE101に通知することもできる。典型的には、ダウンリンクスケジューリング(制御及び共有チャネルリソースブロックをセル内のUE101bに割り当てる)は、UE101のいずれかからフィードバックされるチャネル品質情報に基づいて、RANノード111のいずれかで実行されてもよい。ダウンリンクリソース割り当て情報は、UE101のそれぞれに対して使用される(例えば、割り当てられた)PDCCHで送信されてもよい。
PDCCHは、CCEを使用して制御情報を伝達する。リソースエレメントにマッピングされる前に、PDCCH複素数値シンボルは最初に、4つ組(quadruplets)に編成されてもよく、その後、レートマッチングのためのサブブロックインターリーバを用いて入れ替えられてもよい。各PDCCHを、これらのCCEのうちの1つ以上を用いて送信してもよく、各CCEは、REGとして知られる4つの物理リソースエレメントの9つのセットに対応することができる。4つの四位相偏移変調(QPSK)シンボルを各REGにマッピングしてもよい。PDCCHは、DCIのサイズ及びチャネル状態に応じて、1つ以上のCCEを用いて送信することができる。異なる数のCCE(例えば、アグリゲーションレベル、L=1、2、4、又は8)を有するLTEに定義される4つ以上の異なるPDCCHフォーマットが存在し得る。
いくつかの実施形態は、上記の概念の拡張である制御チャネル情報のためのリソース割り当てのための概念を使用することができる。例えば、いくつかの実施形態は、制御情報送信のためにPDSCHリソースを使用するEPDCCHを利用することができる。EPDCCHを、1つ以上のECCEを用いて送信してもよい。上記と同様に、各ECCEは、EREGとして知られる4つの物理リソースエレメントからなる9つのセットに対応し得る。ECCEは、一部の状況では、他の数のEREGを有してもよい。
RANノード111は、インタフェース112を介して互いに通信するように構成され得る。システム100がLTEシステムである実施形態では(例えば、CN120が図6AのようなEPC220Aである場合)、インタフェース112は、X2インタフェース112であり得る。X2インタフェースは、EPC120に接続する2つ以上のRANノード111(例えば、2つ以上のeNBなど)間、及び/又はEPC120に接続する2つのeNB間に定義されてもよい。いくつかの実装形態では、X2インタフェースは、X2ユーザプレーンインタフェース(X2-U)及びX2制御プレーンインタフェース(X2-C)を含むことができる。X2-Uは、X2インタフェースを介して転送されるユーザデータパケットのためのフロー制御メカニズムを提供し得、eNB間のユーザデータの配信に関する情報を通信するために使用され得る。例えば、X2-Uは、MeNBからSeNBへ転送されるユーザデータのための特定のシーケンス番号情報と、ユーザデータのためのSeNBからUE101へのPDCP PDUのシーケンス配信の成功に関する情報と、UE101に配信されなかったPDCP PDUの情報と、UEユーザデータに送信するためのSeNBにおける現在の最小所望バッファサイズに関する情報などを提供し得る。X2-Cは、ソースeNBからターゲットeNBへのコンテキスト転送、ユーザプレーントランスポート制御等を含む、LTE内アクセスモビリティ機能と、負荷管理機能と、セル間干渉調整機能とを提供し得る。
システム100が5G又はNRシステムである実施形態では(例えば、CN120が図6Bのような5GC220Bである場合)、インタフェース112は、Xnインタフェース112であり得る。Xnインタフェースは、5GC120に接続する2つ以上のRANノード111(例えば、2つ以上のgNBなど)間、5GC120に接続するRANノード111(例えば、gNB)とeNBとの間、及び/又は5GC120に接続する2つのeNB間で定義される。いくつかの実装形態では、Xnインタフェースは、Xnユーザプレーン(Xn-U)インタフェース及びXn制御プレーン(Xn-C)インタフェースを含むことができる。Xn-Uは、ユーザプレーンPDUの非保証配信を提供し、データ転送及びフロー制御機能をサポート/提供することができる。Xn-Cは、管理及びエラー処理機能、Xn-Cインタフェースを管理する機能、1つ以上のRANノード111間の接続モードのためのUEモビリティを管理する機能を含む、接続モード(例えば、CM接続)のUE101のためのモビリティサポートを提供し得る。モビリティサポートは、古い(ソース)サービングRANノード111から新しい(ターゲット)サービングRANノード111へのコンテキスト転送と、古い(ソース)サービングRANノード111と新しい(ターゲット)サービングRANノード111との間のユーザプレーントンネルの制御とを含み得る。Xn-Uのプロトコルスタックは、インターネットプロトコル(IP)トランスポートレイヤ上に構築されたトランスポートネットワークレイヤと、ユーザプレーンPDUを搬送するためにUDPレイヤ及び/又はIPレイヤの上のGTP-Uレイヤとを含むことができる。Xn-Cプロトコルスタックは、アプリケーションレイヤシグナリングプロトコル(Xnアプリケーションプロトコル(Xn-AP)と呼ばれる)と、SCTP上に構築されたトランスポートネットワークレイヤとを含むことができる。SCTPは、IPレイヤの上にあってもよく、アプリケーションレイヤメッセージの保証された配信を提供してもよい。トランスポートIPレイヤでは、シグナリングPDUを配信するためにポイントツーポイント送信が使用される。他の実装形態では、Xn-Uプロトコルスタック及び/又はXn-Cプロトコルスタックは、本明細書に示し説明したユーザプレーン及び/又は制御プレーンプロトコルスタックと同じ又は同様であってもよい。
RAN110は、コアネットワーク、この実施形態ではコアネットワーク(CN)120、に通信可能に結合されるように示されている。CN120は、RAN110を介してCN120に接続されている顧客/加入者(例えば、UE101のユーザ)に様々なデータ及び電気通信サービスを提供するように構成された複数のネットワークエレメント122を備えることができる。CN120の構成要素は、機械可読媒体又はコンピュータ可読媒体(例えば、非一時的機械可読記憶媒体)から命令を読み取って実行するための構成要素を含む、単一の物理ノード又は別個の物理ノードに実装されてもよい。いくつかの実施形態では、NFVを利用して、1つ以上のコンピュータ可読記憶媒体(以下で更に詳細に説明する)に格納された実行可能命令を介して、上述のネットワークノード機能のいずれか又は全てを仮想化することができる。CN120の論理インスタンス化は、ネットワークスライスと称されてもよく、CN120の一部の論理インスタンス化は、ネットワークサブスライスと称されることができる。NFVアーキテクチャ及びインフラストラクチャは、業界標準のサーバハードウェア、ストレージハードウェア、又はスイッチの組み合わせを含む物理リソース上で、1つ以上のネットワーク機能を仮想化するために使用されてもよく、或いは専用ハードウェアによって実行されてもよい。言い換えれば、NFVシステムを使用して、1つ以上のEPC構成要素/機能の仮想的又は再構成可能な実装を実行することができる。
一般に、アプリケーションサーバ130は、コアネットワーク(例えば、UMTS PSドメイン、LTE PSデータサービスなど)とのIPベアラリソースを使用するアプリケーションを提供するエレメントであってもよい。アプリケーションサーバ130はまた、EPC120を介してUE101のために1つ以上の通信サービス(例えば、VoIPセッション、PTTセッション、グループ通信セッション、ソーシャルネットワーキングサービスなど)をサポートするように構成することもできる。
実施形態では、CN120は5GC(「5GC120」などと呼ばれる)であってもよく、RAN110はNGインタフェース113を介してCN120に接続されてもよい。実施形態では、NGインタフェース113は、RANノード111とUPFとの間でトラフィックデータを伝達するNGユーザプレーン(NG-U)インタフェース114と、RANノード111とAMFとの間のシグナリングインタフェースであるS1制御プレーン(NG-C)インタフェース115との2つの部分に分割することができる。CN120が5GC120である実施形態が、図6Bに関してより詳細に説明される。
実施形態では、CN120は5G CN(「5GC120」などと呼ばれる)であってもよく、他の実施形態では、CN120はEPCであってもよい。CN120がEPC(「EPC120」などと呼ばれる)である場合、RAN110は、S1インタフェース113を介してCN120と接続され得る。実施形態では、S1インタフェース113は、RANノード111とS-GWとの間にトラフィックデータを伝達するS1ユーザプレーン(S1-U)インタフェース114と、RANノード111とMMEとの間のシグナリングインタフェースであるS1-MMEインタフェース115との2つの部分に分割されてもよい。CN120がEPC120である例示的なアーキテクチャを図6Aに示す。
図6Aは、様々な実施形態による、第1のCN220Aを含むシステム200Aの例示的なアーキテクチャを示す。この例では、システム200Aは、CN220Aが図5のCN120に対応するEPC220AであるLTE規格を実装することができる。更に、UE201は、図5のUE101と同じか又は同様であってもよく、E-UTRAN210Aは、図5のRAN110と同じか又は同様であり、前述したRANノード111を含み得るRANであってもよい。CN220Aは、MME221A、S-GW222A、P-GW223A、HSS224A、及びSGSN225Aを備えることができる。
MME221Aは、レガシーSGSNの制御プレーンと機能が類似していてもよく、UE201の現在位置を追跡するためにMM機能を実施し得る。MME221Aは、ゲートウェイ選択及びトラッキングエリアリスト管理などのアクセスのモビリティ態様を管理するために、様々なMM手順を実行し得る。MM(E-UTRANシステムでは「EPS MM」又は「EMM」とも呼ばれる)は、UE201の現在位置に関する知識を維持し、ユーザアイデンティティの機密性を提供し、及び/又はユーザ/加入者に他の同様のサービスを実行するために使用される全ての適用可能な手順、方法、データストレージなどを指すことができる。各UE201及びMME221Aは、MM又はEMMサブレイヤを含んでもよく、アタッチ手順が正常に完了したときに、UE201及びMME221AにおいてMMコンテキストが確立されてもよい。MMコンテキストは、UE201のMM関連情報を格納するデータ構造又はデータベースオブジェクトであってもよい。MME221Aは、S6a基準点を介してHSS224Aと結合されてもよく、S3基準点を介してSGSN225Aと結合されてもよく、S11基準点を介してS-GW222Aと結合されてもよい。
SGSN225Aは、個々のUE201の位置を追跡し、セキュリティ機能を実行することによってUE201にサービスを提供するノードであり得る。加えて、SGSN225Aは、2G/3GアクセスネットワークとE-UTRAN 3GPPアクセスネットワークとの間のモビリティのためのEPCノード間シグナリングと、MME221Aによって指定されたPDN及びS-GWの選択と、MME221Aによって指定されたUE201のタイムゾーン機能の処理と、E-UTRAN 3GPPアクセスネットワークへのハンドオーバのためのMME選択とを行うことができる。MME221AとSGSN225Aとの間のS3基準点は、アイドル状態及び/又はアクティブ状態における3GPP間アクセスネットワークモビリティのためのユーザ及びベアラ情報交換を可能にすることができる。
HSS224Aは、ネットワークユーザのデータベースを備えることができ、それは、ネットワークエンティティの通信セッションの処理をサポートするための加入関連情報を含む。EPC220Aは、モバイル加入者の数、機器の容量、ネットワークの組織などに応じて、1つ以上のHSS224Aを備えることができる。例えば、HSS224Aは、ルーティング/ローミング、認証、認可、命名/アドレス指定解決、位置依存関係などのサポートを提供することができる。HSS224AとMME221Aとの間のS6a基準点は、HSS224AとMME221Aとの間のEPC220Aへのユーザアクセスを認証/認可するための加入及び認証データの転送を可能にすることができる。
S-GW222Aは、RAN210Aに対するS1インタフェース113(図6Aにおける「S1-U」)を終端させ、RAN210AとEPC220Aとの間でデータパケットをルーティングしてもよい。加えて、S-GW222Aは、RANノード間ハンドオーバのためのローカルモビリティアンカーポイントであってもよく、また、3GPP間モビリティのためのアンカーを提供してもよい。他の責任は、合法の傍受、課金、及び一部のポリシー施行を含んでもよい。S-GW222AとMME221Aとの間のS11基準点は、MME221AとS-GW222Aとの間の制御プレーンを提供し得る。S-GW222Aは、S5基準点を介してP-GW223Aと結合され得る。
P-GW223Aは、PDN230に対するSGiインタフェースを終端することができる。P-GW223Aは、IPインタフェース125(例えば、図5を参照されたい)を介して、EPC220Aと、アプリケーションサーバ130を含むネットワーク(代替的に「AF」と称される)などの外部ネットワークとの間でデータパケットをルーティングしてもよい。実施形態では、P-GW223Aは、IP通信インタフェース125(例えば、図5を参照されたい)を介してアプリケーションサーバ(図5のアプリケーションサーバ130又は図6AのPDN230)に通信可能に結合することができる。P-GW223AとS-GW222Aとの間のS5基準点は、P-GW223AとS-GW222Aとの間のユーザプレーントンネリング及びトンネル管理を提供することができる。S5基準点はまた、UE201のモビリティに起因するS-GW222Aの再配置のために、及び、S-GW222Aが、必要とされるPDN接続のために、コロケートされていないP-GW223Aに接続する必要がある場合に、使用され得る。P-GW223Aは、ポリシー施行及び課金データ収集のためのノード(例えば、PCEF(図示せず))を更に含み得る。更に、P-GW223Aとパケットデータネットワーク(PDN)230との間のSGi基準点は、例えば、IMSサービスを提供するための、事業者外部公衆、私設PDN、又は事業者内パケットデータネットワークとすることができる。P-GW223Aは、Gx基準点を介してPCRF226Aと結合され得る。
PCRF226Aは、EPC220Aのポリシー及び課金制御エレメントである。非ローミングシナリオでは、UE201のインターネットプロトコル接続アクセスネットワーク(IP-CAN)セッションに関連付けられたHPLMN(Home Public Land Mobile Network)内に単一のPCRF226Aが存在してもよい。トラフィックのローカルブレークアウトを伴うローミングシナリオでは、UE201のIP-CANセッションに関連付けられた2つのPCRF、すなわち、HPLMN内のホームPCRF(H-PCRF)とVPLMN(Visited Public Land Mobile Network)内の在圏PCRF(V-PCRF)が存在し得る。PCRF226Aは、P-GW223Aを介してアプリケーションサーバ230に通信可能に結合されてもよい。アプリケーションサーバ230は、PCRF226Aに信号を送って、新しいサービスフローを指示し、適切なQoS及び課金パラメータを選択することができる。PCRF226Aは、適切なTFT及びQCIを有するPCEF(図示せず)にこのルールをプロビジョニングすることができ、アプリケーションサーバ230によって指定されたQoS及び課金を開始する。PCRF226AとP-GW223Aとの間のGx基準点は、PCRF226AからP-GW223A内のPCEFへのQoSポリシー及び課金ルールの転送を可能にすることができる。Rx基準点は、PDN230(又は「AF230」)とPCRF226Aとの間に存在し得る。
図6Bは、様々な実施形態による第2のCN220Bを含むシステム200Bのアーキテクチャを示す。システム200Bは、前述したUE101及びUE201と同じ又は類似であり得るUE201と、前述したRAN110及びRAN210Aと同じか又は同様であり得、前述したRANノード111を含み得る(R)AN210Bと、例えば、事業者サービス、インターネットアクセス、又はサードパーティサービスであってもよいDN203と、5GC220Bとを含むように示されている。5GC220Bは、AUSF222B、AMF221B、SMF224B、NEF223B、PCF226B、NRF225B、UDM227、AF228、UPF202及びNSSF229を含み得る。
UPF202は、RAT内部及びRAT間モビリティのためのアンカーポイント、DN203に相互接続する外部PDUセッションポイント、及びマルチホームPDUセッションをサポートするための分岐ポイントとして機能することができる。UPF202はまた、パケットルーティング及び転送を実行し、パケット検査を実行し、ポリシールールのユーザプレーン部分を実施し、パケットを合法的に傍受し(UP収集)、トラフィック使用量報告を実行し、ユーザプレーンのQoS処理(例えば、パケットフィルタリング、ゲーティング、UL/DLレート実施)を実行し、アップリンクトラフィック検証(例えば、SDFからQoSへのフローマッピング)を実行し、アップリンク及びダウンリンクにおけるトランスポートレベルパケットマーキングを実行し、ダウンリンクパケットバッファリング及びダウンリンクデータ通知トリガを実行し得る。UPF202は、データネットワークへのルーティングトラフィックフローをサポートするためのアップリンククラシファイアを含むことができる。DN203は、様々なネットワーク事業者サービス、インターネットアクセス、又はサードパーティサービスを表すことができる。DN203は、前述したアプリケーションサーバ130を含んでもよく、又はこれと同様であってもよい。UPF202は、SMF224BとUPF202との間のN4基準点を介してSMF224Bと対話することができる。
AUSF222Bは、UE201の認証のためのデータを記憶し、認証関連機能を処理してもよい。AUSF222Bは、様々なアクセスタイプのための共通認証フレームワークを容易にすることができる。AUSF222Bは、AMF221BとAUSF222Bとの間のN12基準点を介してAMF221Bと通信することができ、UDM227とAUSF222Bとの間のN13基準点を介してUDM227と通信することができる。加えて、AUSF222Bは、Nausfサービスベースのインタフェースを示し得る。
AMF221Bは、登録管理(例えば、UE201を登録するためなど)、接続管理、到達可能性管理、モビリティ管理、及びAMF関連イベントの合法的傍受、並びにアクセス認証及び認可に関与してもよい。AMF221Bは、AMF221BとSMF224Bとの間のN11基準点の終端点であり得る。AMF221Bは、UE201とSMF224Bとの間のSMメッセージのトランスポートを提供し、SMメッセージをルーティングするための透過的プロキシとして機能することができる。AMF221Bはまた、UE201とSMSF(図6Bには示されず)との間のSMSメッセージのためのトランスポートを提供し得る。AMF221Bは、AUSF222B及びUE201との対話と、UE201の認証プロセスの結果として確立された中間鍵の受信とを含み得る、SEAFとして機能してもよい。USIMベースの認証が使用される場合、AMF221Bは、AUSF222Bからセキュリティ材料を取得してもよい。AMF221Bはまた、アクセスネットワーク固有の鍵を導出するために使用するSEAからの鍵を受信する、SCM機能を含んでもよい。更に、AMF221Bは、RAN CPインタフェースの終端点であってもよく、(R)AN210BとAMF221Bとの間のN2基準点を含むか又はそれであってもよく、AMF221Bは、NAS(N1)シグナリングの終端点であり、NAS暗号化及び完全性保護を行うことができる。
AMF221Bはまた、N3 IWFインタフェースを介して、UE201とのNASシグナリングをサポートすることができる。N3IWFを使用して、信頼できないエンティティへのアクセスを提供することができる。N3IWFは、制御プレーンの(R)AN210BとAMF221Bとの間のN2インタフェースの終端点であってもよく、ユーザプレーンの(R)AN210BとUPF202との間のN3基準点の終端点であってもよい。したがって、AMF221Bは、PDUセッション及びQoSのためにSMF224B及びAMF221BからのN2シグナリングを処理し、IPsec及びN3トンネリングのためにパケットをカプセル化/カプセル化解除し、アップリンクでN3ユーザプレーンパケットをマークし、N2を介して受信されたそのようなマーキングに関連するQoS要件を考慮して、N3パケットマーキングに対応するQoSを実施することができる。N3IWFはまた、UE201とAMF221Bとの間のN1基準点を介してUE201とAMF221Bとの間のアップリンク及びダウンリンク制御プレーンNASシグナリングを中継し、UE201とUPF202との間のアップリンク及びダウンリンクユーザプレーンパケットを中継することができる。N3IWFはまた、UE201とのIPsecトンネル確立のための機構を提供する。AMF221Bは、Namfサービスベースのインタフェースを示すことができ、2つのAMF221B間のN14基準点、及びAMF221Bと5G-EIR(図6Bには示されず)との間のN17基準点の終端点とすることができる。
UE201は、ネットワークサービスを受信するためにAMF221Bに登録する必要があり得る。RMは、UE201をネットワーク(例えば、AMF221B)に登録又は登録解除し、ネットワーク(例えば、AMF221B)内のUEコンテキストを確立するために使用される。UE201は、RM-REGISTERED状態又はRM-DEREGISTERED状態で動作してもよい。RM-DEREGISTERED状態では、UE201はネットワークに登録されておらず、AMF221B内のUEコンテキストは、UE201の有効な位置又はルーティング情報を保持していないため、UE201はAMF221Bによって到達できない。RM-REGISTERED状態では、UE201はネットワークに登録されており、AMF221B内のUEコンテキストは、UE201の有効な位置又はルーティング情報を保持し得るため、UE201はAMF221Bによって到達できる。RM-REGISTERED状態において、UE201は、とりわけ、モビリティ登録更新手順を実行し、(例えば、UE201がまだアクティブであることをネットワークに通知するために)定期的更新タイマの満了によってトリガされる定期的登録更新手順を実行し、登録更新手順を実行してUE能力情報を更新し、又はネットワークとプロトコルパラメータを再交渉することができる。
AMF221Bは、UE201のための1つ以上のRMコンテキストを格納することができ、各RMコンテキストは、ネットワークへの特定のアクセスに関連付けられる。RMコンテキストは、とりわけ、アクセスタイプごとの登録状態及び定期更新タイマを示すか又は記憶するデータ構造、データベースオブジェクトなどであってもよい。AMF221Bはまた、前述した(E)MMコンテキストと同じ又は同様であり得る5GC MMコンテキストを格納し得る。様々な実施形態では、AMF221Bは、関連付けられたMMコンテキスト又はRMコンテキストにUE201のCEモードB制限パラメータを格納することができる。AMF221Bはまた、必要に応じて、UEコンテキスト(及び/又はMM/RMコンテキスト)に既に格納されているUEの使用設定パラメータから値を導出することができる。
CMは、N1インタフェースを介してUE201とAMF221Bとの間のシグナリング接続を確立及び解放するために使用され得る。シグナリング接続は、UE201とCN220Bとの間のNASシグナリング交換を可能にするために使用され、UEとANとの間のシグナリング接続(例えば、非3GPPアクセスのためのRRC接続又はUE-N3IWF接続)と、AN(例えば、RAN210B)とAMF221Bとの間のUE201のためのN2接続の両方を含む。UE201は、CM-IDLEモード又はCM-CONNECTEDモードの2つのCM状態のいずれかで動作してもよい。UE201がCM-IDLE状態/モードで動作しているとき、UE201は、N1インタフェースを介してAMF221BとのNASシグナリング接続を確立されていなくてもよく、UE201のための(R)AN210Bシグナリング接続(例えば、N2及び/又はN3接続)があってもよい。UE201がCM-CONNECTED状態/モードで動作しているとき、UE201は、N1インタフェースを介してAMF221Bとの確立されたNASシグナリング接続を有していてもよく、UE201のための(R)AN210Bシグナリング接続(例えば、N2及び/又はN3接続)があってもよい。(R)AN210BとAMF221Bとの間のN2接続の確立は、UE201をCM-IDLEモードからCM-CONNECTEDモードに遷移させることができ、UE201は、(R)AN210BとAMF221Bとの間のN2シグナリングが解放されたときにCM-CONNECTEDモードからCM-IDLEモードに遷移することができる。
SMF224Bは、SM(例えば、UPFとANノードとの間のトンネル維持を含む、セッションの確立、変更、及び解放)、UE IPアドレス割り当て及び管理(任意選択的な認可を含む)、UP機能の選択及び制御、適切な宛先にトラフィックをルーティングするために、UPFでトラフィックステアリングを構成すること、ポリシー制御機能に対するインタフェースの終了、ポリシー施行及びQoSの制御、(SMイベント及びLIシステムへのインタフェースの)合法的傍受、NASメッセージのSM部の終了、ダウンリンクデータ通知、N2上でAMFを介してANに送信されたAN固有SM情報の開始、及びセッションのSSCモードの決定を含む。SMは、PDUセッションの管理を指すことができ、PDUセッション又は「セッション」は、UE201とデータネットワーク名(DNN)によって識別されるデータネットワーク(DN)203との間のPDUの交換を提供又は可能にするPDU接続サービスを指すことができる。PDUセッションは、UE201とSMF224Bとの間のN1基準点を介して交換されるNAS SMシグナリングを使用して、UE201要求時に確立され、UE201及び5GC220B要求時に変更され、UE201及び5GC220B要求時に解放され得る。5GC220Bは、アプリケーションサーバからの要求に応じて、UE201における特定のアプリケーションをトリガし得る。トリガメッセージの受信に応答して、UE201は、トリガメッセージ(又はトリガメッセージの関連部分/情報)をUE201内の1つ以上の識別されたアプリケーションに渡すことができる。UE201内の識別されたアプリケーションは、特定のDNNへのPDUセッションを確立することができる。SMF224Bは、UE201要求がUE201に関連付けられたユーザサブスクリプション情報に準拠しているかどうかをチェックすることができる。これに関して、SMF224Bは、UDM227からSMF224Bレベルサブスクリプションデータに関する更新通知を取得及び/又は受信要求することができる。
SMF224Bは、以下のローミング機能を含むことができる:QoS SLA(VPLMN)を適用するためのローカル施行処理、課金データ収集及び課金インタフェース(VPLMN)、(SMイベント及びLIシステムへのインタフェースのVPLMN内の)合法的傍受、外部DNによるPDUセッションの認可/認証のためのシグナリングの伝送のための外部DNとの相互作用のためのサポートを含み得る。2つのSMF224B間のN16基準点がシステム200Bに含まれてもよく、これは、ローミングシナリオにおける在圏ネットワーク内の別のSMF224Bとホームネットワーク内のSMF224Bとの間であってもよい。更に、SMF224Bは、Nsmfサービスベースのインタフェースを提示することができる。
NEF223Bは、サードパーティ、内部公開/再公開、アプリケーション機能(例えば、AF228)、エッジコンピューティング又はフォッグコンピューティングシステムなどのための、3GPPネットワーク機能によって提供されるサービス及び能力を安全に公開するための手段を提供してもよい。そのような実施形態では、NEF223Bは、AFを認証、認可、及び/又は調整することができる。NEF223Bはまた、AF228と交換された情報、及び内部ネットワーク機能と交換された情報を変換してもよい。例えば、NEF223Bは、AFサービス識別子と内部5GC情報との間で変換することができる。NEF223Bはまた、他のネットワーク機能の公開された能力に基づいて、他のネットワーク機能(NF)から情報を受信してもよい。この情報は、構造化されたデータとしてNEF223Bに、又は標準化されたインタフェースを使用してデータストレージNFに、記憶されてもよい。次いで、記憶された情報は、NEF223Bによって他のNF及びAFに再公開され、かつ/又は分析などの他の目的に使用することができる。更に、NEF223Bは、Nnefサービスベースのインタフェースを提示することができる。
NRF225Bは、サービス発見機能をサポートし、NFインスタンスからNF発見要求を受信し、NFインスタンスに発見されたNFインスタンスの情報を提供することができる。NRF225Bはまた、利用可能なNFインスタンス及びそれらのサポートされたサービスの情報を維持する。本明細書で使用される場合、用語「インスタンス」、「インスタンス化」などは、インスタンスの作成を指すことがあり、「インスタンス」は、例えば、プログラムコードの実行中に発生することができるオブジェクトの具体的な発生を指すことがある。更に、NRF225Bは、Nnrfサービスベースのインタフェースを提示することができる。
PCF226Bは、制御プレーン機能(単数又は複数)にポリシールールを提供して、それらを施行することができ、また、統合ポリシーフレームワークをサポートして、ネットワーク挙動を統制することができる。PCF226Bはまた、UDM227のUDRにおけるポリシー決定に関連する加入情報にアクセスするためにFEを実装してもよい。PCF226Bは、PCF226BとAMF221Bとの間のN15基準点を介してAMF221Bと通信することができ、ローミングシナリオの場合、在圏ネットワーク内のPCF226B及びAMF221Bを含むことができる。PCF226Bは、PCF226BとAF228との間のN5基準点を介してAF228と通信することができ、PCF226BとSMF224Bとの間のN7基準点を介してSMF224Bと通信することができる。システム200B及び/又はCN220Bはまた、(ホームネットワーク内の)PCF226Bと在圏ネットワーク内のPCF226Bとの間のN24基準点を含むことができる。更に、PCF226Bは、Npcfサービスベースのインタフェースを提示することができる。
UDM227は、加入関連情報を処理して、ネットワークエンティティの通信セッションの処理をサポートすることができ、UE201の加入データを記憶することができる。例えば、加入データは、UDM227とAMF221Bとの間のN8基準点を介してUDM227とAMFとの間で通信され得る。UDM227は、アプリケーションFE及びUDRの2つの部分を含むことができる(FE及びUDRは図6Bには示されず)。UDRは、UDM227及びPCF226Bの加入データ及びポリシーデータ、及び/又はNEF223Bの公開及びアプリケーションデータ(アプリケーション検出のためのPFD、複数のUE201のためのアプリケーション要求情報を含む)のための構造化データを格納することができる。Nudrサービスベースのインタフェースは、UDM227、PCF226B、及びNEF223Bが記憶されたデータの特定のセットにアクセスすること、UDRの関連するデータ変更の通知の読み取り、更新(例えば、追加、変更)、削除、及びサブスクライブを行うことを可能にするために、UDR221によって提示され得る。UDMは、クレデンシャル、位置管理、加入管理などの処理を担当するUDM FEを含んでもよい。いくつかの異なるフロントエンドは、異なるトランザクションにおいて同じユーザにサービスを提供することができる。UDM-FEは、UDRに格納されたサブスクリプション情報にアクセスし、認可資格情報処理、ユーザ識別処理、アクセス許可、登録/モビリティ管理、及びサブスクリプション管理を実行する。UDRは、UDM227とSMF224Bとの間のN10基準点を介してSMF224Bと相互作用することができる。UDM227はまた、SMS管理をサポートすることができ、SMS-FEは、前述したものと同様のアプリケーションロジックを実装する。更に、UDM227は、Nudmサービスベースのインタフェースを提示することができる。
AF228は、トラフィックルーティングに対するアプリケーションの影響を提供し、NCEへのアクセスを提供し、ポリシー制御のためにポリシーフレームワークと対話することができる。NCEは、エッジコンピューティング実装に使用することができる、NEF223Bを介して5GC220B及びAF228が互いに情報を提供することを可能にする機構であってもよい。そのような実装形態では、ネットワーク事業者及びサードパーティサービスは、UE201アクセスポイントオブアタッチメントの近くでホストされて、エンドツーエンドレイテンシ及びトランスポートネットワークに対する負荷の低減を通じて効率的なサービス配信を達成することができる。エッジコンピューティング実装では、5GCは、UE201に近接したUPF202を選択し、N6インタフェースを介してUPF202からDN203へのトラフィックステアリングを実行することができる。これは、UE加入データ、UE位置、及びAF228によって提供される情報に基づいてもよい。このようにして、AF228は、UPF(再)選択及びトラフィックルーティングに影響を及ぼすことができる。事業者の配備に基づいて、AF228が信頼されたエンティティであると見なされるとき、ネットワーク事業者は、AF228が関連するNFと直接相互作用することを許可することができる。更に、AF228は、Nafサービスベースのインタフェースを提示することができる。
NSSF229は、UE201にサービスを提供するネットワークスライスインスタンスのセットを選択することができる。NSSF229は、必要に応じて、許可されたNSSAI及びサブスクライブされたS-NSSAIへのマッピングを決定することもできる。NSSF229はまた、適切な構成に基づいて、場合によってはNRF225Bを照会することによって、UE201にサービスするために使用されるAMFセット、又は候補AMF(複数可)221Bのリストを決定することができる。UE201のためのネットワークスライスインスタンスのセットの選択は、NSSF229と対話することによってUE201が登録されているAMF221Bによってトリガされてもよく、これはAMF221Bの変更をもたらし得る。NSSF229は、AMF221BとNSSF229との間のN22基準点を介してAMF221Bと相互作用することができる。N31基準点(図6Bには示されていない)を介して在圏ネットワーク内の別のNSSF229と通信することができる。更に、NSSF229は、Nnssfサービスベースのインタフェースを提示することができる。
前述したように、CN220Bは、SMS加入チェック及び検証、並びにUE201とSMS-GMSC/IWMSC/SMSルータなどの他のエンティティとの間でSMメッセージを中継することに関与することができる、SMSFを含んでもよい。SMSはまた、UE201がSMS転送に利用可能である通知手順のために、AMF221B及びUDM227と対話する(例えば、UE到達不可能フラグを設定し、UE201がSMSに利用可能である場合にUDM227に通知する)ことができる。
CN120はまた、データストレージシステム/アーキテクチャ、5G-EIR、SEPPなど、図6Bに示されていない他の要素を含んでもよい。データストレージシステムは、SDSF、UDSFなどを含むことができる。任意のNFは、任意のNFとUDSFとの間のN18基準点(図6Bには示されていない)を介して、非構造化データをUDSF(例えば、UEコンテキスト)に格納し、UDSFから取り出すことができる。個々のNFは、各非構造化データを格納するためにUDSFを共有することができ、又は個々のNFはそれぞれ、個々のNF又はその近くに位置する独自のUDSFを有することができる。更に、UDSFは、Nudsfサービスベースのインタフェース(図6Bには示されず)を提示することができる。5G-EIRは、特定の機器/エンティティがネットワークからブラックリストに記載されているかどうかを判定するためにPEIのステータスをチェックするNFであってもよく、SEPPは、PLMN間制御プレーンインタフェース上でトポロジ隠蔽、メッセージフィルタリング、及びポリシングを実行する非透過プロキシであってもよい。
更に、NF内のNFサービス間には、より多くの参照点及び/又はサービスベースのインタフェースが存在してもよい。しかしながら、これらのインタフェース及び基準点は、明確にするために図6Bから省略されている。一例では、CN220Bは、CN220BとCN220Aとの間のインターワーキングを可能にするために、MME(例えば、MME221A)とAMF221Bとの間のCN間インタフェースである、Nxインタフェースを含むことができる。他の例示的なインタフェース/基準点は、5G-EIRによって提示されるN5g-EIRサービスベースのインタフェースと、訪問先ネットワーク内のNRFとホームネットワーク内のNRFとの間のN27基準点と、訪問先ネットワーク内のNSSFとホームネットワーク内のNSSFとの間のN31参照点とを含むことができる。
図7Aは、様々な実施形態に係るインフラストラクチャ設備300Aの一例を示す。インフラストラクチャ設備300A(又は「システム300A」)は、基地局、無線ヘッド、図示し前述したRANノード111及び/又はAP106などのRANノード、アプリケーションサーバ130、及び/又は本明細書で説明した任意の他のエレメント/デバイスとして実装することができる。他の例では、システム300Aは、UEにおいて、又はUEによって実装され得る。
システム300Aは、アプリケーション回路305と、ベースバンド回路310と、1つ以上の無線フロントエンドモジュール(RFEM)315と、メモリ回路320と、電力管理集積回路(PMIC)325と、電力T回路330Aと、ネットワークコントローラ回路335と、ネットワークインタフェースコネクタ340Aと、衛星測位回路345と、ユーザインタフェース350とを含む。いくつかの実施形態では、デバイス300Aは、例えば、メモリ/ストレージ、ディスプレイ、カメラ、センサ、又は入力/出力(I/O)インタフェースなどの追加の要素を含んでもよい。他の実施形態では、以下で説明される構成要素は、2つ以上のデバイスに含まれてもよい。例えば、当該回路は、CRAN、vBBU、又は他の同様の実装のために2つ以上のデバイスに別々に含まれてもよい。
アプリケーション回路305は、これらに限られるわけではないが、1つ以上のプロセッサ(又はプロセッサコア)、キャッシュメモリ、並びに低ドロップアウト電圧レギュレータ(LDO)、割り込みコントローラ、SPI、I2C、又はユニバーサルプログラマブルシリアルインタフェースモジュールなどのシリアルインタフェース、リアルタイムクロック(RTC)、インタバル及びウォッチドッグタイマを含むタイマカウンタ、汎用入出力(I/O又はIO)、Secure Digital(SD)マルチメディアカード(MMC)などのメモリカードコントローラ、ユニバーサルシリアルバス(USB)インタフェース、モバイル産業プロセッサインタフェース(MIPI)インタフェース、及びJoint Test Access Group(JTAG)テストアクセスポートのうちの1つ以上などの回路を含む。アプリケーション回路305のプロセッサ(又はコア)は、メモリ/ストレージに結合されてもよいし、メモリ/ストレージエレメントを含んでもよく、様々なアプリケーション又はオペレーティングシステムをシステム300A上で実行することを可能にするために、メモリ/ストレージに格納された命令を実行するように構成されてもよい。いくつかの実装形態では、メモリ/記憶素子はオンチップメモリ回路であってもよく、これは、DRAM、SRAM、EPROM、EEPROM、フラッシュメモリ、ソリッドステートメモリ、及び/又は本明細書で説明されるような任意の他のタイプのメモリデバイス技術などの任意の適切な揮発性及び/又は不揮発性メモリを含んでもよい。
アプリケーション回路305のプロセッサは、例えば、1つ以上のプロセッサコア(CPU)、1つ以上のアプリケーションプロセッサ、1つ以上のグラフィック処理ユニット(GPU)、1つ以上の縮小命令セットコンピューティング(RISC)プロセッサ、1つ以上のAcorn RISCマシン(ARM)プロセッサ、1つ以上の複合命令セットコンピューティング(CISC)プロセッサ、1つ以上のデジタル信号プロセッサ(DSP)、1つ以上のFPGA、1つ以上のPLD、1つ以上のASIC、1つ以上のマイクロプロセッサ若しくはコントローラ、又はこれらの任意の好適な組み合わせを含むことができる。いくつかの実施形態では、アプリケーション回路305は、本明細書の様々な実施形態に従って動作する専用プロセッサ/コントローラを含んでもよく、又は専用プロセッサ/コントローラであってもよい。例として、アプリケーション回路305のプロセッサは、1つ以上のIntel Pentium(登録商標)、Core(登録商標)、又はXeon(登録商標)プロセッサ、Advanced Micro Devices(AMD)Ryzen(登録商標)プロセッサ、Accelerated Processing Unit(APU)、又はEpyc(登録商標)プロセッサ、プロセッサのARM Cortex-AファミリなどのARM Holdings、Ltdによって提供されるARMベースのプロセッサ、及び、Cavium(商標)Inc.によって提供されるThunderX2(登録商標)、MIPS Warrior又はP-クラスプロセッサなどのMIPS Technologies,Inc.から提供されるMIPSベースの設計などを含み得る。いくつかの実施形態では、システム300Aは、アプリケーション回路305を利用しなくてもよく、代わりに、例えば、EPC又は5GCから受信したIPデータを処理するための専用プロセッサ/コントローラを含んでもよい。
いくつかの実装形態では、アプリケーション回路305は、マイクロプロセッサ、プログラマブル処理デバイスなどであり得る、1つ以上のハードウェアアクセラレータを含むことができる。1つ以上のハードウェアアクセラレータは、例えば、コンピュータビジョン(CV)及び/又はディープラーニング(DL)アクセラレータを含むことができる。例として、プログラマブル処理デバイスは、フィールドプログラマブルゲートアレイ(FPGA)などの1つ以上のフィールドプログラマブルデバイス(FPD)、複合PLD(CPLD)、高容量PLD(HCPLD)などのプログラマブルロジックデバイス(PLD)、構造化ASICなどのASIC、プログラマブルSoC(PSoC)、などの回路を含み得る。そのような実装形態では、アプリケーション回路305の回路は、論理ブロック又は論理ファブリック、及び本明細書で説明される様々な実装形態の手順、方法、機能などの様々な機能を実行するようにプログラムされ得る他の相互接続されたリソースを含むことができる。そのような実施形態では、アプリケーション回路305の回路は、ルックアップテーブル(LUT)などに論理ブロック、論理ファブリック、データなどを記憶するために使用されるメモリセル(例えば、消去可能プログラマブル読み出し専用メモリ(EPROM)、電気的消去可能プログラマブル読み出し専用メモリ(EEPROM)、フラッシュメモリ、スタティックメモリ(例えば、スタティックランダムアクセスメモリ(SRAM)、アンチヒューズなど))を含むことができる。
ベースバンド回路310は、例えば、1つ以上の集積回路を含むはんだ付け基板、主回路基板にはんだ付けされた単一のパッケージ集積回路、又は2つ以上の集積回路を含むマルチチップモジュールとして実装されてもよい。ベースバンド回路310の様々なハードウェア電子エレメントは、図8に関して以下に説明される。
ユーザインタフェース回路350は、システム300Aとのユーザ対話を可能にするように設計された1つ以上のユーザインタフェース、又はシステム300Aとの周辺構成要素対話を可能にするように設計された周辺構成要素インタフェースを含むことができる。ユーザインタフェースは、1つ以上の物理又は仮想ボタン(例えば、リセットボタン)、1つ以上のインジケータ(例えば、発光ダイオード(LED))、物理キーボード又はキーパッド、マウス、タッチパッド、タッチスクリーン、スピーカ又は他のオーディオ発光デバイス、マイクロフォン、プリンタ、スキャナ、ヘッドセット、ディスプレイスクリーン又はディスプレイデバイスなどを含むことができるが、これらに限定されない。周辺構成要素インタフェースは、不揮発性メモリポート、ユニバーサルシリアルバス(USB)ポート、オーディオジャック、電源インタフェースなどを含むことができるが、これらに限定されない。
無線フロントエンドモジュール(RFEM)315は、ミリ波(mm波)RFEM及び1つ以上のサブミリ波無線周波数集積回路(RFIC)を含んでもよい。いくつかの実装形態では、1つ以上のサブミリ波RFICは、ミリ波RFEMから物理的に分離されてもよい。RFICは、1つ以上のアンテナ又はアンテナアレイ(例えば、以下の図8のアンテナアレイ411を参照)への接続を含むことができ、RFEMは、複数のアンテナに接続されることができる。代替実装では、mmWave及びサブmmWave無線機能の双方が、mmWaveアンテナ及びサブmmWaveの双方を組み込む同じ物理RFEM315内に実装されてもよい。
メモリ回路320は、ダイナミックランダムアクセスメモリ(DRAM)及び/又は同期ダイナミックランダムアクセスメモリ(SDRAM)を含む揮発性メモリ、並びに高速電気的消去可能メモリ(一般にフラッシュメモリと呼ばれる)、相変化ランダムアクセスメモリ(PRAM)、磁気抵抗ランダムアクセスメモリ(MRAM)などを含む不揮発性メモリ(NVM)のうちの1つ以上を含むことができ、Intel(登録商標)及びMicron(登録商標)の3次元(3D)クロスポイント(XPOINT)メモリを組み込むことができる。メモリ回路320は、はんだ付けパッケージ集積回路、ソケットメモリモジュール、及びプラグインメモリカードのうちの1つ以上として実装されてもよい。
PMIC325は、電圧レギュレータ、サージ保護器、電力アラーム検出回路、及び電池又はコンデンサなどの1つ以上の予備電源を含んでもよい。電力アラーム検出回路は、ブラウンアウト(不足電圧)及びサージ(過電圧)状態のうちの1つ以上を検出してもよい。電力T回路330Aは、ネットワークケーブルから引き出される電力を供給して、単一のケーブルを使用してインフラストラクチャ設備300Aに電力供給及びデータ接続の両方を提供することができる。
ネットワークコントローラ回路335は、イーサネット、GREトンネル上のイーサネット、マルチプロトコルラベルスイッチング(MPLS)上のイーサネット、又は何らかの他の適切なプロトコルなどの標準的なネットワークインタフェースプロトコルを使用してネットワークへの接続を提供することができる。ネットワーク接続は、電気(一般に「銅配線」と呼ばれる)、光、又は無線であり得る物理接続を使用して、ネットワークインタフェースコネクタ340Aを介してインフラストラクチャ設備300Aに/から提供され得る。ネットワークコントローラ回路335は、前述のプロトコルのうちの1つ以上を使用して通信するための1つ以上の専用プロセッサ及び/又はFPGAを含むことができる。いくつかの実装形態では、ネットワークコントローラ回路335は、同じ又は異なるプロトコルを使用して他のネットワークへの接続を提供するための複数のコントローラを含むことができる。
測位回路345は、全地球航法衛星システム(GNSS)の測位ネットワークによって送信/ブロードキャストされた信号を受信及び復号するための回路を含む。航法衛星コンスタレーション(又はGNSS)の例には、米国の全地球測位システム(GPS)、ロシアの全地球航法システム(GLONASS)、欧州連合のガリレオシステム、中国の北斗航法衛星システム、地域航法システム又はGNSS補強システム(例えば、Indian Constellation(NAVIC)によるナビゲーション、日本の準天頂衛星システム(QZSS)、フランスのDoppler Orbitography and Radio positioning Integrated by Satellite(DORIS)など)などが含まれる。測位回路345は、航法衛星コンスタレーションノードなどの測位ネットワークの構成要素と通信するための様々なハードウェアエレメント(例えば、OTA通信を容易にするためのスイッチ、フィルタ、増幅器、アンテナエレメントなどのハードウェアデバイスを含む)を備える。いくつかの実施形態では、測位回路345は、マスタタイミングクロックを使用してGNSS支援なしで位置追跡/推定を実行するためのMicro-Technology for Positioning,Navigation,and Timing(Micro-PNT)ICを含むことができる。測位回路345はまた、測位ネットワークのノード及び構成要素と通信するために、ベースバンド回路310及び/又はRFEM315の一部であってもよく、又はそれらと対話してもよい。測位回路345はまた、位置データ及び/又は時間データをアプリケーション回路305に提供することができ、アプリケーション回路は、データを使用して動作を様々なインフラストラクチャ(例えば、RANノード111など)などと同期させることができる。
図7Aに示す構成要素は、業界標準アーキテクチャ(ISA)、拡張ISA(EISA)、周辺構成要素相互接続(PCI)、拡張周辺構成要素相互接続(PCIx)、PCIエクスプレス(PCIe)、又は任意の数の他の技術などの任意の数のバス及び/又は相互接続(IX)技術を含むことができるインタフェース回路を使用して互いに通信することができる。バス/IXは、例えば、SoCベースのシステムで使用される独自のバスであってもよい。とりわけ、I2Cインタフェース、SPIインタフェース、ポイントツーポイントインタフェース、及び電力バスなどの他のバス/IXシステムが含まれてもよい。
図7Bは、様々な実施形態によるプラットフォーム300B(又は「デバイス300B」)の一例を示す。実施形態では、コンピュータプラットフォーム300Bは、UE101、102、201、アプリケーションサーバ130、及び/又は本明細書で説明される任意の他のエレメント/デバイスとしての使用に適し得る。プラットフォーム300Bは、実施例に示される構成要素の任意の組み合わせを含んでもよい。プラットフォーム300Bの構成要素は、コンピュータプラットフォーム300Bに適合された集積回路(IC)、その一部、ディスクリート電子デバイス、又は他のモジュール、ロジック、ハードウェア、ソフトウェア、ファームウェア、又はそれらの組み合わせとして、或いはより大きなシステムのシャーシ内に組み込まれる構成要素として実装されてもよい。図7Bのブロック図は、コンピュータプラットフォーム300Bの構成要素の高レベル図を示すことを意図している。しかしながら、示されている構成要素のいくつかは省略されてもよく、追加の構成要素が存在してもよく、示されている構成要素の異なる配置が他の実施態様で発生してもよい。
アプリケーション回路305は、これらに限られるわけではないが、1つ以上のプロセッサ(又はプロセッサコア)、キャッシュメモリ、並びに1つ以上のLDO、割り込みコントローラ、SPI、I2C、又はユニバーサルプログラマブルシリアルインタフェースモジュールなどのシリアルインタフェース、RTC、インタバル及びウォッチドッグタイマを含むタイマカウンタ、汎用I/O、SD MMCなどのメモリカードコントローラ、USBインタフェース、MIPIインタフェース、及びJTAGテストアクセスポートなどの回路を含む。アプリケーション回路305のプロセッサ(又はコア)は、メモリ/ストレージエレメントに結合されてもよいし、メモリ/ストレージエレメントを含んでもよく、様々なアプリケーション又はオペレーティングシステムをシステム300B上で実行することを可能にするために、メモリ/ストレージに格納された命令を実行するように構成されてもよい。いくつかの実装形態では、メモリ/記憶素子はオンチップメモリ回路であってもよく、これは、DRAM、SRAM、EPROM、EEPROM、フラッシュメモリ、ソリッドステートメモリ、及び/又は本明細書で説明されるような任意の他のタイプのメモリデバイス技術などの任意の適切な揮発性及び/又は不揮発性メモリを含んでもよい。
アプリケーション回路305のプロセッサは、例えば、1つ以上のプロセッサコア、1つ以上のアプリケーションプロセッサ、1つ以上のGPU、1つ以上のRISCプロセッサ、1つ以上のARMプロセッサ、1つ以上のCISCプロセッサ、1つ以上のDSP、1つ以上のFPGA、1つ以上のPLD、1つ以上のASIC、1つ以上のマイクロプロセッサ若しくはコントローラ、マルチスレッドプロセッサ、超低電圧プロセッサ、組み込みプロセッサ、いくつかの他の既知の処理エレメント、又はこれらの任意の好適な組み合わせを含み得る。いくつかの実施形態では、アプリケーション回路305は、本明細書の様々な実施形態に従って動作する専用プロセッサ/コントローラを含んでもよく、又は専用プロセッサ/コントローラであってもよい。
例として、アプリケーション回路305のプロセッサは、Quark(商標)、Atom(商標)、i3、i5、i7、若しくはMCUクラスのプロセッサなどのIntel(登録商標)Architecture Core(商標)ベースのプロセッサ、又はカリフォルニア州サンタクララのIntel(登録商標)Corporationから入手可能な別のそのようなプロセッサを含むことができる。アプリケーション回路305のプロセッサはまた、Advanced Micro Devices(AMD)Ryzen(登録商標)プロセッサ又はAccelerated Processing Units(APU)、Apple(登録商標)Inc.製のA5-A9プロセッサ、Qualcomm(登録商標)Technologies,Inc.のSnapdragon(商標)プロセッサ、Texas Instruments,Inc.(登録商標)Open Multimedia Applications Platform(OMAP)(商標)プロセッサ、MIPS Warrior M-クラス、Warrior I-クラス及びWarrior P-クラスプロセッサなどのMIPS Technologies,Inc.からのMIPSベースの設計、ARM Cortex-A、Cortex-R及びプロセッサのCortex-MファミリなどのARM Holdingsから認可されたARMベースの設計、又は同様のもののうちの1つ以上である。いくつかの実装形態では、アプリケーション回路305は、アプリケーション回路305及び他の構成要素が単一の集積回路、又はIntel(登録商標)Corporation製のEdison(商標)若しくはGalileo(商標)SoCボードなどの単一のパッケージに形成されるシステムオンチップ(SoC)の一部であってもよい。
追加的又は代替的に、アプリケーション回路305は、これらに限定されるものではないが、FPGAなどの1つ以上のフィールドプログラマブルデバイス(FPD)、複合PLD(CPLD)、高容量PLD(HCPLD)などのプログラマブルロジックデバイス(PLD)、構造化ASICなどのASIC、プログラマブルSoC(PSoC)、などの回路を含み得る。そのような実施形態では、アプリケーション回路305の回路は、論理ブロック又は論理ファブリック、及び本明細書で説明される様々な実施形態の手順、方法、機能などの様々な機能を実行するようにプログラムされ得る他の相互接続されたリソースを含むことができる。そのような実施形態では、アプリケーション回路305の回路は、ルックアップテーブル(LUT)に論理ブロック、論理ファブリック、データなどを記憶するために使用されるメモリセル(例えば、消去可能プログラマブル読み出し専用メモリ(EPROM)、電気的消去可能プログラマブル読み出し専用メモリ(EEPROM)、フラッシュメモリ、スタティックメモリ(例えば、スタティックランダムアクセスメモリ(SRAM)、アンチヒューズなど))を含むことができる。
ベースバンド回路310は、例えば、1つ以上の集積回路を含むはんだ付け基板、主回路基板にはんだ付けされた単一のパッケージ集積回路、又は2つ以上の集積回路を含むマルチチップモジュールとして実装されてもよい。ベースバンド回路310の様々なハードウェア電子エレメントは、図8に関して以下に説明される。
RFEM315は、ミリ波(mmWave)RFEMと、1つ以上のサブmmWave無線周波数集積回路(RFIC)とを備えることができる。いくつかの実装形態では、1つ以上のサブミリ波RFICは、ミリ波RFEMから物理的に分離されてもよい。RFICは、1つ以上のアンテナ又はアンテナアレイ(例えば、以下の図8のアンテナアレイ411を参照)への接続を含むことができ、RFEMは、複数のアンテナに接続されることができる。代替実装では、mmWave及びサブmmWave無線機能の双方が、mmWaveアンテナ及びサブmmWaveの双方を組み込む同じ物理RFEM315内に実装されてもよい。
メモリ回路320は、所与の量のシステムメモリを提供するために使用される任意の数及び種類のメモリデバイスを含み得る。例として、メモリ回路320は、ランダムアクセスメモリ(RAM)、ダイナミックRAM(DRAM)及び/又は同期ダイナミックRAM(SDRAM)を含む揮発性メモリ、並びに高速電気的消去可能メモリ(一般にフラッシュメモリと呼ばれる)、相変化ランダムアクセスメモリ(PRAM)、磁気抵抗ランダムアクセスメモリ(MRAM)などを含む不揮発性メモリ(NVM)のうちの1つ以上を含むことができる。メモリ回路320は、Joint Electron Devices Engineering Council(JEDEC)の低電力ダブルデータレート(LPDDR)ベースの設計、例えばLPDDR2、LPDDR3、LPDDR4などに従って開発されてもよい。メモリ回路320は、はんだ付けパッケージ集積回路、シングルダイパッケージ(SDP)、デュアルダイパッケージ(DDP)又はクワッドダイパッケージ(Q17P)、ソケット状メモリモジュール、マイクロDIMM又はミニDIMMを含むデュアルインラインメモリモジュール(DIMM)、及び/又はボールグリッドアレイ(BGA)を介してマザーボード上にはんだ付けされたもののうちの1つ以上として実装されてもよい。低電力実装形態では、メモリ回路320は、アプリケーション回路305に関連付けられたオンダイメモリ又はレジスタであってもよい。データ、アプリケーション、オペレーティングシステムなどの情報の永続的ストレージを提供するために、メモリ回路320は、とりわけ、ソリッドステートディスクドライブ(SSDD)、ハードディスクドライブ(HDD)、マイクロHDD、抵抗変化メモリ、相変化メモリ、ホログラフィックメモリ、又は化学メモリを含むことができる1つ以上の大容量記憶装置を含んでもよい。例えば、コンピュータプラットフォーム300Bは、Intel(登録商標)及びMicron(登録商標)からの3次元(3D)クロスポイント(XPOINT)メモリを組み込んでもよい。
リムーバブルメモリ回路323は、ポータブルデータ記憶装置をプラットフォーム300Bと結合するために使用されるデバイス、回路、エンクロージャ/筐体、ポート又はレセプタクルなどを含んでもよい。これらのポータブルデータ記憶装置は、大量記憶目的のために使用することができ、例えば、フラッシュメモリカード(例えば、セキュアデジタル(SD)カード、microSDカード、xD画像カードなど)、及びUSBフラッシュドライブ、光ディスク、外部HDDなどを含んでもよい。
プラットフォーム300Bはまた、外部デバイスをプラットフォーム300Bと接続するために使用されるインタフェース回路(図示せず)を含んでもよい。インタフェース回路を介してプラットフォーム300Bに接続された外部デバイスは、センサ回路321及び電気機械構成要素(EMC)322、並びにリムーバブルメモリ回路323に結合された取り外し可能なメモリデバイスを含む。
センサ回路321は、その目的がその環境内でイベント又は変化を検出し、検出されたイベントに関する情報(センサデータ)を、他のデバイス、モジュール、サブシステムなどに送信することであるデバイス、モジュール、又はサブシステムを含む。このようなセンサの例は、とりわけ加速度計、ジャイロスコープ、及び/又は磁力計を含む慣性測定ユニット(IMU)、3軸加速度計、3軸ジャイロスコープ、及び/又は磁力計を備える微小電気機械システム(MEMS)又はナノ電気機械システム(NEMS)、レベルセンサ、フローセンサ、温度センサ(例えば、サーミスタ)、圧力センサ、気圧センサ、重力計、高度計、画像キャプチャデバイス(例えば、カメラ又はレンズレス開口)、光検出測距センサ、近接センサ(例えば、赤外線検出器など)、深度センサ、周囲光センサ、超音波トランシーバ、マイクロフォン又は他の同様の音声キャプチャデバイス、などを含む。
EMC322は、プラットフォーム300Bがその状態、位置、及び/又は向きを変更すること、又は機構若しくは(サブ)システムを移動若しくは制御することを可能にすることを目的とするデバイス、モジュール、又はサブシステムを含む。更に、EMC322は、EMC322の現在の状態を示すために、メッセージ/信号を生成しプラットフォーム300Bの他の構成要素に送信するように構成されてもよい。EMC322の例には、1つ以上の電源スイッチ、電気機械式リレー(EMR)及び/又はソリッドステートリレー(SSR)を含むリレー、アクチュエータ(例えば、バルブアクチュエータなど)、可聴音発生装置、視覚的警告装置、モータ(例えば、DCモータ、ステッパモータなど)、車輪、スラスタ、プロペラ、爪、クランプ、フック、及び/又は他の同様の電気機械部品が含まれる。実施形態では、プラットフォーム300Bは、1つ以上のキャプチャされたイベント及び/又はサービスプロバイダ及び/又は様々なクライアントから受信した命令又は制御信号に基づいて、1つ以上のEMC322を動作させるように構成される。
いくつかの実装形態では、インタフェース回路は、プラットフォーム300Bを測位回路345と接続してもよい。測位回路345は、GNSSの測位ネットワークによって送信/ブロードキャストされた信号を受信及び復号するための回路を含む。航法衛星コンスタレーション(又はGNSS)の例には、米国のGPS、ロシアのGLONASS、欧州連合のガリレオシステム、中国の北斗航法衛星システム、地域航法システム又はGNSS補強システム(例えば、NAVIC、日本のQZSS、フランスのDORISなど)などが含まれる。測位回路345は、航法衛星コンスタレーションノードなどの測位ネットワークの構成要素と通信するための様々なハードウェアエレメント(例えば、OTA通信を容易にするためのスイッチ、フィルタ、増幅器、アンテナエレメントなどのハードウェアデバイスを含む)を備える。いくつかの実施形態では、測位回路345は、マスタタイミングクロックを使用してGNSS支援なしで位置追跡/推定を実行するMicro-PNT ICを含むことができる。測位回路345はまた、測位ネットワークのノード及び構成要素と通信するために、ベースバンド回路310及び/又はRFEM315の一部であってもよく、又はそれらと対話してもよい。測位回路345はまた、位置データ及び/又は時間データをアプリケーション回路305に提供することができ、アプリケーション回路は、データを使用して、ターンバイターンナビゲーションアプリケーションなどのために、様々なインフラストラクチャ(例えば、無線基地局)と動作を同期させることがある。
いくつかの実装形態では、インタフェース回路は、プラットフォーム300Bを近距離通信(NFC)回路340Bと接続してもよい。NFC回路340Bは、無線周波数識別(RFID)規格に基づいて非接触の短距離通信を提供するように構成され、磁場誘導が、NFC回路340Bとプラットフォーム300Bの外部のNFC対応デバイス(例えば、「NFCタッチポイント」)との間の通信を可能にするために使用される。NFC回路340Bは、アンテナエレメントと結合されたNFCコントローラと、NFCコントローラと結合されたプロセッサとを備える。NFCコントローラは、NFCコントローラのファームウェア及びNFCスタックを実行することにより、NFC回路340BにNFC機能を提供するチップ/ICであってもよい。NFCスタックは、NFCコントローラを制御するためにプロセッサによって実行されてもよく、NFCコントローラファームウェアは、近距離RF信号を放射するようにアンテナエレメントを制御するためにNFCコントローラによって実行されてもよい。RF信号は、パッシブNFCタグ(例えば、ステッカー又はリストバンドに埋め込まれたマイクロチップ)に電力を供給して、記憶されたデータをNFC回路340Bに送信するか、又は、プラットフォーム300Bに近接したNFC回路340Bと別のアクティブNFCデバイス(例えば、スマートフォン又はNFC対応POS端末)との間のデータ転送を開始することができる。
ドライバ回路346は、プラットフォーム300Bに組み込まれた、プラットフォーム300Bに取り付けられた、又はそうでなければプラットフォーム300Bと通信可能に結合された特定のデバイスを制御するように動作するソフトウェア及びハードウェア要素を含むことができる。ドライバ回路346は、プラットフォーム300Bの他の構成要素が、プラットフォーム300B内に存在するか、又はそれに接続され得る様々な入力/出力(I/O)装置と対話するか、又はそれらを制御することを可能にする個々のドライバを含むことができる。例えば、ドライバ回路346は、ディスプレイデバイスの制御及びそれへのアクセスを可能にするディスプレイドライバと、プラットフォーム300Bのタッチスクリーンインタフェースを制御及びそれへのアクセスを可能にするタッチスクリーンドライバと、センサ回路321のセンサ読み取り値を取得し、センサ回路321の制御及びそれへのアクセスを可能にするセンサドライバと、EMC322のアクチュエータ位置を取得し、EMC322の制御及びそれへのアクセスを可能にするEMCドライバと、埋め込まれた画像キャプチャデバイスの制御及びそれへのアクセスを可能にするカメラドライバと、1つ以上のオーディオデバイスの制御及びそれへのアクセスを可能にするオーディオドライバとを含むことができる。
電力管理集積回路(PMIC)325(「電力管理回路325」とも呼ばれる)は、プラットフォーム300Bの様々な構成要素に提供される電力を管理し得る。具体的には、ベースバンド回路310に関して、PMIC325は、電源選択、電圧スケーリング、バッテリ充電、又はDC-DC変換を制御することができる。プラットフォーム300Bがバッテリ330Bによって給電可能である場合、例えば、このデバイスがUE101、102、201に含まれている場合に、多くの場合、PMIC325が含まれてもよい。
いくつかの実施形態では、PMIC325は、プラットフォーム300Bの様々な省電力機構を制御するか、又はさもなければその一部とすることができる。例えば、プラットフォーム300BがRRC接続状態にあって、トラフィックを間もなく受信することが予期されるのでRANノードに依然として接続されている場合、ある非アクティブ期間後、プラットフォームは間欠受信モード(DRX)として知られる状態に入ることができる。この状態の間は、プラットフォーム300Bは、短時間電力を落とすことができ、それによって節電することができる。長期間のデータトラフィック活動が存在しない場合、プラットフォーム300Bは、RRCアイドル状態に遷移することができ、ネットワークから切断し、チャネル品質フィードバック、ハンドオーバなどの動作を実行しない。プラットフォーム300Bは、非常に低電力の状態になり、ページングを実行し、ここで再び周期的にウェイクアップしてネットワークをリスンし、次いで再びパワーダウンする。プラットフォーム300Bは、この状態でデータを受信しなくてもよい。データを受信するために、RRC_Connected状態に遷移しなければならない。付加的な省電力モードにより、ページング間隔より長期間(秒から数時間に及ぶ)、デバイスがネットワークを利用不可にすることを可能にしてもよい。この間、デバイスは、ネットワークに全く接続できず、完全に電力を落とすことができる。この間に送信されるどんなデータも、大きな遅延をもたらし、遅延が許容できるものと想定される。
バッテリ330Bは、プラットフォーム300Bに電力を供給することができるが、いくつかの例では、プラットフォーム300Bは、固定位置に配置されて取り付けられてもよく、送電網に結合された電源を有してもよい。バッテリ330Bは、リチウムイオン電池、亜鉛空気電池、アルミニウム空気電池、リチウム空気電池などの金属空気電池、などであってもよい。V2X用途などのいくつかの実装では、バッテリ330Bは、典型的な鉛酸自動車電池であってもよい。
いくつかの実装形態では、バッテリ330Bは、バッテリ管理システム(BMS)又はバッテリ監視集積回路を含むか、又はそれに結合された「スマート電池」であってもよい。BMSは、バッテリ330Bの充電状態(SoCh)を追跡するためにプラットフォーム300Bに含まれてもよい。BMSは、バッテリ330Bの健康状態(SoH)及び機能状態(SoF)などの、バッテリ330Bの他のパラメータを監視して、故障予測を提供するために使用されてもよい。BMSは、バッテリ330Bの情報を、アプリケーション回路305又はプラットフォーム300Bの他の構成要素に通信してもよい。BMSはまた、アプリケーション回路305がバッテリ330Bの電圧、又はバッテリ330Bからの電流の流れを直接監視することを可能にするアナログ-デジタル(ADC)変換器を含んでもよい。バッテリパラメータは、送信周波数、ネットワーク動作、検知周波数などの、プラットフォーム300Bが実行し得る作用を決定するために使用されてもよい。
電力ブロック、又は送電網に結合された他の電源は、バッテリ330Bを充電するためにBMSと結合されてもよい。いくつかの実施例では、電力ブロックは、無線電力受信機と置き換えられて、例えば、コンピュータプラットフォーム300B内のループアンテナを介して無線で電力を取得することができる。これらの実施例では、無線バッテリ充電回路がBMSに含まれてもよい。選択される特定の充電回路は、バッテリ330Bのサイズ、従って必要とされる電流に依存し得る。充電は、とりわけ、Airfuel Allianceによって公布されたAirfuel標準、Wireless Power Consortiumによって公布されたQi無線充電標準、又はAlliance for Wireless Powerによって公布されたRezence充電標準を使用して実行することができる。
ユーザインタフェース回路350は、プラットフォーム300B内に存在するか、又はそれに接続される様々な入出力(I/O)デバイスを含み、プラットフォーム300Bとのユーザ対話を可能にするように設計された1つ以上のユーザインタフェース、及び/又はプラットフォーム300Bとの周辺構成要素対話を可能にするように設計された周辺構成要素インタフェースを含むことができる。ユーザインタフェース回路350は、入力デバイス回路及び出力デバイス回路を含む。入力デバイス回路は、とりわけ、1つ以上の物理的又は仮想的ボタン(例えば、リセットボタン)、物理キーボード、キーパッド、マウス、タッチパッド、タッチスクリーン、マイクロフォン、スキャナ、ヘッドセットなどを含む入力を受け付けるための任意の物理的又は仮想的手段を含む。出力装置回路は、センサ読み取り値、アクチュエータ位置、又は他の同様の情報などの情報を表示するか、又は他の方法で情報を伝達するための任意の物理的又は仮想的な手段を含む。出力デバイス回路は、とりわけ、1つ以上の単純な視覚出力/インジケータ(例えば、発光ダイオード(LED))及び複数桁文字視覚出力、又はディスプレイデバイス若しくはタッチスクリーン(例えば、液晶ディスプレイ(LCD)、LEDディスプレイ、量子ドットディスプレイ、プロジェクタなど)などのより複雑な出力を含む、任意の数及び/又は組み合わせのオーディオ又は視覚ディスプレイを含むことができ、文字、グラフィック、マルチメディアオブジェクトなどの出力は、プラットフォーム300Bの動作から生成される。出力装置回路はまた、スピーカ又は他のオーディオ放出デバイス、プリンタ、及び/又は同様のものを含んでもよい。いくつかの実施形態では、センサ回路321は、入力デバイス回路(例えば、画像キャプチャデバイス、モーションキャプチャデバイスなど)として使用されてもよく、1つ以上のEMCは、出力デバイス回路(例えば、触覚フィードバックを提供するためのアクチュエータなど)として使用されてもよい。別の実施例では、アンテナ要素と結合されたNFCコントローラを備えるNFC回路、及び処理デバイスが、電子タグを読み取り、及び/又は別のNFC対応デバイスと接続するために含まれてもよい。周辺構成要素インタフェースとしては、不揮発性メモリポート、USBポート、オーディオジャック、電源インタフェースなどが挙げられるが、これらに限定されない。
図示されていないが、プラットフォーム300Bの構成要素は、適切なバス又は相互接続(IX)技術を使用して互いに通信することができ、これは、ISA、EISA、PCI、PCIx、PCIe、時間トリガプロトコル(TTP)システム、FlexRayシステム、又は任意の数の他の技術を含む任意の数の技術を含むことができる。バス/IXは、例えば、SoCベースのシステムで使用される独自のバス/IXであってもよい。とりわけ、I2Cインタフェース、SPIインタフェース、ポイントツーポイントインタフェース、及び電力バスなどの他のバス/IXシステムが含まれてもよい。
図8は、様々な実施形態による、ベースバンド回路410及び無線フロントエンドモジュール(RFEM)415の例示的な構成要素を示す。ベースバンド回路410は、図7A及び図7Bのベースバンド回路310に対応する。RFEM415は、図7A及び図7BのRFEM315に対応する。図示のように、RFEM415は、少なくとも示されるように共に結合された無線周波数(RF)回路406、フロントエンドモジュール(FEM)回路408、アンテナアレイ411を含んでもよい。
ベースバンド回路410は、RF回路406を介して1つ以上の無線ネットワークとの通信を可能にする様々な無線/ネットワークプロトコル及び無線制御機能を実行するように構成された回路及び/又は制御ロジックを含む。無線制御機能は、信号変調/復調、符号化/復号、無線周波数シフト等を含み得るが、これらに限定されない。いくつかの実施形態では、ベースバンド回路410の変調/復調回路は、高速フーリエ変換(FFT)、プリコーディング、又はコンスタレーションマッピング/デマッピング機能を含み得る。いくつかの実施形態では、ベースバンド回路410の符号化/復号回路は、畳込み、テールバイティング畳込み、ターボ、ビタビ、又は低密度パリティチェック(LDPC)符号器/復号器機能を含んでもよい。変調/復調及びエンコーダ/デコーダ機能の実施形態は、これらの実施例に限定されず、他の実施形態では他の好適な機能を含んでもよい。ベースバンド回路410は、RF回路406の受信信号経路から受信したベースバンド信号を処理し、RF回路406の送信信号経路のためのベースバンド信号を生成するように構成される。ベースバンド回路410は、ベースバンド信号の生成及び処理のために、かつRF回路406の動作を制御するために、アプリケーション回路305(図7A及び図7Bを参照)とインタフェース接続するように構成される。ベースバンド回路410は、様々な無線制御機能を処理することができる。
ベースバンド回路410の前述の回路及び/又は制御ロジックは、1つ以上の単一又はマルチコアプロセッサを含んでもよい。例えば、1つ以上のプロセッサは、3Gベースバンドプロセッサ404A、4G/LTEベースバンドプロセッサ404B、5G/NRベースバンドプロセッサ404C、又は他の既存世代、開発中の、若しくは将来開発される世代(例えば、第6世代(6G)など)の他のいくつかのベースバンドプロセッサ404Dを含み得る。他の実施形態では、ベースバンドプロセッサ404A~404Dの機能の一部又は全部は、メモリ404Gに記憶されたモジュールに含まれ、中央処理装置(CPU)404Eを介して実行されてもよい。他の実施形態では、ベースバンドプロセッサ404A~404Dの機能の一部又は全部は、対応するメモリセルに記憶された適切なビットストリーム又は論理ブロックをロードされたハードウェアアクセラレータ(例えば、FPGA、ASICなど)として提供されてもよい。様々な実施形態において、メモリ404Gは、CPU404E(又は他のベースバンドプロセッサ)によって実行されると、CPU404E(又は他のベースバンドプロセッサ)に、ベースバンド回路410のリソースを管理させ、タスクをスケジュールさせるなどとなるリアルタイムOS(RTOS)のプログラムコードを記憶することができる。RTOSの例は、Enea(登録商標)によって提供されるOperating System Embedded(OSE)(商標)、Mentor Graphics(登録商標)によって提供されるNucleus RTOS(商標)、Mentor Graphics(登録商標)によって提供されるVersatile Real-Time Executive(VRTX)、Express Logic(登録商標)によって提供されるThreadX(商標)、FreeRTOS、Qualcomm(登録商標)によって提供されるREX OS、Open Kernel(OK)Labs(登録商標)によって提供されるOKL4、又は本明細書で説明されるような他の任意の適切なRTOSを含むことができる。更に、ベースバンド回路410は、1つ以上の音声デジタル信号プロセッサ(DSP)404Fを含み得る。音声DSP(単数又は複数)404Fは、圧縮/展開及びエコー消去のための要素を含んでもよく、他の実施形態では、他の好適な処理要素を含む。
いくつかの実施形態では、プロセッサ404A~404Eのそれぞれは、メモリ404Gに/メモリ404Gからデータを送受信するためのそれぞれのメモリインタフェースを含む。ベースバンド回路410は、ベースバンド回路410の外部のメモリにデータを送受信するインタフェースなどの他の回路/デバイスに通信可能に結合する1つ以上のインタフェースと、図7のアプリケーション回路305との間でデータを送受信するためのアプリケーション回路インタフェースと、図8のRF回路406との間でデータを送受信するRF回路インタフェースと、1つ以上の無線ハードウェア要素(例えば、近距離無線通信(NFC)構成要素、Bluetooth(登録商標)/Bluetooth(登録商標)低エネルギー構成要素、WiFi(登録商標)構成要素、及び/又は同様のもの)との間でデータを送受信するための無線ハードウェア接続インタフェースと、PMIC325との間で電力又は制御信号を送受信する電力管理インタフェースと、を含む。
代替の実施形態(上述の実施形態と組み合わされてもよい)では、ベースバンド回路410は、相互接続サブシステムを介して互いに結合され、CPUサブシステム、オーディオサブシステム、及びインタフェースサブシステムに結合された、1つ以上のデジタルベースバンドシステムを含む。デジタルベースバンドサブシステムはまた、別の相互接続サブシステムを介してデジタルベースバンドインタフェース及び混合信号ベースバンドサブシステムに結合されてもよい。相互接続サブシステムのそれぞれは、バスシステム、ポイントツーポイント接続、ネットワークオンチップ(NOC)構造、及び/又は本明細書で論じられるものなどのいくつかの他の好適なバス若しくは相互接続技術を含んでもよい。オーディオサブシステムは、DSP回路、バッファメモリ、プログラムメモリ、音声処理アクセラレータ回路、アナログ-デジタル及びデジタル-アナログ変換回路などのデータ変換回路、増幅器及びフィルタのうちの1つ以上を含むアナログ回路、及び/又は他の同様の構成要素を含み得る。本開示の一態様では、ベースバンド回路410は、デジタルベースバンド回路及び/又は無線周波数回路(例えば、無線フロントエンドモジュール415)のための制御機能を提供するために、制御回路(図示せず)の1つ以上のインスタンスを有するプロトコル処理回路を含むことができる。
図8には示されていないが、いくつかの実装形態では、ベースバンド回路410は、1つ以上の無線通信プロトコル(例えば、「マルチプロトコルベースバンドプロセッサ」又は「プロトコル処理回路」)を動作させるための個々の処理デバイス(単数又は複数)及びPHYレイヤ機能を実装するための個々の処理デバイス(単数又は複数)を含む。これらの実施形態では、PHYレイヤ機能は、前述の無線制御機能を含む。これらの実施形態では、プロトコル処理回路は、1つ以上の無線通信プロトコルの様々なプロトコルレイヤ/エンティティを動作又は実装させる。第1の実施例では、プロトコル処理回路は、ベースバンド回路410及び/又はRF回路406がミリ波通信回路又は何らかの他の好適なセルラ通信回路の一部であるときに、LTEプロトコルエンティティ及び/又は5G/NRプロトコルエンティティを動作させることができる。第1の実施例では、プロトコル処理回路は、MAC、RLC、PDCP、SDAP、RRC、及びNAS機能を動作させる。第2の実施例では、プロトコル処理回路は、ベースバンド回路410及び/又はRF回路406がWi-Fi通信システムの一部である場合に、1つ以上のIEEEベースのプロトコルを動作させてもよい。第2の実施例では、プロトコル処理回路は、WiFi MAC及び論理リンク制御(LLC)機能を動作させる。プロトコル処理回路は、プロトコル機能を動作させるためのプログラムコード及びデータを記憶するための1つ以上のメモリ構造(例えば404G)と、プログラムコードを実行し、データを使用して様々な動作を実行する1つ以上の処理コアを含んでもよい。ベースバンド回路410はまた、複数の無線プロトコルに対する無線通信をサポートすることができる。
本明細書で論じるベースバンド回路410の様々なハードウェア要素は、例えば、1つ以上の集積回路(IC)を含むはんだ付け基板、主回路基板にはんだ付けされた単一のパッケージIC、又は2つ以上のICを含むマルチチップモジュールとして実装されてもよい。一実施例では、ベースバンド回路410の構成要素は、単一のチップ又はチップセット内で好適に組み合わされてもよいし、同じ回路基板上に配置されてもよい。別の実施例では、ベースバンド回路410及びRF回路406の構成要素の一部又は全部は、例えば、システムオンチップ(SoC)又はシステムインパッケージ(SiP)のように、一緒に実装されてもよい。別の実施例では、ベースバンド回路410の構成要素の一部又は全部は、RF回路406(又はRF回路406の複数のインスタンス)と通信可能に結合された別個のSoCとして実装されてもよい。更に別の実施例では、ベースバンド回路410及びアプリケーション回路305の構成要素の一部又は全部は、同じ回路基板(例えば、「マルチチップパッケージ」)に実装された個々のSoCとして一緒に実装されてもよい。
いくつかの実施形態では、ベースバンド回路410は、1つ以上の無線技術と互換性のある通信を提供することができる。例えば、いくつかの実施形態では、ベースバンド回路410は、E-UTRAN又は他のWMAN、WLAN、WPANとの通信をサポートすることができる。ベースバンド回路410が2つ以上の無線プロトコルの無線通信をサポートするように構成される実施形態は、マルチモードベースバンド回路と称される場合がある。
RF回路406は、非固体媒体を通した変調電磁放射を用いて無線ネットワークとの通信を可能にすることができる。様々な実施形態では、RF回路406は、無線ネットワークとの通信を容易にするために、スイッチ、フィルタ、増幅器などを含んでもよい。RF回路406は、FEM回路408から受信したRF信号をダウンコンバートし、ベースバンド信号をベースバンド回路410に提供するための回路を含み得る受信信号経路を含み得る。RF回路406はまた、ベースバンド回路410によって提供されるベースバンド信号をアップコンバートし、送信のためにRF出力信号をFEM回路408に提供するための回路を含み得る送信信号経路も含んでもよい。
いくつかの実施形態では、RF回路406の受信信号経路は、ミキサ回路406a、増幅器回路406b及びフィルタ回路406cを含み得る。いくつかの実施形態では、RF回路406の送信信号経路は、フィルタ回路406c及びミキサ回路406aを含み得る。RF回路406はまた、受信信号経路及び送信信号経路のミキサ回路406aによって使用される周波数を合成するための合成器回路406dを含んでもよい。いくつかの実施形態では、受信信号経路のミキサ回路406aは、合成器回路406dによって提供される合成周波数に基づいて、FEM回路408から受信したRF信号をダウンコンバートするように構成されてもよい。増幅器回路406bは、ダウンコンバートされた信号を増幅するように構成することができ、フィルタ回路406cは、ダウンコンバートされた信号から不要な信号を除去して出力ベースバンド信号を生成するように構成されたローパスフィルタ(LPF)又はバンドパスフィルタ(BPF)であってもよい。出力ベースバンド信号は、更に処理するためにベースバンド回路410に提供されてもよい。いくつかの実施形態では、出力ベースバンド信号は、ゼロ周波数ベースバンド信号であってもよいが、これは必須ではない。いくつかの実施形態では、受信信号経路のミキサ回路406aは、受動ミキサを含んでもよいが、実施形態の範囲はこの点で限定されない。
いくつかの実施形態では、送信信号経路のミキサ回路406aは、合成器回路406dによって提供される合成周波数に基づいて入力ベースバンド信号をアップコンバートして、FEM回路408のためのRF出力信号を生成するように構成されてもよい。ベースバンド信号は、ベースバンド回路410によって提供されてもよく、フィルタ回路406cによってフィルタリングされてもよい。
いくつかの実施形態では、受信信号経路のミキサ回路406a及び送信信号経路のミキサ回路406aは、2つ以上のミキサを含んでもよく、それぞれ直交ダウンコンバージョン及びアップコンバージョンのために配置されてもよい。いくつかの実施形態では、受信信号経路のミキサ回路406a及び送信信号経路のミキサ回路406aは、2つ以上のミキサを含んでもよく、イメージ除去(例えば、ハートレー(Hartley)イメージ除去)のために配置されてもよい。いくつかの実施形態では、受信信号経路のミキサ回路406a及び送信信号経路のミキサ回路406aは、それぞれ直接ダウンコンバージョン及び直接アップコンバージョンのために配置されてもよい。いくつかの実施形態では、受信信号経路のミキサ回路406a及び送信信号経路のミキサ回路406aは、スーパーヘテロダイン動作のために構成されてもよい。
いくつかの実施形態では、出力ベースバンド信号及び入力ベースバンド信号は、アナログベースバンド信号であってもよいが、実施形態の範囲はこの点で限定されない。いくつかの代替実施形態では、出力ベースバンド信号及び入力ベースバンド信号は、デジタルベースバンド信号であってもよい。これらの代替実施形態では、RF回路406は、アナログデジタル変換器(ADC)及びデジタルアナログ変換器(DAC)回路を含むことができ、ベースバンド回路410は、RF回路406と通信するためのデジタルベースバンドインタフェースを含んでもよい。
いくつかのデュアルモード実施形態では、各スペクトルの信号を処理するために別個の無線IC回路が提供されてもよいが、実施形態の範囲はこの点で限定されない。
いくつかの実施形態では、合成器回路406dは、分数N合成器であってもよいし、又は分数N/N+1合成器であってもよいが、他の種類の周波数合成器が好適である場合があるので、本実施形態の範囲はこの点で限定されない。例えば、合成器回路406dは、デルタ-シグマ合成器、周波数乗算器、又は周波数分割器を有する位相ロックループを備える合成器であってもよい。
合成器回路406dは、周波数入力及びディバイダ制御入力に基づいて、RF回路406のミキサ回路406aによって使用される出力周波数を合成するように構成されてもよい。いくつかの実施形態では、合成器回路406dは、分数N/N+1合成器であってもよい。
いくつかの実施形態では、周波数入力は、電圧制御型発振器(VCO)によって提供されてもよいが、それは必須ではない。ディバイダ制御入力は、所望の出力周波数に応じてベースバンド回路410又はアプリケーション回路305のいずれかによって提供されてもよい。いくつかの実施形態では、ディバイダ制御入力(例えば、N)は、アプリケーション回路305によって示されるチャネルに基づいてルックアップテーブルから決定されてもよい。
RF回路406の合成器回路406dは、ディバイダ、遅延ロックループ(DLL)、マルチプレクサ、及び位相アキュムレータを含み得る。いくつかの実施形態では、ディバイダは、デュアルモジュラスディバイダ(dual modulus divider、DMD)であってもよく、位相アキュムレータは、デジタル位相アキュムレータ(digital phase accumulator、DPA)であってもよい。いくつかの実施形態では、DMDは、入力信号を(例えば、実行に基づいて)N又はN+1のいずれかに分割して、フラクショナル分割比を提供するように構成されてもよい。いくつかの例示的実施形態では、DLLは、カスケード式同調可能な遅延素子、位相検出器、チャージポンプ、及びD型フリップフロップのセットを含み得る。これらの実施形態では、遅延素子は、VCO周期を、Ndの等しい位相のパケットに分割するように構成することができ、ここでNdは遅延線内の遅延素子の数である。このようにして、DLLは、遅延線を通した合計遅延が1つのVCOサイクルであることを保証することに寄与すべく、負のフィードバックを提供する。
いくつかの実施形態では、合成器回路406dは、出力周波数としてキャリア周波数を生成するように構成されてもよく、他の実施形態では、出力周波数は、キャリア周波数の倍数(例えば、キャリア周波数の2倍、キャリア周波数の4倍)であってもよく、直交ジェネレータ及びディバイダ回路と併せて使用して、互いに対して複数の異なる位相を有するキャリア周波数で複数の信号を生成することができる。いくつかの実施形態では、出力周波数はLO周波数(fLO)であってもよい。いくつかの実施形態では、RF回路406は、IQ/極性変換器を含んでもよい。
FEM回路408は、アンテナアレイ411から受信したRF信号に対して動作し、受信信号を増幅し、受信信号の増幅バージョンを更に処理するためにRF回路406に提供するように構成された回路を含み得る、受信信号経路を含んでもよい。FEM回路408はまた、アンテナアレイ411の1つ以上のアンテナエレメントにより送信されるためにRF回路406によって提供される、送信のための信号を増幅するように構成された回路を含み得る、送信信号経路を含んでもよい。様々な実施形態では、送信又は受信信号経路を通じた増幅は、RF回路406のみにおいて、FEM回路408のみにおいて、又はRF回路406及びFEM回路408の両方において行われてもよい。
いくつかの実施形態では、FEM回路408は、送信モードと受信モードの動作間で切り替えるためのTX/RXスイッチを含んでもよい。FEM回路408は、受信信号経路及び送信信号経路を含み得る。FEM回路408の受信信号経路は、受信されたRF信号を増幅し、増幅された受信RF信号を出力として(例えば、RF回路406に)提供するためのLNAを含んでもよい。FEM回路408の送信信号経路は、(例えば、RF回路406によって提供される)入力RF信号を増幅するための電力増幅器(PA)と、アンテナアレイ411の1つ以上のアンテナエレメントによる後続する送信のためにRF信号を生成するための1つ以上のフィルタとを含むことができる。
アンテナアレイ411は、それぞれが電気信号を空中に伝わる電波に変換し、受信した電波を電気信号に変換するように構成された、1つ以上のアンテナエレメントを備える。例えば、ベースバンド回路410によって提供されるデジタルベースバンド信号は、1つ以上のアンテナエレメント(図示せず)を含むアンテナアレイ411のアンテナエレメントを介して増幅され送信されるアナログRF信号(例えば、変調波形)に変換される。アンテナエレメントは、無指向性、指向性、又はこれらの組み合わせであってもよい。アンテナエレメントは、本明細書で知られている及び/又は説明されているように、多数の配列で形成されてもよい。アンテナアレイ411は、1つ以上のプリント回路基板の表面上に作製されるマイクロストリップアンテナ又はプリントアンテナを含み得る。アンテナアレイ411は、様々な形状の金属箔のパッチ(例えば、パッチアンテナ)として形成されてもよく、金属伝送線などを使用してRF回路406及び/又はFEM回路408と結合されてもよい。
アプリケーション回路305のプロセッサ及びベースバンド回路410のプロセッサを使用して、プロトコルスタックの1つ以上のインスタンスの要素を実行することができる。例えば、ベースバンド回路410のプロセッサを単独で又は組み合わせて使用することができ、レイヤ3、レイヤ2、又はレイヤ1の機能を実行することができる一方で、アプリケーション回路305のプロセッサは、これらのレイヤから受信したデータ(例えば、パケットデータ)を利用してもよく、更に、レイヤ4の機能(例えば、TCP及びUDPレイヤ)を実行してもよい。本明細書で言及するように、レイヤ3は、以下に更に詳細に記載するRRCレイヤを含んでもよい。本明細書で言及するように、レイヤ2は、以下に更に詳細に記載するMACレイヤ、RLCレイヤ及びPDCPレイヤを含んでもよい。本明細書で言及するように、レイヤ1は、以下に更に詳細に記載する、UE/RANノードのPHYレイヤを含み得る。
図9は、様々な実施形態に従って、無線通信デバイスにおいて実施され得る様々なプロトコル機能を例示する。特に、図9は、様々なプロトコル層/エンティティ間の相互接続を示す配列500を含む。図9の以下の説明は、5G/NRシステム規格及びLTEシステム規格と連携して動作する様々なプロトコル層/エンティティについて提供されるが、図9の態様の一部又は全部は、他の無線通信ネットワークシステムにも適用可能であり得る。
配列500のプロトコル層は、図示されていない他の上位層機能に加えて、PHY510、MAC520、RLC530、PDCP540、SDAP547、RRC555、及びNAS層557のうちの1つ以上を含むことができる。プロトコル層は、2つ以上のプロトコル層の間の通信を提供することができる1つ以上のサービスアクセスポイント(例えば、図9の項目559、556、550、549、545、535、525、及び515)を含むことができる。
PHY510は、1つ以上の他の通信デバイスから受信され得るか、又は、1つ以上の他の通信デバイスへ送信され得る物理層信号505を送信及び受信し得る。物理層信号505は、本明細書で説明したような、1つ以上の物理チャネルを含むことができる。PHY510は、リンク適応又は適応変調及び符号化(AMC)、電力制御、(例えば、初期同期及びハンドオーバ目的のための)セル探索、並びに、RRC555などの上位層によって使用される他の測定を更に実行してもよい。PHY510は、また、トランスポートチャネル上の誤り検出、トランスポートチャネルの前方誤り訂正(FEC)符号化/復号、物理チャネルの変調/復調、インターリーブ、レートマッチング、物理チャネルへのマッピング、及びMIMOアンテナ処理を更に実行してもよい。実施形態では、PHY510のインスタンスが、1つ以上のPHY-SAP515を介してMAC520のインスタンスからの要求を処理し、指示を提供することができる。いくつかの実施形態によれば、PHY-SAP515を介して通信される要求及び指示は、1つ以上のトランスポートチャネルを含むことができる。
MAC520のインスタンスは、1つ以上のMAC-SAP525を介してRLC530のインスタンスからの要求を処理し、インスタンスに指示を提供することができる。MAC-SAP525を介して通信されるこれらの要求及び指示は、1つ以上の論理チャネルを含むことができる。MAC520は、論理チャネルとトランスポートチャネルとの間のマッピング、トランスポートチャネルを介してPHY510に配信されるTB上への1つ以上の論理チャネルからのMAC SDUの多重化、トランスポートチャネルを介してPHY510から配信されるTBから1つ以上の論理チャネルへのMAC SDUの逆多重化、TB上へのMAC SDUの多重化、スケジューリング情報報告、HARQによる誤り訂正、及び論理チャネル優先順位付けを実行することができる。
RLC530のインスタンスは、1つ以上の無線リンク制御サービスアクセスポイント(RLC-SAP)535を介してPDCP540のインスタンスからの要求を処理し、PDCPのインスタンスに指示を提供することができる。RLC-SAP535を介して通信されるこれらの要求及び指示は、1つ以上のRLCチャネルを含むことができる。RLC530は、透過モード(Transparent Mode、TM)、非確認型モード(Unacknowledged Mode、UM)、及び確認モード(Acknowledged Mode、AM)を含む、複数の動作モードで動作することができる。RLC530は、上位層プロトコルデータユニット(PDU)の転送、AMデータ転送のための自動再送要求(ARQ)による誤り訂正、並びに、UM及びAMデータ転送のためのRLC SDUの連結、分割、及び再組み立てを実行することができる。RLC530はまた、AMデータ転送のためのRLCデータPDUの再分割を実行し、UM及びAMデータ転送のためのRLCデータPDUを並べ替え、UM及びAMデータ転送のための複製データを検出し、UM及びAMデータ転送のためのRLC SDUを破棄し、AMデータ転送のためのプロトコル誤りを検出し、RLC再確立を実行してもよい。
PDCP540のインスタンスは、RRC555のインスタンス及び/又はSDAP547のインスタンスへの要求を処理し、指示を、1つ以上のパケットデータ・コンバージェンス・プロトコル・サービス・アクセスポイント(PDCP-SAP)545を介して提供することができる。PDCP-SAP545を介して通信されるこれらの要求及び指示は、1つ以上の無線ベアラを備え得る。PDCP540は、IPデータのヘッダ圧縮及び展開を実行し、PDCPシーケンス番号(SN)を維持し、下位層の再確立における上位層PDUのインシーケンス配信を実行し、RLC AM上にマッピングされた無線ベアラのための下位層の再確立における下位層SDUの複製を除去し、制御プレーンデータを暗号化及び解読し、制御プレーンデータの完全性保護及び完全性検証を実行し、データのタイマベースの破棄を制御し、セキュリティ動作(例えば、暗号化、解読、完全性保護、完全性検証など)を実行することができる。
SDAP547のインスタンスは、1つ以上のSDAP-SAP549を介して、1つ以上の上位層プロトコルエンティティからの要求を処理し、指示を提供することができる。SDAP-SAP549を介して通信されるこれらの要求及び指示は、1つ以上のQoSフローを含むことができる。SDAP547は、QoSフローをDRBにマッピングすることができ、その逆も可能であり、DLパケット及びULパケット内のQFIをマークすることもできる。単一のSDAPエンティティ547が、個々のPDUセッションに対して構成されてもよい。UL方向において、NG-RAN110は、反射的マッピング又は明示的マッピングの2つの異なる方法でDRBへのQoSフローのマッピングを制御することができる。反射的マッピングの場合、UE101のSDAP547は、各DRBのDLパケットのQFIを監視することができ、UL方向に流れるパケットに同じマッピングを適用することができる。DRBの場合、UE101のSDAP547は、そのDRBのDLパケットで観測されたQoSフローID及びPDUセッションに対応するQoSフローに属するULパケットをマッピングすることができる。反射的マッピングを有効にするために、NG-RAN210Bは、Uuインタフェース上のDLパケットにQoSフローIDをマークすることができる。明示的なマッピングは、RRC555が明示的なQoSフローを用いてSDAP547をDRBへのマッピング規則に構成することを含んでもよく、これは格納され、SDAP547によって後続されてもよい。実施形態では、SDAP547は、NR実装でのみ使用されてもよく、LTE実装では使用されなくてもよい。
RRC555は、1つ以上の管理サービスアクセスポイント(M-SAP)を介して、PHY510、MAC520、RLC530、PDCP540、及びSDAP547の1つ以上のインスタンスを含み得る、1つ以上のプロトコル層の態様を構成し得る。実施形態では、RRC555のインスタンスは、1つ以上のRRC-SAP556を介して、1つ以上のNASエンティティ557からの要求を処理し、指示を提供することができる。RRC555のメインサービス及び機能としては、システム情報(例えば、NASに関連するMIB又はSIBに含まれる)のブロードキャスト、アクセス層(access stratum、AS)に関するシステム情報のブロードキャスト、UE101とRAN110との間のRRC接続のページング、確立、維持、及び解放(例えば、RRC接続ページング、RRC接続確立、RRC接続変更、RRC接続解放)、ポイントツーポイント無線ベアラの確立、構成、維持、及び解放、鍵管理を含むセキュリティ機能、RAT間モビリティ、並びにUE測定報告のための測定構成を挙げることができる。MIB及びSIBは、それぞれ個々のデータフィールド又はデータ構造を含むことができる1つ以上のIEを含んでもよい。
NAS557は、UE101とAMF221Bとの間の制御プレーンの最上位層を形成し得る。NAS557は、LTEシステムにおけるUE101とP-GWとの間のIP接続を確立し、維持するために、UE101のモビリティ及びセッション管理手順をサポートし得る。
様々な実施形態によれば、配列500の1つ以上のプロトコルエンティティは、上述のデバイス間の制御プレーン又はユーザプレーン通信プロトコルスタックに使用される、UE101、RANノード111、NR実装のAMF221B又はLTE実装のMME221A、NR実装のUPF202又はLTE実装のS-GW222A及びP-GW223Aなどで実装されてもよい。そのような実施形態では、UE101、gNB111、AMF221Bなどのうちの1つ以上に実装され得る1つ以上のプロトコルエンティティは、そのような通信を実行するために、それぞれの下位層プロトコルエンティティのサービスを使用して別のデバイス内又は上に実装され得るそれぞれのピアプロトコルエンティティと通信することができる。いくつかの実施形態では、gNB111のgNB-CUは、1つ以上のgNB-DUの動作を制御するgNBのRRC555、SDAP547、及びPDCP540をホストすることができ、gNB111のgNB-DUはそれぞれ、gNB111のRLC530、MAC520、及びPHY510をホストすることができる。
第1の例では、制御プレーンプロトコルスタックは、最上位層から最下位層の順に、NAS557、RRC555、PDCP540、RLC530、MAC520、及びPHY510を備えることができる。この例では、上位層560は、IP層561、SCTP562、及びアプリケーション層シグナリングプロトコル(AP)563を含むNAS557の上に構築され得る。
NR実装では、AP563は、NG-RANノード111とAMF221Bとの間に定義されたNGインタフェース113用のNGアプリケーションプロトコル層(NGAP又はNG-AP)563であってもよいし、AP563は、2つ以上のRANノード111の間に定義されたXnインタフェース112用のXnアプリケーションプロトコル層(XnAP又はXn-AP)563であってもよい。
NG-AP563は、NGインタフェース113の機能をサポートしてもよく、エレメンタリープロシージャ(Elementary Procedures)(EP)を含んでもよい。NG-AP EPは、NG-RANノード111とAMF221Bとの間の対話の単位であり得る。NG-AP563サービスは、UE関連サービス(例えば、UE101、102に関連するサービス)及び非UE関連サービス(例えば、NG-RANノード111とAMF221Bとの間のNGインタフェースインスタンス全体に関連するサービス)の2つのグループを含み得る。これらのサービスは、これらに限定されないが、特定のページングエリアに含まれるNG-RANノード111にページング要求を送信するためのページング機能、AMF221BがAMF221B及びNG-RANノード111内のUEコンテキストを確立、変更、及び/又は解放することを可能にするためのUEコンテキスト管理機能、システム内HOがNG-RAN内のモビリティをサポートし、システム間HOがEPSシステムからの/EPSシステムへのモビリティをサポートするための、ECM接続モードにあるUE101のモビリティ機能、UE101とAMF221Bとの間でNASメッセージを転送又は再ルーティングするためのNASシグナリングトランスポート機能、AMF221BとUE101との関連付けを決定するNASノード選択機能、NGインタフェースをセットアップし、NGインタフェース上のエラーを監視するためのNGインタフェース管理機能、NGインタフェースを介して警告メッセージを転送し、又は警告メッセージの進行中のブロードキャストをキャンセルする手段を提供するための警告メッセージ送信機能、CN120を介して2つのRANノード111間でRAN構成情報(例えば、SON情報、性能測定(PM)データなど)を要求及び転送するConfiguration Transfer機能、及び/又は他の同様の機能を含み得る。
XnAP563は、Xnインタフェース112の機能をサポートすることができ、XnAP基本モビリティ手順及びXnAPグローバル手順を含むことができる。XnAP基本モビリティ手順は、ハンドオーバ準備及びキャンセル手順、SNステータス転送手順、UEコンテキスト取得及びUEコンテキスト解放手順、RANページング手順、デュアルコネクティビティ関連手順など、NG RAN111(又はE-UTRAN210A)内でUEモビリティを処理するために使用される手順を含むことができる。XnAPグローバル手順は、Xnインタフェースセットアップ手順及びリセット手順、NG-RAN更新手順、セル活性化手順など、特定のUE101に関連しない手順を含み得る。
LTE実施態様では、AP563は、E-UTRANノード111とMMEとの間に定義されたS1インタフェース113のためのS1アプリケーションプロトコルレイヤ(S1-AP)563であってもよいし、AP563は、2つ以上のE-UTRANノード111の間に定義されたX2インタフェース112のためのX2アプリケーションプロトコルレイヤ(X2AP又はX2-AP)563であってもよい。
S1アプリケーションプロトコルレイヤ(S1-AP)563は、S1インタフェースの機能をサポートすることができ、前述のNG-APと同様に、S1-APは、S1-AP EPを含むことができる。S1-AP EPは、E-UTRANノード111とLTE CN120内のMME221Aとの間の対話の単位であり得る。S1-AP563サービスは、2つのグループ、すなわちUE関連サービス及び非UE関連サービスを含んでもよい。これらのサービスは、E-UTRAN無線アクセスベアラ(E-UTRAN Radio Access Bearer、E-RAB)管理、UE能力インジケーション、モビリティ、NASシグナリング伝送、RAN情報管理(RAN Information Management、RIM)、及び構成転送を含むが、これらに限定されない機能を実行する。
X2AP563は、X2インタフェース112の機能をサポートすることができ、X2AP基本モビリティ手順及びX2APグローバル手順を含むことができる。X2AP基本モビリティ手順は、ハンドオーバ準備及びキャンセル手順、SNステータス転送手順、UEコンテキスト取得及びUEコンテキスト解放手順、RANページング手順、デュアルコネクティビティ関連手順など、E-UTRAN120内でUEモビリティを処理するために使用される手順を含み得る。X2APグローバル手順は、X2インタフェースセットアップ及びリセット手順、負荷指示手順、エラー指示手順、セルアクティブ化手順など、特定のUE101に関連しない手順を含み得る。
SCTP層(或いはSCTP/IP層と呼ばれる)562は、アプリケーション層メッセージ(例えば、NR実装におけるNGAP若しくはXnAPメッセージ、又はLTE実装におけるS1-AP若しくはX2APメッセージ)の保証された配信を提供することができる。SCTP562は、IP561によってサポートされるIPプロトコルに部分的に基づいて、RANノード111とAMF221B/MME221Aとの間のシグナリングメッセージの信頼できる配信を保証することができる。インターネットプロトコル層(IP)561は、パケットアドレス指定及びルーティング機能を実行するために使用され得る。いくつかの実装形態では、IP層561は、PDUを配信及び伝達するためにポイントツーポイント送信を使用することができる。これに関して、RANノード111は、情報を交換するためにMME/AMFとのL2及びL1層通信リンク(例えば、有線又は無線)を備えてもよい。
第2の例では、ユーザプレーンプロトコルスタックは、最上位レイヤから最下位レイヤの順に、SDAP547、PDCP540、RLC530、MAC520、及びPHY510を備えることができる。ユーザプレーンプロトコルスタックは、NR実装におけるUE101、RANノード111、及びUPF202、又はLTE実装におけるS-GW222A及びP-GW223Aの間の通信に使用され得る。この例では、上位層551は、SDAP547の上に構築されてもよく、ユーザデータグラムプロトコル(UDP)及びIPセキュリティ層(UDP/IP)552、ユーザプレーン層(GTP-U)553のための汎用パケット無線サービス(GPRS)トンネリングプロトコル、及びユーザプレーンPDU層(UP PDU)563を含んでもよい。
トランスポートネットワーク層554(「トランスポート層」とも呼ばれる)は、IPトランスポート上に構築されてもよく、UDP/IP層552(UDP層及びIP層を含む)の上にGTP-U553を使用して、ユーザプレーンPDU(UP-PDU)を伝達してもよい。IP層(「インターネット層」とも呼ばれる)は、パケットアドレス指定及びルーティング機能を実行するために使用され得る。IP層は、例えば、IPv4、IPv6、又はPPPフォーマットのいずれかのユーザデータパケットにIPアドレスを割り当てることができる。
GTP-U553は、GPRSコアネットワーク内及び無線アクセスネットワークとコアネットワークとの間でユーザデータを伝達するために使用され得る。伝送されるユーザデータは、例えば、IPv4、IPv6、又はPPPフォーマットのうちのいずれかのパケットであってもよい。UDP/IP552は、データ完全性のチェックサム、ソース及び宛先で異なる機能に対処するためのポート番号、並びに選択されたデータフロー上の暗号化及び認証を提供することができる。RANノード111及びS-GW222Aは、L1層(例えば、PHY510)、L2層(例えば、MAC520、RLC530、PDCP540、及び/又はSDAP547)、UDP/IP層552、及びGTP-U553を含むプロトコルスタックを介してユーザプレーンデータを交換するためにS1-Uインタフェースを利用することができる。S-GW222A及びP-GW223Aは、S5/S8aインタフェースを利用して、L1層、L2層、UDP/IP層552、及びGTP-U553を含むプロトコルスタックを介してユーザプレーンデータを交換することができる。前述したように、NASプロトコルは、UE101とP-GW223Aとの間のIP接続を確立及び維持するために、UE101のモビリティ及びセッション管理手順をサポートし得る。
更に、図9には示されていないが、AP563及び/又はトランスポートネットワーク層554の上にアプリケーション層が存在してもよい。アプリケーション層は、UE101、RANノード111、又は他のネットワーク要素のユーザが、例えば、それぞれアプリケーション回路305又はアプリケーション回路305によって実行されているソフトウェアアプリケーションと対話する層であってもよい。アプリケーション層はまた、ソフトウェアアプリケーションがベースバンド回路410などのUE101又はRANノード111の通信システムと対話するための1つ以上のインタフェースを提供することができる。いくつかの実装形態では、IP層及び/又はアプリケーション層は、開放型システム間相互接続(OSI)モデル(例えば、OSIレイヤ7-アプリケーションレイヤ、OSIレイヤ6-プレゼンテーションレイヤ、及びOSIレイヤ5-セッションレイヤ)の層5~7又はその一部と同じ又は類似の機能を提供することができる。
図10は、様々な実施形態によるコアネットワークの構成要素を示す。CN220Aの構成要素は、機械可読媒体又はコンピュータ可読媒体(例えば、非一時的機械可読記憶媒体)から命令を読み取って実行するための構成要素を含む、単一の物理ノード又は別個の物理ノードに実装されてもよい。実施形態では、CN220Bの構成要素は、CN220Aの構成要素に関して本明細書で説明したのと同じ又は同様の方法で実装されてもよい。いくつかの実施形態では、NFVを利用して、1つ以上のコンピュータ可読記憶媒体(以下で更に詳細に説明する)に格納された実行可能命令を介して、上述のネットワークノード機能のいずれか又は全てを仮想化する。CN220Aの論理インスタンス化は、ネットワークスライス601と呼ばれることがあり、CN220Aの個々の論理インスタンス化は、特定のネットワーク能力及びネットワーク特性を提供することができる。CN220Aの一部分の論理インスタンス化は、ネットワークサブスライス602と呼ぶことができる(例えば、ネットワークサブスライス602は、P-GW223A及びPCRF226Aを含むように示されている)。
本明細書で使用される場合、用語「インスタンス」、「インスタンス化」などは、インスタンスの作成を指すことがあり、「インスタンス」は、例えば、プログラムコードの実行中に発生することができるオブジェクトの具体的な発生を指すことがある。ネットワークインスタンスは、異なるIPドメイン又は重複するIPアドレスの場合にトラフィック検出及びルーティングに使用され得るドメインを識別する情報を指すことができる。ネットワークスライスインスタンスは、ネットワーク機能(NF)インスタンス及びネットワークスライスを展開するために必要なリソース(例えば、計算、ストレージ、及びネットワーキングリソース)のセットを指すことができる。
5Gシステム(例えば、図6Bを参照されたい)に関して、ネットワークスライスは常にRAN部分とCN部分とを含む。ネットワークスライシングのサポートは、異なるスライスのトラフィックが異なるPDUセッションによって処理されるという原理に依存する。ネットワークは、スケジューリングによって、また異なるL1/L2構成を提供することによって、異なるネットワークスライスを実現することができる。UE201は、NASによって提供された場合、適切なRRCメッセージでネットワークスライス選択のための支援情報を提供する。ネットワークは多数のスライスをサポートすることができるが、UEは8スライスを同時にサポートする必要はない。
ネットワークスライスは、CN220B制御プレーン及びユーザプレーンNF、サービングPLMN内のNG-RAN210B、及びサービングPLMN内のN3IWF機能を含み得る。個々のネットワークスライスは、異なるS-NSSAIを有してもよく、及び/又は異なるSSTを有してもよい。NSSAIは1つ以上のS-NSSAIを含み、各ネットワークスライスはS-NSSAIによって一意に識別される。ネットワークスライスは、サポートされる機能及びネットワーク機能の最適化について異なり得、及び/又は複数のネットワークスライスインスタンスは、UE201の異なるグループ(例えば、企業ユーザ)について同じサービス/機能を配信し得る。例えば、個々のネットワークスライスは、異なるコミットされたサービスを配信してもよく、及び/又は特定の顧客又は企業専用であってもよい。この例では、各ネットワークスライスは、同じSSTを有するが異なるスライス微分器を有する異なるS-NSSAIを有し得る。更に、単一のUEは、5G ANを介して同時に1つ以上のネットワークスライスインスタンスでサービスされ、8つの異なるS-NSSAIに関連付けられ得る。更に、個々のUE201にサービスするAMF221Bインスタンスは、そのUEにサービスするネットワークスライスインスタンスのそれぞれに属し得る。
NG-RAN210Bにおけるネットワークスライシングは、RANスライス認識を含む。RANスライス認識は、事前構成された異なるネットワークスライスに対するトラフィックの差別化された処理を含む。NG-RAN210B内のスライス認識は、PDUセッションリソース情報を含む全てのシグナリング内のPDUセッションに対応するS-NSSAIを示すことによって、PDUセッションレベルで導入される。NG-RAN機能(例えば、各スライスを含むネットワーク機能のセット)に関して、NG-RAN210Bがスライスイネーブルをどのようにサポートするかは実装に依存する。NG-RAN210Bは、PLMN内の事前構成されたネットワークスライスのうちの1つ以上を一義的に識別する、UE201又は5GC220Bによって提供される支援情報を使用して、ネットワークスライスのRAN部分を選択する。NG-RAN210Bはまた、SLAに従ってスライス間のリソース管理及びポリシー施行をサポートする。単一のNG-RANノードは、複数のスライスをサポートすることができ、NG-RAN210Bはまた、サポートされる各スライスに所定の位置でSLAの適切なRRMポリシーを適用することができる。NG-RAN210Bはまた、スライス内のQoS差別化をサポートし得る。
NG-RAN210Bはまた、利用可能であれば、初期アタッチ中にAMF221Bを選択するためにUE支援情報を使用することができる。NG-RAN210Bは、初期NASをAMF221Bにルーティングするために支援情報を使用する。NG-RAN210Bが支援情報を使用してAMF221Bを選択できない場合、又はUE201がそのような情報を提供しない場合、NG-RAN210Bは、AMF221Bのプールの中にあり得るデフォルトAMF221BにNASシグナリングを送信する。後続のアクセスのために、UE201は、5GC220BによってUE201に割り当てられたtemp IDを提供して、temp IDが有効である限り、NG-RAN210Bが適切なAMF221BにNASメッセージをルーティングすることを可能にする。NG-RAN210Bは、temp IDに関連付けられたAMF221Bを認識しており、それに到達することができる。そうでなければ、初期アタッチの方法が適用される。
NG-RAN210Bは、スライス間のリソース分離をサポートする。NG-RAN210Bリソース分離は、あるスライスが別のスライスのサービスレベル合意を破る場合に共有リソースの不足を回避すべきRRMポリシー及び保護メカニズムによって達成され得る。いくつかの実装形態では、NG-RAN210Bリソースを特定のスライスに完全に専用にすることが可能である。NG-RAN210Bがどのようにリソース分離をサポートするかは実装に依存する。
一部のスライスは、ネットワークの一部でのみ利用可能であり得る。その近隣のセルでサポートされるスライスのNG-RAN210Bにおける認識は、接続モードにおける周波数間モビリティに有益であり得る。スライス可用性は、UEの登録エリア内で変化しない場合がある。NG-RAN210B及び5GC220Bは、所与のエリアで利用可能であってもなくてもよいスライスに対するサービス要求を処理する役割を果たす。スライスへのアクセスの許可又は拒否は、スライスのサポート、リソースの可用性、NG-RAN210Bによる要求されたサービスのサポートなどの要因に依存し得る。
UE201は、複数のネットワークスライスに同時に関連付けられてもよい。UE201が複数のスライスに同時に関連付けられる場合、ただ1つのシグナリング接続が維持され、周波数内セル再選択のために、UE201は、最良のセルにキャンプオンを試みる。周波数間セル再選択のために、UE201がキャンプオンしている周波数を制御するために、専用の優先度を使用することができる。5GC220Bは、UE201がネットワークスライスにアクセスする権利を有することを確認するためのものである。初期コンテキストセットアップ要求メッセージを受信する前に、NG-RAN210Bは、UE201がアクセスを要求している特定のスライスの認識に基づいて、いくつかの暫定/ローカルポリシーを適用することを許可され得る。初期コンテキストセットアップ中に、NG-RAN210Bは、リソースが要求されているスライスについて通知される。
NFVアーキテクチャ及びインフラストラクチャは、1つ以上のNFを仮想化するために使用されてもよく、代替的に専有ハードウェアによって実行されて、業界標準のサーバハードウェア、記憶ハードウェア、又はスイッチの組み合わせを含む物理的リソース上に仮想化されてもよい。言い換えれば、NFVシステムを使用して、1つ以上のEPC構成要素/機能の仮想的又は再構成可能な実装を実行することができる。
図11は、いくつかの例示的な実施形態による、NFVをサポートするシステム700の構成要素を示すブロック図である。システム700は、VIM702、NFVI704、VNFM706、VNF708、EM710、NFVO712、及びNM714を含むものとして示されている。
VIM702は、NFVI704のリソースを管理する。NFVI704は、システム700を実行するために使用される物理リソース又は仮想リソース及びアプリケーション(ハイパーバイザを含む)を含むことができる。VIM702は、NFVI704による仮想リソースのライフサイクル(例えば、1つ以上の物理リソースに関連付けられたVMの生成、維持、及び破棄)を管理し、VMインスタンスを追跡し、VMインスタンス及び関連する物理リソースの性能、障害、及びセキュリティを追跡し、VMインスタンス及び関連する物理リソースを他の管理システムに公開することができる。
VNFM706は、VNF708を管理することができる。VNF708を使用して、EPC構成要素/機能を実行することができる。VNFM706は、VNF708のライフサイクルを管理し、VNF708の仮想態様の性能、障害、及びセキュリティを追跡してもよい。EM710は、VNF708の機能的態様の性能、障害、及びセキュリティを追跡することができる。VNFM706及びEM710からの追跡データは、例えば、VIM702又はNFVI704によって使用されるPMデータを含んでもよい。VNFM706及びEM710の両方は、システム700のVNFの量をスケールアップ/ダウンすることができる。
NFVO712は、要求されたサービスを提供するために(例えば、EPC機能、構成要素、又はスライスを実行するために)、NFVI704のリソースを調整、認可、解放、及び予約することができる。NM714は、ネットワークの管理の責任を有するエンドユーザ機能のパッケージを提供することができ、これは、VNF、非仮想化ネットワーク機能、又はその両方を有するネットワーク要素を含んでもよい(VNFの管理は、EM710を介して行われてもよい)。
図12は、いくつかの例示的実施形態に係る、機械可読媒体又はコンピュータ可読媒体(例えば、非一時的機械可読記憶媒体)から命令を読み取り、本明細書で論じる方法論のうちのいずれか1つ以上を実行することができる構成要素を示すブロック図である。具体的には、図12は、1つ以上のプロセッサ(又はプロセッサコア)810、1つ以上のメモリ/記憶装置820、及び1つ以上の通信リソース830を含むハードウェアリソース800の図式表現を示し、これらの各々は、バス840を介して通信可能に結合され得る。ノード仮想化(例えば、NFV)が利用される実施形態では、ハイパーバイザ802が、ハードウェアリソース800を利用するための1つ以上のネットワークスライス/サブスライスの実行環境を提供するために実行されてもよい。
プロセッサ810は、例えば、プロセッサ812及びプロセッサ814を含み得る。プロセッサ810は、例えば、中央処理装置(CPU)、縮小命令セットコンピューティング(RISC)プロセッサ、複合命令セットコンピューティング(CISC)プロセッサ、グラフィック処理ユニット(GPU)、DSP、例えばベースバンドプロセッサ、ASIC、FPGA、高周波集積回路(RFIC)、(本明細書で論じたものを含む)別のプロセッサ、又はこれらの任意の好適な組み合わせであり得る。
メモリ/記憶装置820は、メインメモリ、ディスクストレージ、又はいずれか適切なこれらの組み合わせを含み得る。メモリ/記憶装置820としては、ダイナミックランダムアクセスメモリ(DRAM)、スタティックランダムアクセスメモリ(SRAM)、消去可能プログラマブル読み出し専用メモリ(EPROM)、電気的消去可能プログラマブル読み出し専用メモリ(EEPROM)、フラッシュメモリ、ソリッドステートストレージなどの任意の種類の揮発性又は不揮発性メモリを含んでもよいが、これらに限定されない。
通信リソース830は、ネットワーク808を介して1つ以上の周辺機器804又は1つ以上のデータベース806と通信するための、相互接続又はネットワークインタフェースコンポーネント又は他のデバイスを含み得る。例えば、通信リソース830は、(例えば、USBを介した結合のための)有線通信構成要素、セルラ通信構成要素、NFC構成要素、Bluetooth(登録商標)又は、Bluetooth(登録商標)Low Energy構成要素、WiFi(登録商標)構成要素、及び他の通信構成要素を含み得る。
命令850は、プロセッサ810の少なくともいずれかに、本明細書で論じる方法論のうちの任意の1つ以上を実行させるための、ソフトウェア、プログラム、アプリケーション、アプレット、アプリ、又は他の実行可能コードを含んでもよい。命令850は、完全に又は部分的に、プロセッサ810(例えば、プロセッサのキャッシュメモリ内に)、メモリ/記憶装置820、又はそれらの任意の好適な組み合わせのうちの少なくとも1つの中に存在してもよい。更に、命令850の任意の部分は、周辺機器804又はデータベース806の任意の組み合わせからハードウェアリソース800に転送されてもよい。従って、プロセッサ810のメモリ、メモリ/記憶装置820、周辺機器804、及びデータベース806は、コンピュータ可読及び機械可読媒体の例である。
手順例
いくつかの実施形態では、図1~図12、又は本明細書の何らかの他の図の電子デバイス、ネットワーク、システム、チップ若しくは構成要素、又はその一部若しくは実装は、本明細書に記載の1つ以上のプロセス、技術、若しくは方法、又はその一部を実行するように構成され得る。そのようなプロセスの1つを図13に示す。例えば、プロセスは、
信号を受信する又は受信させることと、信号を処理する又は処理させることと、処理された信号に基づいて別の信号を送信する又は送信させること(ステップ1315)であって、方法は、単一のキャリア波形を有する物理ダウンリンク共有チャネル(PDSCH)に関連付けられた位相追跡基準信号(PT-RS)を生成すること(ステップ1305)を含む、送信する又は送信させることと、単一のキャリア波形を有する物理アップリンク共有チャネル(PUSCH)に関連付けられたPT-RSを生成すること(ステップ1310)と、を含み、単一のキャリア波形は、離散フーリエ変換拡散OFDM(DFT-s-OFDM)及び/又は周波数領域等化器(SC-FDE)を有する単一キャリアを含んでもよい。
プロセスは、DL送信のための離散フーリエ変換拡散OFDM(DFT-s-OFDM)波形用のグループベースのPT-RSパターンを適用することを更に含んでもよく、各グループは、DFT動作に先立って時間領域においてK個の連続するサンプルを占有する。
プロセスは、PT-RSの存在が、対応するPDSCH及び/又はPUSCHをスケジューリングする無線ネットワーク一時識別子(RNTI)に依存し得る。
プロセスは、DFT-s-OFDM波形の時間及び周波数におけるデフォルトのPT-RSパターンを定義することを含む。C-RNTI、CS-RNTI及び/又はMCS-RNTIを有するPDCCHによってスケジューリングされるPDSCH又はPUSCH、及びPDCCHフォーマットが、例えば、DCIフォーマット0_0及び1_0を含む、フォールバックDCIフォーマットである場合、デフォルトのPT-RSパターンを適用するか、又はPT-RSが存在しないものとする。
プロセスは、複数の送受信ポイント(マルチ-TRP)又は複数のパネルベースの動作中に、異なるパネル又は異なるTRPからのPT-RSの送信のために、直交カバーコード(OCC)を適用することを含んでもよい。
プロセスは、以下のパラメータ、すなわち、サブブロック/ブロック/スロット/フレームインデックス、仮想セルID又は物理セルID又はRNTI、又は、PT-RSが関連付けられているDMRSポートの復調基準信号(DMRS)シーケンス生成に使用される上位層構成ID、のうちの少なくとも1つに従ってPT-RSシーケンスを生成することを含んでもよい。
プロセスは、ガード間隔(GI)シーケンスに基づいてPT-RSを生成することを含んでもよい。
プロセスは、PT-RSの送信のための電力ブーストを適用することを含んでもよい。
プロセスは、データ送信のための情報ビットの一部に基づいてPT-RSを生成することを含んでもよい。
プロセスは、PT-RSの所定の変調次数、例えば、PT-RSのBPSK又はQPSK送信を使用することを含んでもよい。
プロセスは、PT-RSの変調次数を、上位層によって構成すること若しくはDCIによって動的に指示すること又はそれらの組み合わせを含み得る。
プロセスは、時間領域におけるPT-RSパターンを、スケジューリングされたデータ送信及び/又は送信持続時間のMCSに従って決定すること、及び/又は、無線リソース制御(RRC)シグナリングを介して上位層によって構成すること、又はダウンリンク制御情報(DCI)で動的に指示すること、又はそれらの組み合わせを含み得る。
プロセスは、データチャネルの送信のための帯域幅部分(BWP)と、BWPの帯域幅に従って時間領域におけるPT-RSパターンとを使用することを含み得る。
プロセスは、サンプリングレート適応を適用することを含んでもよい。すなわち、ブロック内のサンプルの数が低減され、対応するデータ送信に関連付けられたPT-RSグループパターンが、それに応じて調整され得る。
プロセスは、1つのデータ又はサブブロック内に、PT-RSグループを一様に分布させることを含んでもよい。
プロセスは、セルID及び/又はRNTI及び/又はPT-RSが関連付けられたDMRSポートインデックス及び/又はPT-RSが関連付けられたDMRSポートのDMRSシーケンス生成のための上位層構成IDの関数としてPT-RSグループの開始位置を決定することを含んでもよい。
1つ以上の実施形態については、前述の図のうちの1つ以上に記載されている構成要素のうちの少なくとも1つは、以下の例示的なセクションに記載されているような1つ以上の動作、技術、プロセス、及び/又は方法を実行するように構成され得る。例えば、前述の図のうちの1つ以上に関連して上述したベースバンド回路は、以下に記載される例のうちの1つ以上に従って動作するように構成されてもよい。別の例として、前述の図のうちの1つ以上に関連して上述したようなUE、基地局、ネットワークエレメントなどに関連付けられた回路は、例示的なセクションにおいて以下に記載される例のうちの1つ以上に従って動作するように構成され得る。
実施例
本実施例は、第5世代(5G)又はニューレディオ(NR)システムのための無線通信の方法又は方法を実施するためのシステムを含んでもよく、方法は、gNodeB(gNB)によって、単一のキャリア波形を有する物理ダウンリンク共有チャネル(PDSCH)に関連付けられた位相追跡基準信号(PT-RS)を生成することと、UEによって、単一のキャリア波形を有する物理アップリンク共有チャネル(PUSCH)に関連付けられたPT-RSを生成することと、を含み、単一のキャリア波形は、離散フーリエ変換拡散OFDM(DFT-s-OFDM)、及び周波数領域等化器(SC-FDE)を有する単一キャリアを含んでもよい。
実施例1は、実施例1のシステム及び/若しくは方法、又は本明細書における何らかの他の実施例を含むことができ、グループベースのPT-RSパターンが、DL送信のために離散フーリエ変換拡散OFDM(DFT-s-OFDM)波形に対して適用され、各グループはDFT動作の前に時間領域においてK個の連続するサンプルを占有する。
実施例2は、実施例1~2のシステム及び/若しくは方法、又は本明細書における何らかの他の実施例を含むことができ、PT-RSの存在が、対応するPDSCH及び/又はPUSCHをスケジューリングする無線ネットワーク一時識別子(RNTI)に依存し得る。
実施例3は、実施例1~3のシステム及び/若しくは方法、又は本明細書における何らかの他の実施例を含むことができ、デフォルトのPT-RSパターンが、DFT-s-OFDM波形に対して時間及び周波数で定義されてもよく、C-RNTI、CS-RNTI及び/又はMCS-RNTIを有するPDCCHによってスケジューリングされるPDSCH又はPUSCH、及びPDCCHフォーマットが、例えば、DCIフォーマット0_0及び1_0を含む、フォールバックDCIフォーマットである場合、デフォルトのPT-RSパターンが適用されてもよく、又は、PT-RSは存在しないものとする。
実施例4は、実施例1~4のシステム及び/若しくは方法、又は本明細書における何らかの他の実施例を含むことができ、複数の送受信ポイント(マルチTRP)又は複数のパネルベースの動作については、直交カバーコード(OCC)が、異なるパネル又は異なるTRPからのPT-RSの送信に適用されてもよい。
実施例5は、実施例1~5のシステム及び/若しくは方法、又は本明細書における何らかの他の実施例を含むことができ、PT-RSシーケンスは、以下のパラメータ、すなわち、サブブロック/ブロック/スロット/フレームインデックス、仮想セルID又は物理セルID又はRNTI、又は、PT-RSが関連付けられているDMRSポートの復調基準信号(DMRS)シーケンス生成に使用される上位層構成ID、のうちの少なくとも1つに従って生成されてもよい。
実施例6は、実施例1~6のシステム及び/若しくは方法、又は本明細書における何らかの他の実施例を含むことができ、PT-RSは、ガード間隔(GI)シーケンスに基づいて生成され得る。
実施例7は、実施例1~7のシステム及び/若しくは方法、又は本明細書における何らかの他の実施例を含むことができ、電力ブーストが、PT-RSの送信に適用されてもよい。
実施例8は、実施例1~8のシステム及び/若しくは方法、又は本明細書における何らかの他の実施例を含むことができ、PT-RSは、データ送信のための情報ビットの一部に基づいて生成されてもよい。
実施例9は、実施例1~9のシステム及び/若しくは方法、又は本明細書における何らかの他の実施例を含むことができ、PT-RSの変調次数は、仕様で予め定められてもよく、例えば、BPSK又はQPSKが、PT-RSの送信に用いられてもよい。
実施例10は、実施例1~10のシステム及び/若しくは方法、又は本明細書における何らかの他の実施例を含むことができ、PT-RSの変調次数は、上位層によって構成されてもよく、又はDCIによって動的に指示されてもよく、又はそれらの組み合わせでもよい。
実施例11は、実施例1~11のシステム及び/若しくは方法、又は本明細書における何らかの他の実施例を含むことができ、時間領域におけるPT-RSパターンは、スケジューリングされたデータ送信及び/又は送信持続時間のMCSに従って決定されてもよく、かつ/又は無線リソース制御(RRC)シグナリングを介して上位層によって設定されるか、又はダウンリンク制御情報(DCI)で動的に指示されるか、又はそれらの組み合わせでもよい。
実施例12は、実施例1~12のシステム及び/若しくは方法、又は本明細書における何らかの他の実施例を含むことができ、帯域幅部分(BWP)がデータチャネルの送信に使用される場合、時間領域におけるPT-RSパターンがBWPの帯域幅に従って決定され得る。
実施例13は、実施例1~13のシステム及び/若しくは方法、又は本明細書における何らかの他の実施例を含むことができ、サンプリングレート適応が適用されるとき、すなわち、ブロック内のサンプルの数が低減されるとき、対応するデータ送信に関連付けられたPT-RSグループパターンが、それに応じて調整され得る。
実施例14は、実施例1~14のシステム及び/若しくは方法、又は本明細書における何らかの他の実施例を含むことができ、PT-RSグループは、1つのデータ又はサブブロック内に一様に分布する。
実施例15は、実施例1~15のシステム及び/若しくは方法、又は本明細書における何らかの他の実施例を含むことができ、PT-RSグループの開始位置は、PT-RSが関連付けられたセルID及び/又はRNTI及び/又はDMRSポートインデックス、及び/又は、PT-RSが関連付けられたDMRSポートに対するDMRSシーケンス生成のための上位層構成ID、の関数として決定されてもよい。
実施例16は、信号を受信する手段と、信号を処理する手段と、単一のキャリア波形を有する物理ダウンリンク共有チャネル(PDSCH)に関連付けられた位相追跡基準信号(PT-RS)を生成する手段を含む、信号に基づいて応答を送信する手段と、単一のキャリア波形を有する物理アップリンク共有チャネル(PUSCH)に関連付けられたPT-RSを生成する手段と、を備えた装置を含み、単一のキャリア波形は、離散フーリエ変換拡散OFDM(DFT-s-OFDM)、及び周波数領域等化器(SC-FDE)を有する単一キャリアを含んでもよい。
実施例17は、実施例17の装置、又は本明細書における何らかの他の実施例を含むことができ、DL送信のために離散フーリエ変換拡散OFDM(DFT-s-OFDM)波形に対してグループベースのPT-RSパターンを適用する手段を更に含み、各グループはDFT動作の前に時間領域においてK個の連続するサンプルを占有する。
実施例18は、実施例17~実施例18の装置、又は本明細書における何らかの他の実施例を含むことができ、PT-RSの存在が、対応するPDSCH及び/又はPUSCHをスケジューリングする無線ネットワーク一時識別子(RNTI)に依存する手段を更に備える。
実施例19は、実施例17~実施例19の装置、又は本明細書における何らかの他の実施例を含むことができ、デフォルトのPT-RSパターンが、DFT-s-OFDM波形に対して時間及び周波数で定義される手段を更に含み、C-RNTI、CS-RNTI及び/又はMCS-RNTIを有するPDCCHによってスケジューリングされるPDSCH又はPUSCH、及びPDCCHフォーマットが、例えば、DCIフォーマット0_0及び1_0を含む、フォールバックDCIフォーマットである場合、デフォルトのPT-RSパターンが適用されてもよく、又は、PT-RSは存在しないものとする。
実施例20は、実施例17~実施例20の装置、又は本明細書における何らかの他の実施例を含むことができ、複数の送受信ポイント(マルチTRP)又は複数のパネルベースの動作のための手段を更に備え、直交カバーコード(OCC)が、異なるパネル又は異なるTRPからのPT-RSの送信に適用されてもよい。
実施例21は、実施例17~実施例21の装置、又は本明細書における何らかの他の実施例を含むことができ、以下のパラメータ、すなわち、サブブロック/ブロック/スロット/フレームインデックス、仮想セルID又は物理セルID又はRNTI、又は、PT-RSが関連付けられているDMRSポートの復調基準信号(DMRS)シーケンス生成に使用される上位層構成ID、のうちの少なくとも1つに従ってPT-RSシーケンスを生成する手段を更に備えてもよい。
実施例22は、実施例17~実施例22の装置、又は本明細書における何らかの他の実施例を含むことができ、ガード間隔(GI)シーケンスに基づいてPT-RSが生成される手段を更に含む。
実施例23は、実施例17~実施例23の装置、又は本明細書における何らかの他の実施例を含むことができ、PT-RSの送信のための電力ブーストを適用する手段を更に備えてもよい。
実施例24は、実施例17~実施例24の装置、又は本明細書における何らかの他の実施例を含むことができ、データ送信のための情報ビットの一部に基づいてPT-RSを生成する手段を更に備える。
実施例25は、実施例17~実施例25の装置、又は本明細書における何らかの他の実施例を含むことができ、PT-RSの送信のために、PT-RSの所定の変調次数、例えば、BPSK又はQPSK、を使用する手段を更に備える。
実施例26は、実施例17~実施例26の装置、又は本明細書における何らかの他の実施例を含むことができ、上位層によってPT-RSの変調次数を構成するか、又はDCIによって動的に指示するか、又はそれらの組み合わせの手段を更に含む。
実施例27は、実施例17~実施例27の装置、又は本明細書における何らかの他の実施例を含むことができ、時間領域におけるPT-RSパターンを、スケジューリングされたデータ送信及び/又は送信持続時間のMCSに従って決定するか、かつ/又は無線リソース制御(RRC)シグナリングを介して上位層によって設定するか、又はダウンリンク制御情報(DCI)で動的に指示するか、又はそれらの組み合わせの手段を更に備える。
実施例28は、実施例17~実施例28の装置、又は本明細書における何らかの他の実施例を含むことができ、データチャネルの送信のための帯域幅部分(BWP)を使用する手段と、BWPの帯域幅に従って時間領域におけるPT-RSパターンを使用する手段と、を含むことができる。
実施例29は、実施例17~実施例29の装置、又は本明細書における何らかの他の実施例を含むことができ、サンプリングレート適応を適用する手段を更に含む、すなわち、ブロック内のサンプルの数が低減され、対応するデータ送信に関連付けられたPT-RSグループパターンが、それに応じて調整され得る。
実施例30は、実施例17~実施例30の装置、又は本明細書における何らかの他の実施例を含むことができ、PT-RSグループは、1つのデータ又はサブブロック内に一様に分布する。
実施例31は、実施例17~実施例31の装置、又は本明細書における何らかの他の実施例を含むことができ、PT-RSが関連付けられたセルID及び/又はRNTI及び/又はDMRSポートインデックス、及び/又は、PT-RSが関連付けられたDMRSポートに対するDMRSシーケンス生成のための上位層構成ID、の関数としてPT-RSグループの開始位置を決定する手段を更に含む。
実施例32は、実施例17~実施例32の装置、又は本明細書における何らかの他の実施例を含むことができ、装置は、ユーザ機器(UE)内又はユーザ機器(UE)によって実装される。
実施例33は、信号を受信し、信号を処理し、処理された信号に基づいて別の信号を送信する装置を含み、装置は、単一のキャリア波形を有する物理ダウンリンク共有チャネル(PDSCH)に関連付けられた位相追跡基準信号(PT-RS)を生成してもよく、装置は、単一のキャリア波形を有する物理アップリンク共有チャネル(PUSCH)に関連付けられたPT-RSを生成してもよく、単一のキャリア波形は、離散フーリエ変換拡散OFDM(DFT-s-OFDM)、及び周波数領域等化器(SC-FDE)を有する単一キャリアを含んでもよい。
実施例34は、実施例34の装置、又は本明細書における何らかの他の実施例を含むことができ、装置は、DL送信のために離散フーリエ変換拡散OFDM(DFT-s-OFDM)波形に対してグループベースのPT-RSパターンを更に適用することができ、各グループはDFT動作の前に時間領域においてK個の連続するサンプルを占有する。
実施例35は、実施例34~実施例35の装置、又は本明細書における何らかの他の実施例を含むことができ、PT-RSの存在が、対応するPDSCH及び/又はPUSCHをスケジューリングする無線ネットワーク一時識別子(RNTI)に依存し得る。
実施例36は、実施例34~実施例36の装置、又は本明細書における何らかの他の実施例を含むことができ、デフォルトのPT-RSパターンが、DFT-s-OFDM波形に対して時間及び周波数で定義されてもよく、C-RNTI、CS-RNTI及び/又はMCS-RNTIを有するPDCCHによってスケジューリングされるPDSCH又はPUSCH、及びPDCCHフォーマットが、例えば、DCIフォーマット0_0及び1_0を含む、フォールバックDCIフォーマットである場合、デフォルトのPT-RSパターンが適用されてもよく、又は、PT-RSは存在しないものとする。
実施例37は、実施例34~実施例37の装置、又は本明細書における何らかの他の実施例を含むことができ、装置は、複数の送受信ポイント(マルチTRP)又は複数のパネルベースの動作を提供することができ、直交カバーコード(OCC)が、異なるパネル又は異なるTRPからのPT-RSの送信に適用されてもよい。
実施例38は、実施例34~実施例38又は本明細書のいくつかの他の実施例の装置を含むことができ、装置は、以下のパラメータ、すなわち、サブブロック/ブロック/スロット/フレームインデックス、仮想セルID又は物理セルID又はRNTI、又は、PT-RSが関連付けられているDMRSポートの復調基準信号(DMRS)シーケンス生成に使用される上位層構成ID、のうちの少なくとも1つに従ってPT-RSシーケンスを生成してもよい。
実施例39は、実施例34~実施例39の装置、又は本明細書における何らかの他の実施例を含むことができ、装置は、ガード間隔(GI)シーケンスに基づいてPT-RSを生成してもよい。
実施例40は、実施例34~実施例40の装置、又は本明細書における何らかの他の実施例を含むことができ、装置は、PT-RSの送信のための電力ブーストを適用することができる。
実施例41は、実施例34~実施例41の装置、又は本明細書における何らかの他の実施例を含むことができ、装置は、データ送信のための情報ビットの一部に基づいてPT-RSを生成してもよい。
実施例42は、実施例34~実施例42の装置、又は本明細書における何らかの他の実施例を含むことができ、装置は、PT-RSの送信のために、PT-RSの所定の変調次数、例えば、BPSK又はQPSK、を使用してもよい。
実施例43は、実施例34~実施例43の装置、又は本明細書における何らかの他の実施例を含むことができ、装置は、上位層によってPT-RSの変調次数を構成するか、又はDCIによって動的に指示するか、又はそれらの組み合わせでもよい。
実施例44は、実施例34~実施例44の装置、又は本明細書における何らかの他の実施例を含むことができ、装置は、時間領域におけるPT-RSパターンを、スケジューリングされたデータ送信及び/又は送信持続時間のMCSに従って決定するか、かつ/又は無線リソース制御(RRC)シグナリングを介して上位層によって設定するか、又はダウンリンク制御情報(DCI)で動的に指示するか、又はそれらの組み合わせでもよい。
実施例45は、実施例34~実施例45の装置、又は本明細書における何らかの他の実施例を含むことができ、装置は、データチャネルの送信のための帯域幅部分(BWP)と、BWPの帯域幅に従って時間領域におけるPT-RSパターンとを使用することができる。
実施例46は、実施例34~実施例46の装置、又は本明細書における何らかの他の実施例を含むことができ、装置は、サンプリングレート適応を適用することができ、すなわち、ブロック内のサンプルの数が低減され、対応するデータ送信に関連付けられたPT-RSグループパターンが、それに応じて調整され得る。
実施例47は、実施例34~実施例47の装置、又は本明細書における何らかの他の実施例を含むことができ、装置は、1つのデータ又はサブブロック内に、PT-RSグループを均一に分布させることができる。
実施例48は、実施例34~実施例48の装置、又は本明細書における何らかの他の実施例を含むことができ、装置は、PT-RSが関連付けられたセルID及び/又はRNTI及び/又はDMRSポートインデックス、及び/又は、PT-RSが関連付けられたDMRSポートに対するDMRSシーケンス生成のための上位層構成ID、の関数としてPT-RSグループの開始位置を決定することができる。
実施例49は、実施例34~実施例49の装置、又は本明細書における何らかの他の実施例を含むことができ、装置は、ユーザ機器(UE)内又はユーザ機器(UE)によって実装される。
実施例50は、信号を受信するか又は受信させること、信号を処理するか処理させること、及び処理された信号に基づいて別の信号を送信するか又は送信させること、を含む方法を含み、方法は、単一のキャリア波形を有する物理ダウンリンク共有チャネル(PDSCH)に関連付けられた位相追跡基準信号(PT-RS)を生成することと、単一のキャリア波形を有する物理アップリンク共有チャネル(PUSCH)に関連付けられたPT-RSを生成することと、を含み、単一キャリア波形は、離散フーリエ変換拡散OFDM(DFT-s-OFDM)、及び周波数領域等化器(SC-FDE)を有する単一キャリアを含んでもよい。
実施例51は、実施例51の方法、又は本明細書における何らかの他の実施例を含むことができ、DL送信のために離散フーリエ変換拡散OFDM(DFT-s-OFDM)波形に対してグループベースのPT-RSパターンを適用することを更に含み、各グループはDFT動作の前に時間領域においてK個の連続するサンプルを占有する。
実施例52は、実施例51~実施例52の方法、又は本明細書における何らかの他の実施例を含むことができ、PT-RSの存在が、対応するPDSCH及び/又はPUSCHをスケジューリングする無線ネットワーク一時識別子(RNTI)に依存し得る。
実施例53は、実施例51~実施例53の方法、又は本明細書における何らかの他の実施例を含むことができ、DFT-s-OFDM波形の時間及び周波数におけるデフォルトのPT-RSパターンを定義することを更に含む。C-RNTI、CS-RNTI及び/又はMCS-RNTIを有するPDCCHによってスケジューリングされるPDSCH又はPUSCH、及びPDCCHフォーマットが、例えば、DCIフォーマット0_0及び1_0を含む、フォールバックDCIフォーマットである場合、デフォルトのPT-RSパターンが適用されてもよく、又は、PT-RSは存在しないものとする。
実施例54は、実施例51~実施例54の方法、又は本明細書における何らかの他の実施例を含むことができ、複数の送受信ポイント(マルチTRP)又は複数のパネルベースの動作中に、異なるパネル又は異なるTRPからのPT-RSの送信のために直交カバーコード(OCC)を適用することを更に含む。
実施例55は、実施例51~実施例55又は本明細書のいくつかの他の実施例の方法を含むことができ、以下のパラメータ、すなわち、サブブロック/ブロック/スロット/フレームインデックス、仮想セルID又は物理セルID又はRNTI、又は、PT-RSが関連付けられているDMRSポートの復調基準信号(DMRS)シーケンス生成に使用される上位層構成ID、のうちの少なくとも1つに従ってPT-RSシーケンスを生成することを更に含む。
実施例56は、実施例51~実施例56の方法、又は本明細書における何らかの他の実施例を含むことができ、ガード間隔(GI)シーケンスに基づいてPT-RSを生成することを更に含む。
実施例57は、実施例51~実施例57の方法、又は本明細書における何らかの他の実施例を含むことができ、PT-RSの送信のための電力ブーストを適用することを更に含む。
実施例58は、実施例51~実施例58の方法、又は本明細書における何らかの他の実施例を含むことができ、データ送信のための情報ビットの一部に基づいてPT-RSを生成することを更に含む。
実施例59は、実施例51~実施例59の方法、又は本明細書における何らかの他の実施例を含むことができ、PT-RSの送信のために、PT-RSの所定の変調次数、例えば、BPSK又はQPSK、を使用することを更に含む。
実施例60は、実施例51~実施例60の方法、又は本明細書における何らかの他の実施例を含むことができ、上位層によってPT-RSの変調次数を構成すること、又はDCIによって動的に指示すること、又はそれらの組み合わせを更に含む。
実施例61は、実施例51~実施例61の方法、又は本明細書における何らかの他の実施例を含むことができ、を含み得る。時間領域におけるPT-RSパターンを、スケジューリングされたデータ送信及び/又は送信持続時間のMCSに従って決定するか、かつ/又は無線リソース制御(RRC)シグナリングを介して上位層によって設定するか、又はダウンリンク制御情報(DCI)で動的に指示するか、又はそれらの組み合わせを更に含む。
実施例62は、実施例51~実施例62の方法、又は本明細書における何らかの他の実施例を含むことができ、データチャネルの送信のための帯域幅部分(BWP)と、BWPの帯域幅に従って時間領域におけるPT-RSパターンとを使用することを更に含む。
実施例63は、実施例51~実施例63の方法、又は本明細書における何らかの他の実施例を含むことができ、サンプリングレート適応を適用することを更に含む、すなわち、ブロック内のサンプルの数が低減され、対応するデータ送信に関連付けられたPT-RSグループパターンが、それに応じて調整され得る。
実施例64は、実施例51~実施例64の方法、又は本明細書における何らかの他の実施例を含むことができ、1つのデータ又はサブブロック内に、PT-RSグループを均一に分布させることを更に含む。
実施例65は、実施例51~実施例65の方法、又は本明細書における何らかの他の実施例を含むことができ、PT-RSが関連付けられたセルID及び/又はRNTI及び/又はDMRSポートインデックス、及び/又は、PT-RSが関連付けられたDMRSポートに対するDMRSシーケンス生成のための上位層構成ID、の関数としてPT-RSグループの開始位置を決定することを更に含む。
実施例66は、実施例51~実施例66の方法、及び/又は本明細書における何らかの他の実施例を含むことができ、方法はユーザ機器(UE)又はその一部によって実行される。
実施例67は、実施例1~67のいずれかに記載の、若しくはこれらに関連する方法、又は本明細書に記載のいずれかの他の方法若しくはプロセス、の1つ以上の要素を実行する手段を含む装置を含むことができる。
実施例68は、命令を含む1つ以上の非一時的コンピュータ可読媒体であって、電子デバイスの1つ以上のプロセッサによって命令が実行されると、命令は電子デバイスに、実施例1~67のいずれかに記載の、若しくはこれらに関連する方法、又は本明細書に記載のいずれかの他の方法若しくはプロセス、の1つ以上の要素を実行させる、1つ以上の非一時的コンピュータ可読媒体を含んでもよい。
実施例69は、実施例1~67のいずれかに記載の、若しくはこれらに関連する方法、又は本明細書に記載のいずれかの他の方法若しくはプロセスの1つ以上の要素を実行するためのロジック、モジュール、又は回路を含む装置を含むことができる。
実施例70は、実施例1~67のいずれかに記載の、若しくはこれらに関連する方法、技術、又はプロセス、又はこれらの一部若しくは部分を含むことができる。
実施例71は、1つ以上のプロセッサと、1つ以上のプロセッサによって実行されると、1つ以上のプロセッサに実施例1~67のいずれかに記載の、若しくはこれらに関連する方法、技術、又はプロセス、又はこれらの部分を実行させる命令を含む1つ以上のコンピュータ可読媒体と、を含む装置を含むことができる。
実施例72は、実施例1~67のいずれかに記載の、若しくはこれらに関連する信号、又はその一部若しくは部分を含み得る。
実施例73は、本明細書に図示され記載された無線ネットワークにおける信号を含むことができる。
実施例74は、本明細書に図示され記載された無線ネットワーク内で通信する方法を含んでもよい。
実施例75は、本明細書に図示され記載された無線通信を提供するシステムを含んでもよい。
実施例76は、本明細書に図示され記載された無線通信を提供するデバイスを含んでもよい。
上記の実施例のいずれも、特に明記しない限り、任意の他の実施例(又は実施例の組み合わせ)と組み合わせることができる。1つ以上の実装形態の前述の説明は、例示及び説明を提供するが、網羅的であることを意図するものではなく、又は、開示される正確な形態に実装形態の範囲を限定することを意図するものではない。修正及び変形は、上記の教示を考慮して可能であるか、又は本開示と整合した実践的実施形態から得ることができる。
図14Aは、1つ以上の実施形態に係るフローチャートを示す。図14Aに示すプロセスは、無線セルラネットワーク内の基地局(例えば、gNB)によって実行されてもよい。1つ以上の実施形態では、図14Aに示されるステップのうちの1つ以上は、省略、反復、及び/又は図14Aに示される順序とは異なる順序で実行されてもよい。したがって、技術的範囲は、図14Aに示されるステップの特定の配列に限定されると見なされるべきではない。図14Aに示すステップは、コンピュータ可読媒体上に記憶されたコンピュータ可読命令として実装されてもよく、命令が実行されると、プロセッサに図14Aのプロセスを実行させる。追加的に又は代替的に、図14Aに示されるステップは、特定の論理機能を実行する状態マシンを含む、ハードコード化されたプロセッサ又はプロセッサ回路に実装することができる。
ステップ1405において、位相追跡基準信号(PT-RS)が生成される。位相追跡基準信号は、位相シフト補償のために使用されてもよい。上述のように、PT-RSの必要性は、PDSCHをスケジューリングする無線ネットワーク一時識別子(RNTI)に基づいて決定され得る。
1つ以上の実施形態では、上述のように、PT-RSの生成は、セルRNTI、回線交換RNTI、又は変調符号化方式RNTIを有する物理ダウンリンク制御チャネル(PDCCH)によってPDSCHがスケジューリングされるときの時間及び周波数におけるデフォルトのPT-RSパターンに基づいており、PDCCHフォーマットはフォールバックダウンリンク制御情報(DCI)フォーマットである。
1つ以上の実施形態では、上述のように、DFT-s-OFDMが利用されるとき、PT-RSは、グループベースのPT-RSパターンに関連付けられ、各グループはDFT-s-OFDMに関連するDFT動作の前に時間領域においてK個の連続するサンプルを占有する。
1つ以上の実施形態では、上述のように、SC-FDEが利用されるとき、PT-RSは、スロット内のブロックの数、スロットインデックス、及び物理セルIDに基づいて生成される。追加的に又は代替的に、PT-RSは、データブロックに関連付けられたガード間隔(GI)に基づいて生成される。
1つ以上の実施形態では、上述のように、SC-FDEが利用されるとき、PT-RSは、部分的に、情報ビットを符号化し、次いで、情報ビットを2つの異なる部分(例えば、ストリーム)に分割し、次いで、1つの部分をPT-RSサンプルに変調及びマッピングすることによって生成され得る。他方の部分は変調され、データサンプルにマッピングされる。
1つ以上の実施形態では、上述のように、SC-FDEが利用されるとき、PT-RSは、部分的に、情報ビットを2つの異なる部分(例えば、ストリーム)に分割することによって生成され得る。次に、異なる部分は、異なる符号化方式を使用して符号化される。次いで、一方の部分は変調され、PT-RSサンプルにマッピングされる一方で、他方の部分は変調され、データサンプルにマッピングされる。
1つ以上の実施形態では、上述のように、SC-FDEが利用されるとき、PT-RSはパターンに基づく。パターンの密度は、帯域幅部分(BWP)を使用するときの帯域幅に基づく。
1つ以上の実施形態では、上述のように、SC-FDEが利用されるとき、PT-RSは複数のグループに関連付けられ、グループのうちの少なくとも1つは、無線ネットワーク一時的識別子に基づく開始位置を有する。
ステップ1405におけるPT-RSの生成に関する更なる詳細は、上記に開示されている(例えば、上記の実施例及び図において)。
ステップ1410において、PT-RSは、送信機及び/又は無線フロントエンド回路を使用して物理ダウンリンク共有チャネル(PDSCH)を通じて送信される。PT-RSはデータと共に送信されてもよい。PT-RSは、DFT-s-OFDM又はSC-FDEを使用して送信され得る。更に、キャリア周波数は52.6GHzを超えてもよい。
1つ以上の実施形態では、上述のように、複数の送受信ポイント(マルチTRP)又は複数のパネルベースの動作中に、直交カバーコード(OCC)が、PT-RSを送信するために適用される。OCCは、復調基準信号(DMRS)アンテナポートの数に基づいてもよい。
ステップ1410におけるPT-RSの送信に関する更なる詳細は、上記に開示されている(例えば、上記の実施例及び図において)。
図14Bは、1つ以上の実施形態に係るフローチャートを示す。図14Bに示すプロセスは、無線セルラネットワーク内のユーザ機器(UE)によって実行されてもよい。1つ以上の実施形態では、図14Bに示されるステップのうちの1つ以上は、省略、反復、及び/又は図14Bに示される順序とは異なる順序で実行されてもよい。したがって、技術的範囲は、図14Bに示されるステップの特定の配列に限定されると見なされるべきではない。図14Bに示すステップは、コンピュータ可読媒体上に記憶されたコンピュータ可読命令として実装されてもよく、命令が実行されると、プロセッサに図14Bのプロセスを実行させる。追加的に又は代替的に、図14Bに示される工程は、特定の論理機能を実行する状態マシンを含む、ハードコード化されたプロセッサ又はプロセッサ回路に実装することができる。
ステップ1450では、位相追跡基準信号(PT-RS)が生成される。位相追跡基準信号は、位相シフト補償のために使用されてもよい。ステップ1450は、ステップ1450がユーザ機器によって実行されることを除いて、ステップ1405(図14Aを参照して上述された)と本質的に同じであってもよい。
ステップ1450におけるPT-RSの生成に関する更なる詳細は、上記に開示されている(例えば、上記の実施例及び図において)。
ステップ1455では、送信機及び/又は無線フロントエンド回路を使用して、SC-FDE送信方式を用いて物理アップリンク共有チャネル(PUSCH)を介して送信される。更に、SC-FDE送信は、52.6GHzを超えるキャリア周波数を利用することができる。ステップ1455は、ステップ1455がユーザ機器によって実行され、アップリンクのためであることを除いて、ステップ1410(図14Aを参照して上述された)と同様であってもよい。
ステップ1455におけるPT-RSの送信に関する更なる詳細は、上記に開示されている(例えば、上記の実施例及び図において)。
略語
本明細書の目的のために、以下の略語は、本明細書で論じる例及び実施形態に適用可能である。
3GPP 第3世代パートナーシッププロジェクト
4G 第4世代
5G 第5世代
5GC 5Gコアネットワーク
ACK 確認
AF アプリケーション機能
AM 確認モード
AMBR アグリゲート最大ビットレート
AMF アクセス・移動管理機能
AN アクセスネットワーク
ANR 自動近隣関係
AP アプリケーションプロトコル、アンテナポート、アクセスポイント
API アプリケーションプログラミングインタフェース
APN アクセスポイント名
ARP 割り当て及び保持優先度
ARQ 自動再送要求
AS アクセス層
ASN.1 抽象構文表記1
AUSF 認証サーバ機能
AWGN 付加白色ガウスノイズ
BCH ブロードキャストチャネル
BER ビット誤り率
BFD ビーム故障検出
BLER ブロック誤り率
BPSK 2値位相シフトキーイング
BRAS ブロードバンドリモートアクセスサーバ
BSS 業務支援システム
BS 基地局
BSR バッファ状態レポート
BW 帯域幅
BWP 帯域幅部分
C-RNTI セル無線ネットワーク一時識別子
CA キャリアアグリゲーション、認証局
CAPEX 設備投資
CBRA 競合ベースのランダムアクセス
CC コンポーネントキャリア、国コード、暗号チェックサム
CCA クリアチャネルアセスメント
CCE 制御チャネル要素
CCCH 共通制御チャネル
CE カバレッジ拡張
CDM コンテンツ配信ネットワーク
CDMA 符号分割多元接続
CFRA コンテンションフリーランダムアクセス
CG セルグループ
CI セルアイデンティティ
CID セルID(例えば、位置決め方法)
CIM 共通情報モデル
CIR キャリア対干渉比
CK 暗号鍵
CM 接続管理、条件付き必須
CMAS 商用モバイル警告サービス
CMD コマンド
CMS クラウド管理システム
CO 条件付きオプション
CoMP 協調マルチポイント
CORESET 制御リソースセット
COTS いつでも買える市販品
CP 制御プレーン、サイクリックプレフィックス、接続ポイント
CPD 接続点記述子
CPE 顧客宅内機器
CPICH 共通パイロットチャネル
CQI チャネル品質インジケータ
CPU CSI処理部、中央処理部
C/R コマンド/応答フィールドビット
CRAN クラウド無線アクセスネットワーク、クラウドRAN
CRB 共通リソースブロック
CRC 巡回冗長検査
CRI チャネル状態情報リソースインジケータ、CSI-RSリソースインジケータ
C-RNTI セルRNTI
CS 回路切換
CSAR クラウドサービスアーカイブ
CSI チャネル状態情報
CSI-IM CSI干渉測定値
CSI-RS CSI基準信号
CSI-RSRP CSI基準信号受信電力
CSI-RSRQ CSI基準信号受信品質
CSI SINR CSI信号対干渉及びノイズ比
CSMA キャリアセンス多元接続
CSMA/CA 衝突回避を伴うCSMA
CSS 共通探索空間、セル固有探索空間
CTS 送信クリア
CW コードワード
CWS 競合ウィンドウサイズ
D2D デバイス間
DC デュアルコネクティビティ、直流
DCI ダウンリンク制御情報
DF Deployment Flavour
DL ダウンリンク
DMTF 分散管理タスクフォース
DPDK データプレーン開発キット
DM-RS、DMRS 復調基準信号
DN データネットワーク
DRB データ無線ベアラ
DRS 発見基準信号
DRX 不連続受信
DSL ドメイン固有言語デジタル加入者回線
DSLAM DSLアクセスマルチプレクサ
DwPTS ダウンリンクパイロット時間スロット
E-LAN Ethernetローカルエリアネットワーク
E2E エンドツーエンド
ECCA 拡張クリアチャネル評価、拡張CCA
ECCE 拡張制御チャネル要素、拡張CCE
ED エネルギー検出
EDGE GSM進化のための拡張データ(GSMエボリューション)
EGMF Exposure Governance Management Function
EGPRS 拡張GPRS
EIR 機器アイデンティティレジスタ
eLAA enhanced免許アシストアクセス、enhanced LAA
EM 要素マネージャ
eMBB 拡張モバイルブロードバンド
EMS 要素管理システム
eNB 進化型ノードB、E-UTRANノードB
EN-DC E-UTRA-NRデュアルコネクティビティ
EPC 進化型パケットコア
EPDCCH エンハンストPDCCH、エンハンスト物理ダウンリンク制御チャネル
EPRE リソース要素ごとのエネルギー
EPS 進化型パケットシステム
EREG 強化されたREG、強化されたリソース要素グループ
ETSI 欧州電気通信標準化機構
ETWS 地震・津波警報システム
eUICC 埋め込みUICC、埋め込みユニバーサル集積回路カード
E-UTRA 進化型UTRA
E-UTRAN 進化型UTRAN
EV2X エンハンストV2X
F1AP F1アプリケーションプロトコル
F1-C F1制御プレーンインタフェース
F1-U F1 ユーザプレーンインタフェース
FACCH 高速付随制御チャネル
FACCH/F 高速付随制御チャネル/フルレート
FACCH/H 高速付随制御チャネル/ハーフレート
FACH 順方向アクセスチャネル
FAUSCH 高速アップリンクシグナリングチャネル
FB 機能ブロック
FBI フィードバック情報
FCC 連邦通信委員会
FCCH 周波数補正チャネル
FDD 周波数分割複信
FDM 周波数分割多重化
FDMA 符号分割多元接続
FE フロントエンド
FEC 順方向誤り訂正
FFS 更なる研究
FFT 高速フーリエ変換
feLAA further enhancedライセンス支援アクセス、further enhanced LAA
FN フレーム番号
FPGA フィールドプログラマブルゲートアレイ
FR 周波数範囲
G-RNTI GERAN無線ネットワーク一時識別子
GERAN GSM EDGE RAN、GSM EDGE無線アクセスネットワーク
GGSN ゲートウェイGPRSサポートノード
GLONASS GLObal’naya NAvigattionnaya Sputnikovaya Sistema(全地球航法衛星システム)
gNB 次世代ノードB
gNB-CU gNB-集中ユニット、次世代NodeB集中ユニット
gNB-DU gNB分散ユニット、次世代NodeB分散ユニット
GNSS 全球測位衛星システム
GPRS 汎用パケット無線サービス
GSM モバイル通信用グローバルシステム、グループスペシャルモビール
GTP GPRSトンネリングプロトコル
GTP-U ユーザプレーン用GPRSトンネリングプロトコル
GTS スリープ要求信号(WUS関連)
GUMMEI グローバルに一意のMME識別子
GUTI グローバルに一意の一時UEアイデンティティ
HARQ ハイブリッドARQ、ハイブリッド自動再送要求
HANDO、HO ハンドオーバ
HFN ハイパーフレーム番号
HHO ハードハンドオーバ
HLR ホームロケーションレジスタ
HN ホームネットワーク
HO ハンドオーバ
HPLMN ホームパブリックランドモバイルネットワーク
HSDPA 高速ダウンリンクパケットアクセス
HSN ホッピングシーケンス番号
HSPA 高速パケットアクセス
HSS ホーム加入者サーバ
HSUPA 高速アップリンクパケットアクセス
HTTP ハイパーテキスト転送プロトコル
HTTPS ハイパーテキスト転送プロトコルセキュア(httpsはSSL上のhttp/1.1、すなわちポート443である)
I-Block 情報ブロック
ICCID 集積カード識別子
ICIC セル間干渉調整
ID アイデンティティ、識別子
IDFT 逆離散フーリエ変換
IE 情報要素
IBE 帯域内放射
IEEE 米国電気電子学会
IEI 情報要素識別子
IEIDL 情報要素識別子データ長
IETF インターネット技術タスクフォース
IF インフラストラクチャ
IM 干渉測定、相互変調、IPマルチメディア
IMC IMS認証情報
IMEII 国際モバイル機器アイデンティティ
IMGI 国際移動体グループアイデンティティ
IMPI IPマルチメディアプライベートアイデンティティ
IMPU IPマルチメディアパブリックアイデンティティ
IMS IPマルチメディアサブシステム
IMSI 国際移動電話加入者識別番号
IoT モノのインターネット
IP インターネットプロトコル
Ipsec IPセキュリティ、インターネットプロトコルセキュリティ
IP-CAN IP接続アクセスネットワーク
IP-M IPマルチキャスト
IPv4 インターネットプロトコルバージョン4
IPv6 インターネットプロトコルバージョン6
IR 赤外線
IS 同期している
IRP 積分基準点
ISDN 統合サービスデジタルネットワーク
ISIM IMサービスアイデンティティモジュール
ISO 国際標準化機構
ISP インターネットサービスプロバイダ
IWF 相互作用関数
I-WLAN 相互接続WLAN
K 畳込み符号の制約長、USIM個別キー
kB キロバイト(1000バイト)
kbps キロビット/秒
Kc 暗号鍵
Ki 個別加入者認証鍵
KPI 主要能力評価指標
KQI 主要品質インジケータ
KSI キーセット識別子
ksps キロシンボル/秒
KVM カーネル仮想マシン
L1 層1(物理層)
L1-RSRP 層1基準信号受信電力
L2 層2(データリンク層)
L3 層3(ネットワーク層)
LAA 免許支援アクセス
LAN ローカルエリアネットワーク
LBT リッスンビフォアトーク
LCM ライフサイクル管理
LCR 低チップレート
LCS 場所サービス
LCID 論理チャネルID
LI 層インジケータ
LLC 論理リンク制御、低層互換性
LPLMN ローカルPLMN
LPP LTE位置決めプロトコル
LSB 最下位ビット
LTE ロングタームエボリューション
LWA LTE-WLANアグリゲーション
LWIP IPsecチャネルとのLTE/WLAN無線レベル統合
LTE ロングタームエボリューション
M2M マシンツーマシン
MAC 媒体アクセス制御(プロトコル層コンテキスト)
MAC メッセージ認証コード(セキュリティ/暗号コンテキスト)
MAC-A 認証及び鍵一致に使用されるMAC(TSG T WG3コンテキスト)
MAC-I シグナリングメッセージのデータ完全性に使用されるMAC(TSG T WG3コンテキスト)
MANO 管理及びオーケストレーション
MBMS マルチメディアブロードキャストマルチキャストサービス
MBSFN マルチメディアブロードキャストマルチキャストサービスシングル周波数ネットワーク
MCC モバイルカントリコード
MCG マスタセルグループ
MCOT 最大チャネル占有時間
MCS 変調及び符号化スキーム
MDAF 管理データ分析機能
MDAS 管理データ分析サービス
MDT 駆動試験の最小化
ME モバイル機器
MeNB マスタeNB
MER メッセージ誤り率
MGL 測定ギャップ長
MGRP 測定ギャップ反復期間
MIB マスタ情報ブロック、管理情報ベース
MIMO 多重入力多重出力
MLC モバイルロケーションセンタ
MM モビリティ管理
MME モビリティ管理エンティティ
MN マスタノード
MO 測定オブジェクト、モバイル発信
MPBCH MTC物理報知チャネル
MPDCCH MTC物理ダウンリンク制御チャネル
MPDSCH MTC物理ダウンリンク共有チャネル
MPRACH MTC物理ランダムアクセスチャネル
MPDSCH MTC物理アップリンク共有チャネル
MPLS マルチプロトコルラベルスイッチング
MS 移動局
MSB 最上位ビット
MSC モバイル切換センタ
MSI 最小システム情報、MCHスケジューリング情報
MSID 移動局識別子
MSIN 移動局識別番号
MSISDN モバイル加入者ISDN番号
MT モバイル終端、モバイルターミネーション
MTC マシン型通信
mMTC 大規模MTC、大規模マシン型通信
MU-MIMO マルチユーザMIMO
MWUS MTCウェイクアップ信号、MTC WUS
NACK 否定応答
NAI ネットワークアクセス識別子
NAS 非アクセス層
NCT ネットワーク接続トポロジ
NEC ネットワーク能力開示
NE-DC NR-E-UTRAデュアルコネクティビティ
NEF ネットワーク開示機能
NF ネットワーク機能
NFP ネットワーク転送経路
NFPD ネットワーク転送経路記述子
NFV ネットワーク機能仮想化
NFVI NFVインフラストラクチャ
NFVO NFVオーケストレータ
NG 次世代
NGEN-DC NG-RAN E-UTRA-NRデュアルコネクティビティ
NM ネットワークマネージャ
NMS ネットワーク管理システム
N-PoP ネットワークポイントオブプレゼンス
NMIB,N-MIB 狭帯域MIB
NPBCH 狭帯域物理ブロードキャストチャネル
NPDCCH 狭帯域物理ダウンリンク制御チャネル
NPDSCH 狭帯域物理ダウンリンク共有チャネル
NPRACH 狭帯域物理ランダムアクセスチャネル
NPUSCH 狭帯域物理アップリンク共有チャネル
NPSS 狭帯域プライマリ同期信号
NSSS 狭帯域セカンダリ同期信号
NR 新無線、近隣関係
NRF NFリポジトリ機能
NRS 狭帯域基準信号
NS ネットワークサービス
NSA 非スタンドアロン動作モード
NSD ネットワークサービス記述子
NSR ネットワークサービスレコード
NSSAI ネットワークスライス選択支援情報
S-NNSAI シングルNSSAI
NSSF ネットワークスライス選択機能
NW ネットワーク
NWUS 狭帯域ウェイクアップ信号、狭帯域WUS
NZP 非ゼロ電力
O&M 運用及び保守
ODU2 光チャネルデータユニット-タイプ2
OFDM 直交周波数分割多重化
OFDMA 直交周波数分割多元接続
OOB 帯域外
OOS 同期外れ
OPEX 運転費
OSI その他システム情報
OSS オペレーションサポートシステム
OTA over-the-air
PAPR ピーク対平均電力比
PAR ピーク対平均比
PBCH 物理ブロードキャストチャネル
PC 電力制御、パーソナルコンピュータ
PCC プライマリコンポーネントキャリア、プライマリCC
PCell プライマリセル
PCI 物理セルID、物理セルアイデンティティ
PCEF ポリシー及び課金実施機能
PCF ポリシー制御機能
PCRF ポリシー制御及び課金ルール機能
PDCP パケットデータコンバージェンスプロトコル、パケットデータコンバージェンスプロトコル層
PDCCH 物理ダウンリンク制御チャネル
PDCP パケットデータコンバージェンスプロトコル
PDN パケットデータネットワーク、パブリックデータネットワーク
PDSCH 物理ダウンリンク共有チャネル
PDU プロトコルデータユニット
PEI 永久機器識別子
PFD パケットフロー記述
P-GW PDNゲートウェイ
PHICH 物理ハイブリッドARQインジケータチャネル
PHY 物理層
PLMN 公衆陸上移動網
PIN 個人識別番号
PM 性能測定
PMI プリコーディング行列インジケータ
PNF 物理ネットワーク機能
PNFD 物理ネットワーク機能記述子
PNFR 物理ネットワーク機能記録
POC セルラを介するPTT
PP,PTP ポイントツーポイント
PPP ポイントツーポイントプロトコル
PRACH 物理RACH
PRB 物理リソースブロック
PRG 物理リソースブロックグループ
ProSe 近接サービス、近接ベースのサービス
PRS 位置決め基準信号
PRR パケット受信無線機
PS パケットサービス
PSBCH 物理サイドリンクブロードキャストチャネル
PSDCH 物理サイドリンクダウンリンクチャネル
PSCCH 物理サイドリンク制御チャネル
PSSCH 物理サイドリンク共有チャネル
PSCell プライマリSCell
PSS プライマリ同期信号
PSTN 公衆交換電話網
PT-RS 位相追跡基準信号
PTT プッシュツートーク
PUCCH 物理アップリンク制御チャネル
PUSCH 物理アップリンク共有チャネル
QAM 直交振幅変調
QCI 識別子のQoSクラス
QCL 準コロケーション
QFI QoSフローID、QoSフロー識別子
QoS サービス品質
QPSK 直交(四値)位相シフトキーイング
QZSS 準天頂衛星システム
RA-RNTI ランダムアクセスRNTI
RAB 無線アクセスベアラ、ランダムアクセスバースト
RACH ランダムアクセスチャネル
RADIUS ユーザサービスにおけるリモート認証ダイヤル
RAN 無線アクセスネットワーク
RAND 乱数(認証に使用)
RAR ランダムアクセス応答
RAT 無線アクセス技術
RAU ルーティングエリア更新
RB リソースブロック、無線ベアラ
RBG リソースブロックグループ
REG リソース要素グループ
Rel 解放
REQ 要求
RF 無線周波数
RI ランクインジケータ
RIV リソースインジケータ値
RL 無線リンク
RLC 無線リンク制御、無線リンク制御層
RLC AM RLC肯定応答モード
RLC UM RLC非肯定応答モード
RLF 無線リンク障害
RLM 無線リンクモニタリング
RLM-RS RLMのための基準信号
RM 登録管理
RMC 基準測定チャネル
RMSI 残存MSI、残存最小システム情報
RN 中継ノード
RNC 無線ネットワークコントローラ
RNL 無線ネットワーク層
RNTI 無線ネットワーク一時識別子
ROHC ロバストヘッダ圧縮
RRC 無線リソース制御、無線リソース制御層
RRM 無線リソース管理
RS 基準信号
RSRP 基準信号受信電力
RSRQ 基準信号受信品質
RSSI 受信信号強度インジケータ
RSU 路側機
RSTD 基準信号時間差
RTP リアルタイムプロトコル
RTS 送信要求
RTT 往復時間
Rx 受信、受信機
S1AP S1アプリケーションプロトコル
S1-MME 制御プレーン用S1
S1-U ユーザプレーン用S1
S-GW サービングゲートウェイ
S-RNTI SRNC無線ネットワーク一時識別子
S-TMSI SAE一時移動局識別子
SA スタンドアロン動作モード
SAE システムアーキテクチャ発展
SAP サービスアクセスポイント
SAPD サービスアクセスポイント記述子
SAPI サービスアクセスポイント識別子
SCC セカンダリコンポーネントキャリア、セカンダリCC
SCell セカンダリセル
SC-FDMA シングルキャリア周波数分割多元接続
SCG セカンダリセルグループ
SCM セキュリティコンテキスト管理
SCS サブキャリア間隔
SCTP ストリーム制御伝送プロトコル
SDAP サービスデータ適応プロトコル、サービスデータ適応プロトコル層
SDL 補助ダウンリンク
SDNF 構造化データストレージネットワーク機能
SDP サービスディスカバリプロトコル(Bluetooth関連)
SDSF 構造化データ記憶機能
SDU サービスデータユニット
SEAF セキュリティアンカー機能
SeNB セカンダリeNB
SEPP セキュリティエッジ保護プロキシ
SFI スロットフォーマット表示
SFTD 空間周波数時間ダイバーシティ、SFN及びフレームタイミング差
SFN システムフレーム番号
SgNB セカンダリgNB
SGSN サービングGPRSサポートノード
S-GW サービングゲートウェイ
SI システム情報
SI-RNTI システム情報RNTI
SIB システム情報ブロック
SIM 加入者識別モジュール
SIP セッション開始プロトコル
SiP システムインパッケージ
SL サイドリンク
SLA サービス水準合意
SM セッション管理
SMF セッション管理機能
SMS ショートメッセージサービス
SMSF SMS機能
SMTC SSBベースの測定タイミング構成
SN セカンダリノード、シーケンス番号
SoC システムオンチップ
SON 自己組織ネットワーク
SpCell 特殊セル
SP-CSI-RNTI 反永続的CSI RNTI
SPS 反永続的スケジューリング
SQN シーケンス番号
SR スケジューリング要求
SRB シグナリング無線ベアラ
SRS サウンディング基準信号
SS 同期信号
SSB 同期信号ブロック、SS/PBCHブロック
SSBRI SS/PBCHブロックリソースインジケータ、同期信号ブロックリソースインジケータ
SSC セッション及びサービス連続性
SS-RSRP 同期化信号ベースの基準信号受信電力
SS-RSRQ 同期信号ベースの基準信号受信品質
SS-SINR 同期信号ベースの信号対ノイズ及び干渉比
SSS セカンダリ同期信号
SSSG 探索空間セットグループ
SSSIF 探索空間セットインジケータ
SST スライス/サービスタイプ
SU-MIMO シングルユーザMIMO
SUL 補助アップリンク
TA タイミングアドバンス、トラッキングエリア
TAC 追跡エリアコード
TAG タイミングアドバンスグループ
TAU 追跡エリア更新
TB トランスポートブロック
TBS トランスポートブロックサイズ
TBD To Be Defined
TCI 送信構成インジケータ
TCP 伝送通信プロトコル
TDD 時分割複信
TDM 時分割多重
TDMA 時分割多元接続
TE 端末装置
TEID トンネルエンドポイント識別子
TFT トラフィックフローテンプレート
TMSI 一時モバイル加入者アイデンティティ
TNL トランスポートネットワーク層
TPC 送信電力制御
TPMI 送信プリコーディング行列インジケータ
TR 技術報告書
TRP,TRxP 送信受信点
TRS 追跡基準信号
TRx トランシーバ
TS 技術仕様書、技術規格
TTI 送信時間間隔
Tx 送信、送信機
U-RNTI UTRAN無線ネットワーク一時識別子
UART ユニバーサル非同期受信機及び送信機
UCI アップリンク制御情報
UE ユーザ機器
UDM 統合データ管理
UDP ユーザデータグラムプロトコル
UDSF 非構造化データストレージネットワーク機能
UICC ユニバーサル集積回路カード
UL アップリンク
UM 非肯定応答モード
UML 統一モデル言語
UMTS ユニバーサル移動体通信システム
UP ユーザプレーン
UPF ユーザプレーン機能
URI ユニフォームリソース識別子
URL ユニフォームリソースロケータ
URLLC 超高信頼及び低レイテンシ
USB ユニバーサルシリアルバス
USIM ユニバーサル加入者アイデンティティモジュール
USS UE 固有探索空間
UTRA UMTS端末無線アクセス
UTRAN ユニバーサル地上無線アクセスネットワーク
UwPTS アップリンクパイロットタイムスロット
V2I ビークルツーインフラストラクチャ
V2P ビークルツー歩行者
V2V ビークルツービークル
V2X ビークルツーエブリシング
VIM 仮想化インフラストラクチャマネージャ
VL 仮想リンク、
VLAN 仮想LAN、仮想ローカルエリアネットワーク
VM 仮想マシン
VNF 仮想化ネットワーク機能
VNFFG VNF転送グラフ
VNFFGD VNF転送グラフ記述子
VNFM VNFマネージャ
VoIP ボイスオーバーIP、ボイスオーバーインターネットプロトコル
VPLMN 訪問先公衆移動陸上網
VPN 仮想プライベートネットワーク
VRB 仮想リソースブロック
WiMAX ワールドワイド・インターオペラビリティ・フォー・マイクロウェーブ・アクセス
WLAN 無線ローカルエリアネットワーク
WMAN 無線メトロポリタンエリアネットワーク
WPAN 無線パーソナルエリアネットワーク
X2-C X2-制御プレーン
X2-U X2-ユーザプレーン
XML 拡張可能なマークアップ言語
XRES 予想ユーザ応答
XOR 排他的論理和
ZC Zadoff-Chu
ZP ゼロ電力
専門用語
本明細書の目的のために、以下の用語及び定義は、本明細書で論じる例及び実施形態に適用可能である。
本明細書で使用される「回路」という用語は、電子回路、論理回路、プロセッサ(共有、専用、又はグループ)及び/又はメモリ(共有、専用、又はグループ)、特定用途向け集積回路(ASIC)、フィールドプログラマブルデバイス(FPD)(例えば、フィールドプログラマブルゲートアレイ(FPGA)、プログラマブルロジックデバイス(PLD)、複合PLD(CPLD)、大容量PLD(HCPLD)、構造化ASIC、又はプログラマブルSoC)、デジタルシグナルプロセッサ(DSP)などの、記載の機能を提供するように構成されたハードウェア構成要素を指すか、その一部であるか、又は含む。いくつかの実施形態では、回路は、1つ以上のソフトウェア又はファームウェアプログラムを実行して、記載された機能の少なくとも一部を提供することができる。「回路」という用語はまた、1つ以上のハードウェア要素と、そのプログラムコードの機能を実行するために使用されるプログラムコードとの組み合わせ(又は電気若しくは電子システムで使用される回路の組み合わせ)を指すことができる。これらの実施形態では、ハードウェア要素とプログラムコードとのそのような組み合わせは、特定の種類の回路と称されてもよい。
本明細書で使用される「プロセッサ回路」という用語は、一連の算術演算若しくは論理演算、又はデジタルデータの記録、記憶、及び/又は転送を順次自動的に実行することができる回路を指すか、その一部であるか、又は含む。「プロセッサ回路」という用語は、1つ以上のアプリケーションプロセッサ、1つ以上のベースバンドプロセッサ、物理中央処理装置(CPU)、シングルコアプロセッサ、デュアルコアプロセッサ、トリプルコアプロセッサ、クアドコアプロセッサ、及び/又はプログラムコード、ソフトウェアモジュール、及び/又は機能プロセスなどのコンピュータ実行可能命令を実行又は動作させることができる任意の他のデバイスを指すことができる。「アプリケーション回路」及び/又は「ベースバンド回路」という用語は、「プロセッサ回路」と同義であると考えられ、「プロセッサ回路」と呼ばれることがある。
本明細書で使用される「インタフェース回路」という用語は、2つ以上の構成要素又はデバイス間の情報の交換を可能にする回路を指すか、その一部であるか、又は含む。用語「インタフェース回路」は、1つ以上のハードウェアインタフェース、例えば、バス、I/Oインタフェース、周辺構成要素インタフェース、ネットワークインタフェースカード、及び/又は同様のものを指すことがある。
本明細書で使用される「ユーザ機器」又は「UE」という用語は、無線通信機能を有するデバイスを指し、通信ネットワーク内のネットワークリソースのリモートユーザを表すことができる。「ユーザ機器」又は「UE」という用語は、クライアント、モバイル、モバイルデバイス、モバイル端末、ユーザ端末、モバイルユニット、モバイルステーション、モバイルユーザ、加入者、ユーザ、リモートステーション、アクセスエージェント、ユーザエージェント、受信機、無線機器、再構成可能無線機器、再構成可能モバイルデバイスなどと同義であると考えられてもよく、これらで呼ばれてもよい。更に、「ユーザ機器」又は「UE」という用語は、任意のタイプの無線/有線デバイス又は無線通信インタフェースを含む任意のコンピューティングデバイスを含んでもよい。
本明細書で使用される「ネットワーク要素」という用語は、有線又は無線通信ネットワークサービスを提供するために使用される物理的又は仮想化された機器及び/又はインフラストラクチャを指す。「ネットワーク要素」という用語は、ネットワーク化されたコンピュータ、ネットワーク化されたハードウェア、ネットワーク機器、ネットワークノード、ルータ、スイッチ、ハブ、ブリッジ、無線ネットワークコントローラ、RANデバイス、RANノード、ゲートウェイ、サーバ、仮想化されたVNF、NFVIなどと同義であると考えられてもよく、及び/又はそれらと呼ばれてもよい。
本明細書で使用するとき、用語「コンピュータシステム」は、任意のタイプの相互接続された電子デバイス、コンピュータデバイス、又はそれらの構成要素を指す。更に、「コンピュータシステム」及び/又は「システム」という用語は、互いに通信可能に結合されたコンピュータの様々な構成要素を指すことができる。更に、「コンピュータシステム」及び/又は「システム」という用語は、互いに通信可能に結合され、コンピューティングリソース及び/又はネットワーキングリソースを共有するように構成された複数のコンピュータデバイス及び/又は複数のコンピューティングシステムを指すことができる。
本明細書で使用される「機器」、「コンピュータ機器」などの用語は、特定のコンピューティングリソースを提供するように特に設計されたプログラムコード(例えば、ソフトウェア又はファームウェア)を有するコンピュータデバイス又はコンピュータシステムを指す。「仮想機器」は、コンピュータ機器を仮想化又はエミュレートする、又は特定のコンピューティングリソースを提供するために専用のハイパーバイザを備えたデバイスによって実装される仮想マシンイメージである。
本明細書で使用される「リソース」という用語は、コンピュータデバイス、機械的デバイス、メモリ空間、プロセッサ/CPU時間、プロセッサ/CPU使用量、プロセッサ及びアクセラレータ負荷、ハードウェア時間又は使用量、電力、入出力動作、ポート又はネットワークソケット、チャネル/リンク割り当て、スループット、メモリ使用量、ストレージ、ネットワーク、データベース及びアプリケーション、ワークロードユニットなどの、物理又は仮想デバイス、コンピューティング環境内の物理又は仮想コンポーネント、及び/又は特定のデバイス内の物理又は仮想コンポーネントを指す。「ハードウェアリソース」は、物理ハードウェア要素によって提供される計算、記憶、及び/又はネットワークリソースを指すことができる。「仮想化リソース」は、仮想化インフラストラクチャによってアプリケーション、デバイス、システムなどに提供される計算、ストレージ、及び/又はネットワークリソースを指すことができる。「ネットワークリソース」又は「通信リソース」という用語は、通信ネットワークを介してコンピュータデバイス/システムによってアクセス可能なリソースを指すことができる。「システムリソース」という用語は、サービスを提供するための任意の種類の共有エンティティを指すことができ、コンピューティングリソース及び/又はネットワークリソースを含むことができる。システムリソースは、そのようなシステムリソースが単一のホスト又は複数のホスト上に存在し、明確に識別可能であるサーバを介してアクセス可能な、コヒーレント機能、ネットワーク・データ・オブジェクト又はサービスのセットと考えることができる。
本明細書で使用される場合、用語「チャネル」は、データ又はデータストリームを通信するために使用される有形又は非有形のいずれかの伝送媒体を指す。「チャネル」という用語は、「通信チャネル」、「データ通信チャネル」、「伝送チャネル」、「データ伝送チャネル」、「アクセスチャネル」、「データアクセスチャネル」、「リンク」、「データリンク」、「キャリア」、「高周波キャリア」、及び/又はデータが通信される経路又は媒体を示す任意の他の同様の用語と同義及び/又は同等であり得る。更に、本明細書で使用される場合、用語「リンク」は、情報を送受信する目的で、RATを介した2つのデバイス間の接続を指す。
本明細書で使用される「インスタンス化する」、「インスタンス化」などの用語は、インスタンスの作成を指す。「インスタンス」はまた、例えばプログラムコードの実行中に発生し得るオブジェクトの具体的なの発生を指す。
「結合された(coupled)」、「通信可能に結合された(communicatively coupled)」という用語は、その派生語と共に本明細書で使用される。用語「結合された」は、2つ以上の要素が互いに直接物理的又は電気的に接触していることを意味することができ、2つ以上の要素が互いに間接的に接触しつつ、互いに連携若しくは相互作用することを意味することができ、かつ/又は、互いに結合されていると言われる要素の間に1つ以上の他の要素が結合又は接続されていることを意味することができる。用語「直接結合された」は、2つ以上の要素が互いに直接接触していることを意味し得る。「通信可能に結合された」という用語は、2つ以上の要素が、有線又は他の相互接続を介して、無線通信チャネル又はインクを介して、及び/又は同様のものを含む通信手段によって互いに接触することができることを意味することができる。
「情報要素」という用語は、1つ以上のフィールドを含む構造要素を指す。「フィールド」という用語は、情報要素、又はコンテンツを含むデータ要素の個々のコンテンツを指す。
「SMTC」という用語は、SSB-MeasurementTimingConfigurationによって構成されたSSBベースの測定タイミング構成を指す。
「SSB」という用語は、SS/PBCHブロックを指す。
「プライマリセル」という用語は、プライマリ周波数で動作するMCGセルを指し、UEは、初期接続確立手順を実行するか、又は接続再確立手順を開始する。
「プライマリSCGセル」とは、DC動作用の同期手順を用いて再構成を行う際に、UEがランダムアクセスを行うSCGセルを指す。
「セカンダリセル」という用語は、CAで構成されたUEのための専用セルの上に追加の無線リソースを提供するセルを指す。
「セカンダリセルグループ」という用語は、DCで構成されたUEのためのPSCell及び0個以上のセカンダリセルを含むサービングセルのサブセットを指す。
「サービングセル」という用語は、CA/DCで構成されていないRRC_CONNECTEDにおけるUEのためのプライマリセルを指し、プライマリセルから構成されるサービングセルは1つのみである。
「サービングセル」という用語は、特殊セルと、CA/で構成されたRRC_CONNECTEDにおけるUE用の全てのセカンダリセルとを含むセルのセットを指す。
「専用セル」という用語は、DC動作のためのMCGのPCell又はSCGのPSCellを指す。そうでない場合、「特殊セル」という用語はPセルを指す。
特許請求の範囲を解釈するために使用されることが意図されているのは、概要及び要約のセクションではなく、発明を実施するための形態のセクションであることを理解されたい。「発明の概要」の部分及び「要約書」の部分は、発明者が考えている、本発明の全てではないが、1つ以上の本発明の例示的な実施形態を明らかにすることができ、したがって、本発明及び添付の特許請求の範囲を多少なりとも制限することを意図してはいない。
特定の機能の実装及びそれらの関係を示す機能的構成ブロックの助けを借りて、本明細書で実施形態を説明してきた。これらの機能的構成ブロックの境界は、説明の便宜上、本明細書において任意に画定されている。特定の機能及び関係(又はそれらの均等物)が適切に実行される限り、代替の境界を画定することができる。
特定の実施形態の上述の説明は本発明の一般的特質を十分に明らかにするであろうから、他者は、当業分野の技術範囲内の知識を適用することによって、必要以上の実験を行うことなく、本発明の一般概念から逸脱することなく、こうした特定の実施形態を種々の用途のために容易に変更及び/又は適合させることができる。したがって、このような適合及び変更は、本明細書に提示されている教示及び手引きに基づき、開示されている実施形態の均等物の趣旨及び範囲内に入ることが意図されている。本明細書における表現又は用語は説明の目的のためのものであって、限定の目的のためのものではなく、そのため、本明細書の用語又は表現は、当業者によって教示及び説明を考慮して、解釈されるべきであることを理解されたい。

Claims (20)

  1. 命令を備えた1つ以上のコンピュータ可読媒体(CRM)であって、前記命令が、基地局の1つ以上のプロセッサによる前記命令の実行時に、前記基地局に、
    位相シフト補償ための位相追跡基準信号(PT-RS)を生成させ、
    キャリア周波数を含む単一キャリアベースの波形を使用して、物理ダウンリンク共有チャネル(PDSCH)を介して前記PT-RSを送信させる、1つ以上のコンピュータ可読媒体(CRM)。
  2. 前記単一キャリアベースの波形が、離散フーリエ変換拡散直交周波数分割多重化(DFT-s-OFDM)であり、前記キャリア周波数が52.6GHzを超える、請求項1に記載のCRM。
  3. 前記1つ以上のプロセッサによる実行時に、前記基地局に、前記PDSCHをスケジューリングする無線ネットワーク一時識別子(RNTI)に応答して前記PT-RSを決定させる命令を更に備える、請求項2に記載のCRM。
  4. 前記PT-RSは、前記PDSCHがセルRNTI、回線交換RNTI、又は変調符号化方式RNTIを有する物理ダウンリンク制御チャネル(PDCCH)によってスケジューリングされ、前記PDCCHのフォーマットがフォールバックダウンリンク制御情報(DCI)フォーマットであるときの時間及び周波数におけるデフォルトのPT-RSパターンに基づく、請求項3に記載のCRM。
  5. 前記PT-RSが、グループベースのPT-RSパターンに関連付けられ、各グループは、前記DFT-s-OFDMに関連するDFT演算の前に時間領域においてK個の連続するサンプルを占有する、請求項3に記載のCRM。
  6. 実行時に、前記基地局に、
    複数の送受信ポイント(マルチTRP)又は複数のパネル動作中に前記PT-RSを送信するための直交カバーコード(OCC)を適用させる命令を更に備え、前記OCCは、複数の復調基準信号(DMRS)アンテナポートに基づく、請求項5に記載のCRM。
  7. Kが、DMRSアンテナポートの数に等しい、請求項6に記載のCRM。
  8. 前記単一キャリアベースの波形が、周波数領域等化器(SC-FDE)を有する単一キャリアであり、前記キャリア周波数が52.6GHzを超える、請求項1に記載のCRM。
  9. 前記PT-RSが、スロット、スロットインデックス、及び物理セルIDのブロックの数に基づいて生成される、請求項8に記載のCRM。
  10. 前記PT-RSが、データブロックに関連付けられたガード間隔(GI)に基づく、請求項8に記載のCRM。
  11. 実行時に、前記基地局に、
    複数の情報ビットを符号化させ、
    符号化後、前記複数の情報ビットを第1の部分及び第2の部分に分割させ、
    前記第1の部分をPT-RSサンプルに変調及びマッピングさせ、
    前記第2の部分をデータサンプルに変調及びマッピングさせる命令を更に備える、請求項8に記載のCRM。
  12. 実行時に、前記基地局に、
    複数の情報ビットを第1の部分及び第2の部分に分割させ、
    分割後、前記第1の部分及び前記第2の部分を、異なる符号化方式を用いて符号化させ、
    前記第1の部分をPT-RSサンプルに変調及びマッピングさせ、
    前記第2の部分をデータサンプルに変調及びマッピングさせる命令を更に備える、請求項8に記載のCRM。
  13. 前記PT-RSが、密度を含むパターンに基づいており、前記パターンの密度は帯域幅部分(BWP)の帯域幅に基づく、請求項8に記載のCRM。
  14. 前記PT-RSが、1つのデータブロック内に一様に分布したグループに関連する、請求項8に記載のCRM。
  15. 前記PT-RSが複数のグループに関連付けられ、前記複数のグループのうちの少なくとも1つが、無線ネットワーク一時的識別子に基づく開始位置を含む、請求項8に記載のCRM。
  16. ユーザ機器(UE)を動作させる方法であって、前記方法は、
    位相シフト補償のための位相追跡基準信号(PT-RS)を生成することと、
    周波数領域等化器(SC-FDE)を有する単一キャリアを使用して、物理アップリンク共有チャネル(PUSCH)を通じて前記PT-RSを送信することと、を含む、ユーザ機器(UE)を動作させる方法。
  17. 複数の情報ビットを第1の部分及び第2の部分に分割することと、
    分割後、前記第1の部分及び前記第2の部分を、異なる符号化方式を用いて符号化することと、
    前記第1の部分をPT-RSサンプルに変調及びマッピングすることと、
    前記第2の部分をデータサンプルに変調及びマッピングすることと、を含む、請求項16に記載の方法。
  18. 前記PT-RSが、1つのデータブロック内に一様に分布したグループと関連付けられる、請求項17に記載の方法。
  19. ユーザ機器(UE)の装置であって、
    位相シフト補償のための位相追跡基準信号(PT-RS)を生成するように構成されたプロセッサ回路と、
    キャリア周波数を含む単一キャリアベースの波形を使用して、物理アップリンク共有チャネル(PUSCH)を通じて前記PT-RSを送信するように構成された無線周波数フロントエンド回路と、を備える、ユーザ機器(UE)の装置。
  20. 前記プロセッサ回路が、更に、
    複数の情報ビットを第1の部分及び第2の部分に分割し、
    分割後、前記第1の部分及び前記第2の部分を、異なる符号化方式を用いて符号化し、
    前記第1の部分をPT-RSサンプルに変調及びマッピングし、
    前記第2の部分をデータサンプルに変調及びマッピングするように構成されている、請求項19に記載の装置。
JP2021539628A 2019-01-07 2020-01-06 単一キャリア波形の位相追跡基準信号設計 Active JP7200386B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962789282P 2019-01-07 2019-01-07
US62/789,282 2019-01-07
PCT/US2020/012401 WO2020146275A1 (en) 2019-01-07 2020-01-06 Phase tracking reference signal design for single carrier waveform

Publications (2)

Publication Number Publication Date
JP2022517936A true JP2022517936A (ja) 2022-03-11
JP7200386B2 JP7200386B2 (ja) 2023-01-06

Family

ID=69374434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021539628A Active JP7200386B2 (ja) 2019-01-07 2020-01-06 単一キャリア波形の位相追跡基準信号設計

Country Status (4)

Country Link
US (1) US20220094496A1 (ja)
JP (1) JP7200386B2 (ja)
CN (1) CN113366790A (ja)
WO (1) WO2020146275A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210329582A1 (en) * 2020-04-17 2021-10-21 Qualcomm Incorporated Phase tracking reference signal pattern selection
US11632210B2 (en) * 2020-05-08 2023-04-18 Qualcomm Incorporated Enhanced phase tracking reference signal
US20210367726A1 (en) * 2020-05-19 2021-11-25 Qualcomm Incorporated Amplitude modulated phase tracking reference signals
US20210376978A1 (en) * 2020-06-02 2021-12-02 Qualcomm Incorporated Amplitude-modulated phase tracking reference signals for a multilayer communication link
US11909682B2 (en) * 2020-09-08 2024-02-20 Qualcomm Incorporated Single carrier waveforms for phase tracking reference signals
US12009962B2 (en) * 2020-10-06 2024-06-11 Qualcomm Incorporated Changing the phase tracking reference signal (PTRS) pattern over different symbols
WO2022155082A1 (en) * 2021-01-15 2022-07-21 Intel Corporation Data transmission with interleaved mapping for high carrier frequency
EP4080809A3 (en) * 2021-04-23 2023-03-22 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving reference signal in wireless communication system
CN116938661A (zh) * 2022-04-11 2023-10-24 华为技术有限公司 一种信号传输方法及装置
WO2023216085A1 (en) * 2022-05-10 2023-11-16 Nokia Shanghai Bell Co., Ltd. Phase compensation for channel state information

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018064313A1 (en) * 2016-09-28 2018-04-05 Idac Holdings, Inc. Reference signal design for wireless communication systems
WO2018225936A1 (ko) * 2017-06-09 2018-12-13 엘지전자(주) 무선 통신 시스템에서 참조 신호를 송수신하기 위한 방법 및 이를 위한 장치
WO2019099535A1 (en) * 2017-11-15 2019-05-23 Idac Holdings, Inc. Phase tracking reference signal transmission

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108632005B (zh) * 2017-03-24 2023-12-15 华为技术有限公司 一种参考信号传输方法、装置及系统
WO2018227209A1 (en) * 2017-06-09 2018-12-13 Intel IP Corporation System and method for phase tracking reference signal (pt-rs) multiplexing
US11432369B2 (en) * 2018-06-19 2022-08-30 Apple Inc. Reference signal and control information processing in 5G-NR wireless systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018064313A1 (en) * 2016-09-28 2018-04-05 Idac Holdings, Inc. Reference signal design for wireless communication systems
WO2018225936A1 (ko) * 2017-06-09 2018-12-13 엘지전자(주) 무선 통신 시스템에서 참조 신호를 송수신하기 위한 방법 및 이를 위한 장치
WO2019099535A1 (en) * 2017-11-15 2019-05-23 Idac Holdings, Inc. Phase tracking reference signal transmission

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Feature lead summary 1 of PT-RS[online]", 3GPP TSG RAN WG1 #93 R1-1807658, JPN6022032280, 24 May 2018 (2018-05-24), ISSN: 0004842403 *
INTERDIGITAL INC.: "Discussion on Potential Waveform Solutions for NR Unlicensed[online]", 3GPP TSG RAN WG1 #93 R1-1807040, JPN6022032282, 12 May 2018 (2018-05-12), ISSN: 0004842404 *

Also Published As

Publication number Publication date
US20220094496A1 (en) 2022-03-24
WO2020146275A1 (en) 2020-07-16
CN113366790A (zh) 2021-09-07
JP7200386B2 (ja) 2023-01-06

Similar Documents

Publication Publication Date Title
JP2022519564A (ja) 3gppシステムにおける識別及び動作のためのuasサービスの有効化
JP2022517942A (ja) 非ライセンススペクトルで動作するnrシステムにおけるcbgベースの再送信のためのカテゴリ4のlbtの競合ウィンドウサイズ更新
JP7200386B2 (ja) 単一キャリア波形の位相追跡基準信号設計
JP2022521702A (ja) 新無線(nr)におけるue内多重化のためのシステム及び方法
CN113228563A (zh) 用于阈值监测的方法和系统
JP2022519497A (ja) 無線アクセスネットワーク内の5G New Radio(NR)アクセスネットワークを用いてWI FIアクセスネットワークを収斂させる機構
JP2022519565A (ja) クロスリンク干渉(cli)測定報告
JP2022514840A (ja) ビームフォーミング情報を用いて高速モビリティを可能にする方法
CN113243132A (zh) 用于同时支持nr v2x侧链路的资源选择模式和配置机制的方法
CN113261341A (zh) 5g系统中3gpp和非3gpp接入的处理
JP2022517012A (ja) 2ステップrachのためのフォールバック手順
JP2022520580A (ja) 放射及びパネル認識ビーム選択
JP2022517938A (ja) 基準信号を介してリモート干渉管理情報を伝達する方法
JP2022521213A (ja) ハンドオーバ割り込みを低減するためのシステム及び方法
CN113678527A (zh) 同时支持nr v2x侧链路的调度资源选择模式和ue自主资源选择模式并且在它们之间切换的方法
JP2022520365A (ja) Cli-rssi測定リソース構成
CN113273285A (zh) 用于ue辅助反馈的信令机制的系统和方法
JP7369194B2 (ja) 異なるニューメロロジーを有するクロスキャリアスケジューリング
JP2022522201A (ja) パケットデータ統合プロトコル(Packet Data Convergence Protocol(PDCP))における情報指向ネットワーク名の圧縮及び展開のための方法及びシステム
US20220166580A1 (en) On the frame structure design for single carrier waveform
CN113424559A (zh) 下一代(ng)无线电接入网络(ran)中的位置服务(lcs)客户端
JP2022526945A (ja) 無認可動作を伴う新無線(nr)のための2ステップrach
JP2022520376A (ja) 2ステップランダムアクセス手順においてメッセージング用のmacフォーマットを生成するための装置及び方法
JP2022520581A (ja) サウンディング基準信号(srs)リソースを提供するユーザ機器を動的に構成するためのシステム及び方法
CN113424462A (zh) 新无线电(nr)中的辅小区波束故障恢复操作

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221221

R150 Certificate of patent or registration of utility model

Ref document number: 7200386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150