JP2022517123A - Surface modification method for high nickel ternary positive electrode material - Google Patents

Surface modification method for high nickel ternary positive electrode material Download PDF

Info

Publication number
JP2022517123A
JP2022517123A JP2021540849A JP2021540849A JP2022517123A JP 2022517123 A JP2022517123 A JP 2022517123A JP 2021540849 A JP2021540849 A JP 2021540849A JP 2021540849 A JP2021540849 A JP 2021540849A JP 2022517123 A JP2022517123 A JP 2022517123A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode material
ternary positive
high nickel
nickel ternary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021540849A
Other languages
Japanese (ja)
Other versions
JP7236631B2 (en
Inventor
▲陽▼ 夏
安▲チー▼ 陳
坤 王
文魁 張
海軍 呉
輝 黄
秦▲鐘▼ 毛
同棕 吉
永平 甘
俊 張
初 梁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Hitrans Lithium Battery Technology Co Ltd
Original Assignee
Zhejiang Meidu Hitrans Lithium Battery Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Meidu Hitrans Lithium Battery Technology Co Ltd filed Critical Zhejiang Meidu Hitrans Lithium Battery Technology Co Ltd
Publication of JP2022517123A publication Critical patent/JP2022517123A/en
Application granted granted Critical
Publication of JP7236631B2 publication Critical patent/JP7236631B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明は高ニッケル三元正極材料の表面改質方法を提供し、高ニッケル三元正極材料をプラズマ発生器に入れて、二酸化炭素ガスをアークガスとして用いて、二酸化炭素プラズマ雰囲気において三元正極材料を表面処理し、その表面で1層の炭酸リチウム及び炭素の被覆層をその場で構築することができ、それにより活性物質と電解液との直接接触を効果的に阻止して、その表界面の電子伝導率を向上させることができるだけでなく、湿った空気で長時間露出した後の化学的安定性を大幅に改善することもでき、材料の構造安定性及び後加工性の向上に役立つ。該方法で表面処理された三元正極材料は、表面が粗く(根状)、その加工性能、サイクル安定性、容量保持率及び倍率性能がいずれも著しく改善される。該表面処理方法は、プロセスが簡単で、操作しやすく、迅速で効率が高く、コストが低く、経済的利益が顕著であるという特徴を有する。【選択図】図1The present invention provides a method for surface modification of a high nickel ternary positive electrode material, in which a high nickel ternary positive electrode material is placed in a plasma generator and carbon dioxide gas is used as an arc gas, and the ternary positive electrode material is used in a carbon dioxide plasma atmosphere. Can be surface-treated and a single layer of lithium carbonate and carbon coating can be constructed in situ on its surface, thereby effectively blocking direct contact between the active material and the electrolyte and its surface interface. Not only can the electron conductivity of carbon dioxide be improved, but also the chemical stability after long-term exposure to moist air can be significantly improved, which helps to improve the structural stability and post-workability of the material. The surface of the ternary positive electrode material surface-treated by this method is rough (root-like), and the processing performance, cycle stability, capacity retention rate, and magnification performance are all significantly improved. The surface treatment method is characterized by a simple process, easy operation, rapid speed, high efficiency, low cost, and remarkable economic benefits. [Selection diagram] Fig. 1

Description

本発明は高ニッケル三元正極材料の表面改質方法に関し、リチウムイオン電池正極材料の技術分野に属する。 The present invention relates to a method for surface modification of a high nickel ternary positive electrode material, and belongs to the technical field of a lithium ion battery positive electrode material.

リチウムイオン電池は携帯型電子機器、家庭用電器及び電動工具に広く使用されていた。ところが、電気自動車分野における応用はまだ不十分な状態であり、その理由は主に、リチウムイオン電池のコストが高いため、電気自動車のコストが高くなり、比エネルギー密度がユーザーの使用要件を満たすことができず、電気自動車の発展を制限するためである。現在、リチウムイオン電池のコスト及びエネルギー密度はほとんど正極材料の性能によって決められ、該正極材料は最も重く、最も高価なコンポーネントである。高ニッケル三元正極材料は質量比容量が高く、価格が低いという利点を有するため、次世代リチウムイオン電池の正極材料として見なされて、広く注目されている。ところが、高ニッケル正極材料は空気中の水に非常に敏感であり、空気中の湿気と反応して表面に水酸化リチウムを生成することが非常に容易であり、これにより、材料の表面が変質して、正極スラリーの後続製造が困難であり、正極容量が減衰し、サイクル安定性が低くなるなどの多くの問題を引き起こしてしまう。従って、表面処理されていない高ニッケル正極材料は保存条件及び後加工環境に対してより厳しい要件を有し、材料の保存コストを増加するだけでなく、材料の後続加工難度も増加してしまう。上記問題を解決するために、研究者は一般的に不活性酸化物による被覆方法を用いて高ニッケル三元正極材料の表面改質及び修飾を行い、それにより構造安定性及びサイクル安定性を向上させる。 Lithium-ion batteries have been widely used in portable electronic devices, household appliances and power tools. However, its application in the field of electric vehicles is still inadequate, mainly because the cost of lithium-ion batteries is high, so the cost of electric vehicles is high and the specific energy density meets the user's usage requirements. This is to limit the development of electric vehicles. Currently, the cost and energy density of lithium-ion batteries are largely determined by the performance of the positive electrode material, which is the heaviest and most expensive component. Since the high nickel ternary positive electrode material has the advantages of high mass ratio capacity and low price, it is regarded as a positive electrode material for next-generation lithium-ion batteries and is widely attracting attention. However, the high nickel positive electrode material is very sensitive to water in the air, and it is very easy to react with the moisture in the air to generate lithium hydroxide on the surface, which deteriorates the surface of the material. As a result, subsequent production of the positive electrode slurry is difficult, and the positive electrode capacity is attenuated, causing many problems such as low cycle stability. Therefore, the unsurface-treated high nickel positive electrode material has more stringent requirements for storage conditions and post-processing environment, which not only increases the storage cost of the material but also increases the difficulty of subsequent processing of the material. To solve the above problems, researchers generally use a coating method with an inert oxide to surface modify and modify the high nickel ternary positive electrode material, thereby improving structural stability and cycle stability. Let me.

中国特許第CN106207128A号にはZr(OH)で被覆されたニッケル-コバルト-アルミニウム三元正極材料の調製方法が開示されており、可溶性ジルコニウムアルコキシドのアルコール溶液を調製するステップ(1)と、アルコール-水溶液を調製して、ステップ(1)において調製された溶液にゆっくりと滴加するステップ(2)と、超音波、洗浄、吸引ろ過、乾燥により、アモルファスZr(OH)粉末を得るステップ(3)と、三元材料及びZr(OH)粉末をボールミリングして混合して、Zr(OH)で被覆された改質後の三元正極材料を得るステップ(4)と、を含む。 Chinese Patent No. CN106207128A discloses a method for preparing a nickel-cobalt-aluminum ternary positive electrode material coated with Zr (OH) 4 , which comprises the step (1) of preparing an alcohol solution of soluble zirconium alkoxide and alcohol. -A step (2) of preparing an aqueous solution and slowly adding it to the solution prepared in step (1), and a step of obtaining amorphous Zr (OH) 4 powder by ultrasonic waves, washing, suction filtration, and drying (1). 3) and the step (4) of ball-milling and mixing the ternary material and the Zr (OH) 4 powder to obtain a modified ternary positive electrode material coated with Zr (OH) 4 . ..

中国特許第CN103178258A号にはアルミナで被覆された改質ニッケル-コバルト-マンガン三元正極材料の調製方法が開示されており、前駆体を調製し、即ち、水溶性金属ニッケル塩、コバルト塩及びマンガン塩を混合溶液に配合して、沈殿剤、形態制御剤とともに反応容器内に滴加してシステムのpH値及び反応温度を制御し、反応した後、ろ過、洗浄及び真空乾燥を経て、前駆体を得るステップ(1)と、アルミナで被覆された前駆体を調製し、即ち、前駆体、水溶性アルミニウム塩及び均一分散剤を脱イオン水に分散して、攪拌しながら均一分散剤が加水分解するまで温度を上昇し、ろ過して、Al(OH)で被覆された前駆体を得て、焼結炉に入れて焙焼して、Alで被覆された前駆体粉末を得るステップ(2)と、Alで被覆された前駆体粉末とリチウム塩粉末を均一に混合して、高温で仮焼して、層状結晶構造のアルミナで被覆された改質ニッケル-コバルト-マンガン三元正極材料を得るステップ(3)と、を含む。 Chinese Patent No. CN103178258A discloses a method for preparing a modified nickel-cobalt-manganese ternary positive electrode material coated with alumina, and prepares a precursor, that is, a water-soluble metal nickel salt, a cobalt salt and a manganese. The salt is added to the mixed solution and added dropwise into the reaction vessel together with the precipitating agent and morphological control agent to control the pH value and reaction temperature of the system. After the reaction, the precursor is filtered, washed and vacuum dried. In step (1) to obtain the above step (1), a precursor coated with alumina is prepared, that is, the precursor, a water-soluble aluminum salt and a homodisperse are dispersed in deionized water, and the homodisperse is hydrolyzed with stirring. The temperature is raised until the temperature is increased, and the mixture is filtered to obtain a precursor coated with Al (OH) 3 , which is then placed in a sintering furnace and roasted to obtain a precursor powder coated with Al 2 O 3 . Step (2), the precursor powder coated with Al 2 O 3 and the lithium salt powder are uniformly mixed, calcined at a high temperature, and modified nickel-cobalt-coated with alumina having a layered crystalline structure. The step (3) for obtaining a manganese ternary positive electrode material is included.

以上のように、高ニッケル正極材料の表面被覆改質方法は現在、主に固相及び液相被覆焼結の2つがある。固相被覆焼結法で得られた被覆層は均一性が比較的低く、被覆層とマトリックスとの結合力が比較的弱く、サイクル過程において正極材料の異方性体積膨張により被覆層が破裂し、続いて材料が悪化して、材料のサイクル性能に影響を及ぼす。液相法は水を溶剤として用いる場合が多いが、水が高ニッケル三元正極材料と反応して、リチウムの損失を引き起こし、最終的に材料の容量が低下してしまう。固相の表面の被覆均一性が比較的悪く、液相の被覆による容量損失という問題に対して、本発明はプラズマ表面改質処理方法を提供し、高ニッケル三元正極材料の表面において気固相反応方法で1層の炭酸リチウム及び炭素被覆層をその場で構築し、それにより活性物質と電解液との直接接触を効果的に阻止して、その表界面の電子伝導率を向上させることができるだけでなく、湿った空気で長時間露出した後の化学的安定性を大幅に改善することもでき、材料の構造安定性及び後加工性の向上に役立つ。従来の被覆方法と比べて、該方法は簡単で行いやすく、迅速で効率が高く、コストが低いという利点を有する。 As described above, there are currently two main methods for modifying the surface coating of high nickel positive electrode materials: solid phase and liquid phase coating sintering. The coating layer obtained by the solid-phase coating sintering method has relatively low uniformity, the bonding force between the coating layer and the matrix is relatively weak, and the coating layer bursts due to the anisotropic volume expansion of the positive electrode material during the cycle process. Subsequently, the material deteriorates, affecting the cycle performance of the material. In the liquid phase method, water is often used as a solvent, but the water reacts with the high nickel ternary positive electrode material, causing the loss of lithium, and finally the capacity of the material decreases. The present invention provides a plasma surface modification treatment method for the problem that the coating uniformity of the surface of the solid phase is relatively poor and the capacity loss due to the coating of the liquid phase is solved. A phase reaction method is used to construct a single layer of lithium carbonate and carbon coating in-situ, thereby effectively blocking direct contact between the active material and the electrolyte and improving the electron conductivity of its surface interface. Not only that, but also the chemical stability after long-term exposure to moist air can be significantly improved, which helps to improve the structural stability and post-workability of the material. Compared with the conventional coating method, the method has advantages that it is simple and easy to carry out, is quick and efficient, and is low in cost.

従来技術の欠点を解決するために、本発明は高ニッケル三元正極材料の表面改質方法を提供する。 In order to solve the shortcomings of the prior art, the present invention provides a surface modification method for a high nickel ternary positive electrode material.

本発明がその技術的課題を解決するために用いられる技術案は以下のとおりである。 The technical proposals used by the present invention to solve the technical problems are as follows.

高ニッケル三元正極材料の表面改質方法であって、
高ニッケル三元正極材料を容器内に展開し、プラズマ発生器のチャンバーに入れ、真空ポンプを起動して、プラズマ発生器のチャンバーを真空に引くステップS1と、
乾燥されたアークガスをチャンバーに入れて、チャンバーのガス圧を500~700Paに維持させ、20~60s保持して、アークガスを抽出して、チャンバーの真空度を40~50Paに保持させるステップS2と、
プラズマ発生器を起動して、電力を調整し、0.5~120分間反応した後、表面改質された高ニッケル三元正極材料を得ることができるステップS3と、を含む。
It is a surface modification method for high nickel ternary positive electrode materials.
Step S1 in which the high nickel ternary positive electrode material is developed in a container, placed in the plasma generator chamber, the vacuum pump is started, and the plasma generator chamber is evacuated.
Step S2 in which the dried arc gas is put into the chamber, the gas pressure in the chamber is maintained at 500 to 700 Pa, the chamber gas pressure is maintained for 20 to 60 s, the arc gas is extracted, and the vacuum degree of the chamber is maintained at 40 to 50 Pa.
Includes step S3, which is capable of activating the plasma generator, adjusting the power, reacting for 0.5-120 minutes, and then obtaining a surface-modified high nickel ternary positive electrode material.

好適として、ステップS1において、前記高ニッケル三元正極材料の化学式はLiNi(1-x-y)Coであり、ここで、x+y≦0.7であり、MがMn又はAlである。 Preferably, in step S1, the chemical formula of the high nickel ternary positive electrode material is LiNi (1-xy) CoxMyO2 , where x + y ≦ 0.7, where M is Mn or Al. Is.

好適には、前記高ニッケル三元正極材料の化学式は、LiNi0.9Co0.05Mn0.05、LiNi0.8Co0.1Mn0.1、LiNi0.6Co0.2Mn0.2、LiNi0.85Co0.1Al0.05又はLiNi0.5Co0.2Mn0.3である。 Preferably, the chemical formula of the high nickel ternary positive electrode material is LiNi 0.9 Co 0.05 Mn 0.05 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.6 Co. 0.2 Mn 0.2 O 2 , LiNi 0.85 Co 0.1 Al 0.05 O 2 or LiNi 0.5 Co 0.2 Mn 0.3 O 2 .

好適には、前記アークガスは二酸化炭素である。 Preferably, the arc gas is carbon dioxide.

好適には、ステップS1において、高ニッケル三元正極材料の展開厚さは0.3mm~10mmである。 Preferably, in step S1, the developed thickness of the high nickel ternary positive electrode material is 0.3 mm to 10 mm.

好適には、ステップS3において、プラズマ発生器の電力は5~2000Wである。 Preferably, in step S3, the power of the plasma generator is 5 to 2000 W.

本願は更にリチウムイオン電池を提供し、前記リチウムイオン電池の正極材料は本願に記載の方法で調製された表面改質された高ニッケル三元正極材料である。 The present application further provides a lithium ion battery, and the positive electrode material of the lithium ion battery is a surface-modified high nickel ternary positive electrode material prepared by the method described in the present application.

本発明の有益な効果は以下のとおりである。 The beneficial effects of the present invention are as follows.

プラズマ表面処理を用いれば、高ニッケル三元正極材料の表面において1層の炭酸リチウム及び炭素の複合被覆層を構築することができ、炭酸リチウムは電気化学的不活性物質であり、高ニッケル三元正極材料と空気中の水蒸気を分離させることができ、水蒸気と反応して水酸化リチウムを生成して、その表界面構造を破壊することを回避し、それにより後続の電極シート生産過程における加工性を改善する。それと同時に、被覆層に存在する少量の炭素は高ニッケル三元正極材料の表界面の電子伝導率を向上させることができ、電池のサイクル及び倍率性能の向上に役立つ。該方法は、プロセスが簡単で、処理しやすく、迅速で効率が高く、経済的利益が顕著である。 Using plasma surface treatment, a single layer of lithium carbonate and carbon composite coating can be constructed on the surface of the high nickel ternary positive electrode material, lithium carbonate is an electrochemically inert substance and high nickel ternary. It is possible to separate the positive electrode material from the water vapor in the air, avoiding the reaction with the water vapor to generate lithium hydroxide and destroying its surface interface structure, thereby making it workable in the subsequent electrode sheet production process. To improve. At the same time, a small amount of carbon present in the coating layer can improve the electron conductivity at the surface interface of the high nickel ternary positive electrode material, which helps to improve the cycle and magnification performance of the battery. The method is simple in process, easy to process, fast and efficient, and has significant economic benefits.

実施例1において得られた改質三元正極材料のSEMクロマトグラムである。3 is an SEM chromatogram of the modified ternary positive electrode material obtained in Example 1. 実施例1において得られた改質三元正極材料のXRDクロマトグラムである。6 is an XRD chromatogram of the modified ternary positive electrode material obtained in Example 1. 実施例1において調製された電池の20mA/g電流密度での前3回の充放電曲線である。3 is a charge / discharge curve of the battery prepared in Example 1 three times before at a current density of 20 mA / g. 図4は実施例1において調製された電池がまず20mA/g電流密度で3サイクル活性化され、その後、100mA/g電流密度で200回のサイクルされた充放電サイクル曲線である。FIG. 4 is a charge / discharge cycle curve in which the battery prepared in Example 1 was first activated for 3 cycles at a current density of 20 mA / g and then cycled 200 times at a current density of 100 mA / g.

以下、図面を参照しながら実施例によって本発明の技術案を更に詳述する。 Hereinafter, the technical proposal of the present invention will be described in more detail by way of examples with reference to the drawings.

実施例1
高ニッケル三元正極材料を含む電池の製造
第1ステップ、表面改質された高ニッケル三元正極材料の調製
高ニッケル三元正極材料の表面改質方法であって、
2g三元正極LiNi0.83Co0.085Mn0.085材料を石英ボート内に展開し、展開厚さを0.5mmに制御し、プラズマ発生器に入れて、反応器のチャンバーを真空に引くステップS1と、
乾燥された二酸化炭素ガスを反応器のチャンバーに入れて、チャンバーのガス圧を550Paに維持させ、20s保持して、二酸化炭素ガスを抽出して、チャンバーの真空度を40Paに保持させるステップS2と、
プラズマ発生器を起動して、電力を18Wに調整し、10分間反応した後、表面改質された高ニッケル三元正極材料を得ることができるステップS3と、を含む。
Example 1
Manufacture of a battery containing a high nickel ternary positive electrode material First step, preparation of a surface-modified high nickel ternary positive electrode material This is a surface modification method for a high nickel ternary positive electrode material.
2 g ternary positive electrode LiNi 0.83 Co 0.085 Mn 0.085 O 2 The material is unfolded in a quartz boat, the unfolded thickness is controlled to 0.5 mm, and the reactor chamber is placed in a plasma generator. Step S1 to draw a vacuum and
Step S2 in which the dried carbon dioxide gas is put into the chamber of the reactor, the gas pressure in the chamber is maintained at 550 Pa, the gas pressure is maintained for 20 s, the carbon dioxide gas is extracted, and the vacuum degree of the chamber is maintained at 40 Pa. ,
Includes step S3, which is capable of activating a plasma generator, adjusting the power to 18 W, reacting for 10 minutes, and then obtaining a surface-modified high nickel ternary positive electrode material.

第2ステップ、電池の製造
S4において、質量比90:5:5で、得られた表面改質された高ニッケル三元正極材料、導電剤(アセチレンブラック)及びバインダー(ポリフッ化ビニリデン)を秤量して、均一に混合して、適量の1-メチル-2ピロリドン(NMP)を溶剤として加え、3h機械的攪拌して、一定の粘度を有するスラリーを得て、
S5において、ステップS4において得られたスラリーをきれいで平らなアルミ箔に均一に塗布し、塗布厚さを200μmとし、120℃の真空オーブンで12h乾燥し、乾燥後に直径15mmの極片に打ち抜かれ、18MPaの圧力で押し固め、正極極片として、使用に備え、
S6において、グローブボックスにおいて正極ケース、正極極片、セパレータ、電解液、リチウムシート、発泡ニッケル、電解液、負極ケースの順序でCR2025型ボタン電池に組み立て、セパレータの型番がCelgard 2300であり、電解液が1mol L-1LiPF/EC+DEC(体積比が1:1である)である。
In the second step, battery manufacturing S4, the obtained surface-modified high nickel ternary positive electrode material, conductive agent (acetylene black) and binder (polyvinylidene fluoride) were weighed at a mass ratio of 90: 5: 5. Then, the mixture was uniformly mixed, an appropriate amount of 1-methyl-2pyrrolidone (NMP) was added as a solvent, and the mixture was mechanically stirred for 3 hours to obtain a slurry having a constant viscosity.
In S5, the slurry obtained in step S4 is uniformly applied to a clean and flat aluminum foil, the coating thickness is set to 200 μm, the mixture is dried in a vacuum oven at 120 ° C. for 12 hours, and after drying, it is punched into a piece having a diameter of 15 mm. , Compacted with a pressure of 18 MPa, as a positive electrode piece, ready for use,
In S6, the CR2025 type button battery is assembled in the order of the positive electrode case, the positive electrode piece, the separator, the electrolytic solution, the lithium sheet, the electrolytic solution, and the negative electrode case in the glove box, and the model number of the separator is Celgard 2300, and the electrolytic solution. Is 1 mol L -1 LiPF 6 / EC + DEC (volume ratio is 1: 1).

第3ステップ、電気化学的性能のテスト
第2ステップにおいて調製された電池を12h放置した後、電気化学的性能をテストし、即ち、
一定の電流密度で電池に対して充放電テストを行い(前3回では電流密度20mA/gの電流で電池を活性化し、その後、電流密度100mA/gの電流で充放電サイクルを行う)、電圧区間を3~4.2Vとし、充放電の時間間隔を5minとする。調製された材料のリチウムイオン電池の性能については、
図1は本実施例のLiNi0.83Co0.085Mn0.085三元正極材料処理後のSEMクロマトグラムであり、クロマトグラムには二酸化炭素プラズマ処理後に材料の表面が粗くなるが、球状形態が変化しないことを示し、
図2は本実施例のLiNi0.83Co0.085Mn0.085三元正極材料処理後のXRDクロマトグラムであり、クロマトグラムには二酸化炭素プラズマ処理後に材料の層状構造が変化しないことを示し、
図3は本実施例の電池の20mA/g電流密度で、電圧区間3~4.2Vの前3回の充放電曲線であり、初回放電容量が194mA h/gであり、
図4は本実施例の電池がまず20mA/gの電流密度で3回活性化され、その後、100mA/gの電流密度でのサイクル性能図であり、200回サイクルされた後、放電容量が依然として158mA h/gであり、容量保持率が86.8%(4回目の充放電に対する)である。
Third step, electrochemical performance test After leaving the battery prepared in the second step for 12 hours, the electrochemical performance is tested, that is,
A charge / discharge test is performed on the battery at a constant current density (in the previous three times, the battery is activated with a current with a current density of 20 mA / g, and then a charge / discharge cycle is performed with a current with a current density of 100 mA / g). The interval is 3 to 4.2 V, and the charge / discharge time interval is 5 min. For the performance of lithium-ion batteries in the prepared materials,
FIG. 1 is an SEM chromatogram after the treatment of the LiNi 0.83 Co 0.085 Mn 0.085 O 2 ternary positive electrode material of this example, and the chromatogram shows that the surface of the material becomes rough after the carbon dioxide plasma treatment. , Showing that the spherical morphology does not change,
FIG. 2 shows an XRD chromatogram after treatment with the LiNi 0.83 Co 0.085 Mn 0.085 O 2 ternary positive electrode material of this example, and the chromatogram shows that the layered structure of the material does not change after the carbon dioxide plasma treatment. Show that
FIG. 3 shows a 20 mA / g current density of the battery of this embodiment, a charge / discharge curve of three times before the voltage section of 3 to 4.2 V, and an initial discharge capacity of 194 mA h / g.
FIG. 4 is a cycle performance diagram in which the battery of this embodiment is first activated three times at a current density of 20 mA / g and then at a current density of 100 mA / g, and after being cycled 200 times, the discharge capacity still remains. It is 158 mA h / g and has a capacity retention rate of 86.8% (for the fourth charge / discharge).

実施例2~5
実施例1における実験ステップに従って、表面処理時間を変更し、実施例2~5における表面処理時間はそれぞれ5min、20min、30min、60min(0minは対照群であり、即ち表面処理しない)であり、電池の組み立てステップは実施例1と同様であり、テストされた電池の電気化学的性能は表1に示される。
Examples 2-5
The surface treatment time was changed according to the experimental step in Example 1, and the surface treatment times in Examples 2 to 5 were 5 min, 20 min, 30 min, and 60 min, respectively (0 min is a control group, that is, no surface treatment), and the battery. The assembly steps of are similar to those of Example 1, and the electrochemical performance of the tested batteries is shown in Table 1.

Figure 2022517123000002
Figure 2022517123000002

表1から分かるように、プラズマ表面処理後の三元正極材料は初回放電容量がわずかに減衰するが、容量保持率が表面処理されていないサンプルの性能より優れ(しかし、長時間処理すべきではない)。プラズマ表面改質処理は材料のサイクル安定性を向上させることができることを表し、該処理方法は三元正極材料の後続の表面改質処理に新たな構想を提供する。 As can be seen from Table 1, the ternary positive electrode material after plasma surface treatment slightly attenuates the initial discharge capacity, but the capacity retention is superior to the performance of the unsurface-treated sample (but should be treated for a long time). do not have). The plasma surface modification treatment represents that the cycle stability of the material can be improved, and the treatment method provides a new concept for the subsequent surface modification treatment of the ternary positive electrode material.

実施例6~7
実施例1における実験ステップに従って、プラズマ発生器の電力を変更し、実施例6及び7におけるプラズマ発生器の電力はそれぞれ6.8W及び10.5Wであり、他の条件が変化しない場合、電池の組み立てステップは実施例1と同様であり、テストされた電池の電気化学的性能は表2に示される。
Examples 6-7
According to the experimental step in Example 1, the power of the plasma generator is changed, and the power of the plasma generator in Examples 6 and 7 is 6.8 W and 10.5 W, respectively, and if other conditions do not change, the battery The assembly steps are the same as in Example 1, and the electrochemical performance of the tested batteries is shown in Table 2.

Figure 2022517123000003
Figure 2022517123000003

表2から分かるように、プラズマ表面処理前と比べて、プラズマ表面処理後の高ニッケル三元正極材料は容量保持率及びサイクル安定性がいずれも向上する。プラズマ表面改質処理は材料のサイクル安定性を向上させることができることを表す。 As can be seen from Table 2, the high nickel ternary positive electrode material after the plasma surface treatment has both the capacity retention rate and the cycle stability improved as compared with those before the plasma surface treatment. It shows that the plasma surface modification treatment can improve the cycle stability of the material.

以上に記載された実施例は本発明の好適な解決手段にすぎず、本発明をいかなる形式で制限するものではない。特許請求の範囲に記載された技術案を逸脱せずに、他の変形や修正を行うことができる。 The examples described above are merely preferred solutions of the invention and do not limit the invention in any way. Other modifications and modifications can be made without departing from the technical proposal described in the claims.

Claims (7)

高ニッケル三元正極材料の表面改質方法であって、
高ニッケル三元正極材料を容器内に展開して、プラズマ発生器のチャンバーに入れ、真空ポンプを起動して、プラズマ発生器のチャンバーを真空に引くステップS1と、
乾燥されたアークガスをチャンバーに入れて、チャンバーのガス圧を500~700Paに維持させ、20~60s保持して、アークガスを抽出して、チャンバーの真空度を40~50Paに保持させるステップS2と、
プラズマ発生器を起動して、電力を調整し、0.5~120分間反応した後、表面改質された高ニッケル三元正極材料を得ることができるステップS3と、を含む、ことを特徴とする高ニッケル三元正極材料の表面改質方法。
It is a surface modification method for high nickel ternary positive electrode materials.
Step S1 in which the high nickel ternary positive electrode material is developed in a container, placed in the plasma generator chamber, the vacuum pump is started, and the plasma generator chamber is evacuated.
Step S2 in which the dried arc gas is put into the chamber, the gas pressure in the chamber is maintained at 500 to 700 Pa, the chamber gas pressure is maintained for 20 to 60 s, the arc gas is extracted, and the vacuum degree of the chamber is maintained at 40 to 50 Pa.
It comprises step S3, which is capable of activating a plasma generator, adjusting the power, reacting for 0.5-120 minutes and then obtaining a surface-modified high nickel ternary positive electrode material. A method for surface modification of high nickel ternary positive electrode materials.
ステップS1において、前記高ニッケル三元正極材料の化学式はLiNi(1-x-y)Coであり、ここで、x+y≦0.7であり、MがMn又はAlである、ことを特徴とする請求項1に記載の高ニッケル三元正極材料の表面改質方法。 In step S1, the chemical formula of the high nickel ternary positive electrode material is LiNi (1-xy) Co x My O 2 , where x + y ≦ 0.7 and M is Mn or Al. The method for surface modification of a high nickel ternary positive electrode material according to claim 1. 前記高ニッケル三元正極材料の化学式はLiNi0.9Co0.05Mn0.05、LiNi0.8Co0.1Mn0.1、LiNi0.6Co0.2Mn0.2、LiNi0.85Co0.1Al0.05又はLiNi0.5Co0.2Mn0.3である、ことを特徴とする請求項2に記載の高ニッケル三元正極材料の表面改質方法。 The chemical formulas of the high nickel ternary positive electrode material are LiNi 0.9 Co 0.05 Mn 0.05 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.6 Co 0.2 Mn 0 . .2 O 2 , LiNi 0.85 Co 0.1 Al 0.05 O 2 or LiNi 0.5 Co 0.2 Mn 0.3 O 2 The high nickel according to claim 2. A method for surface modification of a ternary positive electrode material. 前記アークガスは二酸化炭素である、ことを特徴とする請求項1に記載の高ニッケル三元正極材料の表面改質方法。 The method for surface modification of a high nickel ternary positive electrode material according to claim 1, wherein the arc gas is carbon dioxide. ステップS1において、高ニッケル三元正極材料の展開厚さは0.3mm~10mmである、ことを特徴とする請求項1に記載の高ニッケル三元正極材料の表面改質方法。 The method for surface modification of a high nickel ternary positive electrode material according to claim 1, wherein the developed thickness of the high nickel ternary positive electrode material is 0.3 mm to 10 mm in step S1. ステップS3において、プラズマ発生器の電力は5~2000Wである、ことを特徴とする請求項1に記載の高ニッケル三元正極材料の表面改質方法。 The method for surface modification of a high nickel ternary positive electrode material according to claim 1, wherein in step S3, the electric power of the plasma generator is 5 to 2000 W. 請求項1~6のいずれか1項に記載の方法により調製された表面改質された高ニッケル三元正極材料を含む、ことを特徴とするリチウムイオン電池。 A lithium ion battery comprising a surface-modified high nickel ternary positive electrode material prepared by the method according to any one of claims 1 to 6.
JP2021540849A 2019-01-17 2020-01-13 Nickel ternary positive electrode material surface modification method Active JP7236631B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201910043577.3A CN109742377B (en) 2019-01-17 2019-01-17 Method for surface modification of high-nickel ternary positive electrode material
CN201910043577.3 2019-01-17
PCT/CN2020/071713 WO2020147671A1 (en) 2019-01-17 2020-01-13 Method for modifying surface of high nickel ternary positive electrode material

Publications (2)

Publication Number Publication Date
JP2022517123A true JP2022517123A (en) 2022-03-04
JP7236631B2 JP7236631B2 (en) 2023-03-10

Family

ID=66364991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021540849A Active JP7236631B2 (en) 2019-01-17 2020-01-13 Nickel ternary positive electrode material surface modification method

Country Status (3)

Country Link
JP (1) JP7236631B2 (en)
CN (1) CN109742377B (en)
WO (1) WO2020147671A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109742377B (en) * 2019-01-17 2021-01-05 浙江工业大学 Method for surface modification of high-nickel ternary positive electrode material
CN110350166A (en) * 2019-06-25 2019-10-18 浙江工业大学 A method of improving tertiary cathode material stability and processability
CN110350167B (en) * 2019-06-25 2021-01-12 浙江工业大学 Preparation process for improving cycle performance and conductivity of high-nickel cathode material
CN110233252A (en) * 2019-06-25 2019-09-13 浙江工业大学 A kind of sodium-ion battery positive material surface modifying method
CN110330059B (en) * 2019-06-25 2022-04-01 浙江工业大学 Sintering process of high-stability lithium ion high-nickel cathode material
CN110350165B (en) * 2019-06-25 2021-07-23 浙江工业大学 Treatment process for improving stability and conductivity of high-nickel cathode material
CN110714195A (en) * 2019-08-26 2020-01-21 浙江工业大学 Surface modification method for metal lithium
CN111628151A (en) * 2020-06-09 2020-09-04 湖南长远锂科股份有限公司 Surface modification method of ternary cathode material
CN111883748A (en) * 2020-06-29 2020-11-03 华南理工大学 Method for coating oxide film on surface of lithium ion battery anode powder material
CN112467066A (en) * 2020-11-25 2021-03-09 四川虹微技术有限公司 Pulping method of high-nickel ternary material
CN113044893A (en) * 2021-03-12 2021-06-29 电子科技大学 Method for carrying out carbon coating modification on high-nickel ternary material
CN113764633B (en) * 2021-07-21 2023-05-09 广西师范大学 Surface modified lithium ion battery positive electrode material and preparation method thereof
CN113764634A (en) * 2021-08-16 2021-12-07 华中科技大学 Preparation method of lithium fluoride in-situ coated high-nickel ternary cathode material
CN114229921B (en) * 2021-12-22 2023-09-15 西南科技大学 Al 2 O 3 -ZrO 2 Coated lithium-rich manganese-based positive electrode material and preparation method thereof
CN114261996B (en) * 2021-12-24 2023-09-22 广西师范大学 Preparation method and application of single crystal high nickel ternary material with completely modified surface
CN114613988B (en) * 2022-04-01 2022-09-20 湖南桑瑞新材料有限公司 Preparation method of high-stability ternary cathode material, ternary cathode material and lithium ion battery
CN114988492B (en) * 2022-05-31 2024-05-10 西安合升汇力新材料有限公司 Nickel-rich ternary positive electrode material and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017111131A1 (en) * 2015-12-25 2017-06-29 富士フイルム株式会社 All-solid secondary battery, particles for all-solid secondary batteries, solid electrolyte composition for all-solid secondary batteries, electrode sheet for all-solid secondary batteries, and production methods therefor
CN108615863A (en) * 2018-04-17 2018-10-02 成都新柯力化工科技有限公司 A kind of atomic level method for coating of ternary anode material of lithium battery

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5578280B2 (en) * 2011-05-26 2014-08-27 トヨタ自動車株式会社 Coated active material and lithium solid state battery
CN103236521A (en) * 2013-04-17 2013-08-07 天津华夏泓源实业有限公司 Nickel-cobalt-lithium manganese positive electrode material with boron-lithium composite oxide clad on surface, and preparation method thereof
KR101943481B1 (en) * 2015-03-20 2019-01-30 주식회사 엘지화학 A method of treating surface of cathode active material particles and Cathode active material particles obtained therefrom
JP6536141B2 (en) * 2015-04-14 2019-07-03 トヨタ自動車株式会社 Method of manufacturing composite active material
CN107919475B (en) * 2016-10-09 2020-10-16 上海中聚佳华电池科技有限公司 Graphene modified lithium ion battery positive electrode material, and preparation method and application thereof
CN108206279B (en) * 2016-12-16 2021-02-19 宁德时代新能源科技股份有限公司 Preparation method of high-nickel ternary cathode material with lithium salt coating layer coated on surface for lithium ion battery and lithium ion battery
CN107026267A (en) * 2017-06-14 2017-08-08 苏州思创源博电子科技有限公司 A kind of preparation method of carbon coating ternary material
CN109088065A (en) * 2018-08-21 2018-12-25 成都新柯力化工科技有限公司 A kind of preparation method of the negative electrode material of lithium-air battery
CN109742377B (en) * 2019-01-17 2021-01-05 浙江工业大学 Method for surface modification of high-nickel ternary positive electrode material
CN110350166A (en) * 2019-06-25 2019-10-18 浙江工业大学 A method of improving tertiary cathode material stability and processability
CN110350165B (en) * 2019-06-25 2021-07-23 浙江工业大学 Treatment process for improving stability and conductivity of high-nickel cathode material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017111131A1 (en) * 2015-12-25 2017-06-29 富士フイルム株式会社 All-solid secondary battery, particles for all-solid secondary batteries, solid electrolyte composition for all-solid secondary batteries, electrode sheet for all-solid secondary batteries, and production methods therefor
CN108615863A (en) * 2018-04-17 2018-10-02 成都新柯力化工科技有限公司 A kind of atomic level method for coating of ternary anode material of lithium battery

Also Published As

Publication number Publication date
CN109742377A (en) 2019-05-10
JP7236631B2 (en) 2023-03-10
WO2020147671A1 (en) 2020-07-23
CN109742377B (en) 2021-01-05

Similar Documents

Publication Publication Date Title
JP2022517123A (en) Surface modification method for high nickel ternary positive electrode material
CN108321366B (en) Coating method for improving electrochemical performance of high-nickel ternary nickel-cobalt-manganese positive electrode material
CN110112388B (en) Porous tungsten trioxide coated modified positive electrode material and preparation method thereof
CN106684323A (en) Ternary lithium-ion battery cathode material improved by active oxide multiply and preparation method thereof
CN111082026A (en) Ternary cathode material coated with lithium tungstate and preparation method thereof
CN108258224A (en) A kind of tertiary cathode material of surface clad oxide and preparation method thereof
CN111987297B (en) Lithium-rich manganese-based positive electrode material with aluminum-doped surface and coated with lithium aluminum titanium phosphate and preparation method thereof
CN108899480A (en) A kind of long circulation life height ratio capacity nickel cobalt aluminium positive electrode and preparation method thereof
CN109755512A (en) A kind of nickelic long-life multielement positive electrode and preparation method thereof
WO2024087872A1 (en) Ternary positive electrode material, and preparation method therefor and use thereof
CN110048111A (en) Cell positive material, battery anode slice and lithium battery
CN112072092A (en) Electrode material, preparation method thereof and lithium battery adopting electrode material
CN116454285A (en) Method for reducing residual alkali on surface of layered positive electrode material of sodium ion battery and application
CN114267841B (en) Preparation method and application of surface-fully-coated high-nickel single crystal ternary material
CN108400320A (en) A method of in spinel nickel manganate cathode material for lithium surface sulfide
CN110120503B (en) Composite cathode material and preparation method and application thereof
CN113471439A (en) Coating modified cathode material and preparation method thereof
CN109301239B (en) Preparation method of lithium-rich cathode material with porous rod-like structure
CN105185969B (en) A kind of positive electrode and preparation method thereof
CN116895744A (en) Preparation method of long-cycle sodium-ion battery positive electrode material and sodium-ion battery
CN115498158A (en) Coated modified spinel lithium manganate material and preparation method and application thereof
CN115275195A (en) Ternary cathode material, preparation method and application thereof
CN111342012B (en) Mesoporous spherical titanium dioxide coated ternary material, preparation method thereof, lithium ion battery anode and lithium ion battery
Sun et al. Preparation of CeO2-coated Li1. 2Mn0. 54Co0. 13Ni0. 13O2 as cathode materials for Lithium Ion Batteries
CN110078134B (en) Preparation method of cobaltosic oxide for preparing lithium ion battery cathode material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230208

R150 Certificate of patent or registration of utility model

Ref document number: 7236631

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150