JP2022515218A - 多相流体の気液分離のための装置および方法 - Google Patents

多相流体の気液分離のための装置および方法 Download PDF

Info

Publication number
JP2022515218A
JP2022515218A JP2021536170A JP2021536170A JP2022515218A JP 2022515218 A JP2022515218 A JP 2022515218A JP 2021536170 A JP2021536170 A JP 2021536170A JP 2021536170 A JP2021536170 A JP 2021536170A JP 2022515218 A JP2022515218 A JP 2022515218A
Authority
JP
Japan
Prior art keywords
fluid
vessel
pipe
liquid
vortex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021536170A
Other languages
English (en)
Inventor
デイヴィッド ジェイムズ エルムズ
グレゴリー アレン ハズペス
Original Assignee
ヘイヴン テクノロジー ソリューションズ リミテッド ライアビリティ カンパニー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヘイヴン テクノロジー ソリューションズ リミテッド ライアビリティ カンパニー filed Critical ヘイヴン テクノロジー ソリューションズ リミテッド ライアビリティ カンパニー
Publication of JP2022515218A publication Critical patent/JP2022515218A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0042Degasification of liquids modifying the liquid flow
    • B01D19/0052Degasification of liquids modifying the liquid flow in rotating vessels, vessels containing movable parts or in which centrifugal movement is caused
    • B01D19/0057Degasification of liquids modifying the liquid flow in rotating vessels, vessels containing movable parts or in which centrifugal movement is caused the centrifugal movement being caused by a vortex, e.g. using a cyclone, or by a tangential inlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0063Regulation, control including valves and floats

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separating Particles In Gases By Inertia (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

多相分離装置は、流体ベッセルの垂直軸に沿って配置された複数の下降する、垂直に積み重ねられた曲線状のループを有する、流れを形作る線内に流体流を形作り、流体流を、主に液体構成成分および主に気体状構成成分へと階層化する。複数のループの下方の点において、主に気体状構成成分は、一次液体構成成分から抜き出される。主に気体状構成成分は、気体状構成成分中に同伴された液体をさらに分離するために、渦クラスターへと導入されてもよく、この分離された液体は、次いで主に液体構成成分に戻すように組み合わされてもよい。垂直に積み重ねられた曲線状のループは、ループを保護および断熱するために流体ベッセル内に配置されてもよく、またはベッセルの外部の周りに配置されてもよい。渦クラスターシステムは、ベッセル内に位置付けられてもよく、また直線状流れチャネルまたは螺旋状の流れチャネルのいずれかに沿って展開された渦管を採用してもよい。【選択図】図1

Description

関連技術の相互参照
本出願は、2018年12月20日に出願された米国仮特許出願第62/783,158号の優先権を主張する、2019年12月19日に出願された米国仮特許出願第16/721,406号の利益を主張するものであり、これらの両方はその全体が参照により本明細書に組み込まれる。
本開示は、概して、流動様式を再構築するために流れを形作る装置を利用する、多相流体流内の構成成分の分離に関する。特に、本開示は、垂直に積み重ねられた曲線状のループおよび渦クラスターシステムを利用する全体的なシステムの改善に関する。
気液二相流体流は、空気および水、蒸気および水、または油と天然ガスなどの異なる相を有する異なる流体の混合物を含む。しばしば流体流の気体構成成分と液体構成成分とを互いから分離することが望ましい。液体から気体を分離するための、従来の垂直または水平気液分離器が、入手可能である。従来の分離器は、典型的に機械的構造を採用し、入ってくる流体は転向バッフルに突き当たり、気体構成成分と液体構成成分との間の一次的な分離を開始する。次いで、浮遊している液体をさらに取り除くためにメッシュパッドまたはデミスターパッドが使用される。分離器のサイズ設定および分離器の特定の特徴は、数多くの要因に依存し、これには、液体の流量、液体密度、ベイパー密度、ベイパー速度、および入口圧力が含まれる場合がある。ベイパー液体比が高い、または総流量が低いとき、垂直分離器が、典型的に選択される。低いベイパー液体比に対して、または大きい体積の総流体に対しては、典型的には水平分離器が好ましい。
最近では二相流分離器は、流体構成成分の流路からの分離の前に、複数のループまたはコイルで形成された曲線状の流線を採用する場合がある。多相流を曲線状の経路へと形作ることは、遠心力が、より容易に、より重い、より高密度の液体を湾曲した経路内の流れを形作る線の外側壁、すなわち外径壁へと強制することを可能にし、かつより軽い、より密度の低いベイパーまたは気体が流れを形作る線の内側壁または内径壁に沿って流れることを可能にする。曲線状の流線内で流動様式が再構築されると、液気流体流の気体構成成分は、湾曲した流れを形作る線の内径壁に沿って収集されることになり、気体構成成分を、内壁上に位置する出口ポートへと引き出す、または送ることができ、それによって気体のすべてではないとしても大部分を、少量の液体と共に従来の気液分離器へと送ることができる。分離された流体は、当初の流体流よりも高い液体に対する気体の比を有するが、分離された流体流は、典型的に湿った気体であり、気体中に同伴されたある量の液体を有する。様々な目的のためにも、この液体を捕捉することが望ましい。
本開示およびこれらの利点のより完全な理解は、以下の記述を、添付図面と併せて参照することによって、得られる場合がある。
図1は、分離を最適化するために分離タンクおよび逆流防止弁を採用する、本開示の二相流分離器システムの立面図である。 図2は、図1の流れ分離器システムの斜視図である。 図3は、分離タンクを採用する本開示の二相流分離器システムの別の実施形態の立面図である。 図4は、曲線状の流線システムが渦クラスターシステムと組み合わされた、二相流分離器システムの別の実施形態の切り欠き上面図である。 図5は、その中に配置された直線状渦クラスターシステムを有する二相流分離器ベッセルの別の実施形態の切り欠き側面図である。 図6は、図8の二相流分離器システムの別の実施形態の切り欠き上面図である。 図7は、図1の曲線状の流線システムが環状渦クラスターシステムと組み合わされた、二相流分離器システムの別の実施形態の切り欠き斜視図である。 図8は、環状渦クラスターシステムの分解組立斜視図である。 図9は、環状渦クラスターシステムの本体の平面図である。 図10は、図8の渦クラスターシステムの斜視図である。 図11は、図8の渦クラスターシステムの斜視図である。 図12は、ブレーカープレートを有する図8の渦クラスターシステムの斜視図である。 図13は、流体受容部を有する図8の渦クラスターシステムの立面図である。 図13bは、独立型のシステムとしての、図8の渦クラスターシステムの立面図である。 図14は、曲線状の流線システムが環状渦クラスターシステムと組み合わされた、二相流分離器システムの別の実施形態の切り欠き斜視図である。 図15は、図14の二相流分離器システムの立面図である。 図16は、図14の二相流分離器の上板の斜視図である。 図17は、二相流分離器の別の実施形態である。 図18は、エンジンによる燃料の燃焼をモニターするためのシステム内の二相流分離器を図示する。 図19は、内燃エンジンの動作を改善するためのシステム内の二相流分離器を図示する。 図20は、燃料バンカリング動作のためのシステム内の二相流分離器を図示する。 図21は、液体をタンク間で移送するためのシステム内の二相流分離器を図示する。 図22は、製造プロセスで利用されるシステム内の二相流分離器を図示する。
本発明の詳細な記述では、全体を通して同様の部品を指定するために同様の参照番号が採用される。パイプ、弁、ポンプ、締結具、継ぎ手等などの、設備のアイテムは、記述を簡略化するために省略される場合がある。しかしながら、当業者は、こうした従来の設備を望む通りに採用することができることに気付くであろう。
一般的に、二相流分離器システムが提供される。一部の実施形態では、二相流分離器システムは、曲線状の流線システムの動作を改善するために、曲線状の流線システムを流体ベッセルと組み合わせて採用し、二相流体を主に液体構成成分および主に気体状構成成分へと分離する。1つ以上の実施形態では、曲線状の流線システムは、流体ベッセルの外周の周りに配置されるが、他の実施形態では、曲線状の流線システムは、ベッセルの内部内に配置される。1つ以上の実施形態では、渦クラスターシステムは、曲線状の流線システムの下流の主に気体状の気体構成成分を処理するために利用されてもよい。渦クラスターシステムは、ベッセルの内部に位置付けられてもよいが、他の実施形態では、渦クラスターシステムは、ベッセルの外部であってもよい。さらに別の実施形態では、曲線状の流線システムは、開示の渦クラスターシステムと、いかなるベッセルも有することなく組み合わされてもよい。渦クラスターシステムは、直線状であってもよく、または環状であってもよい。この点に関して、一部の実施形態では、環状渦クラスターシステムは、それ自体が二相流分離器システムであってもよい。
図1を参照すると、二相流分離器システム40の一実施形態が図示されている。本明細書で使用される場合、「二相」は、少なくとも1つの気体状構成成分と少なくとも1つの液体構成成分とを有する流体を指すが、流体は2つ以上の気体状または液体構成成分を有してもよい。曲線状の流線42は、流体ベッセル48の外周の周りに配置され、その流体ベッセル48は、実質的に垂直な軸45に沿って形成される。曲線状の流線42は、第1の端部72と、第2の端部74と、を有する第1のパイプ316を有する。第1の端部72と第2の端部74との間に、パイプ316は、互いに隣接して実質的に垂直な軸45を中心として配設された複数の曲線状のパイプループ60a、60b、60c~60nを形成する。図示された実施形態では、6つのループ60が示される。しかしながら、より少ない、またはより多い数のループ60が利用されてもよいが、少なくとも2つのループが好ましい。1つ以上の実施形態では、曲線状のパイプループ60の少なくとも一部分は、同一の直径であり、またパイプループ60は、垂直に積み重ねられた配設で互いに隣接し、これにより各曲線状のパイプループ60は、実質的に水平である。いずれにしても、第1のパイプ316は、入口78内で終結する第1の端部72において実質的に水平な部分76を含んでもよい。同様に、第1のパイプ316は、液体出口82内で終結する第2の端部74において実質的に水平な部分80を含んでもよい。1つ以上の実施形態では、第1の端部72は、垂直軸45に関して第2の端部74の上方に位置付けられる。そのため、パイプループ60は下降し、その中で第1の端部72から第2の端部74への流体流れは、下向きに流れる。加えて、気体出口ポート84は、第1のパイプ316に沿って、水平部分80に沿って配置される。気体出口ポート84は、水平部分80の上方パイプ面86に沿って配置されることが好ましい。気体出口ポート84および液体出口82は、水平部分80がパイプ316に沿ってT接合部88を形成するように互いに隣接してもよい。
ライザー50は、気体出口ポート84から上向きに延在する。1つ以上の実施形態では、ライザー50は、流体ベッセル48と流体連通し、これにより流体ベッセル48は、ライザー50に沿って上に流れる流体(典型的に湿潤気体)をその中へと収集することができる気体分離器として機能する。この点に関して、ライザー50は、上方部分90と流体連通するポート92を介して、流体ベッセル48の上方部分90と流体連通する。より具体的には、ライザー50は、実質的に垂直であってもよく、また垂直軸45と実質的に平行であってもよい。ライザー50は、気体出口ポート84と流体連通する第1の下方端部94と、流体ベッセル48と流体連通する第2の上方端部96と、を有してもよい。この点に関して、ライザー50は、流体ベッセル48の上方部分90と流体連通してもよい。
液体流線98は、液体出口82から延在する。液体流線98は、ベッセル48の下方部分101と流体連通する第1の出口100と、第1の出口100の下流の第2の出口103と、を含む。第1の出口100は、ベッセル48の底部または最下端部104に位置する液体ポート102と流体連通してもよい。
1つ以上の実施形態では、液体流線98に沿って第1の出口100の上流に、第1のパイプ316の出口82と流線98の第1の出口100との間に、背圧装置106が位置付けられてもよい。背圧装置106は、液体流線98に沿って流れる流体の圧力を調整または調節するために望む通りに作動することができる任意の機構であってもよく、機械弁または自動化弁などの弁を含むことができるが、これに限定されない。この点に関して、ライザー50もしくは液体流線98のいずれかまたはその両方に沿って流れる流体の状態を測定するためにセンサー108が提供されてもよく、そのセンサー108は、記述したように二相分離を最適化するように背圧装置106を調整するために利用されてもよい。当然のことながら、特に、背圧装置106は、気体出口ポート84の下流の第1のパイプ316内に液体の波を作り出すために、第1のパイプ316の出口82を通して出る液体の流れを妨げ、または減速し、これは分離された主に気体状構成成分のライザー50の中への流れを強化する。
上述のように、流体ベッセル48は、一般的に実質的に垂直な軸45に沿って形成され、かつベッセル内部112を画定するベッセル壁110を有する。図示した実施形態では、ベッセル48は、ベッセル高さHを有し、またベッセル壁110は、ベッセル外径Dovおよびベッセル内径Divを画定する。図示した実施形態では、ベッセル48は、軸45に沿って細長く、これにより高さHはベッセル外径Dovより大きい。しかしながら、他の実施形態では、ベッセル外径Dovは、高さHより大きくてもよい。いずれにしても、この二相流分離器システム40の実施形態では、パイプループ60は、ベッセル48の外部の周りに壁110に隣接して配設される。それ故に、パイプループ60は、ベッセル外径Dovよりわずかに大きいループ内径Dilを有してもよい。ベッセル48の底部または最下端部104に位置する液体ポート102に加えて、気体ポート114が、ベッセル48の上部または上方端部116に配置されてもよい。
1つ以上の実施形態では、パイプループ60は、垂直軸45に沿って、流体ベッセル48の高さHの一部分に対してのみ延在する。この点に関して、最も低いパイプループ60nは、液体の一部分が液体流線98を通して流れて、望む通りにベッセル48の中へと戻るように装填されることが可能になるように、ベッセル48の底部または最下端部104の上方に離隔している。
上述のような流体ベッセル48と併せて配置されたパイプループ60の上述の構成に対する1つの利点は、流体ベッセル48の上方部分90内に収集された気体が、ハンマリングまたは出口103の下流の圧縮流体に対して有する効果である。具体的には、収集された気体は、下流の流体の流れ、特に流体流れ内に生じる場合がある流体の脈動を減衰する。この点に関して、一部の実施形態では、二相流分離器システム40は、流体ベッセル48内の選択流体レベルを維持するために、空気逃がし機構118をさらに含む場合がある。具体的には、流体ベッセル48の下方部分101と流体連通する第1の端部122と、その上方端部に気体出口ポート126を有する空気逃がしベッセル70と流体連通する実質的に垂直な第2の端部124と、を有するスタンドパイプ120。当然のことながら、スタンドパイプ120の実質的に垂直な第2の端部124の長さを調整すること、および空気逃がしベッセル70内の気体の圧力を調整するによって、流体ベッセル48内の液体レベル(図示せず)、よって流体ベッセル48内の気体体積を調整することができる。代替的な実施形態では、空気逃がし機構118は、流体ベッセル48内の望ましい流体レベルを維持するために、自動化した制御システムで置き換えられてもよい。いずれの場合でも、流体ベッセル48内の一定の流体レベルなどの望ましい流体レベルを維持することによって、ベッセル48の中への流量の変化の下流効果が減衰されることがわかっている。言い換えれば、空気逃がし機構118は、分離器システム40の中へと送られる流量における変動の下流効果を軽減するための流体減衰器として機能する。具体的には、ポンプ、エンジン、およびこれに類するものなどの下流の設備によって経験されるキックをもたらす可能性がある流量の変化は、下流でより一定の流量を達成するための空気逃がし機構118によって軽減される。他の実施形態では、空気逃がし機構118(気体ブラダー(図示せず)または同様の装置など)は、ベッセル48内に組み込まれてもよい。
当然のことながら、液体のポンピングまたは操作が関与する様々な動作は、空気または他の気体と液体との意図しない混合をもたらす可能性がある。こうした液体内の気体の存在は、望ましくない影響を有する可能性がある。例えば、燃料バンカリング動作の間、炭化水素などの液体のパイプライン内の移送の間、化学薬品などの液体の貯蔵ベッセル間の移送の間、または内燃エンジンによる燃料の消費量をモニターする間などに、液体の体積を測定することが望ましい場合がある。これらの事例の各々において、液体内に同伴された気体は、液体の不正確な測定をもたらす場合がある。他の動作では、液体内の気体の存在は、液体自体に関する望ましくない結果を有する場合がある。例えば、食品生産物の製造または生産では、液体内の空気は、食品の風味、品質、または貯蔵寿命に影響を与える場合がある。一例として、牛乳の取り扱い(低温殺菌など)において、牛乳に不注意に混合された空気は、牛乳の味覚に影響を与える場合がある。化学薬品の生産または炭化水素の精製における別の例では、液体化学薬品内に同伴された空気は、化学薬品、または製造された化学薬品を利用した最終的な製品の等級もしくは品質に影響を与える場合がある。さらに別の動作では、液体内の空気または他の気体の存在は、液体を取り扱うために利用される設備に影響を与える場合がある。例えば、液体のポンピングにおいて、液体内に同伴された空気は、ポンプのインペラブレードまたはピストンにおいてキャビテーションを引き起こし、ポンプの有効性を低減し、またポンプ部品の腐食によってポンプの運転寿命を減少する可能性がある。
本明細書に記述したように、流体の取り扱いはしばしば、典型的に気泡の形態での流体の液体構成成分の中への気体の導入をもたらすため、気体を除去することが望ましい。それ故に、生じる流体流は、二相流分離器システムの中へと導入される。二相流分離器システムでは、流体流を主に気相から成る第1の流体構成成分および主に液相から成る第2の流体構成成分へと階層化するために、流体流は、複数の下降する曲線状のループを通して下向きに方向付けられる。一旦階層化されると、次に階層化された流体流から、上述のライザーを通して第1の流体構成成分を取り出すことができ、取り出された気体の望ましい割合で、液体として第2の流体構成成分を残す。
本明細書で使用される場合、二相流は、液体構成成分と気体状構成成分との両方を有する流体流を指す。液体構成成分は、その中で運ばれるプロパントなどの固体構成成分の形態、または別の液体の形態の添加物をさらに含んでもよいが、二相流分離器システム40の焦点は、液体構成成分および混合された液体添加物もしくは液体構成成分によって運ばれる固体添加物から気体状構成成分を分離することである。
より具体的には、二相流体流は、入口78を介して第1のパイプ316の中へと導入される。二相流体流は、複数の曲線状のパイプループ60によって形成された、曲線状の流線42の中へと方向付けられる。1つ以上の実施形態では、曲線状のパイプループ60は、ベッセル48の上方部分90に隣接する入口78から、流体ベッセル48の実質的に垂直な軸45に関して下向きに、ベッセル48の下方部分101に隣接する出口74へと下降する。ループ60は、各ループ60の内周に沿って、主に気体から成る第1の流体構成成分の増加した分布を作り出し、一方で、比較的より重く、かつ主に液体(および任意の液体または固体添加物)から成るより高密度の第2の流体構成成分は、曲線状の流路の遠心力に起因して各ループの外周へと送られ、それ故に、ループ60のベッセル48に最も近い内周に沿って気体の高い濃度を作り出す。より階層化された流動様式を形成する二相流体流、または少なくとも曲線状の流線42の内周の近くの気体の分布もしくは体積により、実質的に気体状の流体流れは、気体出口ポート84において、第1のパイプ316の水平部分80を通過する第2の流体構成成分の実質的に液体の流体から効果的に分離されてもよい。
分離された第1の流体構成成分は、それ故に同伴された低い割合の液体をその中に有する、主に気体から成る。「湿潤気体」の形態にあるこの第1の流体構成成分は、次にベッセル48などの従来の気液分離器へと方向付けられてもよい。
いずれの場合でも、二相流分離器システム40によって流体流から気体が除去されると、残りの流体流、すなわち第2の流体構成成分は、処理もしくは利用することができ、または別の方法で望む通りに方向付けることができる。
図2は、図1で記述した二相流分離器システム40の斜視図である。示すように、流体ベッセル48の高さHの一部分は、第1の端部72から延在する第1のパイプ316を形成する複数のパイプループ60によって巻かれる。第2の出口50を有する液体流線98は、液体流線98がベッセル48の下方端部104と流体連通することができるように、ベッセル48の下方に延びる。空気逃がし機構118は、液体(図示せず)をベッセル48内で望ましいレベルに維持するために利用されてもよい。ベッセルは、ベッセル48内に捕捉された気体の放出のために、その上方端部116に気体ポート114も含む。
図3は、二相流分離器システム40であるが、図1および図2の空気逃がし機構118を有しない、別の実施形態の斜視図である。示すように、流体ベッセル48の高さHの一部分は、第1のパイプ316を形成する複数のパイプループ60によって巻かれる。
より具体的には、曲線状の流線42は、第1の端部72と、第2の端部74とを有する第1のパイプ316を含む。第1の端部72と第2の端部74との間に、第1のパイプ316は、互いに隣接して実質的に垂直な軸15を中心として配設された複数の曲線状のパイプループ60a、22b、22c~22nを形成する。いずれにしても、第1のパイプ316は、入口78を含んでもよい。同様に、第1のパイプ316は、液体出口82内で終結する第2の端部74において実質的に水平な部分80を含んでもよい。加えて、気体出口ポート84は、第1のパイプ316に沿って、水平部分80に沿って配置される。気体出口ポート84は、水平部分80の上方パイプ面86に沿って配置されることが好ましい。気体出口ポート84および液体出口82は、水平部分80がパイプ316に沿ってT接合部88を形成するように互いに隣接してもよい。
ライザー50は、気体出口ポート84から上向きに延在する。1つ以上の実施形態では、ライザー50は、流体ベッセル48と流体連通し、これにより流体ベッセル48は、ライザー50に沿って上に流れる流体をその中へと収集することができる気体分離器として機能する。この点に関して、ライザー50は、ポート92を介して流体ベッセル48の上方部分90と流体連通する。
液体流線98は、液体出口82から延在する。液体流線98は、流体ベッセル48の下を通ってもよい。
1つ以上の実施形態では、背圧装置106は、気体ポート84における湿潤気体の抽出を強化するために、液体流線98に沿って位置付けられてもよい。
図4を参照すると、二相流分離器システム40の別の実施形態が示されている。この実施形態では、二相流分離器システム40は、図1、図2、および図3と同様であるが、ベッセル48内に配置される渦クラスターシステム130をさらに含む。具体的には、ライザー50は、流体流れをベッセル48の上方部分90へと単に送達するのではなく、渦クラスターシステム130と流体連通する。いずれにしても、図7に示すのは、流体ベッセル48の周りに巻かれて、流体ベッセル48の高さH(図1を参照のこと)の少なくとも一部分に沿って、複数のパイプループ60を形成する第1のパイプ316である。第1のパイプ316は、第1の端部72および第2の端部74を有する。第1のパイプ316は、入口78を含む。第1のパイプ316は、液体出口82内で終結する第2の端部74において実質的に水平な部分80を含んでもよい。第2の端部74から上向きに延在するのは、実質的に垂直なライザー50である。1つ以上の実施形態では、ライザー50は、流体ベッセル48と流体連通し、これにより流体ベッセル48は、ライザー50に沿って上に流れる流体をその中へと収集することができる気体分離器として機能する。一部の実施形態では、渦クラスターシステム130は、流体ベッセル48の上方部分90(図1を参照のこと)内に配置される。
図4に図示したような一部の実施形態では、渦クラスターシステム130は、ライザー50と流体連通する第1の端部138と、ベッセル48の中へと下方に延びる少なくとも1つの垂直に位置付けられた渦管142に隣接して終結する第2の端部140と、を有するチャネル136を形成する流体注入導管132を含んでもよい。図示した実施形態では、少なくとも2本の渦管142a、142bが図示されている。2つ以上の管142を有する1つ以上の実施形態では、管142は、チャネル136の対向する側に位置付けられてもよい。各渦管142は、第1の上方端部および第2の下方端部を有し、管142を形成する円筒状の、垂直な側壁146の一部分に開口部144を含み、これにより開口部144は、前縁148および後縁150を有する入口として機能する(図9を参照のこと)。開口部144に隣接する管142の第1の上方端部は、気体ポート152を含んでもよく、また管142の第2の下方端部は、開放していてもよい。1つ以上の実施形態では、前縁148は、チャネル136と渦管142との間の交差点においてチャネル136とほぼ平行である。言い換えれば、チャネル136は、前縁148との交差点において概して渦管142と接線方向となるように、前縁148において渦管142と交差する。圧力下の湿潤気体は、導管132に沿って流れ、そして渦管142の上方端部にあるその対応する入口144を通して各管142に入り、渦管142に接線方向で、すなわち、渦管142の各々の内部円筒状壁146に対して接線方向で入る。渦管142は、遠心力を利用することによって非混和性液体構成成分を湿潤気体流から分離するように機能する。湿潤気体は、流体注入導管132に入り、チャネル136に沿って、かつ開口部144を通して接線方向で渦管142の中へと流れ、これにより流体は渦管142内で速い速度で旋回する。旋回する気体は、同伴された液体を排出させ、そして渦管142の円筒状内壁146に衝突させ、そこで液体は蓄積され、かつ重力により下向きに降下して、最終的に渦管142を出てベッセル48の中へと流れる。流体流の旋回する気体構成成分は、各渦管142の軸方向中心へと移動する同伴された液体構成成分より低い密度を有し、そして上方気体ポート152を通して流れ出る。渦管142は、一般的に真っ直ぐな管として記述されるが、他の実施形態では、渦管142は、管142の長さに沿って徐々に狭くなるまたは徐々に拡張するようにテーパー状であってもよい。
図5および図6では、二相流分離器システム40で使用される図4の渦クラスターシステム130の別の実施形態が図示され、渦クラスターシステムは、直線状渦クラスターシステム154である。直線状渦クラスターシステム154は、本明細書に記述した様々な二相流分離器システムのベッセル48内に位置付けられて図示され、ベッセル48の外部の周りに位置付けられた複数の曲線状のパイプループ60を有する。流体注入導管132は、実質的に直線状であり、また対向する側面156を伴い、ライザー50と流体連通する第1の端部138と、ベッセル48の中へと下方に延びる少なくとも1つの垂直に位置付けられた渦管142に隣接して終結する第2の端部140と、を有する直線状チャネル136を形成する。図示した実施形態では、複数の渦管142は、チャネル136と連通するように導管132に沿って離隔している。各渦管142は、その円筒状の、垂直な側壁146の一部分に開口部144を有し、これにより開口部144は、前縁148および後縁150を有する入口として機能する。直線状渦クラスターシステム154が2本以上の渦管142を含む場合、管142は、チャネル136に沿って離隔してもよい。同様に、直線状渦クラスターシステム154が2本以上の渦管142を含む場合、管142は、チャネル136の対向する側156に位置付けられてもよい。図8および図9の図示した実施形態は、チャネル136に沿って離隔し、チャネル136の対向する側に位置付けられた8本の渦管142を図示する。1つ以上の実施形態では、チャネル136の断面積は、端部138と140との間で、チャネル136の長さの一部分に沿って徐々に減少してもよい。一部の実施形態では、これは徐々に拡張するくさび型もしくはテーパー状の壁158、または同様の機構をチャネル136に沿って位置付けることによって遂行されてもよく、渦管142の管開口部96の中への湿潤気体の流れを促進する。渦管142は、一般的に真っ直ぐな管として記述されるが、他の実施形態では、渦管142は、管142の長さに沿って徐々に狭くなるまたは徐々に拡張するようにテーパー状であってもよい。
1つ以上の実施形態では、示すように、受容部160は、渦管142がその中へと延在するように提供されてもよい。受容部160は、受容部壁162と、渦管142の下方開放端部166から離隔した受容部基部164と、を含む。液体が渦管142を出るにつれて、液体は受容部160内に収集されることになり、そして最終的には受容部160の上部縁166を超えてこぼれ、それによって管142を出る流体内にある場合がある残りの気体の分離をさらに促進する。
図7に目を向けると、二相流分離器システム40の別の実施形態が示されている。この実施形態では、二相流分離器システム40は、図1~図3と同様であるが、環状渦クラスターシステム200をさらに含む。この実施形態では、環状渦クラスターシステム200は、流体ベッセル48の外周の周りに配置された、曲線状の流線42と併せて機能し、その流体ベッセル48は、実質的に垂直な軸45に沿って形成される。曲線状の流線42は、互いに隣接してベッセル壁110の周りに配設され、かつベッセル48の垂直軸45の長さの少なくとも一部分に沿って延在する複数の曲線状のパイプループ60a、60b、60c、60d、60e、60fを形成する第1のパイプ70を有する。ベッセル48は、その中に形成された液体ポート102を有する下方端部104と、その中に形成された気体ポート114を有する上方端部116と、を有する。液体流線98は、ベッセル48の下方端部104の下方に延在し、そこで第1の出口100は、初期に液体をベッセル48の下方部分101の中へと導入し、その後ベッセル48の下方部分101内の望ましい液体レベルを維持するのを支援するために、ベッセル48の下方部分101と液体ポート102を介して流体連通する。液体流線98は、第1の出口100の下流の第2の出口103をさらに含む。
環状渦クラスターシステム200は、一般的に環状チャネル206がその中に画定されるハウジング205を含む。環状チャネルは、軸45を中心とした螺旋状の形状であってもよい。ハウジング205は、上板であってもよい上方部分202と、渦本体であってもよい下方部分204と、で形成されてもよい。1つ以上の実施形態では、チャネル206の断面積は、その長さの少なくとも一部分に沿って徐々に狭くなってよい。1つ以上の実施形態では、ハウジング205は、ディスク形状であってもよい。図3に図示した渦管142a、142b、および142cなどの2本以上の渦管142がハウジング205から下へと延在する。渦管142は、各々上板202を通して延在する開口208と流体連通する。同様に、排気チャネル210は、ベッセル48の内部の環状渦クラスターシステム200の下方と、ベッセル48の上方端部116における気体ポート114との間で気体が流れるのを可能にするために、本体204および上板202を通して延在してもよい。1つ以上の実施形態では、環状渦クラスターシステム200は、ベッセル48の内部112の中に配置される。
1つ以上の実施形態では、環状渦クラスターシステム200は、ベッセル48の上方部分90内に配置される。特に、環状チャネル206は、ライザー50(図1を参照のこと)と流体連通し、そのためこれを通過する主に気体状の流体は、主に気体状の流体流れ内に同伴された液体からの気体の分離をさらに強化するために、環状渦クラスターシステム200を通って流れるために環状チャネル206に入る。
環状渦クラスターシステム200または二相流分離器システム40の動作のために必要なわけではないが、一部の実施形態では、測定管212がハウジング205から下へと延在してもよい。ブレーカープレート214が、概して液体ポート102に隣接するように、測定管212の遠位端部に隣接して位置付けられてもよい。ブレーカープレート214は、ベッセル48の下方部分101内に配置された液体内に渦が形成されるのを防止するために提供され、こうした渦は、流体が液体ポート102を通って流れるのを阻止する可能性があることが理解される。一部の実施形態では、ブレーカープレート214の一部分は、液体ポート102の中へと延在する。一部の実施形態では、ブレーカープレート214は、2枚以上のプレートを備えてもよい。しかし、当然のことながら、ブレーカープレート214は、流体ポート102に隣接する液体の渦の形成を防止する能力を有する任意の構造または機構とすることが可能である。
同様に、ダイバータープレート216が、各渦管142から自然の下向きの渦を除去するために、渦管142の遠位端部に隣接して位置付けられてもよい。
図8では、環状渦クラスター組立品200を分解組立斜視図で示す。環状渦クラスター組立品200は、一般的に、中心軸207を中心として形成された上板などの上方部分202と、渦本体などの下方部分204と、を含む。上方部分202および下方部分204は、チャンバー209を形成するために一緒に結合される。1つ以上の実施形態では、上方部分202および下方部分204は、一緒にディスク形状のハウジング205を形成する。記述の簡単のために、上方部分202を上板と称する場合があり、また下方部分204を渦本体と称する場合がある。
2本以上の渦管220、渦管220a、220b、および220c(第4の渦管220dは見えない)などが本体204から下へと延在する。渦管220は、各々上板202を通して延在する開口222と流体連通する。特に、一部の実施形態では、各渦管220a~220dは、上板202に形成された、それぞれ分離しているが対応する開口222a~222dと連通してもよく、この開口22a~22dは、その対応する渦管220a~220dと整列してもよい。
流体入口224は、流体がハウジング205のチャンバー209の中へと流れるのを可能にするように提供される。一部の実施形態では、流体入口224は、示すように上板202に形成されるが、他の実施形態では、流体入口224は、渦本体204の側面に配置されてもよい。排気ポート226は、上板202に形成されるように示され、この排気ポート226は、中心軸207と同軸であってもよい。締結具228は、上板202を本体204へと固定するように提供されてもよい。図示した実施形態では、締結具228はねじ付きであり、そして本体204に配置されたねじ付き穴219と係合するように配置される。本体204と上板402との間をシールするために1つ以上のシール232が提供されてもよい。
示すように、本体204は、円筒状外壁234および基部236で形成された場合、中心軸207を中心として配置される。ハウジング205内の内側ハブ238は、それらの間に環状チャネル206を形成するために円筒状壁234から離隔している。一部の実施形態では、ハブ238は、渦本体204の一部として一体型で形成されてもよい。一部の実施形態では、上板202と渦本体204とが一緒に結合されるとき、ハブ238は、上板202の一部として、チャンバー209の中へと延在するように、一体型で形成されてもよい。チャネル206は、第1の端部239から第2の端部240へと環状に延在する。1つ以上の実施形態では、チャネル239は、第1の端部239と第2の端部240との間の幅Wまたは断面積が徐々に狭くなる。1つ以上の実施形態では、ハブ238は、第1の端部239と第2の端部240との間でより小さい半径R1からより大きい半径R2へとその周辺において増加する半径Rによって特徴付けられ、それによって結果として狭くなるチャネル206の幅Wは、チャネル206がノズルとして機能し、第1の端部239から第2の端部240へと流れるにつれて流体の速度を上昇することを可能にする。1つ以上の実施形態では、徐々に狭くなる、環状チャネル206は、螺旋状の形状である。
2つ以上の切断穴242が、ハブ238内で中心軸207を中心として形成され、各切断穴242は、螺旋状のチャネル206と交差するように概してハブ238の周辺に隣接して形成され、それ故に各切断穴242に対して前縁235および後縁237を形成する。各切断穴242は、基部236を通して延在して、基部236内に出口(図示せず)を形成する。図示した実施形態では、4つの切断穴242a、242b、242c、および242dが示されている。さらに、切断穴242は、チャネル206の螺旋状の形状に追従して、概して軸207を中心とした、概して螺旋状の配設で、位置付けられる。一部の実施形態では、切断穴242dなどの切断穴242は、チャネル206の第2の端部240に位置付けられる。同様に、一部の実施形態では、切断穴242aなどの第1の切断穴242は、チャネル206の第1の端部239から離隔される。いずれにしても、図9で最も良好に見られるように、徐々に減少するハブ238の半径Rの理由で、流体が第1の端部239から第2の端部240へと螺旋状のチャネル206に沿って流れるにつれて、各切断穴242の後縁237は、流体流れの一部分を切断穴242の前縁235へと方向付け、次いでこの流体部分は、切断穴242の中へと螺旋運動して入り、遠心力を用いて流体流れの液体部分を切断穴壁241へと送り、また気体状部分は概して切断穴242の軸243に沿って収集される。
排気チャネル250は、本体204を通して延在してもよい。本体204は、上板202が取り付けられてチャネル206を包囲する、開放端部252をさらに含む。
動作時、流体流は、流体入口224を通して環状渦クラスター組立品200に入る。流体流は、環状チャネル206によって螺旋状の流路に沿って方向付けられ、流れ流内のより重い液体を組立品200の円筒状外壁234へと送る。流体が、環状チャネル206によって形成された螺旋状の流路に沿って進むにつれて、内側ハブ238に最も近い流体の一部分は、切断穴242へと接線方向に方向付けられる。具体的には、切断穴242の前縁235は、流体流れの一部分を切断穴242の中へと転向するように、流路の中へと延在する。流体流れの転向した部分は、切断穴242に接線方向で入る。重力は、切断穴242内に螺旋運動する流体を生じさせて、切断穴242と流体連通する渦管220の中へと下向きに螺旋運動させる。転向された部分が、切断穴242内のように、渦管220に沿って下向きに螺旋運動を継続するにつれて、転向された部分の液体構成成分は、渦管220の外壁に沿って収集され、また転向された部分の気体状構成成分は、概して管220の中心軸243に沿って収集され、気体状構成成分を上向きに管220を通して渦管220および切断穴242の上方のプレート202内の開口222へ渡すことを可能にする。環状チャネル206は、その長さに沿って徐々に狭くなるので、これはノズルとして機能して、チャネル206に沿って動く流体流の速度に影響を与える。環状チャネル206に沿った各連続する切断穴242において、流体流の一部分は上述のように転向される。
環状渦クラスター組立品200を通る流体流量は、渦管220の数および直径に依存し、これは結果としてハウジング205の直径を確立する。環状渦クラスター組立品200においてより多くの渦管220が利用されるほど、流体流に対する流量をより高くすることができる。関連して、より多くの渦管220が利用されるほど、ハウジング205の直径はより大きくなる。1つ以上の実施形態では、環状チャネル206は、軸207を中心として2つ以上の回転を有するように、螺旋状であってもよい。こうした事例では、切断穴242およびこれらに関連する渦管220は、端部239と端部240との間で徐々に減少する直径を有してもよい。
図10および図11に目を向けると、環状渦クラスター組立品200をより詳細に図示する。環状渦クラスター組立品200は、一般的に中心軸207を中心として形成された、上板などの上方部分202と、渦本体などの下方部分204とを有する、渦ハウジング205を含む。1つ以上の実施形態では、渦ハウジング205は、ディスク形状であってもよい。渦管220a、220b、および220cなどの2本以上の渦管220は、ハウジング205から、特に、下方部分204から下へと延在する。渦管220は、各々上板202を通して延在する開口222と流体連通する。特に、一部の実施形態では、各渦管220は、上板202内に形成された、分離しているが対応する開口222と連通してもよい。各管は、近位端部260、隣接本体204、および遠位端部262を有する。渦管220は、概して真っ直ぐな管として示されるが、他の実施形態では、渦管220は、端部260と端部262との間で管220の長さに沿って徐々に狭くなるまたは徐々に拡張するようにテーパー状であってもよい。
流体入口224は、流体が渦ハウジング205の内部へと流れるのを可能にするように提供される。一部の実施形態では、流体入口224は、示すように上板202に形成されるが、他の実施形態では、流体入口224は、渦本体204の側面に配置されてもよい(図8を参照のこと)。一部の実施形態では、流体入口224は、示すように上板202の上面225に形成されるが、他の実施形態では、流体入口224は、上板202の側面(図8を参照のこと)または別の方法として渦本体204に配置されてもよい。排気ポート226は、上板202に形成されるように示され、この排気ポート226は、中心軸207と同軸であってもよい。
環状渦クラスターシステム200の動作のために必要なわけではないが、一部の実施形態では、測定管212が本体204から下へと延在してもよい。これは特に、環状渦クラスターシステム200が、図7のベッセル48などのベッセル内で展開される場合、当てはまる。測定管212は、管212の遠位端部266の中へと液体を放出するのを可能にするように、および管212の近位端部268の中へと気体を放出するのを可能にするように、その長さの少なくとも一部分に沿って1つ以上の開口264を含んでもよい。ブレーカープレート214は、測定管212の遠位端部266に位置付けられてもよい。一部の実施形態では、ブレーカープレート214は、2枚以上のプレートを備えてもよい。ブレーカープレートの一部分214’は、ベッセル48の下方部分内のポート(図示せず)の中へと延在するように形成されてもよい。
図12および図13aおよび図13bは、図10および図11と同様であり、また環状渦クラスター組立品200の他の実施形態を図示する。環状渦クラスター組立品200は、一般的に、中心軸207を中心として形成される、上板などの上方部分202と、渦本体などの下方部分204と、を有する渦ハウジング205を含む。1つ以上の実施形態では、渦ハウジング205は、ディスク形状であってもよい。渦管220a、220b、および220cなどの2本以上の渦管220は、ハウジング205から、特に、下方部分204から下へと延在する。渦管220は、各々上板202を通して延在する開口222と流体連通する。特に、一部の実施形態では、各渦管220は、上板202内に形成された、分離しているが対応する開口222と連通してもよい。各管は、近位端部260、隣接本体204、および遠位端部262を有する。渦管220は、概して真っ直ぐな管として示されるが、他の実施形態では、渦管220は、端部260と端部262との間で管220の長さに沿って徐々に狭くなるまたは徐々に拡張するようにテーパー状であってもよい。
流体入口224は、流体が渦ハウジング205の内部へと流れるのを可能にするように提供される。一部の実施形態では、流体入口224は、示すように上板202に形成されるが、他の実施形態では、流体入口224は、渦本体204の側面に配置されてもよい(図8を参照のこと)。一部の実施形態では、流体入口224は、示すように上板202の上面225に形成されるが、他の実施形態では、流体入口224は、上板202の側面(図8を参照のこと)または別の方法として渦本体204に配置されてもよい。排気ポート226は、上板202に形成されるように示され、この排気ポート226は、中心軸207と同軸であってもよい。
環状渦クラスターシステム200の動作のために必要なわけではないが、一部の実施形態では、測定管212が本体204から下へと延在してもよい。これは特に、環状渦クラスターシステム200が、図7のベッセル48などのベッセル内で展開される場合、当てはまる。測定管212は、管212の遠位端部266の中へと液体を放出するのを可能にするように、および管212の近位端部268の中へと気体を放出するのを可能にするように、その長さの少なくとも一部分に沿って1つ以上の開口264を含んでもよい。ブレーカープレート214は、測定管212の遠位端部266に位置付けられてもよい。一部の実施形態では、ブレーカープレート214は、2枚以上のプレートを備えてもよい。ブレーカープレートの一部分214’は、ベッセル48の下方部分内のポート(図示せず)の中へと延在するように形成されてもよい。
図12に示すように、ダイバータープレート216が、各渦管220から自然の下向きの渦を除去するために、渦管220の遠位端部262に隣接して、しかし離隔して位置付けられてもよい。
1つ以上の実施形態では、図13aおよび図13bに示すように、受容部268は渦管220がその中へと延在するように提供されてもよい。受容部268は、上述のダイバータープレート216であってもよい、受容部壁270および受容部基部272を含む。液体が渦管220を出るにつれて、液体は受容部268内に収集されることになり、そして最終的には受容部268の上部縁274を超えてこぼれ、それによって管220を出る流体内にある場合がある残りの気体の分離をさらに促進する。
当然のことながら、環状渦クラスター組立品200は、一般的に曲線状の流線70を有する二相流分離器システム40の一部として提示されるが、他の実施形態では、環状渦クラスター組立品200は、独立型の二相流分離器システムとして機能する場合がある。この点に関して、図13bに示すように、環状渦クラスター組立品200は、渦管220からの液体がその中へと蓄積する場合があるベッセル269を含んでもよい。ベッセル269は、液体出口ポート271を含んでもよい。1つ以上の実施形態では、ベッセル269は、渦管220の遠位端部262に隣接して、またはその周りに位置付けられてもよい。ベッセル269は、ハウジング205から下へと延在してもよい。他の実施形態では、ベッセル269は、上述のベッセル48などのベッセル(ただし、曲線状のループ60およびライザー94のない)であってもよく、その場合、ハウジング205および渦管220は、ベッセル269内に包囲されてもよい。
図14および図15に目を向けると、図1に記述した二相流分離器システム40と同様の二相流分離器システム300が示されるが、二相流分離器システム300では、曲線状の流線312は、実質的に垂直な軸315に沿って形成された流体ベッセル317の内部314の中に配置される。ベッセル317は、ベッセルカバー331を含む。曲線状の流線312は、第1の端部320と、第2の端部321と、を有する第1のパイプ318を有する。第1の端部320と第2の端部321との間に、第1のパイプ318は、互いに隣接して実質的に垂直な軸315を中心として配設された複数の曲線状のパイプループ322a、322b、322c、322d、322e、322f、および322gを形成する。図示された実施形態では、7つのループ322が示される。しかしながら、より少ない、またはより多い数のループ322が利用されてもよいが、少なくとも2つのループが好ましい。1つ以上の実施形態では、曲線状のパイプループ322の少なくとも一部分は、同一の直径であり、またパイプループ322は、垂直に積み重ねられた配設で互いに隣接し、これにより各曲線状のパイプループ322は、軸315に沿って実質的に水平である。図示した実施形態では、パイプループ322は、ベッセル317内に配置される。パイプループ322をベッセル314の内部に位置付けることによって(図1に示すようにベッセル48の外部の周りに配置されるのとは対照的に)、パイプループ322は、本明細書記述したようにループ内の二相流体の階層化の影響を受ける可能性がある外部温度からより良好に断熱される場合がある。この点に関して、ベッセル壁326は、こうした目的のために断熱されてもよい。加えて、二相流分離器システム300は、ヘッディング(heading)装置324を含んでもよく、これはベッセル317の内部314の中の流体温度を調節するために位置付けられてもよい。さらに、二相階層化への外部温度の影響を最小化することに加えて、ベッセル317は同様に、ループ322を物理的損傷から保護するために利用されてもよい。
液体流線328は、ベッセル317の下方部分330に隣接して延在してもよい。液体流線328は、ベッセル317の下方部分330と流体連通する第1の出口332と、第1の出口332の下流の第2の出口(図示せず)と、を含む。第1の出口332は、ベッセル317の底部または最下端部336に位置する液体ポート334と流体連通してもよい。
1つ以上の実施形態では、背圧装置(図示せず)は、上述のように。液体流線328に沿って位置付けられてもよい。
いずれにしても、第1のパイプ318は、入口372で終結する第1の端部320において実質的に水平な部分370を含んでもよい。同様に、第1のパイプ318は、液体出口376内で終結する第2の端部321において実質的に水平な部分374を含んでもよい。1つ以上の実施形態では、第1の端部370は、垂直軸315に関して第2の端部321の上方に位置付けられる。そのため、パイプループ322は下降し、その中で第1の端部370から第2の端部321への流体流れは、下向きに流れる。加えて、気体出口ポート378は、第1のパイプ318に沿って、水平部分374に沿って配置される。気体出口ポート378は、水平部分374の上方パイプ面379に沿って配置されることが好ましい。気体出口ポート378および液体出口376は、水平部分374がパイプ318に沿ってT接合部380を形成するように互いに隣接してもよい。
ライザー382は、気体出口ポート378から上向きに延在する。1つ以上の実施形態では、ライザー382は、流体ベッセル317と流体連通し、これにより流体ベッセル317は、ライザー382に沿って上に流れる流体(典型的に湿潤気体)をその中へと収集することができる気体分離器として機能する。この点に関して、ライザー382は、上方部分383と流体連通するポート384を介して、流体ベッセル317の上方部分383と流体連通する。より具体的には、ライザー382は、実質的に垂直であってもよく、また垂直軸315と実質的に平行であってもよい。ライザー382は、気体出口ポート378と流体連通する第1の下方端部386と、流体ベッセル317と流体連通する第2の上方端部387と、を有してもよい。この点に関して、ライザー382は、流体ベッセル317の上方部分383と流体連通してもよい。
液体流線328は、液体出口376から延在する。液体流線328は、ベッセル317の下方部分330と流体連通する第1の出口332と、第1の出口332の下流の第2の出口389と、を含む。第1の出口332は、ベッセル317の底部または最下端部336に位置する液体ポート334と流体連通してもよい。
1つ以上の実施形態では、液体流線328に沿って第1の出口334の上流に、第1のパイプ318の出口376と流線328の第1の出口334との間に、背圧装置390が位置付けられてもよい。背圧装置390は、液体流線328に沿って流れる流体の圧力を調整または調節するために望む通りに作動することができる任意の機構であってもよく、ゲート弁または業界で周知の他の弁を含むが、これらに限定されない。この点に関して、ライザー382もしくは液体流線328のいずれかまたはその両方に沿って流れる流体の状態を測定するためにセンサー391が提供されてもよく、そのセンサー391は、記述したように二相分離を最適化するように背圧装置390を調整するために利用されてもよい。当然のことながら、特に、背圧装置390は、気体出口ポート378の下流の第1のパイプ318内に液体の波を作り出すために、第1のパイプ318の出口376を通して出る液体の流れを妨げ、または減速し、これは分離された主に気体状構成成分のライザー382の中への流れを強化する。
図示した実施形態では、ベッセル317は、ベッセル内径Divを有する。いずれにしても、この二相流分離器システム300の実施形態では、パイプループ322は、ベッセル317の内部314の中に配設される。それ故に、パイプループ322は、ベッセル内径Divより小さいループ外径Dolを有してもよい。そのため、ループ322は、ベッセル317の外部壁326によって保護される。これは、裸孔から産出された気体状炭化水素から液体炭化水素を分離するための油田での二相流分離器システム300の使用などの過酷な環境では特に望ましい。同様に、ループ322をベッセル317内に位置付けることは、二相流体が曲線状の流線312に沿って進む際に、暑さもしくは寒さなどの環境的要因が、気体構成成分および液体構成成分の分離または階層化に影響を与える可能性を低減する。言い換えれば、ベッセル317自体およびその中の流体は、曲線状の流線312を断熱する。
いずれにしても、ベッセル317の底部または最下端部330に位置する液体ポート334に加えて、気体ポート338が、ベッセル317の上部または上方端部340に配置されてもよい。
一部の実施形態では、二相流分離器システム300は、図1に関して上述のように、空気逃がし機構(図示せず)をさらに含んでもよい。
必ずしもではないが、一部の実施形態では、内部に曲線状の流線312を有するベッセル317は、これもベッセル317内に配置して示される環状渦クラスターシステム350をさらに含んでもよい。環状渦クラスターシステム350は、図7~図13に関して上述の特徴のうちのいずれかを含んでもよい。
環状渦クラスターシステム350は、一般的に、環状チャネル358がその中に形成されるハウジング356を形成する、上方部分または上板および下方部分または渦本体354を含む。環状チャネル358は、螺旋状の形状であってもよい。環状チャネル358は、チャネル358の長さに沿って徐々に狭くなる断面積を有してもよい。1つ以上の実施形態では、ハウジング359は、ディスク形状であってもよい。図14に図示した渦管359a、359bなどの2本以上の渦管359がハウジング356から下へと延在する。渦管359は、各々上板352を通して延在する開口357と流体連通する。同様に、排気チャネル355は、気体ポート338を介してなど、ベッセル317の内部と、ベッセル317の外部との間で気体が流れるのを可能にするために、本体358および上板352を通して延在してもよい。
1つ以上の実施形態では、環状渦クラスターシステム350は、ベッセル317の上方部分383内に配置される。特に、環状チャネル358は、ライザー138と流体連通し、そのためこれを通過する主に気体状の流体は、主に気体状の流体流れ内に同伴された液体からの気体の分離をさらに強化するために、環状渦クラスターシステム350を通って流れるために徐々に狭くなる螺旋状チャネル358に入る。
環状渦クラスターシステム350または二相流分離器システム300の動作のために必要なわけではないが、一部の実施形態では、測定管361が本体358から液体ポート334に向かって下へと延在してもよい。ブレーカープレート363が、概して液体ポート334に隣接するように、測定管361の遠位端部に位置付けられてもよい。ブレーカープレート363は、ベッセル317の下方部分330に配置された液体内に渦を形成するのを防止するために提供される。
図16は、望む通りに保守点検するために、渦クラスターシステム350全体をベッセル(図示せず)から簡単に取り外すことを可能にするように、ベッセルカバー331と統合された、渦クラスターシステム350の組立図である。渦クラスターシステム350は、ベッセルカバー331と関連して示される。この特定の組立品渦クラスターシステム350は、上板352が取り付けられる、本体354を有するディスク形状のハウジング353を含む。2本以上の渦管359(渦管359a、359b、359c、および359dなど)がハウジング353から下へと延在する。渦管359は、概して真っ直ぐな管として示されるが、他の実施形態では、渦管359は、管359の長さに沿って徐々に狭くなるまたは徐々に拡張するようにテーパー状であってもよい。
気体状流体供給ライン、すなわちライザー382は、ポート384を通してベッセルカバー331内に延在し、そして上板352の上面325内に形成された流体入口(図示せず)と流体連通する(図14を参照のこと)。同様に気体放出ライン327は、ベッセルカバー331内のポート338を通して延在し、かつ上板352の上面325内の排気ポート(図示せず)へと取り付けられる。測定管361は、本体354から下へと延在して示される。ブレーカープレート363は、測定管361の遠位端部に位置付けられてもよい。記述したように、組立品は、ベッセルからベッセルカバー331を単純に引き離すことによって、ベッセルから容易に取り外される。
図17を参照すると、二相流分離器システム400の別の実施形態が図示されている。本明細書で使用される場合、「二相」は、少なくとも1つの気体状構成成分と少なくとも1つの液体構成成分とを有する流体を指すが、流体は2つ以上の気体状または液体構成成分を有してもよい。この実施形態は、図1に上述の二相流分離器システム40と同様に背圧装置を利用するが、流体ベッセルを有しない。具体的には、二相流分離器システム400では、曲線状の流線402は、実質的に垂直な軸404を中心として配置される。曲線状の流線402は、第1の端部408と、第2の端部410と、を有する第1のパイプ406を有する。第1の端部408と第2の端部410との間に、パイプ406は、互いに隣接して実質的に垂直な軸404を中心として配設された複数の曲線状のパイプループ412a、412b、412c~412nを形成する。図示された実施形態では、5つのループ412が示される。しかしながら、より少ない、またはより多い数のループ412が利用されてもよいが、少なくとも2つのループが好ましい。1つ以上の実施形態では、曲線状のパイプループ412の少なくとも一部分は、同一の直径であり、またパイプループ412は、垂直に積み重ねられた配設で互いに隣接し、これにより各曲線状のパイプループ412は、実質的に水平である。いずれにしても、第1のパイプ406は、入口416で終結する第1の端部408において実質的に水平な部分414を含んでもよい。同様に、第1のパイプ406は、液体出口420内で終結する第2の端部410において実質的に水平な部分418を含んでもよい。第1の端部408は、垂直軸404に関して第2の端部410の上方に位置付けられる。そのため、パイプループ412は下降し、その中で第1の端部408から第2の端部410への流体流れは、下向きに流れる。加えて、気体出口ポート422は、第1のパイプ406に沿って、水平部分418に沿って配置される。気体出口ポート422は、水平部分418の上方パイプ面424に沿って配置されることが好ましい。
1つ以上の実施形態では、機械的空気逃がし機構430が、気体出口ポート422から上向きに延在する。空気逃がし機構は、単純にポート422を通過する空気を放出する弁432であってもよく、またはポート422を上へ通過する気体を捕捉し、かつベッセル434内に収集された気体を弁432を介して制御可能に放出するための気体収集ベッセル434を含んでもよい。
いずれにしても、二相流分離器システム400は、流線402に沿って気体出口ポート422と液体出口420との間に位置付けられた背圧装置436をさらに含む。背圧装置436は、流線402に沿って流れる流体の圧力を調整または調節するために望む通りに作動することができる任意の機構であってもよく、制限、ゲート弁または業界で公知の他の弁、またはこれに類するものを含むが、これらに限定されない。この点に関して、気体出口ポート422を通して、もしくは液体出口420を通して、またはその両方で流れる流体の状態を測定するためにセンサー438が提供されてもよく、そのセンサー(複数可)438は、記述したように二相分離を最適化するように背圧装置436を調整するために利用されてもよい。当然のことながら、特に、背圧装置436は、気体出口ポート422の下流の第1のパイプ406内に液体の波を作り出すために、出口420を通る液体の流れを妨げ、または減速し、これは分離された主に気体状構成成分の貫通口422の中への流れを強化する。具体的には、図17に図示するように、二相流体440は、入口416において曲線状の流線402に入り、かつ複数の積み重ねられた、水平パイプループ402を通過し、これは、流体440を実質的に液体部分442および実質的に気体状部分444へと階層化する。流線402の水平部分418は、階層化された流れが448に図示したようであるとき、気体状部分444を第1のパイプ406の上面424に隣接する上方部分で収集し、かつ液体部分442を第1のパイプ406の下方部分で収集する、許容を可能にする。一方で、液体部分442は、出口420から出るように流れ、背圧装置436は、これを通る液体部分442の流れを減速し、結果として気体ポート422の下流の第1のパイプ406内に形成される液体の波450をもたらす。液体の波450は、気体ポート422の中への気体状部分444の流れを促進し、液体部分442から気体状部分444を抜き出すことを可能にする。センサー(複数可)438は、流体440、442、444のうちの1つ以上の状態を測定するために利用されてもよく、これは次いで背圧装置436を調整するために使用することができる。
図18に目を向けると、1つの用途では、上述の二相流分離器システムは、エンジンの燃料燃焼/消費を測定するために使用されてもよい。内燃エンジンなどのエンジン502による燃料の燃焼または消費を測定するためのエンジンシステム500を、図18に示す。具体的には、燃料ポンプ504は、燃料供給ライン508に沿って燃料ベッセル506からエンジン502へと燃料を送り出す。本明細書に記述したように、第1の二相流分離器システム510aは、液体燃料のエンジン502の中への注入の前に液体燃料から空気を除去するために、エンジン502の上流の燃料ライン508に沿って配置される。第1の分離器システム510aによって燃料を処理すると、センサー512は、エンジン502に送達される液体燃料の体積などの燃料の特性を測定し、その後、燃料はエンジン502の中へと注入される。一部の実施形態では、燃焼流体の流れを第2の二相流分離器システム510bの中へと吸い込むために、ポンプが第2の二相流分離器システム510bの下流に提供されてもよく、または別の方法として、流体流れをシステムの中へと吸い込むために、ポンプが第2の二相流分離器システム510bの中へと組み込まれてもよい。
その後、エンジンからの排気は、第2の二相流分離器システム510bへと方向付けられ、ここで燃焼気体は、未燃焼液体燃料から分離される。センサー514は、未燃焼液体燃料の体積などの燃料の特性を測定する。次いで、センサー512によって測定した場合のエンジン502の中へと注入された燃料の量、およびセンサー514によって測定した場合の未燃焼燃料の量は、エンジン502の最適な動作と比較することができる。この点に関して、センサー512および514からデータを受信してデータを比較するためにコントローラ516が提供されてもよい。コントローラ516は、エンジン502の燃焼チャンバー(図示せず)の中へと注入される液体燃料の量を変化させること、またはエンジン502の液体燃料と混合される燃焼空気の量を変化させること、またはポンプ504の流量を調整することなどの比較に応答して、エンジン502および/またはポンプ504に対する調整を行うためにも利用されてもよい。同様に、コントローラ516は、概して本明細書に記述したように、分離器システム510の中への流量だけでなく、各分離器システム510内の液体燃料流に印加される背圧も調整することによって、各々の動作を最適化するために、一方または両方の分離器システム510のデータおよび/または制御動作も受信してもよい。
二相流分離器システム510aおよび510bは、各々一般的に入口513および出口515を有する曲線状の流線511を含む。分離器システム510aの入口513は、流れ分離器システム510aへと入口流体として流体を送達するように燃料ベッセル506と流体連通し、また分離器システム510aの出口515は、燃焼燃料をエンジン502へと送達するようにエンジン502と流体連通する。同様に、分離器システム510bの入口513は、流れ分離器システム510bへと入口流体として燃焼流体流れを送達するようにエンジン502の排気ポート501と流体連通し、また分離器システム510bの出口515は、燃料ベッセル506と流体連通する。曲線状の流線511は、複数の概して水平な、積み重ねられた曲線状のパイプループを互いに隣接して形成し、これは流れ分離器システム510の構成要素を形成するベッセル517の周りに配置される。ライザー519は、曲線状の流線511によって入口流体から取り出された気体状流体を、ベッセル517の中へと送達する。流れ分離器システム510は、渦クラスターシステム521を含んでもよい。流れ分離器システム510は、ベッセル517内の望ましい液体レベルを維持するため、および流れ分離器システム510への入口流体流れの変動の下流の影響を減衰するために、空気逃がし機構523をさらに含んでもよい。流体流れを入口513の中へと吸い込むために、流線511に沿って真空ポンプが提供されてもよい。
より具体的に上述されるように、一方または両方の二相流分離器システム510は、曲線状の流線システムの動作を改善するために、流体ベッセルを含んでもよい曲線状の流線システムを含み、二相流体を主に液体構成成分および主に気体状構成成分へと分離する。第1の分離器システム510aは、燃料ベッセル506からの燃料流れを、液体燃料および空気へと分離する。第2の分離器システム510bは、エンジン502からの排気流れを、排気気体と未燃焼液体燃料へと分離する。1つ以上の実施形態では、曲線状の流線システムは、流体ベッセルの外周の周りに配置されるが、他の実施形態では、曲線状の流線システムは、ベッセルの内部内に配置されるか、または流体ベッセルを有しないで利用される。1つ以上の実施形態では、渦クラスターシステム200などの渦クラスターシステムは、第1の分離器システム510aの場合には、主に気体状構成成分、すなわち空気を処理するために、そして第2の分離器システム510bの場合には、曲線状の流線システムの下流で、燃焼気体を処理するために利用されてもよい。渦クラスターシステムは、タンクの内部に位置付けられてもよいが、他の実施形態では、渦クラスターシステムは、タンクの外部であってもよい。さらに別の実施形態では、曲線状の流線システムは、開示の渦クラスターシステムと、いかなるタンクも有することなく組み合わされてもよい。この点に関して、一部の実施形態では、本明細書に開示される渦クラスターシステムは、それ自体が分離器システム510aまたは510bなどの二相流分離器システムであってもよい。疑義を避けるために、二相流分離器システム510は、本開示で記述した二相流分離器システムのうちのいずれかであってもよい。
それ故に、一部の実施形態では、二相流分離器システム510は、第1の端部と、実質的に垂直な軸に沿って互いに隣接して配設された複数の曲線状のパイプループを形成するパイプを有する第2の端部と、を有する第1のパイプを含んでもよい。曲線状のパイプループは、概して水平であり、かつベッセルの周りまたはベッセル内に形成され、ベッセルの上方部分に隣接して配置される第1のパイプの第1の端部と、ベッセルの下方部分に隣接して配置される第1のパイプの第2の端部と、を有する。曲線状のパイプループの少なくとも一部分は、同一の直径であり、かつ垂直に積み重ねられた配設で互いに隣接する。流体出口は、第1のパイプの第2の端部にある。気体出口は、第1のパイプにおいて、第1のパイプの第1の端部と第2の端部との間に形成される。一実施形態では、気体出口は、流体出口に隣接し、かつ流体ベッセルの内部と流体連通するライザーへと導く。一実施形態では、パイプループは、流体ベッセルの外部の周りに配置されるが、一方で他の実施形態では、パイプループは流体ベッセル内に収容される。背圧機構は、流体出口の下流の流体ライン内で、かつ流体ライン内のポートの上流に提供されてもよく、このポートは、流体ベッセルの基部と流体連通する。
1つ以上の実施形態では、ライザーは、環状渦クラスターシステムと流体連通し、これは一般的に固定される上板と、内部チャンバーを形成する渦本体と、を含み、その中に、徐々に狭くなる、内部チャンバー内に位置付けられる渦ハブの周りに螺旋状チャネルが画定される。螺旋状チャネルは、第1の端部および第2の端部を有し、そしてこれは第1の端部と第2の端部との間で幅Wが徐々に狭くなる。螺旋状のチャネルと交差する2つ以上の切断穴が、ハブの周囲に概して隣接してハブ内に形成され、それ故に各切断穴に対して前縁および後縁を形成する。各切断穴は、渦本体の基部を通して延在して、渦本体から下へと延在する渦管と流体連通する出口を形成する。各渦管は、上板を通して延在する開口と流体連通する。二相流分離器システム510が流体ベッセル利用する範囲内で、環状渦クラスターシステムは、流体ベッセルの上方部分内に配置されてもよい。
図18のシステムの代替的な実施形態では、二相流分離器システム510aは、除去されてもよく、また未燃焼液体燃料の量は、記述したように、二相流分離器システム510を利用して回収されてもよい。一部の実施形態では、回収された未燃焼燃料は、戻りライン518を介して単に燃料ベッセル506へと戻されてもよく、他の実施形態では、二相流分離器システム510bによって回収された未燃焼燃料は、センサー514を用いるなど、分析されてもよく、そしてエンジン502の効率を改善するために、エンジン502に対する調整を行うために利用されてもよい。
図19に目を向けると、別の用途では、上述の二相流分離器システムは、内燃エンジンの中へと注入前に液体燃料から空気を除去することによって、エンジン性能を改善するために使用されてもよい。ガソリン、ディーゼル、メタノール、エタノール、または他の液体燃料などの液体燃料を、エンジン602の中への注入の前に処理するための、エンジンシステム600を図19に示す。具体的には、燃料ポンプ604は、燃料供給ライン608に沿って、車両燃料タンクなどの燃料ベッセル606からエンジン502へと、燃焼のために燃料を送り出す。本明細書に記述したように、第1の二相流分離器システム610は、液体燃料のエンジン602の中への注入の前に液体燃料から空気を除去するために、エンジン602の上流の燃料ライン608に沿って配置される。
二相流分離器システム610は、一般的に、入口流体として流体を流れ分離器システム610へと送達するために燃料ベッセル606と流体連通する入口603と、直接的または間接的にエンジン602と流体連通する出口605と、を有する曲線状の流線601を含む。曲線状の流線601は、互いに隣接して配設された、複数の概して水平な、積み重ねられた曲線状のパイプループを形成し、これは流れ分離器システム610の構成要素を形成するベッセル607の周りに配置される。ライザー609は、曲線状の流線601によって入口流体から取り出された気体状流体を、ベッセル607の中へと送達する。流れ分離器システム610は、渦クラスターシステム611を含んでもよい。流れ分離器システム610は、ベッセル607内の望ましい液体レベルを維持するため、および流れ分離器システム610への入口流体流れの変動の下流の影響を減衰するために、空気逃がし機構613をさらに含んでもよい。
より具体的に上述されるように、二相流分離器システム610の1つ以上の実施形態は、曲線状の流線システムの動作を改善するために、流体ベッセルを含んでもよい曲線状の流線システムを含み、二相流体を主に液体構成成分および主に気体状構成成分へと分離する。分離器システム610は、燃料ベッセル606からの燃料流れを、液体燃料および空気へと分離する。ベッセルが含まれる1つ以上の実施形態では、曲線状の流線システムは、流体ベッセルの外周の周りに配置されるが、他の実施形態では、曲線状の流線システムは、ベッセルの内部内に配置される。1つ以上の実施形態では、渦クラスターシステムは、曲線状の流線システムの下流の主に気体状の構成成分、すなわち空気を処理するために利用されてもよい。渦クラスターシステムは、タンクの内部に位置付けられてもよいが、他の実施形態では、渦クラスターシステムは、タンクの外部であってもよい。さらに別の実施形態では、曲線状の流線システムは、開示の渦クラスターシステムと、いかなるタンクも有することなく組み合わされてもよい。この点に関して、一部の実施形態では、本明細書に開示される渦クラスターシステムは、それ自体が分離器システム610などの二相流分離器システムであってもよい。さらに別の実施形態では、二相流分離器システム610は、渦クラスターシステム200のような、いかなる曲線状の流線システムも有しない、環状渦クラスターシステムであってもよい。疑義を避けるために、二相流分離器システム610は、本開示で記述した二相流分離器システムのうちのいずれかであってもよい。
それ故に、一部の実施形態では、二相流分離器システム610は、第1の端部と、実質的に垂直な軸に沿って互いに隣接して配設された複数の曲線状のパイプループを形成するパイプを有する第2の端部と、を有する第1のパイプを含んでもよい。曲線状のパイプループは、概して水平であり、かつベッセルの周りに形成され、ベッセルの上方部分に隣接して配置される第1のパイプの第1の端部と、ベッセルの下方部分に隣接して配置される第1のパイプの第2の端部と、を有する。曲線状のパイプループの少なくとも一部分は、同一の直径であり、かつ垂直に積み重ねられた配設で互いに隣接する。流体出口は、第1のパイプの第2の端部にある。気体出口は、第1のパイプにおいて、第1のパイプの第1の端部と第2の端部との間に形成される。一実施形態では、気体出口は、流体出口に隣接し、かつ流体ベッセルの内部と流体連通するライザーへと導く。一実施形態では、パイプループは、流体ベッセルの外部の周りに配置されるが、一方で他の実施形態では、パイプループは流体ベッセル内に収容される。背圧機構は、流体出口の下流の流体ライン内で、かつ流体ライン内のポートの上流に提供されてもよく、このポートは、流体ベッセルの基部と流体連通する。
1つ以上の実施形態では、ライザーは、環状渦クラスターシステムと流体連通し、これは一般的に固定される上板と、内部チャンバーを形成する渦本体と、を含み、その中に、徐々に狭くなる、内部チャンバー内に位置付けられる渦ハブの周りに螺旋状チャネルが画定される。螺旋状チャネルは、第1の端部および第2の端部を有し、そしてこれは第1の端部と第2の端部との間で幅Wが徐々に狭くなる。螺旋状のチャネルと交差する2つ以上の切断穴が、ハブの周囲に概して隣接してハブ内に形成され、それ故に各切断穴に対して前縁および後縁を形成する。各切断穴は、渦本体の基部を通して延在して、渦本体から下へと延在する渦管と流体連通する出口を形成する。各渦管は、上板を通して延在する開口と流体連通する。二相流分離器システム610が流体ベッセル利用する範囲内で、環状渦クラスターシステムは、流体ベッセルの上方部分内に配置されてもよい。
図20に目を向けると、別の用途では、上述の二相流分離器システムは、燃料油などの燃料を燃料貯蔵タンクから船舶の搭載型燃料タンクへと移送するための燃料バンカリング動作で使用されてもよい。バンカー燃料は、一般的に船上で使用される任意のタイプの燃料を指す。バンカー燃料は、しばしば船上の大きいタンク内にバンカー燃料を保持する、バージなどのバンカー船を介して、または陸上に位置する燃料タンクを有するターミナルから商船へと送達されてもよい。バンカー燃料を送達する行為は、一般的に「バンカリング」と呼ばれる。バンカー燃料は、典型的に、バンカーバージの上にある場合があるような貯蔵タンクから、商船上のタンクへと送られる。いずれにしても、バンカリング動作における燃料のポンピングは、特に燃料を収容している船が空になるにつれて、より大量の空気が吸い込まれ、そして燃料とともに送り出される傾向があり、ポンピングが困難な状態になり、また燃料の不正確な測定がもたらされる。燃料ライン802に沿って、第1の燃料貯蔵タンク812と、燃料が送り出される燃料タンク、すなわち第2の燃料貯蔵タンク814との間に配置された二相流分離器システム800が図20に示される。第1の燃料貯蔵タンク812は、マリンバージ816などの、船舶上で運ばれてもよく、または陸上の埠頭のそばに配備されてもよい。第2の貯蔵燃料タンク814は、船818の上に位置する。燃料ポンプ804は、第1の燃料貯蔵タンク841と二相流分離器システム800との間で、燃料を第2の燃料貯蔵タンク814へと送り出すために利用されてもよい。センサーなどの液体測定装置820は、燃料ライン802に沿って、二相流分離器システム800と第2の燃料貯蔵タンク814との間に位置付けられてもよい。コントローラ822は、センサー820をモニターするために利用されてもよく、また一部の実施形態では、モニターされた液体に基づいて、ポンプ804を制御してもよい。
二相流分離器システム800は、一般的に、入口流体として燃料を流れ分離器システム800へと送達するために第1の燃料貯蔵タンク812と流体連通する入口803と、直接的または間接的に第2の貯蔵燃料タンク814と流体連通する出口805と、を有する曲線状の流線801を含む。曲線状の流線801は、互いに隣接して配設された、複数の概して水平な、積み重ねられた曲線状のパイプループを形成し、これは流れ分離器システム800の構成要素を形成するベッセル807の周りに配置される。ライザー809は、曲線状の流線801によって入口流体から取り出された気体状流体を、ベッセル807の中へと送達する。流れ分離器システム800は、渦クラスターシステム811を含んでもよい。流れ分離器システム800は、ベッセル807内の望ましい液体レベルを維持するため、および流れ分離器システム800への入口流体流れの変動の下流の影響を減衰するために、空気逃がし機構813をさらに含んでもよい。
より具体的に上述されるように、1つ以上の実施形態では、二相流分離器システム800は、流体ベッセルと組み合わされてもよい曲線状の流線システムを含み、二相流体を主に液体構成成分および主に気体状構成成分へと分離する、曲線状の流線システムの動作を改善する。分離器システム800は、第1の燃料貯蔵タンク812からの燃料流れを、液体燃料および空気へと分離する。1つ以上の実施形態では、曲線状の流線システムは、流体ベッセルの外周の周りに配置されるが、他の実施形態では、曲線状の流線システムは、ベッセルの内部内に配置される。1つ以上の実施形態では、渦クラスターシステムは、曲線状の流線システムの下流の主に気体状の構成成分、すなわち空気を処理するために利用されてもよい。渦クラスターシステムは、タンクの内部に位置付けられてもよいが、他の実施形態では、渦クラスターシステムは、タンクの外部であってもよい。さらに別の実施形態では、曲線状の流線システムは、開示の渦クラスターシステムと、いかなるタンクも有することなく組み合わされてもよい。この点に関して、一部の実施形態では、本明細書に開示される渦クラスターシステムは、それ自体が環状渦クラスターシステム200などの二相流分離器システムであってもよい。疑義を避けるために、二相流分離器システム800は、本開示で記述した二相流分離器システムのうちのいずれかであってもよい。
それ故に、一部の実施形態では、二相流分離器システム800は、第1の端部と、実質的に垂直な軸に沿って互いに隣接して配設された複数の曲線状のパイプループを形成するパイプを有する第2の端部と、を有する第1のパイプを含んでもよい。曲線状のパイプループは、概して水平であり、かつベッセルの周りに形成され、ベッセルの上方部分に隣接して配置される第1のパイプの第1の端部と、ベッセルの下方部分に隣接して配置される第1のパイプの第2の端部と、を有する。曲線状のパイプループの少なくとも一部分は、同一の直径であり、かつ垂直に積み重ねられた配設で互いに隣接する。流体出口は、第1のパイプの第2の端部にある。気体出口は、第1のパイプにおいて、第1のパイプの第1の端部と第2の端部との間に形成される。一実施形態では、気体出口は、流体出口に隣接し、かつ流体ベッセルの内部と流体連通するライザーへと導く。一実施形態では、パイプループは、流体ベッセルの外部の周りに配置されるが、一方で他の実施形態では、パイプループは流体ベッセル内に収容される。背圧機構は、流体出口の下流の流体ライン内で、かつ流体ライン内のポートの上流に提供されてもよく、このポートは、流体ベッセルの基部と流体連通する。
1つ以上の実施形態では、ライザーは、環状渦クラスターシステムと流体連通し、これは一般的に固定される上板と、内部チャンバーを形成する渦本体と、を含み、その中に、徐々に狭くなる、内部チャンバー内に位置付けられる渦ハブの周りに螺旋状チャネルが画定される。螺旋状チャネルは、第1の端部および第2の端部を有し、そしてこれは第1の端部と第2の端部との間で幅Wが徐々に狭くなる。螺旋状のチャネルと交差する2つ以上の切断穴が、ハブの周囲に概して隣接してハブ内に形成され、それ故に各切断穴に対して前縁および後縁を形成する。各切断穴は、渦本体の基部を通して延在して、渦本体から下へと延在する渦管と流体連通する出口を形成する。各渦管は、上板を通して延在する開口と流体連通する。二相流分離器システム800が流体ベッセル利用する範囲内で、環状渦クラスターシステムは、流体ベッセルの上方部分内に配置されてもよい。
それ故に、燃料は第1のタンク812から取り出され、システム800を通過し、そして次に第2のタンク814へと方向付けられる。第1のパイプの第1の端部に入る燃料は、液体燃料に含まれる空気の大きい比率を有する場合がある。第1のパイプの第2の端部を出る液体燃料は、複数の曲線状のパイプループを通過した後、同伴された空気を実質的に取り除かれる。取り出された空気内に同伴された任意の液体燃料は、環状渦クラスターによって捕捉し、そして第2の燃料貯蔵タンク814へと方向付けることができる。
図21に目を向けると、別の用途では、上述の二相流分離器システムは、移送された液体の体積が確実に正確に測定されるようにするために、貯蔵タンクまたはベッセル(陸上または海上)間の液体移送システムで使用されてもよい。供給ラインまたはパイプライン852に沿って、第1の液体貯蔵タンク854と第2の液体貯蔵タンク856との間に配置される、二相流分離器システム850を図21に示す。本明細書に記述したように、第1の貯蔵タンク854および第2の貯蔵タンク856のうちの一方または両方は、トラックもしくは鉄道車両、バージまたはこれに類するものなどの車両上で運ばれてもよく、または固定された構造物であってもよい。同様に、貯蔵タンク854、856は、製造された容器または貯蔵器であってもよく、また化学薬品、炭化水素、燃料、牛乳、または他の消耗品液体が挙げられるが、これらに限定されない、任意の液体の貯蔵のために利用されてもよい。同様に、貯蔵タンク854、856は、液体の長期間の貯蔵または一時的な貯蔵のために配置されてもよく、あるいはクラッキングタワーなどの大型の製造もしくは加工システムの仮置き用の容器またはベッセルであってもよい。いずれにしても、液体ポンプ858は、第1の貯蔵タンク854と二相流分離器システム850との間で、液体を第2の貯蔵タンク856へと送り出すために利用されてもよい。センサーなどの液体測定装置860は、パイプライン852に沿って、二相流分離器システム850と第2の貯蔵タンク856との間に位置付けられてもよい。コントローラ862は、センサー860をモニターするために利用されてもよく、また一部の実施形態では、モニターされた液体に基づいて、ポンプ858を制御してもよい。
二相流分離器システム850は、一般的に、入口流体として流体を流れ分離器システム850へと送達するために第1の貯蔵タンク854と流体連通する入口853と、直接的または間接的に第2の貯蔵タンク856と流体連通する出口855と、を有する曲線状の流線851を含む。曲線状の流線851は、互いに隣接して配設された、複数の概して水平な、積み重ねられた曲線状のパイプループを形成し、これは流れ分離器システム850の構成要素を形成するベッセル857の周りに配置される。ライザー809は、曲線状の流線851によって入口流体から取り出された気体状流体を、ベッセル857の中へと送達する。流れ分離器システム850は、渦クラスターシステム861を含んでもよい。流れ分離器システム850は、ベッセル857内の望ましい液体レベルを維持するため、および流れ分離器システム850への入口流体流れの変動の下流の影響を減衰するために、空気逃がし機構863をさらに含んでもよい。
より具体的に上述されるように、流体ベッセルと組み合わされてもよい曲線状の流線システムを含み、二相流体を主に液体構成成分および主に気体状構成成分へと分離する、曲線状の流線システムの動作を改善する。分離器システム850は、第1の貯蔵タンク854からの流体流れを、主に液体流および主に気体状流へと分離する。1つ以上の実施形態では、曲線状の流線システムは、流体ベッセルの外周の周りに配置されるが、他の実施形態では、曲線状の流線システムは、ベッセルの内部内に配置される。1つ以上の実施形態では、渦クラスターシステム863は、曲線状の流線システムの下流の主に気体状流、すなわち空気を処理するために利用されてもよい。渦クラスターシステムは、タンクの内部に位置付けられてもよいが、他の実施形態では、渦クラスターシステムは、タンクの外部であってもよい。さらに別の実施形態では、曲線状の流線システムは、開示の渦クラスターシステムと、いかなるタンクも有することなく組み合わされてもよい。この点に関して、一部の実施形態では、本明細書に開示される渦クラスターシステムは、それ自体が環状渦クラスターシステム200などの二相流分離器システムであってもよい。疑義を避けるために、二相流分離器システム850は、本開示で記述した二相流分離器システムのうちのいずれかであってもよい。
それ故に、一部の実施形態では、二相流分離器システム850は、第1の端部と、実質的に垂直な軸に沿って互いに隣接して配設された複数の曲線状のパイプループを形成するパイプを有する第2の端部と、を有する第1のパイプを含んでもよい。曲線状のパイプループは、概して水平であり、かつベッセルの周りに形成されてもよく、ベッセルの上方部分に隣接して配置される第1のパイプの第1の端部と、ベッセルの下方部分に隣接して配置される第1のパイプの第2の端部と、を有する。曲線状のパイプループの少なくとも一部分は、同一の直径であり、かつ垂直に積み重ねられた配設で互いに隣接する。流体出口は、第1のパイプの第2の端部にある。気体出口は、第1のパイプにおいて、第1のパイプの第1の端部と第2の端部との間に形成される。一実施形態では、気体出口は、流体出口に隣接し、かつ流体ベッセルの内部と流体連通するライザーへと導く。一実施形態では、パイプループは、流体ベッセルの外部の周りに配置されるが、一方で他の実施形態では、パイプループは流体ベッセル内に収容される。背圧機構は、流体出口の下流の流体ライン内で、かつ流体ライン内のポートの上流に提供されてもよく、このポートは、流体ベッセルの基部と流体連通する。
1つ以上の実施形態では、ライザーは、環状渦クラスターシステムと流体連通し、これは一般的に固定される上板と、内部チャンバーを形成する渦本体と、を含み、その中に、徐々に狭くなる、内部チャンバー内に位置付けられる渦ハブの周りに螺旋状チャネルが画定される。螺旋状チャネルは、第1の端部および第2の端部を有し、そしてこれは第1の端部と第2の端部との間で幅Wが徐々に狭くなる。螺旋状のチャネルと交差する2つ以上の切断穴が、ハブの周囲に概して隣接してハブ内に形成され、それ故に各切断穴に対して前縁および後縁を形成する。各切断穴は、渦本体の基部を通して延在して、渦本体から下へと延在する渦管と流体連通する出口を形成する。各渦管は、上板を通して延在する開口と流体連通する。二相流分離器システム850が流体ベッセル利用する範囲内で、環状渦クラスターシステムは、流体ベッセルの上方部分内に配置されてもよい。
それ故に、液体は第1のタンク854から取り出され、システム850を通過し、そして次に第2のタンク856へと方向付けられる。第1のパイプの第1の端部に入る液体は、液体に含まれる大きい比率の空気を有している場合があり、この空気は、液体の製造もしくは処理を通して、または単純に液体の取り扱いなど、様々なプロセスを通して液体内に同伴されている場合がある。第1のパイプの第2の端部を出る液体は、複数の曲線状のパイプループを通過した後、同伴された空気を実質的に取り除かれる。取り出された空気内に同伴された任意の液体は、環状渦クラスターによって捕捉し、そして第2の貯蔵タンク814へと方向付けることができる。
図22に目を向けると、別の用途では、上述の二相流分離器システムは、化学薬品の加工、または化学薬品もしくは食品生産物の製造において使用されてもよい。具体的には、二相流分離器システムは、純度または品質を改善するために、任意の液体構成成分から気体を除去するために使用されてもよい。一例として、牛乳の加工では、空気の存在は、牛乳の味覚に悪影響を与える可能性がある。牛乳中の空気の存在は、牛乳が腐敗するまでの寿命も減少する可能性がある。関連して、製造プロセス中に加熱に曝露された、流体内に同伴された気体または空気は、加熱中に膨張する場合があり、製造される最終製品の品質に影響を与える場合がある。これらの理由により、製造流体内に同伴された気体を除去するために、記述した二相流分離器システムを利用することが望ましい。導管872に沿ってプロセッサ874の下流に配置された、二相流分離器システム870を図22に示す。プロセッサ874は、液体貯蔵タンク876からの液体と、貯蔵ベッセルなどの添加物供与源878からの、添加物とを混合またはブレンドするために配置されてもよい。添加物は、食品構成成分などの固体、または化学薬品などの別の液体であってもよい。液体貯蔵タンク876は、液体供給ライン887を介してプロセッサ874と流体連通する。添加物が固体である場合、コンベヤーまたはオーガなどの固体送達システム885が、添加物供与源878からプロセッサ874へと固体を供給するために利用されてもよい。この点に関して、プロセッサ874は、様々な食品製造もしくは調製、または化学薬品製造で使用されるブレンダーであってもよい。液体と固体との混合またはブレンドは、一般的に液体またはスラリーの形態でありうる、ブレンドされた製品内に望ましくない同伴された気体(空気など)を導入する場合がある。いずれにしても、液体を製品送達ライン889に沿って二相流分離器システム870へと送り出すために、液体ポンプ878が、プロセッサ874と二相流分離器システム870との間で利用される場合がある。
二相流分離器システム870は、一般的に、入口流体として流体を流れ分離器システム870へと送達するためにプロセッサ874と流体連通する入口873と、出口875と、を有する曲線状の流線871を含む。曲線状の流線871は、互いに隣接して配設された、複数の概して水平な、積み重ねられた曲線状のパイプループを形成し、これは流れ分離器システム870の構成要素を形成するベッセル877の周りに配置される。ライザー879は、曲線状の流線871によって入口流体から取り出された気体状流体を、ベッセル877の中へと送達する。流れ分離器システム870は、渦クラスターシステム881を含んでもよい。流れ分離器システム870は、ベッセル877内の望ましい液体レベルを維持するため、および流れ分離器システム870への入口流体流れの変動の下流の影響を減衰するために、空気逃がし機構883をさらに含んでもよい。
より具体的に上述されるように、1つ以上の実施形態では、二相流分離器システム870は、流体ベッセルと組み合わされてもよい曲線状の流線システムを含み、二相流体を主に液体構成成分および主に気体状構成成分へと分離する、曲線状の流線システムの動作を改善する。分離器システム870は、プロセッサ874からの流体流れを、主に液体流および主に気体状流へと分離する。1つ以上の実施形態では、曲線状の流線システムは、流体ベッセルの外周の周りに配置されるが、他の実施形態では、曲線状の流線システムは、ベッセルの内部内に配置される。1つ以上の実施形態では、渦クラスターシステムは、曲線状の流線システムの下流の主に気体状流、すなわち空気を処理するために利用されてもよい。渦クラスターシステムは、タンクの内部に位置付けられてもよいが、他の実施形態では、渦クラスターシステムは、タンクの外部であってもよい。さらに別の実施形態では、曲線状の流線システムは、開示の渦クラスターシステムと、いかなるタンクも有することなく組み合わされてもよい。この点に関して、一部の実施形態では、本明細書に開示される渦クラスターシステムは、それ自体が環状渦クラスターシステム200などの二相流分離器システムであってもよい。疑義を避けるために、二相流分離器システム870は、本開示で記述した二相流分離器システムのうちのいずれかであってもよい。
それ故に、一部の実施形態では、二相流分離器システム870は、第1の端部と、実質的に垂直な軸に沿って互いに隣接して配設された複数の曲線状のパイプループを形成するパイプを有する第2の端部と、を有する第1のパイプを含んでもよい。曲線状のパイプループは、概して水平であり、かつベッセルの周りに形成されてもよく、ベッセルの上方部分に隣接して配置される第1のパイプの第1の端部と、ベッセルの下方部分に隣接して配置される第1のパイプの第2の端部と、を有する。曲線状のパイプループの少なくとも一部分は、同一の直径であり、かつ垂直に積み重ねられた配設で互いに隣接する。流体出口は、第1のパイプの第2の端部にある。気体出口は、第1のパイプにおいて、第1のパイプの第1の端部と第2の端部との間に形成される。一実施形態では、気体出口は、流体出口に隣接し、かつ流体ベッセルの内部と流体連通するライザーへと導く。一実施形態では、パイプループは、流体ベッセルの外部の周りに配置されるが、一方で他の実施形態では、パイプループは流体ベッセル内に収容される。背圧機構は、流体出口の下流の流体ライン内で、かつ流体ライン内のポートの上流に提供されてもよく、このポートは、流体ベッセルの基部と流体連通する。
1つ以上の実施形態では、ライザーは、環状渦クラスターシステムと流体連通し、これは一般的に固定される上板と、内部チャンバーを形成する渦本体と、を含み、その中に、徐々に狭くなる、内部チャンバー内に位置付けられる渦ハブの周りに螺旋状チャネルが画定される。螺旋状チャネルは、第1の端部および第2の端部を有し、そしてこれは第1の端部と第2の端部との間で幅Wが徐々に狭くなる。螺旋状のチャネルと交差する2つ以上の切断穴が、ハブの周囲に概して隣接してハブ内に形成され、それ故に各切断穴に対して前縁および後縁を形成する。各切断穴は、渦本体の基部を通して延在して、渦本体から下へと延在する渦管と流体連通する出口を形成する。各渦管は、上板を通して延在する開口と流体連通する。二相流分離器システム870が流体ベッセル利用する範囲内で、環状渦クラスターシステムは、流体ベッセルの上方部分内に配置されてもよい。
プロセッサ874を離れる製品は、空気を除去するために、その後の製品の取り扱いの前に、システム870を通過する。第1のパイプの第1の端部に入る液体は、液体に含まれる大きい比率の空気を有している場合があり、この空気は、プロセッサ874による混合またはブレンドなどの、様々なプロセスを通して液体内に同伴されている場合がある。第1のパイプの第2の端部を出る液体は、複数の曲線状のパイプループを通過した後、同伴された空気を実質的に取り除かれる。
他の実施形態では、裸孔から回収された多相流体流を処理する方法が提供される。方法は、多相流体流を、主に気相から成る第1の流体構成成分と、主に液相から成る第2の流体構成成分と、に分離する。当然のことながら、第1の構成成分は、天然ガスなどの様々な気体状炭化水素を含んでもよく、また流体構成成分は、液体炭化水素、掘削流体、水、およびこれに類するものだけでなく、削りくずなどの固体も含んでもよい。いずれにしても、多相流体流を第1の流体構成成分および第2の流体構成成分へと階層化するために、裸孔から回収された多相流体流を、複数の下降する曲線状のループを通して下向きに方向付ける。その後、第1の流体構成成分は、階層化された多相流体流から分離され、そして渦管へと方向付けられ、ここで次に、第1の流体構成成分は、主に液相から成る第3の流体構成成分および主に気相から成る第4の流体構成成分へと分離される。次に第2の構成成分および第3の構成成分は、さらなる加工のために組み合わされてもよい。第1の構成成分および第4の構成成分も同様に、さらなる加工のために組み合わされてもよい。例えば、組み合わされた第2の構成成分および第3の構成成分は、本明細書に記述したもののような液体貯蔵タンク中に収集されてもよい。同様に、組み合わされた第1の構成成分および第4の構成成分は、気体貯蔵ベッセル内に収集されてもよい。
それ故に、様々なシステムが記述されてきた。二相流分離器システムは、実質的に垂直な軸に沿った高さH、上方部分におけるポートおよび下方部分におけるポートを有する上方ベッセル部分および下方ベッセル部分、を有する流体ベッセルであって、ベッセル外径およびベッセル内径を有するようにベッセル壁から形成され、かつベッセル内部を画定する流体ベッセルと、第1の端部および第2の端部を有する第1のパイプであって、垂直軸に沿って互いに隣接して配設された複数の下降する曲線状のパイプループを形成するようにベッセルの周りに配置され、当該パイプループが垂直に積み重ねられた配設で互いに隣接する、第1のパイプと、第1のパイプの第2の端部と隣接する第1のパイプと流体連通する第1の下方端部を有するライザーであって、流体ベッセルと流体連通する第2の上方端部を有するライザーと、を含んでもよい。他の実施形態では、二相流分離器システムは、実質的に垂直な軸に沿った高さH、上方部分におけるポートおよび下方部分におけるポートを有する上方ベッセル部分および下方ベッセル部分、を有する流体ベッセルであって、ベッセル外径およびベッセル内径を有するようにベッセル壁から形成され、かつベッセル内部を画定する流体ベッセルと、第1の端部および第2の端部を有する第1のパイプであって、垂直軸に沿って互いに隣接して配設された複数の下降する曲線状のパイプループを形成するようにベッセルの周りに配置され、当該パイプループが垂直に積み重ねられた配設で互いに隣接する、第1のパイプと、流体ベッセル内に配置される渦クラスターシステムと、第1のパイプの第2の端部と隣接する第1のパイプと流体連通する第1の下方端部を有するライザーであって、渦クラスターシステムと流体連通する第2の上方端部を有するライザーと、を含んでもよい。他の実施形態では、二相流分離器システムは、実質的に垂直な軸に沿った高さH、上方部分におけるポートおよび下方部分におけるポートを有する上方ベッセル部分および下方ベッセル部分、を有する流体ベッセルであって、ベッセル外径およびベッセル内径を有するようにベッセル壁から形成され、かつベッセル内部を画定する流体ベッセルと、第1の端部および第2の端部を有する第1のパイプであって、垂直軸に沿って互いに隣接して配設された複数の下降する曲線状のパイプループを形成するようにベッセルの周りに配置され、当該パイプループが垂直に積み重ねられた配設で互いに隣接する、第1のパイプと、第1のパイプの第2の端部と隣接する第1のパイプと流体連通する第1の下方端部を有するライザーであって、流体ベッセルと流体連通する第2の上方端部を有するライザーと、を含んでもよい。他の実施形態では、二相流分離器システムは、第1の流体入口および第2の端部を有する環状チャネルを形成する流体注入導管を備え、チャネルの長さの少なくとも一部分に沿って互いに離隔した複数の垂直に延在する渦管を有し、各管が当該ベッセルの中へと下方に延び、かつ円筒状の、側壁に開口部を有する垂直な側壁を備え、開口部がチャネルに隣接する、環状渦クラスターシステムである。他の実施形態では、二相流分離器システムは、第1の端部および第2の端部を有する第1のパイプがその周りに配置される実質的に垂直な軸であって、第1のパイプが、垂直軸に沿って互いに隣接して配設された複数の下降する曲線状のパイプループを形成し、当該パイプループが、垂直に積み重ねられた配設で互いに隣接し、第1のパイプが、パイプループと液体出口との間に配置される実質的に水平な部分を有する第2の端部において液体出口をさらに有し、実質的に水平な部分が、実質的に水平な部分の上面に沿って配置される気体出口ポートを有する、実質的に垂直な軸と、第1のパイプに沿って液体出口と気体出口ポートとの間に位置付けられる背圧装置と、を含んでもよい。他の実施形態では、二相流分離器システムは、第1の端部および第2の端部を有する第1のパイプがその周りに配置される実質的に垂直な軸であって、第1のパイプが、垂直軸に沿って互いに隣接して配設された複数の下降する曲線状のパイプループを形成し、当該パイプループが、垂直に積み重ねられた配設で互いに隣接し、第1のパイプが、パイプループと液体出口との間に配置される実質的に水平な部分を有する第2の端部において液体出口をさらに有し、実質的に水平な部分が、実質的に水平な部分の上面に沿って配置される気体出口ポートを有する、実質的に垂直な軸と、第1のパイプに沿って液体出口と気体出口ポートとの間に位置付けられる背圧装置と、内部気体出口ポートと流体連通する空気逃がし機構と、を含んでもよい。エンジンシステムは、燃料ベッセルと、燃料供給ラインを介して燃料ベッセルと流体連通する内燃エンジンであって、当該エンジンが排気ポートを有する、内燃エンジンと、燃料供給ラインに沿って流体的に配置される第1の二相流分離器システムおよびエンジン排気ポートと流体連通する第2の二相流分離器システムと、を含んでもよい。他の実施形態では、エンジンシステムは、燃料ベッセルと、燃料供給ラインを介して燃料ベッセルと流体連通する内燃エンジンと、燃料供給ラインに沿ってエンジンと燃料ベッセルとの間に流体的に配置される二相流分離器システムと、を含んでもよい。燃料バンカリングシステムは、第1の燃料貯蔵タンクを第2の燃料貯蔵タンクと流体的に連結する燃料供給ラインと、燃料を第1の貯蔵タンクから第2の貯蔵タンクへと送り出すために燃料供給ラインに沿って配置される燃料ポンプと、燃料供給ラインに沿って第1の燃料貯蔵タンクと第2の燃料貯蔵タンクとの間に流体的に連結された二相流分離器システムと、を含んでもよい。液体を移送するためのシステムは、液体供給ラインによって第2の液体貯蔵タンクと流体連通する第1の液体貯蔵タンクと、液体を第1の貯蔵タンクから第2の貯蔵タンクへと送り出すために配置されるポンプと、液体供給ラインに沿って第1の燃料貯蔵タンクと第2の燃料貯蔵タンクとの間に流体的に連結された二相流分離器システムと、を含んでもよい。製品を製造するためのシステムは、プロセッサと流体連通する液体貯蔵タンクと、固体貯蔵ベッセルと、固体送達システムと、プロセッサと流体連通するポンプと、ポンプと流体連通する二相流分離器システムと、を含んでもよい。他の実施形態では、製品を製造するためのシステムは、プロセッサと流体連通する液体貯蔵タンクと、添加物供与源と、添加物送達システムと、プロセッサと流体連通するポンプと、ポンプと流体連通する二相流分離器システムと、を含んでもよい。
以下の要素は、組み合わされてもよく、単独でもよく、または前述の実施形態のうちのいずれかに対して任意の他の要素と組み合わせてもよい。
複数の曲線状のパイプループは、垂直に積み重ねられた配設にあり、これにより各曲線状のパイプループは、実質的に水平である。
各々ベッセル外径より大きい内径を有し、また流体ベッセルの周りに垂直に積み重ねられた配設にあり、これにより各曲線状のパイプループは、実質的に水平である、複数の曲線状のパイプループ。
流体ベッセルの高さHの一部分のみに沿って延在する、複数の曲線状のパイプループ。
複数の垂直に積み重ねられたパイプループは、流体ベッセルの下方部分において、ポートの上方に離隔している。
第1のパイプは、第1のパイプの第2の端部に隣接する実質的に水平な部分を含み、第1のパイプの第2の端部における液体出口および実質的に水平な部分の上面に配置される気体出口ポートを有し、実質的に垂直なライザーの第1の下方端部は、気体出口ポートと流体連通する。
ライザーは、実質的に垂直である。
第1のパイプの第2の端部と流体連通する液体流線、流体ベッセルの下方部分と流体連通する第1の出口を含む液体流線、および第1の出口の下流の第2の出口。
第1のパイプの第2の端部と流体連通する液体流線、出口および液体流線に沿って第1のパイプの第2の端部と液体流線出口との間に位置付けられる背圧装置を含む液体流線。
流体ベッセルの下を通り、これにより第1の出口は流体ベッセルの最下端部に形成される液体ポートを介して流体ベッセルの下方部分と流体連通する液体流線。
液体流線に沿って第1の出口の上流に位置付けられた背圧装置。
流体ベッセルの内部内に配置され、かつライザーの第2の上方端部と流体連通する渦クラスターシステム。
ライザーおよび渦クラスターシステムは、上方ベッセル部分のポートを介して互いに流体連通する。
渦クラスターシステムは、ライザーと流体連通する第1の端部および当該ベッセルの中へと下方に延びる少なくとも1つの垂直に位置付けられる渦管に隣接する第2の端部を有するチャネルを形成する流体注入導管を備え、各渦管は、円筒状の、側壁内に開口部を有し、開口部がチャネルに隣接する垂直な側壁部分を有する。
チャネルは、第1の端部から第2の端部へと延在し、チャネルは第1の端部と第2の端部との間で直線状である。
チャネルは、第1の端部から第2の端部へと延在し、チャネルは第1の端部と第2の端部との間でテーパー状である。
チャネルは、チャネルの各対向する側面に沿って位置付けられる少なくとも1本の渦管を有する対向する側面によって特徴付けられる。
チャネルは、第1の端部から第2の端部へと延在し、チャネルの断面積は第1の端部と第2の端部との間でテーパー状である。
チャネルは、第1の端部から第2の端部へと延在し、かつ対向する側面によって特徴付けられ、チャネルの断面積は、第1の端部と第2の端部との間でテーパー状であり、少なくとも1本の渦管は、チャネルの各対向する側面に沿って位置付けられる。
チャネルの各対向する側面に沿って位置付けられ、側面の長さに沿って互いに離隔した3本の渦管を有する少なくとも6本の渦管。
第1のパイプの第1の端部と流体連通する第1の流体貯蔵タンク、および第1のパイプの第2の端部と流体連通する第2の流体貯蔵タンク。
第1のパイプの第1の端部と流体連通する第1の流体貯蔵タンク、および第1のパイプの第2の端部と流体連通する第2の流体貯蔵タンク。
二相流分離器システムは、実質的に垂直な軸に沿った高さH、上方部分におけるポートおよび下方部分におけるポートを有する上方ベッセル部分および下方ベッセル部分、を有する流体ベッセルであって、ベッセル外径およびベッセル内径を有するようにベッセル壁から形成され、かつベッセル内部を画定する流体ベッセルと、第1の端部および第2の端部を有する第1のパイプであって、垂直軸に沿って互いに隣接して配設された複数の下降する曲線状のパイプループを形成するようにベッセルの周りに配置され、当該パイプループが垂直に積み重ねられた配設で互いに隣接する、第1のパイプと、第1のパイプの第2の端部と隣接する第1のパイプと流体連通する第1の下方端部を有するライザーであって、流体ベッセルと流体連通する第2の上方端部を有するライザーと、を備える。
二相流分離器システムは、環状渦クラスターシステムを備える。
燃料ラインに沿って燃料ベッセルと二相流分離器との間に流体的に配置された燃料ポンプ。
第1の二相流分離器システムの第1のパイプの第2の端部と流体連通する第1のセンサー、および第2の二相流分離器システムの第2の端部と流体連通する第2のセンサー、ならびに第1のセンサーによって測定された液体含有量を第2のセンサーによって測定された液体含有量と比較するように配置される制御システム。
燃料ベッセルは、第1の二相流分離器の第1のパイプの第1の端部と流体連通し、また第1の二相流分離器の第1のパイプの第2の端部は、エンジンと流体連通し、そして第2の二相流分離器の第1のパイプの第1の端部は、エンジンの排気ポートと流体連通し、また第2の二相流分離器の第1のパイプの第2の端部は、燃料ベッセルと流体連通する。
燃料供給ラインに沿って二相流分離器システムの第1のパイプの第2の端部と第2の燃料貯蔵タンクとの間に配置されるセンサー。
第1の燃料タンクは、バージ上にあり、また第2の燃料タンクは船の上にある。
第1の燃料タンクは、陸上にあり、また第2の燃料タンクは船舶の上にある。
二相流分離器システムおよび第1の燃料タンクは、バージの上にある。
センサーは、液体供給ラインに沿って二相流分離器と第2の貯蔵タンクとの間に配置される。
流れ分離器システムは、ブレンダーと流体連通する入口を有する曲線状の流れループと、ポンプと流体連通する出口とを備える。
曲線状の流れループは、流体ベッセルの周りに配置される。
曲線状の流れループと流体連通する第1の下方端部と、流体ベッセルと流体連通する第2の上方端部と、を有するライザー。
流体ベッセル内に配置され、かつ実質的に垂直なライザーの上方端部と流体連通する渦クラスターシステム。
流体ベッセルと流体連通する空気逃がしベッセル。
流れ分離器システムとポンプとの間に配置された流体分配マニホールド。
流れ分離器システムと流体連通する複数のブレンダー。
流れ分離器システムと流体連通する複数のポンプ。
1つ以上のブレンダーと流体連通して配置された流体分配マニホールド、および流体分配マニホールドと流体連通する複数の流れ分離器システム。
流体分配マニホールドは、複数の出口を含み、各マニホールド出口は、ポンプと流体連通し、流れ分離器システムは、各マニホールド出口と対応するポンプとの間に流体的に連結される。
曲線状の流れループは、複数の水平の向きにされ、流体ベッセルの周りに配置された、垂直に積み重ねられたループを備える。
実質的に垂直な軸に沿って形成され、かつ上方部分におけるポートおよび下方部分におけるポートを有する上方部分および下方部分を有する流体ベッセルで、ベッセル外径およびベッセル内径を有し、かつベッセル内部を画定するように、ベッセル壁から形成された流体ベッセル。
流体ベッセルの内部内に配置された渦クラスターシステム。
第1のパイプは、第1の端部および第2の端部を有し、第1の端部と第2の端部との間に形成された複数の曲線状のパイプループを伴い、ループは、互いに隣接して実質的に垂直な軸を中心として配設される。
複数の曲線状のパイプループは、垂直に積み重ねられた配設にあり、これにより各曲線状のパイプループは、実質的に水平である。
複数の曲線状のパイプループは、流体ベッセルの周りに配置される。
複数の曲線状のパイプループは、流体ベッセル内に配置される。
複数の曲線状のパイプループは、各々ベッセル外径より大きい内径を有し、また流体ベッセルの周りに垂直に積み重ねられた配設にあり、これにより各曲線状のパイプループは、実質的に水平である。
複数の曲線状のパイプループは、各々ベッセル内径より小さい外径を有し、また流体ベッセル内に垂直に積み重ねられた配設にあり、これにより各曲線状のパイプループは、実質的に水平である。
流体ベッセルの高さの一部分のみに沿って延在する複数の曲線状のパイプループ。
流体ベッセルの下方端部に隣接して配置される、流体入口から離隔した複数の垂直に積み重ねられたパイプループ。
第1のパイプの第2の端部に隣接する第1のパイプに沿って配置された気体出口ポート。
第1のパイプの第2の端部に隣接する第1のパイプの上面内に配置された気体出口ポート。
第1のパイプは、第2の端部に隣接する実質的に水平な部分を含み、第2の端部に液体出口を有する。
第1のパイプは、第2の端部に液体出口を有する第2の端部に隣接する実質的に水平な部分、および第1のパイプの実質的に水平な部分の上面に配置される気体出口ポートを含む。
気体出口ポートと流体連通する第1の下方端部と、流体ベッセルと流体連通する第2の上方端部と、を有するライザー。
ライザーは、実質的に垂直である。
ライザーの第2の上方端部は、流体ベッセルの上方部分と流体連通する。
ライザーの第2の上方端部は、渦クラスターシステムと流体連通する。
第1のパイプの第2の端部と流体連通する液体流線、流体ベッセルの下方部分と流体連通する第1の出口を含む液体流線、および第1の出口の下流の第2の出口。
第1のパイプの第2の端部と流体連通する液体流線、出口および液体流線に沿って第1のパイプの第2の端部と液体流線出口との間に位置付けられる背圧装置を含む液体流線。
液体流線に沿って第1の出口の上流に位置付けられた背圧装置。
流体ベッセル内の液体レベルを調整するために流体ベッセルの内部と流体連通する空気逃がし機構。
当該ライザーと流体連通する第1の端部と、当該ベッセルの中へと下方に延びる少なくとも1つの垂直に位置付けられた渦管に隣接する第2の端部と、を有するチャネルを形成する流体注入導管を備える渦クラスターシステム。
複数の渦管。
少なくとも2本の渦管。
各渦管は、側壁に開口部を有する円筒状の垂直な側壁部分を備え、開口部はチャネルに隣接する。
当該ライザーと流体連通する第1の端部、および当該ベッセルの中へと下方に延びる2本の離隔した垂直に位置付けられた渦管に隣接する第2の端部を有するチャネルを形成する流体注入導管を備える渦クラスターシステムであって、各管が円筒状の垂直な側壁を備え、側壁に開口部を有し、開口部はチャネルに隣接する。
前縁および後縁を備える開口部で、前縁とチャネルとの交差点において、前縁は概してチャネルと平行である。
渦管は、その中に形成された気体ポートを有する上方の第1の端部と、第2の開いた下方端部とを有する。
チャネルは、第1の端部から第2の端部へと延在し、チャネルの断面積は第1の端部から第2の端部へと狭くなる。
チャネルは、第1の端部から第2の端部へと延在し、チャネルは第1の端部と第2の端部との間で直線状である。
チャネルは、第1の端部から第2の端部へと延在し、チャネルは第1の端部と第2の端部との間で曲線がある。
チャネルは、第1の端部から第2の端部へと延在し、チャネルは第1の端部と第2の端部との間で螺旋状である。
チャネルは、第1の端部から第2の端部へと延在し、チャネルは第1の端部と第2の端部との間でテーパー状である。
チャネルは環状である。
当該ライザーと流体連通する第1の端部と、チャネルの長さの少なくとも一部分に沿って互いに離隔した複数の垂直に延在する渦管を有する第2の端部と、を有する直線状チャネルを形成する流体注入導管を備える渦クラスターシステムであって、各管は、当該ベッセルの中へと下方に延び、かつ円筒状の垂直な側壁を備え、側壁は開口部を有し、開口部は、チャネルに隣接する。
チャネルは、チャネルの各対向する側面に沿って位置付けられる少なくとも1本の渦管を有する対向する側面によって特徴付けられる。
チャネルの各対向する側面に沿って位置付けられ、側面の長さに沿って互いに離隔した3本の渦管を有する少なくとも6本の渦管。
直線状渦クラスターシステム。
環状渦クラスターシステム。
第1の端部と、第1の端部と第2の端部との間のチャネルの長さの少なくとも一部分に沿って互いに離隔した複数の垂直に延在する渦管を有する第2の端部と、を有する環状チャネルを形成する流体注入導管と流体連通する流体入口を備える渦クラスターシステムであって、各管は、当該ベッセルの中へと下方に延び、かつ円筒状の垂直な側壁を備え、側壁は開口部を有し、開口部は、チャネルに隣接する。
チャネルは、チャネルの各対向する側面に沿って位置付けられる少なくとも1本の渦管を有する対向する側面によって特徴付けられる。
チャネルは、対向する側面の各々が異なる半径を有する対向する側面によって特徴付けられ、複数の渦管は、より小さい半径を有する側面のみに沿って位置付けられる。
渦管に隣接する流体ベッセル。
流体ベッセルの周りに配置された渦管。
流体ベッセル内に配置される液体出口。
添加物供与源は、化学薬品タンクである。
添加物供与源は、固体貯蔵容器である。
同様に、様々な方法が記述されている。製品の製造方法は、流体をブレンダーへと導入することと、添加物をブレンダーへと導入することと、製品流体を製造するために流体を添加物と混合するためにブレンダーを利用することと、製品流体を主に気相から成る第1の流体構成成分および主に液相から成る第2の流体構成成分へと階層化するために、製品流体を複数の下降する曲線状のループを通して下向きに方向付けることと、第1の流体構成成分を階層化された製品流体から分離することと、を含んでもよい。二相流体流を、主に気相から成る第1の流体構成成分および主に液相から成る第2の流体構成成分へと分離する方法であって、方法は、二相流体流を第1の流体構成成分および第2の流体構成成分へと階層化するために、二相流体流を複数の下降する曲線状のループを通して下向きに方向付ける工程と、第1の流体構成成分を階層化された二相流体流から分離する工程と、取り出された第1の流体構成成分を渦管へと方向付ける工程と、第1の流体構成成分を主に液相から成る第3の流体構成成分と主に気相から成る第4の流体構成成分へと分離する工程と、を含む。二相流体流を、主に気相から成る第1の流体構成成分および主に液相から成る第2の流体構成成分へと分離する方法であって、方法は、二相流体流を、環状流路に沿って第1の流路端部と第2の流路端部との間で方向付ける工程と、二相流体流を第1の流体構成成分および第2の流体構成成分へと階層化するために、二相流体流の一部分を複数の下降する曲線状のループを通して下向きに取り出す工程と、第1の流体構成成分を階層化された二相流体流から分離する工程と、取り出された第1の流体構成成分を渦管へと方向付ける工程と、第1の流体構成成分を主に液相から成る第3の流体構成成分と主に気相から成る第4の流体構成成分へと分離する工程と、を含む。燃料流を、主に気相から成る第1の流体構成成分および主に液相から成る第2の流体構成成分へと階層化するために、燃料を燃料ベッセルから複数の下降する曲線状のループを通して下向きに送り出す工程と、第1の流体構成成分を階層化された二相燃料流から分離する工程と、取り出された第1の流体構成成分を渦管へと方向付ける工程と、第1の流体構成成分を主に液相から成る第3の流体構成成分と主に気相から成る第4の流体構成成分へと分離する工程と、第2の流体構成成分の体積を測定し、そしてその後、第2の流体構成成分をエンジン内で燃焼して排気を生成する工程と、排気流体流を、主に気相から成る第1の流体構成成分および主に液相から成る第2の流体構成成分へと階層化するために、排気を複数の下降する曲線状のループ通して下向きに方向付ける工程と、第1の流体構成成分を階層化された二相排気流から分離する工程と、取り出された第1の流体構成成分を渦管へと方向付け、そして第1の流体構成成分を主に液相から成る第3の流体構成成分と主に気相から成る第4の流体構成成分へと分離する工程と、排気流体流の第2の流体構成成分の体積を測定する工程と、測定された燃料流の第2の流体構成成分と排気流の第2の流体構成成分とを比較する工程と、を含む、エンジンを動作する方法。燃料流を、主に気相から成る第1の流体構成成分および主に液相から成る第2の流体構成成分へと階層化するために、燃料を燃料ベッセルから複数の下降する曲線状のループを通して下向きに送り出す工程と、第1の流体構成成分を階層化された二相燃料流から分離する工程と、取り出された第1の流体構成成分を渦管へと方向付ける工程と、第1の流体構成成分を主に液相から成る第3の流体構成成分と主に気相から成る第4の流体構成成分へと分離する工程と、第2の流体構成成分をエンジン内で燃焼する工程と、を含むエンジンを動作する方法。製品の製造において液体を利用する方法であって、方法は、流体をミキサーの中へと導入する工程と、添加物をミキサーの中へと導入する工程と、製品流体を製造するために流体を添加物と混合するためにミキサーを利用する工程と、製品流体を主に気相から成る第1の流体構成成分および主に液相から成る第2の流体構成成分へと階層化するために、製品流体を複数の下降する曲線状のループを通して下向きに方向付ける工程と、第1の流体構成成分を階層化された製品流体から分離する工程と、第2の流体構成成分をポンプへと方向付ける工程と、を含む。液体を、主に気相から成る第1の流体構成成分および主に液相から成る第2の流体構成成分を有する二相流体流へと階層化するために、液体を第1の液体貯蔵タンクから複数の下降する曲線状のループを通して下向きに送り出す工程と、階層化された二相流体流から第1の流体構成成分を分離する工程と、取り出された第1の流体構成成分を渦管へと方向付け、そして第1の流体構成成分を主に液相から成る第3の流体構成成分と主に気相から成る第4の流体構成成分へと分離する工程と、第2の流体構成成分と第3の流体構成成分とを組み合わせ、そして組み合わされた流れを第2の液体貯蔵ベッセルの中へと方向付ける工程と、を含む液体を移送する方法。二相流体流を、主に気相から成る第1の流体構成成分および主に液相から成る第2の流体構成成分へと分離する方法であって、方法は、二相流体流を第1の流体構成成分および第2の流体構成成分へと階層化するために、二相流体流を複数の下降する曲線状のループを通して下向きに方向付ける工程と、第1の流体構成成分を第2の流体構成成分から分離する工程と、階層化された二相流体流から離れる第1の流体構成成分分離の流れを促進するために、第1の流体構成成分の分離の下流に液体の波を形成するために第2の流体構成成分に背圧を印加する工程と、を含む。裸孔から回収された多相流体流を主に気相から成る第1の流体構成成分および主に液相から成る第2の流体構成成分へと処理する方法であって、方法は、裸孔からの流体流を生成する工程と、多相流体流を第1の流体構成成分および第2の流体構成成分へと階層化するために、裸孔流体流を複数の下降する曲線状のループを通して下向きに方向付ける工程と、第1の流体構成成分を階層化された多相流体流から分離する工程と、取り出された第1の流体構成成分を渦管へと方向付け、そして第1の流体構成成分を主に液相から成る第3の流体構成成分と主に気相から成る第4の流体構成成分へと分離する工程と、を含む。
以下の要素は、組み合わされてもよく、単独でもよく、または前述の方法実施形態のうちのいずれかに対して任意の他の要素と組み合わせてもよい。
取り出された第1の流体構成成分を渦管の中へと方向付けることと、第1の流体構成成分を、主に液相から成る第3の流体構成成分と、主に気相から成る第4の流体構成成分とに分離すること。
製品流体を牛乳を製造するために利用すること。
製品流体を化学薬品を製造するために利用すること。
製品流体をアスファルトを製造するために利用すること。
階層化された二相流体流から離れる第1の流体構成成分の流れを促進するために、第1の流体の構成成分分離の下流に液体の波を形成するように、第2の流体構成成分に背圧を印加すること。
流体流の主に気体状部分を渦クラスターシステムへと方向付けること。
流体流の主に液体部分をポンプへと方向付けること。
二相流体流は牛乳から成る。
二相流体流は化学薬品から成る。
二相流体流はバンカリング燃料から成る。
二相流体流はアスファルトから成る。
二相流体流は液体燃料から成る。
添加物は化学薬品である。
添加物は固体である。
添加物は液体である。
第2の流体構成成分と第3の流体構成成分とを組み合わされること。
第2の流体構成成分および第3の流体構成成分をエンジンへと注入すること。
第2の流体構成成分と第3の流体構成成分とを組み合わせ、かつ組み合わされた流体構成成分の体積を測定すること。
様々な実施形態を詳細に図示してきたが、本開示は、示された実施形態に限定されない。上記の実施形態の修正および適合が当業者に対して生じる場合がある。こうした修正および適合は、本開示の趣旨および範囲内である。

Claims (20)

  1. 二相流分離器システムであって、
    実質的に垂直な軸に沿った高さHを有し、さらに、上方ベッセル部分におけるポートと下方ベッセル部分におけるポートとを有する前記上方ベッセル部分および前記下方ベッセル部分、を有する流体ベッセルであって、前記流体ベッセルはベッセル外径およびベッセル内径を有しかつベッセル内部を画定するように、ベッセル壁で形成されている、前記流体ベッセルと、
    第1の端部および第2の端部を有する第1のパイプであって、前記第1のパイプは前記垂直軸に沿って互いに隣接して配設された複数の下降する曲線状のパイプループを形成するように前記垂直軸を中心として配置され、互いに隣接した前記パイプループが垂直に積み重ねられて配置される、前記第1のパイプと、
    前記第1のパイプの前記第2の端部に隣接して前記第1のパイプと流体連通する第1の端部を有するライザーであって、前記ライザーは前記第1の端部の上方かつ前記第1のパイプの前記第1の端部に隣接した第2の端部を有する、前記ライザーと、
    前記ライザーの前記第2の端部と流体連通する渦クラスターシステムと、を備える二相流分離器システム。
  2. 前記垂直軸に沿って互いに隣接して配設され、前記垂直に積み重ねられ、複数の下降する曲線状のパイプループが、前記ベッセル内径より小さい外径を有し、かつ前記ベッセル内部内に配置される、請求項1に記載のシステム。
  3. 前記複数の曲線状のパイプループの各々が前記ベッセル外径より大きい内径を有し、かつ前記曲線状のパイプループの各々が実質的に水平であるように前記流体ベッセルの周りで垂直に積み重ねられた配置とされる、請求項1に記載のシステム。
  4. 前記複数の曲線状のパイプループが、前記流体ベッセル前記高さHの一部分のみに沿って延在し、かつ前記下方ベッセル部分において前記ポートの上方に離隔して配置される、請求項1に記載のシステム。
  5. 前記第1のパイプが、前記第1のパイプの前記第2の端部における液体出口および前記実質的に水平な部分の上面に配置される気体出口ポートを有する、前記第1のパイプの前記第2の端部に隣接する実質的に水平な部分を含み、前記ライザーが実質的に垂直であり、かつ実質的に垂直な前記ライザーの前記第1の下方端部は、前記気体出口ポートと流体連通する、請求項1に記載のシステム。
  6. 前記第1のパイプの前記第2の端部と流体連通する液体流線をさらに備え、前記液体流線は、前記下方ベッセル部分内の前記ポートと流体連通する第1の出口および第1の出口の下流の第2の出口を含む、請求項1に記載のシステム。
  7. 前記第1のパイプの前記第2の端部と前記液体流線の第2の出口との間において前記液体流線に沿って位置付けられた背圧装置をさらに備える、請求項1に記載のシステム。
  8. 前記渦クラスターシステムが、前記ライザーの前記第2の端部と流体連通する流体注入導管を備え、前記流体注入導管が第1の端部および第2の端部を有するチャネルを形成し、前記第1の端部と前記第2の端部との間の前記チャネルの長さの少なくとも一部分に沿って互いに離隔した複数の垂直に延在する渦管を有し、各管が、前記ベッセルの中へと下方に延び、かつ円筒状の垂直な側壁を備え、前記側壁が開口部を有し、前記開口部が、前記チャネルに隣接する、請求項1に記載のシステム。
  9. 前記渦クラスターシステムが、前記流体ベッセルの内部内に配置される、請求項1に記載のシステム。
  10. 前記チャネルが、第1の端部から第2の端部へと延在し、かつ前記第1の端部と前記第2の端部との間で前記チャネルが直線状である、請求項8に記載のシステム。
  11. 前記チャネルが、第1の端部から第2の端部へと延在し、かつ前記第1の端部と前記第2の端部との間で前記チャネルが曲線状である、請求項8に記載のシステム。
  12. 前記チャネルが、第1の端部から第2の端部へと延在し、かつ前記第1の端部と前記第2の端部との間で前記チャネルがテーパー状である、請求項8に記載のシステム。
  13. 二相流分離器システムであって、
    実質的に垂直な軸に沿った高さHを有し、さらに、上方ベッセル部分におけるポートと下方ベッセル部分におけるポートとを有する前記上方ベッセル部分および前記下方ベッセル部分、を有する流体ベッセルであって、前記流体ベッセルはベッセル外径およびベッセル内径を有し、かつ流体ベッセル内部を画定するようにベッセル壁で形成された、前記流体ベッセルと、
    第1の端部および第2の端部を有する第1のパイプであって、前記垂直軸に沿って互いに隣接して配設された複数の下降する曲線状のパイプループを形成するように前記ベッセル外径に隣接して前記ベッセルの周りに配置され、前記パイプループが垂直に積み重ねられた配設で互いに隣接する、第1のパイプと、
    前記流体ベッセル内に配置される渦クラスターシステムと、
    前記下方ベッセル部分に隣接する第1の端部を有し、かつ前記第1のパイプの前記第2の端部と隣接する前記第1のパイプと流体連通するライザーであって、前記上方ベッセル部分に隣接し、かつ渦クラスターシステムと流体連通する第2の端部を有するライザー、を備える二相流分離器システム。
  14. 前記複数の曲線状のパイプループが、前記流体ベッセルの前記高さHの一部分のみに沿って延在し、かつ前記下方ベッセル部分において前記ポートの上方に離隔しており、前記第1のパイプが、前記第1のパイプの前記第2の端部における液体出口および前記実質的に水平な部分の上面に配置される気体出口ポートを有する、前記第1のパイプの前記第2の端部に隣接する実質的に水平な部分を含み、前記ライザーが実質的に垂直であり、かつ前記実質的に垂直なライザーの前記第1の下方端部は、前記気体出口ポートと流体連通する、請求項13に記載のシステム。
  15. 前記第1のパイプの前記第2の端部と流体連通する液体流線であって、前記液体流線は、前記下方ベッセル部分内の前記ポートと流体連通する第1の出口および第1の出口の下流の第2の出口を含む、前記液体流線と、前記液体流線に沿って前記第1のパイプの第2の端部と前記液体流線の第2の出口との間に位置付けられた背圧装置と、をさらに備える、請求項13に記載のシステム。
  16. 前記渦クラスターシステムが、前記ライザーの前記第2の端部と流体連通する流体注入導管を備え、前記流体注入導管が第1の端部と第2の端部との間に延在する直線状チャネルを形成し、前記第1のチャネル端部と前記第2のチャネル端部との間の前記チャネルの長さの少なくとも一部分に沿って互いに離隔した複数の垂直に延在する渦管を有し、各管が、前記ベッセルの中へと下方に延び、かつ円筒状の垂直な側壁を備え、前記側壁が開口部を有し、前記開口部が、前記チャネルに隣接し、前記チャネルの前記第1の端部と前記第2の端部との間で前記チャネルがテーパー状である、請求項13に記載のシステム。
  17. 前記渦クラスターシステムが、前記ライザーの前記第2の端部と流体連通する流体注入導管を備え、前記流体注入導管が、第1の端部と第2の端部との間に延在するテーパー状の螺旋状チャネルを形成し、前記第1のチャネル端部と前記第2のチャネル端部との間の前記チャネルの長さの少なくとも一部分に沿って互いに離隔した複数の垂直に延在する渦管を有し、各管が、前記ベッセルの中へと下方に延び、かつ円筒状の垂直な側壁を備え、前記側壁が開口部を有し、前記開口部が、前記チャネルに隣接する、請求項13に記載のシステム。
  18. 二相流体流を、主に気相から成る第1の流体構成成分と主に液相から成る第2の流体構成成分とに分離する方法であって、
    前記二相流体流を前記第1の流体構成成分と前記第2の流体構成成分とに階層化するために、前記二相流体流を、複数の下降する曲線状のループを通して、下向きに方向付けることと、
    前記第1の流体構成成分を、前記階層化された二相流体流から分離することと、
    前記取り出された第1の流体構成成分を渦管へと方向付けることと、
    前記第1の流体構成成分を、主に液相から成る第3の流体構成成分と、主に気相から成る第4の流体構成成分とに分離することと、を含む方法。
  19. 階層化された二相流体流から離れる第1の流体構成成分の流れを促進するために、第1の流体の構成成分分離の下流に液体の波を形成するように、前記第2の流体構成成分に背圧を印加することをさらに含む、請求項18に記載の方法。
  20. 前記第3の流体構成成分を、前記背圧の下流の前記第2の流体構成成分と組み合わせることをさらに含む、請求項19に記載の方法。
JP2021536170A 2018-12-20 2019-12-19 多相流体の気液分離のための装置および方法 Pending JP2022515218A (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201862783158P 2018-12-20 2018-12-20
US62/783,158 2018-12-20
PCT/US2019/067614 WO2020132328A1 (en) 2018-12-20 2019-12-19 Apparatus and method for gas-liquid separation of multi-phase fluid
US16/721,406 2019-12-19
US16/721,406 US11498019B2 (en) 2018-12-20 2019-12-19 Apparatus and method for gas-liquid separation of multi-phase fluid

Publications (1)

Publication Number Publication Date
JP2022515218A true JP2022515218A (ja) 2022-02-17

Family

ID=71098041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021536170A Pending JP2022515218A (ja) 2018-12-20 2019-12-19 多相流体の気液分離のための装置および方法

Country Status (9)

Country Link
US (1) US11498019B2 (ja)
EP (1) EP3897915A4 (ja)
JP (1) JP2022515218A (ja)
CN (1) CN113692311A (ja)
AR (1) AR121480A1 (ja)
BR (1) BR112021012087A2 (ja)
CA (1) CA3125549A1 (ja)
MX (1) MX2021007541A (ja)
WO (1) WO2020132328A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10753267B2 (en) * 2018-01-26 2020-08-25 Quest Engines, LLC Method and apparatus for producing stratified streams
CN115738494A (zh) * 2021-01-09 2023-03-07 苏州简单有为科技有限公司 湿式清洁装置
DE102022103236A1 (de) * 2022-02-11 2023-08-17 Claas Selbstfahrende Erntemaschinen Gmbh Verwendung einer Vorrichtung zum Vereinen von in einem Fluid-Gas-Gemisch befindlichen Gasblasen

Family Cites Families (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1306003A (en) * 1919-06-10 Separator
US2049578A (en) 1934-08-27 1936-08-04 Richard A Werts Gas and oil separator
GB499024A (en) 1936-05-14 1939-01-16 Juan Loumiet Et Lavigne Improvements in or relating to centrifugal separation
US2468070A (en) 1944-11-18 1949-04-26 James F Hunter Liquid separation apparatus
US3346117A (en) 1965-06-09 1967-10-10 Texaco Inc De-emulsifying apparatus
US3450264A (en) 1967-11-28 1969-06-17 Paul J Graybill Method of and apparatus for cleaning liquids
US3543846A (en) 1968-11-18 1970-12-01 Westinghouse Electric Corp Underwater oil or gas facility
US3670507A (en) 1970-09-17 1972-06-20 Texaco Inc Marine drilling structure with curved drill conductor
FR2528106A1 (fr) 1982-06-08 1983-12-09 Chaudot Gerard Systeme de production des gisements sous-marins de fluides, destine a permettre la production et d'augmenter la recuperation des fluides en place, avec regulation de debit
US4438817A (en) 1982-09-29 1984-03-27 Armco Inc. Subsea well with retrievable piping deck
US4474035A (en) 1983-12-23 1984-10-02 Ford Motor Company Domed accumulator for automotive air conditioning system
DE3707071C1 (de) 1987-03-05 1988-08-18 Riwoplan Med Tech Einricht Vorrichtung zum Entgasen von Spuelwasser
US5004552A (en) * 1990-06-14 1991-04-02 Al Yazdi Ahmed M Apparatus and method for separating water from crude oil
BR9003370A (pt) 1990-07-13 1992-01-21 Petroleo Brasileiro Sa Sistema de producao de oleo e gas em aguas profundas
GB2260087A (en) 1991-10-04 1993-04-07 Texaco Development Corp Subsea degassing system
US5286375A (en) 1991-12-23 1994-02-15 Texaco Inc. Oil recoery apparatus
US5165450A (en) 1991-12-23 1992-11-24 Texaco Inc. Means for separating a fluid stream into two separate streams
US5248421A (en) 1992-10-09 1993-09-28 The United States Of America As Respresented By The Administrator Of The National Aeronautics And Space Administration Spiral fluid separator
US6569323B1 (en) 1993-02-01 2003-05-27 Lev Sergeevish Pribytkov Apparatus for separation media by centrifugal force
DE69428695T2 (de) 1993-04-27 2002-08-08 Atlantic Richfield Co Gas/flüssigkeits-abscheider für bohrlöcher
US5426950A (en) * 1993-07-23 1995-06-27 Ament; Jon Refrigerant separation apparatus and method
US5578209A (en) 1994-09-21 1996-11-26 Weiss Enterprises, Inc. Centrifugal fluid separation device
US5749945A (en) 1996-07-22 1998-05-12 Beck; Earl Joseph Apparatus for rapidly degassing and decontaminating liquids
AU7002798A (en) 1996-11-07 1998-05-29 Baker Hughes Limited Fluid separation and reinjection systems for oil wells
US6276455B1 (en) 1997-09-25 2001-08-21 Shell Offshore Inc. Subsea gas separation system and method for offshore drilling
US6062213A (en) 1998-06-16 2000-05-16 Fuisz Technologies Ltd. Single unit dose inhalation therapy device
US6280000B1 (en) 1998-11-20 2001-08-28 Joseph A. Zupanick Method for production of gas from a coal seam using intersecting well bores
US6197095B1 (en) 1999-02-16 2001-03-06 John C. Ditria Subsea multiphase fluid separating system and method
DE19923901A1 (de) 1999-05-25 2000-11-30 Abb Research Ltd Verfahren und Mittel zur Zugabe von Emulsionsbrechern in einen Prozesstank
NO996196D0 (ja) 1999-12-14 1999-12-14 Aker Eng As
US6857132B1 (en) 2000-01-14 2005-02-15 Terayon Communication Systems, Inc. Head end multiplexer to select and transmit video-on-demand and other requested programs and services
US7274679B2 (en) 2000-06-22 2007-09-25 Mati Amit Scalable virtual channel
AU2002214008A1 (en) 2000-10-13 2002-04-22 Schlumberger Technology, B.V. Methods and apparatus for separating fluids
KR100672400B1 (ko) 2000-11-20 2007-01-23 엘지전자 주식회사 케이블 모뎀의 컨피그레이션 파일 다운로드 장치 및 방법
KR100390427B1 (ko) 2000-12-06 2003-07-07 엘지전자 주식회사 케이블 네트워크에서의 mac 프레임 포맷 및 통신 설정방법
US7209442B1 (en) 2001-06-27 2007-04-24 Cisco Technology, Inc. Packet fiber node
JP2003078549A (ja) 2001-08-31 2003-03-14 Hitachi Ltd パケット転送方法およびその装置
US6673135B2 (en) 2002-02-08 2004-01-06 National Tank Company System and method of separating entrained immiscible liquid component of an inlet stream
EP1352679A1 (en) 2002-04-08 2003-10-15 Cooper Cameron Corporation Separator
EP1353038A1 (en) * 2002-04-08 2003-10-15 Cooper Cameron Corporation Subsea process assembly
US6879590B2 (en) 2002-04-26 2005-04-12 Valo, Inc. Methods, apparatuses and systems facilitating aggregation of physical links into logical link
US6651745B1 (en) 2002-05-02 2003-11-25 Union Oil Company Of California Subsea riser separator system
US7782898B2 (en) 2003-02-04 2010-08-24 Cisco Technology, Inc. Wideband cable system
US7103772B2 (en) 2003-05-02 2006-09-05 Giritech A/S Pervasive, user-centric network security enabled by dynamic datagram switch and an on-demand authentication and encryption scheme through mobile intelligent data carriers
US7023871B2 (en) 2003-05-28 2006-04-04 Terayon Communication Systems, Inc. Wideband DOCSIS on catv systems using port-trunking
US7279098B2 (en) 2003-07-28 2007-10-09 Freeman Brian A Water treatment apparatus
EP3184730A3 (en) 2003-09-24 2017-09-27 Cameron International Corporation Bop and separator combination
EP2283905A3 (en) 2003-09-24 2011-04-13 Cameron International Corporation Subsea well production flow and separation system
US20050078699A1 (en) 2003-10-10 2005-04-14 Broadcom Corporation System, method, and computer program product for utilizing proprietary communication parameters to improve channel efficiency in a DOCSIS-compliant broadband communication system
WO2005068044A1 (en) 2004-01-15 2005-07-28 Star Scientific Pty Ltd Archimedian separator
WO2005083228A1 (en) 2004-02-26 2005-09-09 Des Enhanced Recovery Limited Connection system for subsea flow interface equipment
US7331396B2 (en) 2004-03-16 2008-02-19 Dril-Quip, Inc. Subsea production systems
US7613209B1 (en) 2004-03-30 2009-11-03 Extreme Networks, Inc. System and method for egress packet marking
GB0410961D0 (en) 2004-05-17 2004-06-16 Caltec Ltd A separation system for handling and boosting the production of heavy oil
US7532627B2 (en) 2004-05-25 2009-05-12 Cisco Technology, Inc. Wideband upstream protocol
US7864686B2 (en) 2004-05-25 2011-01-04 Cisco Technology, Inc. Tunneling scheme for transporting information over a cable network
US7835274B2 (en) 2004-05-25 2010-11-16 Cisco Technology, Inc. Wideband provisioning
US8149833B2 (en) 2004-05-25 2012-04-03 Cisco Technology, Inc. Wideband cable downstream protocol
US7720101B2 (en) 2004-05-25 2010-05-18 Cisco Technology, Inc. Wideband cable modem with narrowband circuitry
US7646786B2 (en) 2004-05-25 2010-01-12 Cisco Technology, Inc. Neighbor discovery in cable networks
US7539208B2 (en) 2004-05-25 2009-05-26 Cisco Technology, Inc. Timing system for modular cable modem termination system
US7817553B2 (en) 2004-05-25 2010-10-19 Cisco Technology, Inc. Local area network services in a cable modem network
US9722850B2 (en) 2004-08-09 2017-08-01 Arris Enterprises Llc Method and system for transforming video streams using a multi-channel flow-bonded traffic stream
WO2006020559A2 (en) 2004-08-09 2006-02-23 Arris International, Inc. Very high speed cable modem for increasing bandwidth
TW200702035A (en) 2005-03-07 2007-01-16 Univ Okayama Nat Univ Corp Deaerator and deaerating method
US7630361B2 (en) 2005-05-20 2009-12-08 Cisco Technology, Inc. Method and apparatus for using data-over-cable applications and services in non-cable environments
MX2008000067A (es) 2005-07-06 2008-03-24 Sylvan Source Inc Sistema de purificacion de agua.
US7481932B2 (en) 2005-09-20 2009-01-27 Freeman Brian A Water treatment apparatus
US7497263B2 (en) 2005-11-22 2009-03-03 Schlumberger Technology Corporation Method and composition of preparing polymeric fracturing fluids
US7686086B2 (en) 2005-12-08 2010-03-30 Vetco Gray Inc. Subsea well separation and reinjection system
US7701951B2 (en) 2006-03-06 2010-04-20 Cisco Technology, Inc. Resource reservation and admission control for IP network
US7569097B2 (en) 2006-05-26 2009-08-04 Curtiss-Wright Electro-Mechanical Corporation Subsea multiphase pumping systems
US8255682B2 (en) 2006-07-27 2012-08-28 Cisco Technology, Inc. Early authentication in cable modem initialization
US7957305B2 (en) 2006-08-16 2011-06-07 Cisco Technology, Inc. Hierarchical cable modem clone detection
US7865727B2 (en) 2006-08-24 2011-01-04 Cisco Technology, Inc. Authentication for devices located in cable networks
US8291979B2 (en) 2007-03-27 2012-10-23 Schlumberger Technology Corporation Controlling flows in a well
CN101678247B (zh) 2007-04-03 2015-11-25 西门子能源公司 用于液体分离的系统和方法
US7773594B2 (en) 2007-07-11 2010-08-10 Cisco Technology, Inc. Transferring DOCSIS frames using a label switching network
US8006757B2 (en) 2007-08-30 2011-08-30 Schlumberger Technology Corporation Flow control system and method for downhole oil-water processing
US7814976B2 (en) 2007-08-30 2010-10-19 Schlumberger Technology Corporation Flow control device and method for a downhole oil-water separator
US7883570B2 (en) 2007-10-01 2011-02-08 Star Oil Tools Inc. Spiral gas separator
NO337029B1 (no) 2008-04-25 2016-01-04 Vetco Gray Inc Anordning for separasjon av vann for bruk i brønnoperasjoner
US7905946B1 (en) 2008-08-12 2011-03-15 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Systems and methods for separating a multiphase fluid
US8797854B2 (en) 2008-09-29 2014-08-05 Cisco Technology, Inc. Scheduling for RF over fiber optic cable [RFoG]
US7998250B2 (en) 2008-10-03 2011-08-16 B/E Aerospace, Inc. Multiple vortex waste separator apparatus
US8160098B1 (en) 2009-01-14 2012-04-17 Cisco Technology, Inc. Dynamically allocating channel bandwidth between interfaces
US8861546B2 (en) 2009-03-06 2014-10-14 Cisco Technology, Inc. Dynamically and fairly allocating RF channel bandwidth in a wideband cable system
KR101086778B1 (ko) 2009-12-18 2011-11-25 한국전자통신연구원 다채널 방송망에 적합한 송신용 및 수신용 방송 매체 접속 제어 장치
WO2011079321A2 (en) 2009-12-24 2011-06-30 Wright David C Subsea fluid separator
GB2479915B (en) 2010-04-29 2016-03-23 Ge Oil & Gas Uk Ltd Well production shut down
EP2618905B1 (en) 2010-09-20 2019-11-13 Agilent Technologies, Inc. System and process for an active drain for gas-liquid separators
US20120152855A1 (en) 2010-12-20 2012-06-21 Palo Alto Research Center Incorporated Systems and apparatus for seawater organics removal
RU2013128423A (ru) 2010-12-22 2015-01-27 Нексен Энерджи Юлс Способ осуществления гидравлического разрыва пласта углеводородов при высоком давлении и связанный с ним процесс
US8419833B2 (en) 2011-02-03 2013-04-16 Haven Technology Apparatus and method for gas-liquid separation
US9441430B2 (en) 2012-04-17 2016-09-13 Selman and Associates, Ltd. Drilling rig with continuous gas analysis
US9320989B2 (en) * 2013-03-15 2016-04-26 Haven Technology Solutions, LLC. Apparatus and method for gas-liquid separation
US9932732B1 (en) 2013-05-20 2018-04-03 Thermaco, Inc. Passive grease trap with lift system
GB2521374A (en) 2013-12-17 2015-06-24 Managed Pressure Operations Drilling system and method of operating a drilling system
CN106474828A (zh) 2015-08-27 2017-03-08 通用电气公司 用于重力分离的装置和方法及包含其的石油和天然气生产系统和方法
CN105148625B (zh) 2015-09-07 2017-03-22 中山乐满石油设备有限公司 一种涡流管式气液分离器
US10617991B2 (en) 2015-10-26 2020-04-14 Waters Technologies Corporation Low dispersion gas-liquid separator
CN106861294A (zh) 2015-12-10 2017-06-20 通用电气公司 用于分离流体的装置和方法及包含其的油气生产系统和方法
US10428263B2 (en) 2016-03-22 2019-10-01 Linde Aktiengesellschaft Low temperature waterless stimulation fluid
GB2553004B (en) 2016-08-19 2020-02-19 Fourphase As Solid particle separation in oil and/or gas production
FR3063912B1 (fr) 2017-03-20 2021-11-05 Dcns Systeme de purification d'un fluide, generateur de vapeur et installation de production d'energie electrique

Also Published As

Publication number Publication date
AR121480A1 (es) 2022-06-08
CA3125549A1 (en) 2020-06-25
US11498019B2 (en) 2022-11-15
BR112021012087A2 (pt) 2021-08-31
EP3897915A4 (en) 2022-09-21
EP3897915A1 (en) 2021-10-27
WO2020132328A1 (en) 2020-06-25
MX2021007541A (es) 2021-10-13
US20200197836A1 (en) 2020-06-25
CN113692311A (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
US10478753B1 (en) Apparatus and method for treatment of hydraulic fracturing fluid during hydraulic fracturing
JP2022515218A (ja) 多相流体の気液分離のための装置および方法
RU2673054C2 (ru) Устройство для сепарации газа и жидкости, а также соответствующий способ
AU2005309725B2 (en) Separator for multi-phase slug flow and method of designing same
CN104822461B (zh) 将液流旋流分离成气相和液相的设备以及配有该设备的容器
WO2011108746A1 (ja) 気液分離器及び流量計測装置
US20140275690A1 (en) Systems and methods for sub-sea separation
EA009424B1 (ru) Сепаратор для циклонного сепарирования газообразных и жидких фракций
CA2416884C (en) Gas condenser
US20180093203A1 (en) Choke valve separator
TWI710399B (zh) 用於將密度較輕之流體自密度較重之流體分離的方法及裝置
WO2012118617A2 (en) Dispersing separated hydrocarbon gas into separated oil during surface well testing for improved oil mobility
AU2011218628B2 (en) Flow conditioning apparatus
CN210845764U (zh) 一种旋流式气液分离器
FR2826876A1 (fr) Dispositif interne de separation d'un melange comprenant au moins une phase gazeuse et une phase liquide
RU2202397C1 (ru) Сепарационная установка
JPH04137703U (ja) 空気分離器
EP1374962A1 (fr) Perfectionnement à un dispositif pour séparer un mélange comprenant au moins une phase gazeuse et une phase liquide, ledit dispositif étant intégré dans une enceinte