JP2022505375A - A method for manufacturing a high manganese steel material having excellent vibration isolation and formability, and a high manganese steel material manufactured by this manufacturing method. - Google Patents
A method for manufacturing a high manganese steel material having excellent vibration isolation and formability, and a high manganese steel material manufactured by this manufacturing method. Download PDFInfo
- Publication number
- JP2022505375A JP2022505375A JP2021521374A JP2021521374A JP2022505375A JP 2022505375 A JP2022505375 A JP 2022505375A JP 2021521374 A JP2021521374 A JP 2021521374A JP 2021521374 A JP2021521374 A JP 2021521374A JP 2022505375 A JP2022505375 A JP 2022505375A
- Authority
- JP
- Japan
- Prior art keywords
- steel material
- less
- high manganese
- formability
- excellent vibration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
本発明は、自動車用または建築用鋼板などに使用される鋼材に関するものであって、より詳細には、騒音低減のための防振性が要求される場所に使用可能な防振性及び成形性に優れた高マンガン鋼材、及びこれを製造する方法に関するものである。
The present invention relates to a steel material used for automobiles, building steel sheets, etc., and more specifically, vibration-proofing property and formability that can be used in places where vibration-proofing property for noise reduction is required. It relates to an excellent high manganese steel material and a method for producing the same.
Description
本発明は、自動車用または建築用の鋼板などに使用される鋼材に関するものであって、より詳細には、騒音低減のための防振性が要求される場所に使用可能な防振性及び成形性に優れた高マンガン鋼材、及びこれを製造する方法に関する。 The present invention relates to steel materials used for steel sheets for automobiles or construction, and more specifically, vibration-proofing and molding that can be used in places where vibration-proofing for noise reduction is required. The present invention relates to a highly manganese steel material having excellent properties and a method for producing the same.
最近、自動車の製造または建築資材などの素材において、騒音低減はメーカーが必ず解決しなければならない問題である。自動車メーカーの場合、騒音が大きく発生するエンジン部、オイルパンなどの構成品には、優れた機械的特性とともに防振性が特に要求される。また、建築資材の場合には、階間騒音の規制が強化されるにつれて、アパートを含む複層建物の底板として防振性に優れた鋼材の開発が求められているのが実情である。 Recently, noise reduction is a problem that manufacturers must solve in materials such as automobile manufacturing or building materials. In the case of automobile manufacturers, components such as engine parts and oil pans, which generate a large amount of noise, are particularly required to have excellent mechanical properties and vibration isolation. In the case of building materials, as regulations on floor noise are tightened, it is actually required to develop steel materials with excellent vibration isolation as bottom plates of multi-story buildings including apartments.
一方、高マンガン(Mn)防振鋼は、外部からの衝撃時に、イプシロンマルテンサイトの界面スライディングによって騒音エネルギーが熱エネルギーに転換され、高い防振性及び優れた機械的性質を有する鋼種であり、騒音低減を目的とする使用に適している。 On the other hand, high manganese (Mn) anti-vibration steel is a steel grade having high anti-vibration properties and excellent mechanical properties by converting noise energy into thermal energy by interfacial sliding of epsilon martensite at the time of external impact. Suitable for use for the purpose of noise reduction.
一般的に、高マンガン防振鋼は、製鋼-連鋳-熱延の一連の工程、またはこれに冷延工程を追加することによって熱延または冷延鋼板を製造した後、その鋼板に後熱処理を適用することによってイプシロンマルテンサイト及び/または再結晶組織を形成して防振性を確保している。 In general, high manganese anti-vibration steel is obtained by producing a hot-rolled or cold-rolled steel sheet by a series of steelmaking-continuous casting-hot-rolling steps or by adding a cold-rolling step to the series, and then post-heat-treating the steel sheet. Is applied to form epsilon martensite and / or a recrystallized structure to ensure anti-vibration properties.
ところで、防振性の確保のために行われる後熱処理工程は、通常900℃以上の温度で10分を超える時間、好ましくは60分以上の時間が適用される高コストの熱処理であり、これはマンガン防振鋼の汎用化を阻害する要因となる。 By the way, the post-heat treatment step performed for ensuring vibration isolation is a high-cost heat treatment usually applied at a temperature of 900 ° C. or higher for a time of more than 10 minutes, preferably 60 minutes or longer. This is a factor that hinders the generalization of manganese anti-vibration steel.
現在、騒音低減に対する要求が継続的に増加しており、高コストの熱処理である後熱処理を省略しながらも、防振性及び優れた成形性の両立が可能な鋼材を開発する必要があるのが実情である。 Currently, the demand for noise reduction is continuously increasing, and it is necessary to develop a steel material that can achieve both vibration isolation and excellent formability while omitting post-heat treatment, which is a high-cost heat treatment. Is the actual situation.
本発明の一側面は、高マンガン防振鋼を提供するにあたり、防振性の向上のために必須的に行われる後熱処理工程を省略することができ、且つ、従来に比べて低コストで防振性及び成形性に優れた高マンガン鋼材を製造する方法、及びこの方法により製造された高マンガン鋼材を提供することである。 One aspect of the present invention is that in providing high manganese anti-vibration steel, the post-heat treatment step which is indispensable for improving the anti-vibration property can be omitted, and the post-heat treatment step can be omitted, and the cost is lower than the conventional one. It is a method of producing a high manganese steel material having excellent vibration property and formability, and providing a high manganese steel material produced by this method.
本発明の課題は、上述の内容に限定されない。本発明の更なる課題は、明細書の全般的な内容に記述されており、本発明が属する技術分野において通常の知識を有する者であれば、本発明の明細書に記載された内容から、本発明の更なる課題を理解することは何ら困難性がない。 The subject of the present invention is not limited to the above-mentioned contents. Further problems of the present invention are described in the general contents of the specification, and if the person has ordinary knowledge in the technical field to which the present invention belongs, the contents described in the specification of the present invention can be used. There is no difficulty in understanding the further subject of the present invention.
本発明の一側面は、重量%で、炭素(C):0.1%以下、マンガン(Mn):8~30%、シリコン(Si):3.0%以下、リン(P):0.1%以下、硫黄(S):0.02%以下、窒素(N):0.1%以下、チタン(Ti):1.0%以下(0%を除く)、ボロン(B):0.01%以下、残部Fe及びその他の不可避不純物を含む鋼スラブを1150~1350℃の温度で加熱する段階;上記加熱された鋼スラブを仕上げ熱間圧延して熱延鋼板を製造する段階;及び上記熱延鋼板を700℃以下に冷却する段階を含み、上記仕上げ熱間圧延は、下記関係式1を満たす温度(FDT(℃))で行うことを特徴とする、防振性及び成形性に優れた高マンガン鋼材の製造方法を提供する。
One aspect of the present invention is carbon (C): 0.1% or less, manganese (Mn): 8 to 30%, silicon (Si): 3.0% or less, phosphorus (P): 0. 1% or less, sulfur (S): 0.02% or less, nitrogen (N): 0.1% or less, titanium (Ti): 1.0% or less (excluding 0%), boron (B): 0. A step of heating a steel slab containing 01% or less of the balance Fe and other unavoidable impurities at a temperature of 1150 to 1350 ° C.; a step of finishing and hot rolling the heated steel slab to produce a hot-rolled steel sheet; and the above. The finish hot rolling is performed at a temperature (FDT (° C.)) satisfying the following
[関係式1]
FDT(℃)≧928+(480×C)+(450×N)+(0.9×Mn)+(65×Ti)
(ここで、各元素は重量含量を意味する。)
[Relational expression 1]
FDT (° C.) ≧ 928 + (480 × C) + (450 × N) + (0.9 × Mn) + (65 × Ti)
(Here, each element means weight content.)
本発明の他の一側面は、上述の製造方法によって製造される鋼材であって、上述の合金組成を有し、微細組織として、面積分率90%以上のイプシロンマルテンサイト及び残部オーステナイト相を含み、完全再結晶組織である防振性及び成形性に優れた高マンガン鋼材を提供する。 Another aspect of the present invention is a steel material produced by the above-mentioned production method, which has the above-mentioned alloy composition and contains epsilon martensite having an area fraction of 90% or more and a residual austenite phase as a microstructure. Provided is a high manganese steel material having a completely recrystallized structure and excellent anti-vibration property and formability.
本発明によると、マンガン防振鋼の防振性の向上のために従来求められていた後熱処理工程を省略しても、防振性及び成形性に優れた高マンガン鋼材を提供することができる。 According to the present invention, it is possible to provide a high manganese steel material having excellent vibration-proofing property and formability even if the post-heat treatment step conventionally required for improving the vibration-proofing property of manganese vibration-proof steel is omitted. ..
また、本発明は、上記後熱処理工程の省略によって、相対的に低コストで高マンガン防振鋼を提供することができるため、経済的な側面での技術的効果があり、防振性が要求される分野において汎用的に適用することができるという効果がある。 Further, the present invention can provide high manganese anti-vibration steel at a relatively low cost by omitting the post-heat treatment step, and therefore has technical effects in terms of economy, and anti-vibration properties are required. There is an effect that it can be applied universally in the field to be used.
本発明者らは、従来の高マンガン防振鋼の場合、防振性の向上のためには高コストの熱処理(別称、後熱処理工程)を適用する必要があり、これは結局、製造コストを大幅に上昇させるだけでなく、汎用化には限界があることを確認した。 In the case of conventional high manganese vibration-proof steel, the present inventors need to apply a high-cost heat treatment (also known as a post-heat treatment step) in order to improve the vibration-proof property, which ultimately reduces the manufacturing cost. It was confirmed that there is a limit to generalization as well as a significant increase.
そこで、本発明者らは、高コストの熱処理を省略しても防振性及び優れた成形性を両立することができる方案について鋭意研究した。その結果、合金組成の制御とともに製造工程を最適化することにより、鋼中のイプシロンマルテンサイト相の分率を最大化することができ、これによって一連の熱延工程のみでも防振性及び成形性に優れた鋼材を提供できることを確認し、本発明を完成するに至った。 Therefore, the present inventors have diligently studied a method capable of achieving both vibration isolation and excellent moldability without omitting high-cost heat treatment. As a result, by optimizing the manufacturing process as well as controlling the alloy composition, the fraction of the epsilon martensite phase in the steel can be maximized, which results in vibration isolation and formability even in a series of hot rolling processes alone. It was confirmed that excellent steel materials could be provided, and the present invention was completed.
以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.
本発明の一側面による防振性及び成形性に優れた高マンガン鋼材を製造する方法は、後述の合金組成を有する鋼スラブを準備した後、これを熱間圧延及び冷却することで高マンガン鋼材を製造できる。 The method for producing a high manganese steel material having excellent vibration isolation and formability according to one aspect of the present invention is to prepare a steel slab having an alloy composition described later, and then hot-roll and cool the steel slab to obtain a high manganese steel material. Can be manufactured.
まず、本発明において目的とする高マンガン鋼材を得るにあたり、合金組成を制限する理由について詳細に説明する。このとき、特に断らない限り、各元素の含量は、重量含量(重量%)を意味する。 First, the reason for limiting the alloy composition in obtaining the high manganese steel material intended in the present invention will be described in detail. At this time, unless otherwise specified, the content of each element means the weight content (% by weight).
炭素(C):0.1%以下
炭素(C)は、鋼内のオーステナイトを安定化させ、強度の確保に有利な元素である。但し、その含量が0.1%を超えると、溶存Cの分率が過度に高くなり、熱間加工性を阻害し、防振性が大幅に減少するおそれがある。
したがって、本発明では、Cを0.1%以下含有することができ、含量が0%でも、目標とする物性の確保には無理がない。
Carbon (C): 0.1% or less Carbon (C) is an element that stabilizes austenite in steel and is advantageous for ensuring strength. However, if the content exceeds 0.1%, the fraction of dissolved C becomes excessively high, which may hinder hot workability and significantly reduce anti-vibration properties.
Therefore, in the present invention, C can be contained in an amount of 0.1% or less, and even if the content is 0%, it is not unreasonable to secure the target physical properties.
マンガン(Mn):8~30%
マンガン(Mn)は、オーステナイトとイプシロンマルテンサイト組織を安定して確保するために必須な元素である。本発明は、別途の熱処理工程を行わなくとも、一定の分率以上にイプシロンマルテンサイト相を確保するために、上記Mnを8%以上含有する必要がある。但し、その含量が30%を超えると、却って製造コストが上昇し、多量のMnを精錬する過程でリン(P)の含量が増加するため、スラブ割れの原因となる。また、Mnの含量が増加するほど、スラブ加熱時に内部粒界酸化が過度に発生して鋼の表面に酸化物欠陥を誘発し、その後のめっき時に表面特性も低下するという問題がある。
したがって、本発明では、Mnを8~30%含有することができ、より有利には14~20%含有することができる。
Manganese (Mn): 8-30%
Manganese (Mn) is an essential element for stably securing austenite and epsilon martensite structure. The present invention needs to contain 8% or more of the above Mn in order to secure the epsilon martensite phase in a certain fraction or more without performing a separate heat treatment step. However, if the content exceeds 30%, the production cost increases, and the phosphorus (P) content increases in the process of refining a large amount of Mn, which causes slab cracking. Further, as the Mn content increases, there is a problem that internal grain boundary oxidation is excessively generated during slab heating to induce oxide defects on the steel surface, and the surface characteristics are also deteriorated during subsequent plating.
Therefore, in the present invention, Mn can be contained in an amount of 8 to 30%, and more preferably 14 to 20%.
シリコン(Si):3.0%以下
シリコン(Si)は、固溶強化される元素であって、固溶効果により結晶粒度を減らして降伏強度を向上させるのに有利である。ところで、このようなSiの含量が増加すると、熱間圧延時、鋼板の表面にシリコン化合物が形成されて酸洗性が悪くなり、熱延鋼板の表面品質が低下する。また、過度に添加すると、溶接性が大きく低下する。
したがって、本発明では、Siを3.0%以下含有することができ、含量が0%でも、目標とする物性の確保には無理がない。
Silicon (Si): 3.0% or less Silicon (Si) is an element that is strengthened by solid solution, and is advantageous for reducing the crystal grain size and improving the yield strength by the solid solution effect. By the way, when the content of such Si increases, a silicon compound is formed on the surface of the steel sheet during hot rolling, the pickling property deteriorates, and the surface quality of the hot-rolled steel sheet deteriorates. Further, if it is added excessively, the weldability is greatly deteriorated.
Therefore, in the present invention, Si can be contained in an amount of 3.0% or less, and even if the content is 0%, it is not unreasonable to secure the target physical properties.
リン(P):0.1%以下及び硫黄(S):0.02%以下
リン(P)と硫黄(S)は、鋼の製造時に不可避に含有される元素であって、可能な限り含有量が低い方が有利である。このうち、Pの含量が0.1%を超えると、偏析(segregation)を引き起こし、鋼の加工性を減少させ、Sは、その含量が0.02%を超える場合、粗大なマンガン硫化物(MnS)を形成してフランジクラック(flange crack )のような欠陥を招き、鋼板の成形性、特に穴拡げ性を阻害するという問題がある。
したがって、本発明において、Pは0.1%以下、Sは0.02%以下含有することができる。
Phosphorus (P): 0.1% or less and sulfur (S): 0.02% or less Phosphorus (P) and sulfur (S) are elements that are inevitably contained in the production of steel and are contained as much as possible. The lower the amount, the better. Of these, if the content of P exceeds 0.1%, segregation is caused and the workability of the steel is reduced, and if the content of S exceeds 0.02%, coarse manganese sulfide (coarse manganese sulfide) ( There is a problem that MnS) is formed to cause defects such as flange cracks, which hinders the formability of the steel sheet, particularly the hole expandability.
Therefore, in the present invention, P can be contained in an amount of 0.1% or less and S can be contained in an amount of 0.02% or less.
窒素(N):0.1%以下
窒素(N)は、窒化物を形成する元素であって、その含量が0.1%を超えると、溶存Nの分率が過度に高くなり、熱間加工性と伸びを阻害し、防振性を減少させる。
したがって、本発明では、Nを0.1%以下含有し、含量が0%でも、目標とする物性の確保には無理がない。
Nitrogen (N): 0.1% or less Nitrogen (N) is an element that forms a nitride, and when its content exceeds 0.1%, the fraction of dissolved N becomes excessively high and it is hot. It inhibits workability and elongation and reduces vibration isolation.
Therefore, in the present invention, even if N is contained in an amount of 0.1% or less and the content is 0%, it is not unreasonable to secure the target physical properties.
チタン(Ti):1.0%以下(0%を除く)
チタン(Ti)は、炭素と結合して炭化物を形成する元素であって、形成された炭化物は結晶粒成長を抑制して結晶粒度の微細化に有利である。また、C、Nとの化合物を形成してスカベンジング(scavenging)効果を有しており、防振性の向上に有利である。このようなTiの含量が1.0%を超えると、過量のチタンが結晶粒界に偏析して粒界脆化を引き起こしたり、粗大な析出相の形成によって結晶粒成長の抑制効果が阻害されることがある。
したがって、本発明では、Tiを1.0%以下含有することができるが、0%は除く。
Titanium (Ti): 1.0% or less (excluding 0%)
Titanium (Ti) is an element that combines with carbon to form carbides, and the formed carbides suppress the growth of crystal grains and are advantageous for finer grain size. In addition, it forms a compound with C and N and has a scavenging effect, which is advantageous for improving anti-vibration properties. When the Ti content exceeds 1.0%, an excessive amount of titanium segregates at the grain boundaries and causes grain boundary embrittlement, or the formation of a coarse precipitated phase inhibits the effect of suppressing crystal grain growth. There are times.
Therefore, in the present invention, Ti can be contained in an amount of 1.0% or less, but 0% is excluded.
ボロン(B):0.01%以下
ボロン(B)は、Tiとともに添加するとき、粒界に高温化合物を形成して粒界クラックを防止する効果がある。ところで、このようなBの含量が0.01%を超えると、ボロン化合物を形成して表面特性を悪化させるため好ましくない。
したがって、本発明では、Bを0.01%以下含有することができ、含量が0%でも、目標とする物性の確保には無理がない。
Boron (B): 0.01% or less Boron (B) has the effect of forming a high-temperature compound at the grain boundaries and preventing grain boundary cracks when added together with Ti. By the way, if the content of such B exceeds 0.01%, it is not preferable because it forms a boron compound and deteriorates the surface characteristics.
Therefore, in the present invention, B can be contained in an amount of 0.01% or less, and even if the content is 0%, it is not unreasonable to secure the target physical properties.
本発明の鋼材は、上述の組成でそれぞれの元素を含有するにあたり、CとNを複合添加する場合、これらの含量の和(C+N、重量%)が0.1%以下であることが好ましい。 When the steel material of the present invention contains each element in the above composition, when C and N are added in combination, the sum (C + N, weight%) of these contents is preferably 0.1% or less.
上記CとNは、侵入型固溶元素であって、Tiなどと結合して炭窒化物を形成する場合には、防振性能を向上させることができるが、これらの含量の和が0.1%を超えると、溶存Cまたは溶存Nの分率が高くなって熱間加工性及び伸びが低下し、防振性を減少させるため好ましくない。
したがって、上記CとNの複合添加時に、その含量の和で0.1%以下含有することができる。
The above C and N are penetrating solid solution elements, and when they are combined with Ti or the like to form a carbonitride, the anti-vibration performance can be improved, but the sum of these contents is 0. If it exceeds 1%, the fraction of dissolved C or dissolved N becomes high, the hot workability and elongation are lowered, and the vibration isolation property is lowered, which is not preferable.
Therefore, at the time of the combined addition of C and N, the sum of the contents can be 0.1% or less.
一方、本発明の鋼材は、物性の向上のために、上述の合金組成以外に、追加の元素をさらに含むことができる。 On the other hand, the steel material of the present invention may further contain additional elements in addition to the above-mentioned alloy composition in order to improve the physical properties.
一つの側面としては、ニッケル(Ni):0.005~2.0%及びクロム(Cr):0.005~5.0%のうち1種以上をさらに含むことができる。 As one aspect, one or more of nickel (Ni): 0.005 to 2.0% and chromium (Cr): 0.005 to 5.0% can be further contained.
ニッケル(Ni):0.005~2.0%
ニッケル(Ni)は、高温延性の確保に効果的に寄与する元素である。上述の効果を得るためには、0.005%以上含有することができ、その含量が増加するほど、耐遅れ破壊及びスラブクラックなどの防止にも有効である。但し、上記Niは高価な元素であり、これを考慮して2.0%以下含有することができる。
Nickel (Ni): 0.005 to 2.0%
Nickel (Ni) is an element that effectively contributes to ensuring high temperature ductility. In order to obtain the above-mentioned effect, it can be contained in an amount of 0.005% or more, and as the content increases, it is also effective in preventing delayed fracture and slab cracking. However, the above Ni is an expensive element, and in consideration of this, it can be contained in an amount of 2.0% or less.
クロム(Cr):0.005~5.0%
クロム(Cr)は、熱延または焼鈍工程時に外部の酸素と反応して、鋼の表面に20~50μmの厚さでCr系酸化膜(Cr2O3)を優先的に形成することにより、鋼中に含有されたMn、Siなどが表層に溶出することを防止する。これにより、鋼表層組織の安定化に寄与し、めっきの表面特性を向上させる効果がある。上述の効果を得るためには、0.005%以上Crを含有することができるが、その含量が5.0%を超えると、クロム炭化物が形成されて、却って加工性と耐遅れ破壊特性が低下するため好ましくない。
したがって、本発明においてCrの添加時には、0.005~5.0%含有することができる。
Chromium (Cr): 0.005 to 5.0%
Chromium (Cr) reacts with external oxygen during hot rolling or annealing steps to preferentially form a Cr-based oxide film (Cr 2 O 3 ) on the surface of steel with a thickness of 20 to 50 μm. Prevents Mn, Si, etc. contained in the steel from elution on the surface layer. This contributes to the stabilization of the steel surface structure and has the effect of improving the surface characteristics of the plating. In order to obtain the above-mentioned effects, Cr can be contained in an amount of 0.005% or more, but if the content exceeds 5.0%, chromium carbide is formed, and on the contrary, processability and delayed fracture resistance are deteriorated. It is not preferable because it decreases.
Therefore, in the present invention, when Cr is added, it can be contained in an amount of 0.005 to 5.0%.
さらに一つの側面としては、ニオブ(Nb):0.005~0.5%、バナジウム(V):0.005~0.5%及びタングステン(W):0.005~1.0%のうち1種以上をさらに含むことができる。 Further, as one aspect, niobium (Nb): 0.005 to 0.5%, vanadium (V): 0.005 to 0.5%, and tungsten (W): 0.005 to 1.0%. One or more may be further included.
ニオブ(Nb):0.005~0.5%
ニオブ(Nb)は、鋼中の炭素と結合して炭化物を形成する元素であって、強度の上昇または粒度微細化の効果を得ることができる。一般的に、Tiよりも低い温度で析出相を形成するため、結晶粒サイズの微細化と析出相の形成による析出強化の効果が大きい元素である。また、溶存Cの分率を下げて防振性を向上させる効果もある。
Niobium (Nb): 0.005-0.5%
Niobium (Nb) is an element that combines with carbon in steel to form carbides, and can have the effect of increasing the strength or reducing the particle size. In general, since the precipitation phase is formed at a temperature lower than Ti, it is an element having a great effect of refining the crystal grain size and strengthening the precipitation by forming the precipitation phase. It also has the effect of lowering the fraction of dissolved C to improve vibration isolation.
上述の効果を得るためには、Nbを0.005%以上含有することができる。但し、その含量が0.5%を超えると、過量のNbが結晶粒界に偏析して粒界脆化を引き起こしたり、粗大な析出相の形成によって結晶粒成長の抑制効果が低下したりする。さらに、熱間圧延工程時に再結晶を遅延させて圧延荷重を上昇させるという問題がある。
したがって、本発明においてNbの添加時には、0.005~0.5%含有することができる。
In order to obtain the above-mentioned effects, Nb can be contained in an amount of 0.005% or more. However, if the content exceeds 0.5%, an excessive amount of Nb segregates at the grain boundaries and causes grain boundary embrittlement, or the formation of a coarse precipitated phase reduces the effect of suppressing crystal grain growth. .. Further, there is a problem that recrystallization is delayed during the hot rolling process to increase the rolling load.
Therefore, in the present invention, when Nb is added, it can be contained in an amount of 0.005 to 0.5%.
バナジウム(V):0.005~0.5%、及びタングステン(W):0.005~1.0%
バナジウム(V)とタングステン(W)は、C、Nと結合して炭窒化物を形成する元素であって、本発明において上記元素は、低温で微細な析出相を形成するため析出強化の効果が大きい。また、溶存Cと溶存Nの分率を下げて防振性を向上させる効果がある。
Vanadium (V): 0.005 to 0.5%, and Tungsten (W): 0.005 to 1.0%
Vanadium (V) and tungsten (W) are elements that combine with C and N to form a carbonitride, and in the present invention, the above elements form a fine precipitation phase at a low temperature, so that the effect of precipitation strengthening is achieved. Is big. It also has the effect of lowering the fraction of dissolved C and dissolved N to improve vibration isolation.
上述の効果を得るためには、それぞれ0.005%以上含有することができるが、Vの場合には0.5%を超えるか、Wの場合には1.0%を超えると、析出相が過度に粗大化し、結晶粒成長の抑制効果が低下し、熱間脆性の原因となる。
したがって、本発明では、Vの添加時には0.005~0.5%、Wの添加時には0.005~1.0%添加することができる。
In order to obtain the above-mentioned effects, each can be contained in an amount of 0.005% or more, but in the case of V, if it exceeds 0.5%, or in the case of W, it exceeds 1.0%, the precipitation phase. Is excessively coarsened, the effect of suppressing crystal grain growth is reduced, and it causes hot brittleness.
Therefore, in the present invention, 0.005 to 0.5% can be added when V is added, and 0.005 to 1.0% can be added when W is added.
本発明の他の成分はFeである。但し、通常の製造過程では、原料または周囲環境からの意図しない不純物が不可避に混入する可能性があるため、これを排除することはできない。これらの不純物は、通常の製造過程における技術者であれば、誰でも分かるものであるため、そのすべての内容は本明細書で具体的に言及しない。 The other component of the present invention is Fe. However, in the normal manufacturing process, unintended impurities from the raw material or the surrounding environment may be inevitably mixed, and this cannot be excluded. Since these impurities are known to any engineer in a normal manufacturing process, all the contents thereof are not specifically mentioned in the present specification.
上述のような合金組成を有する鋼スラブを準備した後、これを加熱することができ、このとき、1150~1350℃の温度範囲で加熱する段階を経ることができる。 After preparing the steel slab having the alloy composition as described above, it can be heated, and at this time, it can go through the step of heating in the temperature range of 1150 to 1350 ° C.
上記鋼スラブの加熱時、温度が低すぎると、後続する熱間圧延時に圧延荷重が過度にかかる可能性があるため、少なくとも1150℃以上で実施することができる。 If the temperature of the steel slab is too low during heating, a rolling load may be excessively applied during the subsequent hot rolling, so that the temperature can be at least 1150 ° C. or higher.
一方、本発明は、オーステナイト結晶粒サイズ(grain size)が大きいほど、最終微細組織としてイプシロンマルテンサイト相の分率を高めることができるため、上記加熱時の温度が高い方が有利である。また、上記加熱温度が高いほど、後続の熱間圧延工程を有利に行うことができる。但し、本発明は、Mnを多量に含有しているため、過度に高い温度で加熱を行う場合には、内部酸化が激しく発生し、表面品質が悪くなるという問題があるため、上記加熱は1350℃以下で行うことができ、より有利には、1300℃以下で行うことができる。 On the other hand, in the present invention, the larger the austenite crystal grain size (grain size), the higher the fraction of the epsilon martensite phase as the final microstructure, so that the higher the heating temperature is, the more advantageous. Further, the higher the heating temperature, the more advantageous the subsequent hot rolling step can be performed. However, since the present invention contains a large amount of Mn, there is a problem that internal oxidation occurs violently and the surface quality deteriorates when heating is performed at an excessively high temperature. Therefore, the above heating is 1350. It can be carried out at ° C. or lower, and more preferably at 1300 ° C. or lower.
上述のように加熱された鋼スラブを熱間圧延して熱延鋼板に製造することができる。このとき、下記関係式1を満たす温度(FDT(℃))で仕上げ熱間圧延を行うことが好ましい。
The steel slab heated as described above can be hot-rolled to produce a hot-rolled steel sheet. At this time, it is preferable to perform finish hot rolling at a temperature (FDT (° C.)) that satisfies the following
[関係式1]
FDT(℃)≧928+(480×C)+(450×N)+(0.9×Mn)+(65×Ti)
(ここで、各元素は重量含量を意味する。)
[Relational expression 1]
FDT (° C.) ≧ 928 + (480 × C) + (450 × N) + (0.9 × Mn) + (65 × Ti)
(Here, each element means weight content.)
上記関係式1は、多数の実験を通じて導出された式であって、本発明において目的とする防振性及び成形性に優れた高マンガン鋼材を製造するために重要な因子である。
The above
具体的に、本発明は、完全再結晶が起こる温度を上回る温度で仕上げ熱間圧延を行うことにより、十分な大きさでオーステナイト結晶粒の成長と再結晶を誘導することができ、これにより、後続する冷却及び/または巻取り工程でイプシロンマルテンサイト相を安定的に確保することができる。 Specifically, the present invention can induce the growth and recrystallization of austenite grains with sufficient size by performing finish hot rolling at a temperature higher than the temperature at which complete recrystallization occurs. The epsilon martensite phase can be stably secured in the subsequent cooling and / or winding steps.
上記仕上げ熱間圧延時の温度が上記関係式1によって導出される温度未満であると、オーステナイト結晶粒の成長と再結晶を誘導しにくくなり、最終微細組織としてイプシロンマルテンサイト相を十分に形成することができず、未再結晶組織が形成されて防振性が低下するおそれがある。
When the temperature during hot rolling for finishing is lower than the temperature derived by the
また、上記仕上げ熱間圧延時には、総圧下率80%以上、より好ましくは90%以上で行うことができる。上記仕上げ熱間圧延時に総圧下率が80%以上であると、再結晶の駆動力を十分に確保することができる。 Further, at the time of the finish hot rolling, the total rolling reduction ratio can be 80% or more, more preferably 90% or more. When the total reduction ratio is 80% or more during the finish hot rolling, the driving force for recrystallization can be sufficiently secured.
上記によって製造された熱延鋼板を冷却することができ、このとき、700℃以下に冷却を行うことが好ましい。 The hot-rolled steel sheet produced as described above can be cooled, and at this time, it is preferable to cool the hot-rolled steel sheet to 700 ° C. or lower.
上記冷却時に終了温度が700℃を超えると、スケール(scale)が過剰に生成され、スケールの除去に過度な工程が要求され、粉塵による空気汚染などの問題とともに、後加工にも支障を与えるようになるため好ましくない。 If the end temperature exceeds 700 ° C during the above cooling, scale will be generated excessively, an excessive process will be required to remove the scale, and problems such as air pollution due to dust will be hindered in post-processing. It is not preferable because it becomes.
本発明では、常温まで冷却を行ってもよく、この場合、既存の後熱処理工程により製造される高マンガン防振鋼に比べて、さらに優れた防振性を確保できる効果がある(下記表3を参照)。 In the present invention, cooling may be performed to room temperature, and in this case, there is an effect that further excellent vibration-proof property can be ensured as compared with the high manganese vibration-proof steel manufactured by the existing post-heat treatment step (Table 3 below). See).
したがって、本発明では、上記冷却時に700℃以下、より好ましくは500℃以下、さらに好ましくは常温~300℃の温度範囲で冷却を終了することが好ましい。このように、冷却終了温度が低いほど、残存のオーステナイト量が減るため、最終微細組織においてイプシロンマルテンサイト相を確保する観点でより有利である。 Therefore, in the present invention, it is preferable to finish the cooling in the temperature range of 700 ° C. or lower, more preferably 500 ° C. or lower, still more preferably normal temperature to 300 ° C. during the above cooling. As described above, the lower the cooling end temperature, the smaller the amount of residual austenite, which is more advantageous from the viewpoint of securing the epsilon martensite phase in the final microstructure.
一方、上記冷却は通常の水冷(例えば、10℃/s以上の冷却速度)によって行うことができ、冷却終了温度が常温~300℃の場合には、急速冷却によって冷却終了温度を確保することができる。上記急速冷却時の冷却速度については特に限定しないが、一例として、50℃/s以上の冷却速度で行うことができ、但し、設備仕様を考慮して、200℃/s以下で行うことができる。
ここで、常温とは、特に限定しないが、20~35℃程度を意味する。
On the other hand, the above cooling can be performed by normal water cooling (for example, a cooling rate of 10 ° C./s or more), and when the cooling end temperature is normal temperature to 300 ° C., the cooling end temperature can be secured by rapid cooling. can. The cooling rate at the time of rapid cooling is not particularly limited, but as an example, it can be performed at a cooling rate of 50 ° C./s or more, but it can be performed at 200 ° C./s or less in consideration of equipment specifications. ..
Here, the normal temperature is not particularly limited, but means about 20 to 35 ° C.
本発明は、上記冷却を完了した後、その温度で巻取り工程をさらに行うことができる。これは鋼材の厚さなどを考慮して選択的に行うことができる。 In the present invention, after the cooling is completed, the winding step can be further performed at the temperature. This can be selectively performed in consideration of the thickness of the steel material and the like.
上述の冷却工程を完了して得られた本発明の高マンガン鋼材は、面積分率90%以上でイプシロンマルテンサイト相を含み、完全再結晶組織、すなわち、未再結晶組織を全く含まないため、高い防振性及び成形性を確保することができる。 The high manganese steel material of the present invention obtained by completing the above-mentioned cooling step contains an epsilon martensite phase with an area fraction of 90% or more and does not contain a completely recrystallized structure, that is, an unrecrystallized structure at all. High vibration isolation and moldability can be ensured.
以下、本発明の他の一側面による防振性及び成形性に優れた高マンガン鋼材について詳細に説明する。 Hereinafter, the high manganese steel material having excellent vibration isolation and formability according to the other aspect of the present invention will be described in detail.
上記本発明の高マンガン鋼材は、前述の製造工程によって得ることができる。また、前述の合金組成を有するため、上記鋼材の合金組成については既に言及した事項で代替する。 The high manganese steel material of the present invention can be obtained by the above-mentioned manufacturing process. Further, since it has the above-mentioned alloy composition, the alloy composition of the above-mentioned steel material is replaced by the matters already mentioned.
本発明の高マンガン鋼材は、微細組織として面積分率90%以上(100%を含む)のイプシロンマルテンサイト及び残部オーステナイト相で構成されることが好ましい。特に、本発明は未再結晶組織を全く含有しない完全再結晶組織であって、優れた防振性を確保することができ、より好ましくは、上記イプシロンマルテンサイト相を95%以上含むことができる。 The high manganese steel material of the present invention is preferably composed of epsilon martensite having an area fraction of 90% or more (including 100%) and a residual austenite phase as a fine structure. In particular, the present invention is a completely recrystallized structure that does not contain any unrecrystallized structure, and can secure excellent anti-vibration properties, and more preferably, it can contain 95% or more of the above-mentioned epsilon martensite phase. ..
このように、本発明の高マンガン鋼材は、イプシロンマルテンサイト相を高い分率で含みながら、完全再結晶によって残留転位(dislocation)を効果的に除去することで、外部からの衝撃が加えられた時にイプシロンマルテンサイト相が衝撃エネルギーを熱エネルギーに転換する割合を高めてダンピング(damping)性能の向上に寄与する。 As described above, the high manganese steel material of the present invention is subjected to an external impact by effectively removing residual dislocations by complete recrystallization while containing the epsilon martensite phase in a high fraction. Occasionally, the epsilon martensite phase contributes to improved damping performance by increasing the rate at which impact energy is converted to thermal energy.
一方、本発明の高マンガン鋼材は、微細組織として、上述の相(phase)以外の如何なる相(phase)も含んでおらず、例えば、アルファ’(α’)-マルテンサイト相を全く含んでいないことを明らかにしておく。 On the other hand, the high manganese steel material of the present invention does not contain any phase other than the above-mentioned phase as a microstructure, and does not contain, for example, an alpha'(α') -martensite phase at all. Let me make it clear.
特に、本発明は、従来の高マンガン防振鋼の製造時に行われた、高コストの熱処理を省略するにもかかわらず、十分な分率でイプシロンマルテンサイト相を形成することができ、優れた成形性も確保することができる。したがって、本発明の高マンガン鋼材は、従来の高マンガン防振鋼に比べて経済的かつ有利な技術的効果があると言える。 In particular, the present invention is excellent in that it can form the epsilon martensite phase in a sufficient fraction even though the high cost heat treatment performed in the production of the conventional high manganese anti-vibration steel is omitted. Formability can also be ensured. Therefore, it can be said that the high manganese steel material of the present invention has an economical and advantageous technical effect as compared with the conventional high manganese vibration-proof steel.
以下、実施例を挙げて本発明をより具体的に説明する。但し、下記の実施例は、本発明を例示してより詳細に説明するためのものに過ぎず、本発明の権利範囲を限定するためのものではない点に留意する必要がある。これは、本発明の権利範囲が、特許請求の範囲に記載された事項、及びこれにより合理的に類推できる事項によって決定されるものであるためである。 Hereinafter, the present invention will be described in more detail with reference to examples. However, it should be noted that the following examples are merely for exemplifying and explaining the present invention in more detail, and are not for limiting the scope of rights of the present invention. This is because the scope of rights of the present invention is determined by the matters described in the claims and the matters reasonably inferred thereby.
(実施例)
下記表1の合金組成を有する鋼スラブを表2に示した条件で加熱-熱間圧延-冷却して、それぞれの熱延鋼板を製造した。このとき、比較のために、特定の鋼種に対しては後熱処理を行い、上記後熱処理は1000℃で30分間行った後、空冷した。
(Example)
Steel slabs having the alloy composition shown in Table 1 below were heated-hot rolled-cooled under the conditions shown in Table 2 to produce each hot-rolled steel sheet. At this time, for comparison, a post-heat treatment was performed on a specific steel grade, and the post-heat treatment was performed at 1000 ° C. for 30 minutes and then air-cooled.
その後、製造されたそれぞれの熱延鋼板に対して機械的物性と微細組織を測定し、その結果を下記表3に示した。 Then, the mechanical properties and fine structure of each of the manufactured hot-rolled steel sheets were measured, and the results are shown in Table 3 below.
このとき、機械的物性の測定のために、JIS 5号引張試験片に作製した後、降伏強度(YS)、引張強度(TS)及び伸び(T-El及びU-El)を測定した。また、微細組織は、XRD(X-ray diffraction)を用いて測定し、各相(phase)の分率は、各相のピーク(peak)強度(intensity)からその分率を導出した。 At this time, in order to measure the mechanical properties, the yield strength (YS), the tensile strength (TS) and the elongation (T-El and U-El) were measured after preparing the JIS No. 5 tensile test piece. Further, the microstructure was measured using XRD (X-ray diffraction), and the fraction of each phase was derived from the peak intensity of each phase.
そして、図5に示すように、片持ち方式で200~900(m/(m×10-6)) の変形率に対する損失率を測定した。このとき、変形率900(m/(m×10-6))での損失率の値(Xn=(1/π)ln(Xn/Xn+1))を下記表3に示した。 Then, as shown in FIG. 5, the loss rate with respect to the deformation rate of 200 to 900 (m / (m × 10-6 )) was measured by the cantilever method. At this time, the value of the loss rate (X n = (1 / π) ln (X n / X n + 1 )) at the deformation rate of 900 (m / (m × 10 -6 )) is shown in Table 3 below.
(表3において、α’-Mはアルファ’-マルテンサイト、γはオーステナイト、ε-Mはイプシロンマルテンサイト相を意味する。)
(In Table 3, α'-M means alpha'-martensite, γ means austenite, and ε-M means epsilon martensite phase.)
上記表1~3に示すように、合金組成及び製造条件、特に、本発明で提案する関係式1を満たす温度で仕上げ熱間圧延を行い、700℃以下で冷却を終了した発明鋼1~6は、イプシロンマルテンサイト相がいずれも95%以上形成されることにより、優れた防振性を確保することができる。
As shown in Tables 1 to 3 above, the invention steels 1 to 6 which have been subjected to finish hot rolling at a temperature satisfying the alloy composition and manufacturing conditions, particularly the
さらに、上記発明鋼1~6のいずれも総伸びが40%を超えることにより、成形性にも優れていることが確認できる。 Further, it can be confirmed that all of the above-mentioned invention steels 1 to 6 have excellent formability when the total elongation exceeds 40%.
これは、従来の後熱処理を行う高マンガン防振鋼(比較鋼5を参照)に比べて、同等またはそれ以上の防振性及び成形性を有するものであることが分かる。 It can be seen that this has equivalent or better vibration isolation and formability than the conventional high manganese vibration-proof steel (see Comparative Steel 5) that undergoes post-heat treatment.
これに対し、本発明の製造条件(関係式1など)を満たしていない比較鋼1~4、6~9の場合には、アルファ’(α’)-マルテンサイト相が形成されることにより、防振性に劣るだけでなく、総伸びも40%未満となり、成形性にも劣っていた。
On the other hand, in the case of the
図1は、各試験片の損失率900(m /(m×10-6))での損失率の値をFDT(℃)に応じて示したグラフである。
図1に示すように、本発明の関係式1を満たす温度で仕上げ熱間圧延を行った発明鋼1~6のみが0.05以上の損失率となり、これは、後熱処理を行った比較鋼5と同等またはそれ以上の効果を有するものであることが分かる。
FIG. 1 is a graph showing the value of the loss rate of each test piece at a loss rate of 900 (m / (m × 10-6 )) according to FDT (° C.).
As shown in FIG. 1, only the invention steels 1 to 6 subjected to finish hot rolling at a temperature satisfying the
図2は、一部の試験片の損失率200~900(m /(m×10-6))での損失率の値を示したグラフである。
図2に示すように、発明鋼の場合、変形率が高くなるほど、損失率が増加することが確認でき、これは、後熱処理を行った比較鋼5と同等またはそれ以上の効果を有することが分かる。一方、比較鋼の場合、変形率が高くなっても、損失率は0.020を超えないことが確認できる。
FIG. 2 is a graph showing the value of the loss rate of some test pieces at the loss rate of 200 to 900 (m / (m × 10-6 )).
As shown in FIG. 2, in the case of the invention steel, it can be confirmed that the loss rate increases as the deformation rate increases, which may have an effect equal to or higher than that of the comparative steel 5 subjected to the post-heat treatment. I understand. On the other hand, in the case of comparative steel, it can be confirmed that the loss rate does not exceed 0.020 even if the deformation rate is high.
図3は、発明鋼4の微細組織写真を示したものであり、微細組織がほとんどイプシロンマルテンサイト相で形成されたことが確認できる。 FIG. 3 shows a microstructure photograph of the invention steel 4, and it can be confirmed that the microstructure was mostly formed by the epsilon martensite phase.
図4は、発明鋼6と比較鋼6のXRD測定結果を示したものである。
図4に示すように、比較鋼6では、アルファ’(α’)-マルテンサイト相のピーク(peak)が観察されるのに対し、発明鋼6では、イプシロンマルテンサイト相及びオーステナイト相のピークのみが観察され、イプシロンマルテンサイト相の強度(intensity)がさらに大きいことが確認できる。
FIG. 4 shows the XRD measurement results of the invention steel 6 and the comparative steel 6.
As shown in FIG. 4, in the comparative steel 6, the peak of the alpha'(α') -martensite phase is observed, whereas in the invention steel 6, only the peaks of the epsilon martensite phase and the austenite phase are observed. Is observed, and it can be confirmed that the intensity of the epsilon martensite phase is further increased.
Claims (10)
前記加熱された鋼スラブを仕上げ熱間圧延して熱延鋼板を製造する段階;及び
前記熱延鋼板を700℃以下に冷却する段階を含み、
前記仕上げ熱間圧延を、下記関係式1を満たす温度(FDT、℃)で行うことを特徴とする、防振性及び成形性に優れた高マンガン鋼材の製造方法。
[関係式1]
FDT(℃)≧928+(480×C)+(450×N)+(0.9×Mn)+(65×Ti)
(ここで、各元素は重量含量を意味する。) By weight%, carbon (C): 0.1% or less, manganese (Mn): 8 to 30%, silicon (Si): 3.0% or less, phosphorus (P): 0.1% or less, sulfur (S) ): 0.02% or less, nitrogen (N): 0.1% or less, titanium (Ti): 1.0% or less (excluding 0%), boron (B): 0.01% or less, balance Fe and The step of heating a steel slab containing other unavoidable impurities at a temperature of 1150 to 1350 ° C;
A step of finishing and hot rolling the heated steel slab to produce a hot-rolled steel sheet; and a step of cooling the hot-rolled steel sheet to 700 ° C. or lower.
A method for producing a high manganese steel material having excellent vibration isolation and formability, wherein the finish hot rolling is performed at a temperature (FDT, ° C.) satisfying the following relational expression 1.
[Relational expression 1]
FDT (° C.) ≧ 928 + (480 × C) + (450 × N) + (0.9 × Mn) + (65 × Ti)
(Here, each element means weight content.)
重量%で、炭素(C):0.1%以下、マンガン(Mn):8~30%、シリコン(Si):3.0%以下、リン(P):0.1%以下、硫黄(S):0.02%以下、窒素(N):0.1%以下、チタン(Ti):1.0%以下(0%を除く)、ボロン(B):0.01%以下、残部Fe及びその他の不可避不純物を含み、
微細組織として、面積分率90%以上のイプシロンマルテンサイト及び残部オーステナイト相を含み、完全再結晶組織である、防振性及び成形性に優れた高マンガン鋼材。 A steel material manufactured by the manufacturing method according to any one of claims 1 to 7.
By weight%, carbon (C): 0.1% or less, manganese (Mn): 8 to 30%, silicon (Si): 3.0% or less, phosphorus (P): 0.1% or less, sulfur (S) ): 0.02% or less, nitrogen (N): 0.1% or less, titanium (Ti): 1.0% or less (excluding 0%), boron (B): 0.01% or less, balance Fe and Contains other unavoidable impurities
A high manganese steel material having a completely recrystallized structure containing epsilon martensite having an area fraction of 90% or more and a residual austenite phase as a fine structure, and having excellent vibration isolation and formability.
The steel material has niobium (Nb): 0.005 to 0.5%, vanadium (V): 0.005 to 0.5% and tungsten (W): 0.005 to 1.0% in weight%. The high manganese steel material having excellent vibration isolation and formability according to claim 8, further comprising one or more of them.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180124444A KR102098501B1 (en) | 2018-10-18 | 2018-10-18 | High-manganese steel having excellent vibration-proof properties and formability, and method for manufacturing thereof |
KR10-2018-0124444 | 2018-10-18 | ||
PCT/KR2018/015601 WO2020080602A1 (en) | 2018-10-18 | 2018-12-10 | Method for producing high manganese steel material having excellent anti-vibration characteristics and formability, and high manganese steel produced thereby |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022505375A true JP2022505375A (en) | 2022-01-14 |
JP7304415B2 JP7304415B2 (en) | 2023-07-06 |
Family
ID=70284742
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021521374A Active JP7304415B2 (en) | 2018-10-18 | 2018-12-10 | Method for producing high-manganese steel with excellent vibration isolation and formability, and high-manganese steel produced by this method |
Country Status (5)
Country | Link |
---|---|
US (1) | US20210381074A1 (en) |
JP (1) | JP7304415B2 (en) |
KR (1) | KR102098501B1 (en) |
CN (1) | CN112840042A (en) |
WO (1) | WO2020080602A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115323274B (en) * | 2022-08-30 | 2023-07-04 | 鞍钢集团北京研究院有限公司 | Method for improving damping performance of high-strength high-toughness Fe-Mn damping alloy |
CN116334477A (en) * | 2023-01-09 | 2023-06-27 | 鞍钢股份有限公司 | Vibration-damping high manganese steel and manufacturing method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10121202A (en) * | 1996-10-21 | 1998-05-12 | Sumitomo Metal Ind Ltd | High strength steel used in environment requiring sulfides stress creaking resistance and its production |
JP2016540117A (en) * | 2013-10-23 | 2016-12-22 | ポスコPosco | High strength high manganese steel sheet with excellent vibration isolation and method for producing the same |
KR101736637B1 (en) * | 2015-12-23 | 2017-05-17 | 주식회사 포스코 | HIHG-Mn STEEL PLATE HAVING EXCELLENT DAMPING PROPERTY AND METHOD FOR PRODUCING THE SAME |
WO2017111473A1 (en) * | 2015-12-23 | 2017-06-29 | 주식회사 포스코 | High manganese steel sheet having excellent vibration-proof property, and manufacturing method therefor |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04272130A (en) * | 1991-02-28 | 1992-09-28 | Kobe Steel Ltd | Production of high mn nonmagnetic steel having superior drillability |
KR20140119216A (en) * | 2013-03-27 | 2014-10-10 | 주식회사 우진 | High manganese alloy and the manufacturing method for high manganese alloy |
KR101594670B1 (en) * | 2014-05-13 | 2016-02-17 | 주식회사 포스코 | Cold-rolled steel sheet and galvanized steel sheet having excellent ductility and method for manufacturing thereof |
KR101657828B1 (en) * | 2014-12-24 | 2016-10-04 | 주식회사 포스코 | Steel plate for pressure vessel having excellent strength and toughness after post weld heat treatment and method for manufacturing the same |
KR20160078840A (en) * | 2014-12-24 | 2016-07-05 | 주식회사 포스코 | High manganese steel sheet having superior yield strength and fromability, and method for manufacturing the same |
KR101665824B1 (en) * | 2014-12-26 | 2016-10-13 | 주식회사 포스코 | Method of warm forming for high manganese vibration-proof steel |
KR101677396B1 (en) * | 2015-11-02 | 2016-11-18 | 주식회사 포스코 | Ultra high strength steel sheet having excellent formability and expandability, and method for manufacturing the same |
KR101726130B1 (en) * | 2016-03-08 | 2017-04-27 | 주식회사 포스코 | Composition structure steel sheet having excellent formability and method for manufacturing the same |
-
2018
- 2018-10-18 KR KR1020180124444A patent/KR102098501B1/en active IP Right Grant
- 2018-12-10 CN CN201880098648.3A patent/CN112840042A/en active Pending
- 2018-12-10 WO PCT/KR2018/015601 patent/WO2020080602A1/en active Application Filing
- 2018-12-10 US US17/282,481 patent/US20210381074A1/en active Pending
- 2018-12-10 JP JP2021521374A patent/JP7304415B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10121202A (en) * | 1996-10-21 | 1998-05-12 | Sumitomo Metal Ind Ltd | High strength steel used in environment requiring sulfides stress creaking resistance and its production |
JP2016540117A (en) * | 2013-10-23 | 2016-12-22 | ポスコPosco | High strength high manganese steel sheet with excellent vibration isolation and method for producing the same |
KR101736637B1 (en) * | 2015-12-23 | 2017-05-17 | 주식회사 포스코 | HIHG-Mn STEEL PLATE HAVING EXCELLENT DAMPING PROPERTY AND METHOD FOR PRODUCING THE SAME |
WO2017111473A1 (en) * | 2015-12-23 | 2017-06-29 | 주식회사 포스코 | High manganese steel sheet having excellent vibration-proof property, and manufacturing method therefor |
Also Published As
Publication number | Publication date |
---|---|
WO2020080602A1 (en) | 2020-04-23 |
US20210381074A1 (en) | 2021-12-09 |
JP7304415B2 (en) | 2023-07-06 |
KR102098501B1 (en) | 2020-04-07 |
CN112840042A (en) | 2021-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6654698B2 (en) | Ultra-high-strength steel sheet excellent in formability and hole expandability and method for producing the same | |
JP4324072B2 (en) | Lightweight high strength steel with excellent ductility and its manufacturing method | |
JP4464811B2 (en) | Manufacturing method of high strength and low specific gravity steel sheet with excellent ductility | |
JP5402191B2 (en) | Ultra-high-strength cold-rolled steel sheet with excellent stretch flangeability and manufacturing method thereof | |
JP5233142B2 (en) | High-stiffness and high-strength steel sheet excellent in hole expansibility and method for producing the same | |
JP6779320B2 (en) | Clad steel sheet with excellent strength and formability and its manufacturing method | |
JP4084733B2 (en) | High strength low specific gravity steel plate excellent in ductility and method for producing the same | |
JP6858253B2 (en) | Ultra-high-strength steel sheet with excellent hole expansion and yield ratio and its manufacturing method | |
JP7232252B2 (en) | Cold-rolled heat-treated steel sheet and its manufacturing method | |
JP2022501510A (en) | High-strength cold-rolled steel sheet with high hole expansion property, high-strength hot-dip galvanized steel sheet, and manufacturing method thereof | |
KR20130055021A (en) | High-strength cold-rolled steel sheet having excellent deep-drawability and bake hardenability, and method for manufacturing same | |
EP3395978B1 (en) | High manganese steel sheet having excellent vibration-proof property, and manufacturing method therefor | |
KR20160078840A (en) | High manganese steel sheet having superior yield strength and fromability, and method for manufacturing the same | |
JP2012122093A (en) | High strength cold-rolled steel sheet excellent in formability and method for producing the same | |
KR20140048348A (en) | Thin steel sheet and process for producing same | |
JP7304415B2 (en) | Method for producing high-manganese steel with excellent vibration isolation and formability, and high-manganese steel produced by this method | |
KR101290426B1 (en) | High strength hot-rolled steel sheet and method of manufacturing the hot-rolled steel sheet | |
KR20180074841A (en) | Steel and method of manufacturing the same | |
KR102020386B1 (en) | High manganese austenitic steel having high strength and method for manufacturing the same | |
RU2711696C1 (en) | Method of producing cold-rolled steel strip from high-strength manganese steel with trip-properties | |
KR101736637B1 (en) | HIHG-Mn STEEL PLATE HAVING EXCELLENT DAMPING PROPERTY AND METHOD FOR PRODUCING THE SAME | |
KR101543836B1 (en) | High strength hot rolled steel sheet having excellent impact resistance and formability and method for manufacturing the same | |
KR101205122B1 (en) | 440MPa GRADE HIGH STRENGTH STEEL PLATE APPLIED BATCH ANNEALING TYPE AND METHOD FOR MANUFACTURING THE SAME | |
KR101879069B1 (en) | Non-magnetic steel plate having excellent hot-rolling property and method for manufacturing the same | |
KR102207723B1 (en) | Lihgt-weight stainless steel with excellent mechanical properties and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210419 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220413 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220510 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220810 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221206 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20230127 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230306 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230606 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230626 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7304415 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |