JP2022500938A - 複数の音響電気変換器を有する信号処理装置 - Google Patents

複数の音響電気変換器を有する信号処理装置 Download PDF

Info

Publication number
JP2022500938A
JP2022500938A JP2021514610A JP2021514610A JP2022500938A JP 2022500938 A JP2022500938 A JP 2022500938A JP 2021514610 A JP2021514610 A JP 2021514610A JP 2021514610 A JP2021514610 A JP 2021514610A JP 2022500938 A JP2022500938 A JP 2022500938A
Authority
JP
Japan
Prior art keywords
acoustic
frequency
converter
electrical
frequency response
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021514610A
Other languages
English (en)
Other versions
JP7137694B2 (ja
Inventor
シン チー
レイ チャン
Original Assignee
シェンチェン ヴォックステック カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シェンチェン ヴォックステック カンパニー リミテッド filed Critical シェンチェン ヴォックステック カンパニー リミテッド
Publication of JP2022500938A publication Critical patent/JP2022500938A/ja
Application granted granted Critical
Publication of JP7137694B2 publication Critical patent/JP7137694B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/24Structural combinations of separate transducers or of two parts of the same transducer and responsive respectively to two or more frequency ranges
    • H04R1/245Structural combinations of separate transducers or of two parts of the same transducer and responsive respectively to two or more frequency ranges of microphones
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/03Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters
    • G10L25/18Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters the extracted parameters being spectral information of each sub-band
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/48Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use
    • G10L25/51Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use for comparison or discrimination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2807Enclosures comprising vibrating or resonating arrangements
    • H04R1/2838Enclosures comprising vibrating or resonating arrangements of the bandpass type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • H04R1/403Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers loud-speakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements
    • H04R29/001Monitoring arrangements; Testing arrangements for loudspeakers
    • H04R29/002Loudspeaker arrays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/02Circuits for transducers, loudspeakers or microphones for preventing acoustic reaction, i.e. acoustic oscillatory feedback
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/04Circuits for transducers, loudspeakers or microphones for correcting frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/12Circuits for transducers, loudspeakers or microphones for distributing signals to two or more loudspeakers
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/0204Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders using subband decomposition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/03Synergistic effects of band splitting and sub-band processing

Abstract

本開示は、音声信号を処理するための装置に関する。装置は、第一の音響電気変換器および第二の音響電気変換器を含み得る。第一の音響電気変換器は、第一の周波数応答を有し得、音声信号を検出し、検出された音声信号に従って第一のサブバンド信号を生成するように構成され得る。第二の音響電気変換器は、第二の周波数応答を有し得、第二の周波数応答は、第一の周波数応答とは異なる。第二の音響電気変換器は、音声信号を検出し、検出された音声信号に従って第二のサブバンド信号を生成するように構成され得る。【選択図】図2

Description

本開示は、一般に、信号処理に関し、特に音声信号に従ってサブバンド信号を生成するための方法および装置に関する。
サブバンド分解技術は、音声認識、ノイズ低減、もしくは信号増強、画像符号化など、またはそれらの組合せなどの信号処理領域で広く使用されている。音響電気変換器によって検出された音声信号は、デジタル信号を生成するためにさらに処理され得、それに基づいて、複数のサブバンド信号がさらに生成され得る。デジタル信号からサブバンド信号を生成することは、関連する計算プロセスのために時間がかかる場合がある。したがって、より効率的な方法で音声信号を処理して、サブバンド信号を生成するための方法および装置を提供することが望ましい。
本開示は、音声信号を処理するための装置に関する。装置は、第一の音響電気変換器および第二の音響電気変換器を含み得る。第一の音響電気変換器は、第一の周波数応答を有し得、音声信号を検出して、検出された音声信号に従って第一のサブバンド信号を生成するように構成され得る。第二の音響電気変換器は、第二の周波数応答を有し得、第二の周波数応答は第一の周波数応答とは異なる。第二の音響電気変換器は、音声信号を検出し、検出された音声信号に従って、第二のサブバンド信号を生成するように構成され得る。
いくつかの実施形態では、第一の音響電気変換器は、第一の周波数幅を有し、第二の音響電気変換器は、第一の周波数幅とは異なる第二の周波数幅を有する。
いくつかの実施形態では、第二の周波数幅は第一の周波数幅よりも大きくなり得、第二の音響電気変換器の第二の中心周波数は第一の音響電気変換器の第一の中心周波数よりも高くなり得る。
いくつかの実施形態では、装置が第三の音響電気変換器をさらに含み得る。第三の音響電気変換器の第三の中心周波数は、第二の音響電気変換器の第二の中心周波数よりも高くなり得る。
いくつかの実施形態では、第一の周波数応答および第二の周波数応答は、第一の周波数応答の電力半値点および第二の周波数応答の電力半値点の近くにあり得る点で交差する。
いくつかの実施形態では、第一の周波数応答および第二の周波数応答は、第一の周波数応答の電力半値点および第二の周波数応答の電力半値点に近くにあり得る点で交差する。
いくつかの実施形態では、装置は、第一の音響電気変換器に接続され、第一のサブバンド信号をサンプリングして第一のサンプリング済サブバンド信号を生成するように構成された第一のサンプリングモジュールと、第二の音響電気変換器に接続され、第二のサブバンド信号をサンプリングして第二のサンプリング済サブバンド信号を生成するように構成された第二のサンプリングモジュールと、をさらに含み得る。
いくつかの実施形態では、第一のサンプリングモジュールまたは第二のサンプリングモジュールのうちの少なくとも1つは、バンドパスサンプリングモジュールであり得る。
いくつかの実施形態では、装置は、第一の音響電気変換器または第二の音響電気変換器のうちの少なくとも1つを調整するように構成されたフィードバックモジュールをさらに含み得る。
いくつかの実施形態では、フィードバックモジュールが、第一のサンプリング済サブバンド信号または第二のサンプリング済サブバンド信号の少なくとも1つに従って、第一の音響電気変換器または第二の音響電気変換器のうちの少なくとも1つを調整するように構成され得る。
いくつかの実施形態では、第一のサンプリング済サブバンド信号および第二のサンプリング済サブバンド信号をそれぞれ処理して、第一の処理済サブバンド信号および第二の処理済サブバンド信号を生成するように構成された処理モジュールをさらに含み得、フィードバックモジュールは、第一の処理済サブバンド信号または第二の処理済サブバンド信号に従って、第一の音響電気変換器または第二の音響電気変換器のうちの少なくとも1つを調整するように構成され得る。
いくつかの実施形態では、第一の音響電気変換器は、音声信号に従って電気信号を生成するように構成された音感知構成要素と、音響チャネル構成要素とを含み得る。
いくつかの実施形態では、音響チャネル構成要素は二次構成要素を含み得、音感知構成要素は多次バンドパスダイアフラムを含み得る。
いくつかの実施形態では、多次バンドパスダイアフラムが二次バンドパスダイアフラムを含み得る。
いくつかの実施形態では、音響チャネル構成要素が二次バンドパスカンチレバーを含み得る。
いくつかの実施形態では、二次バンドパスカンチレバーが圧電カンチレバーを含み得る。
いくつかの実施形態では、第一の音響電気変換器が一次バンドパスフィルタを含み得る。
いくつかの実施形態では、第一の音響電気変換器が多次バンドパスフィルタを含み得る。
いくつかの実施形態では、多次バンドパスフィルタは、二次バンドパスフィルタ、四次バンドパスフィルタ、または六次バンドパスフィルタを含み得る。
いくつかの実施形態では、第一の音響電気変換器がガンマトーンフィルタを含み得る。
いくつかの実施形態では、装置は、10個以下の一次音響電気変換器を含み得、各一次音響電気変換器は、幅が20kHz以下であり得る周波数帯域に対応する。
いくつかの実施形態では、装置は、20個以下の二次音響電気変換器を含み得、各二次音響電気変換器は、幅が20kHz以下であり得る周波数帯域に対応する。
いくつかの実施形態では、装置は、30個以下の三次音響電気変換器を含み得、各三次音響電気変換器は、幅が20kHz以下の周波数帯域に対応する。
いくつかの実施形態では、装置は、40個以下の四次音響電気変換器を含み得、各四次音響電気変換器は、幅が20kHz以下の周波数帯域に対応する。
いくつかの実施形態では、装置は、8個以下の一次音響電気変換器を含み得、各一次音響電気変換器は、幅が8kHz以下の周波数帯域に対応する。
いくつかの実施形態では、装置は、13個以下の二次音響電気変換器を含み得、各二次音響電気変換器は、幅が8kHz以下の周波数帯域に対応する。
いくつかの実施形態では、装置は、19個以下の三次音響電気変換器を含み得、各三次音響電気変換器は、幅が8kHz以下の周波数帯域に対応する。
いくつかの実施形態では、装置は、26個以下の四次音響電気変換器を含み得、各四次音響電気変換器は、幅が8kHz以下の周波数帯域に対応する。
いくつかの実施形態では、装置は、4個以下の一次音響電気変換器を含み得、各一次音響電気変換器は、幅が4kHz以下の周波数帯域に対応する。
いくつかの実施形態では、装置は、8個以下の二次音響電気変換器を含み得、各二次音響電気変換器は、幅が4kHz以下の周波数帯域に対応する。
いくつかの実施形態では、装置は、12個以下の三次音響電気変換器を含み得、各三次音響電気変換器は、幅が4kHz以下の周波数帯域に対応する。
いくつかの実施形態では、装置は、15個以下の四次音響電気変換器を含み得、各四次音響電気変換器は、幅が4kHz以下の周波数帯域に対応する。
いくつかの実施形態では、第一の音響電気変換器が空気伝導音響電気変換器であり得、第二の音響電気変換器が骨伝導音響電気変換器であり得る。
いくつかの実施形態では、第一の音響電気変換器が高次広帯域音響電気変換器であり得、第二の音響電気変換器が高次狭帯域音響電気変換器であり得る。
いくつかの実施形態では、高次広帯域音響電気変換器が、並列に接続された複数の不足減衰音感知構成要素を含み得る。
いくつかの実施形態では、複数の不足減衰音感知構成要素が、第四の周波数応答を有する第一の不足減衰音感知構成要素、第五の周波数応答を有する第二の不足減衰音感知構成要素、および第六の周波数応答を有する第三の不足減衰音感知構成要素を含む。第二の不足減衰音感知構成要素の第五の中心周波数は、第一の不足減衰音感知構成要素の第四の中心周波数よりも高くあり得、第三の不足減衰音感知構成要素の第六の中心周波数は、第二の不足減衰音感知構成要素の第五の中心周波数よりも高くあり得る。第四の周波数応答および第五の周波数応答は、第四の周波数応答の電力半値点および第五の周波数応答の電力半値点に近くにあり得る点で交差する。
いくつかの実施形態では、複数の不足減衰音感知構成要素が、第四の周波数応答を有する第一の不足減衰音感知構成要素、および第五の周波数応答を有する第二の不足減衰音感知構成要素を含む。第四の周波数応答および第五の周波数応答は、第四の周波数応答の電力半値点および第五の周波数応答の電力半値点に近くにあり得る点で交差する、
いくつかの実施形態では、高次狭帯域音響電気変換器が、直列に接続された複数の不足減衰音感知構成要素を含み得る。
追加の特徴は、以下の説明に部分的に記載され、部分的には、以下および付随する図面を検討することにより当業者に明らかになるか、あるいは例の製造または操作によって学習され得る。本開示の特徴は、以下で論じられる詳細な例に示される方法論、手段、および組合せの様々な態様の実施または使用によって実現および達成され得る。
本開示は、例示的な実施形態に関してさらに説明される。これらの例示的な実施形態は、図面を参照して詳細に説明される。これらの実施形態は、非限定的で例示的な実施形態であり、同様の参照番号は、図面のいくつかの図全体にわたって同様の構造を表す。
従来技術の信号処理装置を示す。 本開示のいくつかの実施形態による例示的な信号処理装置を示す。 本開示のいくつかの実施形態による音声信号を処理するための例示的なプロセスのフローチャートである。 本開示のいくつかの実施形態による例示的な音響電気変換器の概略図である。 本開示のいくつかの実施形態による例示的な音響チャネル構成要素を示す。 本開示のいくつかの実施形態による図5Aに示される音響チャネル構成要素の例示的な等価回路モデルを示す。 本開示のいくつかの実施形態による音感知構成要素の例示的な機械的モデルの概略図である。 本開示のいくつかの実施形態による音感知構成要素の例示的な機械的モデルの概略図である。 本開示のいくつかの実施形態による図6Aおよび図6Bに示される機械的モデルに対応する例示的な等価回路モデルの概略図である。 本開示のいくつかの実施形態による例示的な音感知構成要素の機械的モデルの概略図である。 本開示のいくつかの実施形態による異なる音感知構成要素に対応する例示的な周波数応答を示す。 本開示のいくつかの実施形態による異なる音感知構成要素の例示的な周波数応答を示す。 本開示のいくつかの実施形態による音感知構成要素420に対応する例示的な機械的モデルの概略図である。 本開示のいくつかの実施形態による異なる音感知構成要素に対応する例示的な周波数応答を示す。 本開示のいくつかの実施形態による音響チャネル構成要素と音感知構成要素との組合せの構造を示す。 本開示のいくつかの実施形態による図9Aに示される組合せ構造の例示的な等価回路の概略図である。 本開示のいくつかの実施形態による2つの組合せ構造の例示的な周波数応答を示す。 本開示のいくつかの実施形態による組合せ構造の例示的な周波数応答を示す。 本開示のいくつかの実施形態による音響電気変換モジュールの例示的な周波数応答を示す。 本開示のいくつかの実施形態による音響電気変換モジュールの例示的な周波数応答を示す。 本開示のいくつかの実施形態による音響電気変換モジュールの例示的な周波数応答を示す。 本開示のいくつかの実施形態による音響電気変換モジュールの例示的な周波数応答を示す。 本開示のいくつかの実施形態による音響電気変換モジュールの例示的な周波数応答を示す。 本開示のいくつかの実施形態による異なる次数の音響電気変換器の周波数応答を示す。 本開示のいくつかの実施形態による音響電気変換モジュールの例示的な周波数応答を示す。 本開示のいくつかの実施形態による音響電気変換モジュールの例示的な周波数応答を示す。 本開示のいくつかの実施形態による例示的な音響電気変換器の概略図である。 本開示のいくつかの実施形態による図14Aに示される音響電気変換器の例示的な音響力発生器の概略図である。 本開示のいくつかの実施形態による図14Bに示される音響力発生器の例示的な構造の概略図である。 本開示のいくつかの実施形態による図14Cに示される構造の等価回路の概略図である。 本開示のいくつかの実施形態による音響電気変換モジュールの例示的な周波数応答を示す。 本開示のいくつかの実施形態による例示的な音響電気変換器の概略図である。 本開示のいくつかの実施形態による図16Aに示される音響電気変換器の例示的な音響力発生器の概略図である。 本開示のいくつかの実施形態による例示的な音響電気変換器の概略図である。 本開示のいくつかの実施形態による音響電気変換モジュールの例示的な周波数応答を示す。 本開示のいくつかの実施形態による例示的な音響電気変換器の概略図である。 本開示のいくつかの実施形態による例示的なカンチレバーの概略図である。 本開示のいくつかの実施形態による音感知構成要素に対応する例示的な機械的モデルの概略図である。 本開示のいくつかの実施形態による図19Cに示される機械的モデルの例示的な等価回路の概略図である。 本開示のいくつかの実施形態による例示的な音響電気変換モジュールの概略図である。 本開示のいくつかの実施形態による例示的な高次狭帯域音響電気変換器の概略図である。 本開示のいくつかの実施形態による例示的な高次広帯域音響電気変換器の概略図である。 本開示のいくつかの実施形態による例示的な信号処理装置の概略図である。 本開示のいくつかの実施形態による例示的な音響電気変換器の概略図である。 本開示のいくつかの実施形態による例示的な信号処理装置の概略図である。 本開示のいくつかの実施形態による例示的な信号処理装置の概略図である。 本開示のいくつかの実施形態による例示的な信号処理装置の概略図である。 本開示のいくつかの実施形態による例示的な信号変調プロセスを示す概略図である。
本開示の実施形態に関連する技術的解決策を説明するために、実施形態の説明で参照される図面の簡単な紹介を以下に提供する。明らかに、以下に説明する図面は、本開示のいくつかの例または実施形態にすぎない。当業者は、さらなる創造的な努力なしに、本開示をこれらの図面に従って他の同様のシナリオに適用することができる。別段の記載がない限り、あるいは文脈から明らかでない限り、図面中の同じ参照番号は、同じ構造および操作を指す。
本開示および添付の特許請求の範囲で使用されるように、単数形「1つの(aまたはan)」、および「その(the)」は、内容が明確に別段の指示をしない限り、複数の指示対象も含む。本開示で使用される場合、「備える」、「備えている」、「含む」、および/または「含んでいる」という用語は、記載されたステップおよび要素の存在を指定するが、1つまたは複数の他のステップおよび要素が存在または追加することを排除しない。
システムのいくつかのモジュールは、本開示のいくつかの実施形態に従って、様々な方法で参照され得る。しかしながら、クライアント端末および/またはサーバでは、任意の数の異なるモジュールを使用および操作できる。これらのモジュールは、例示を意図するものであって、本開示の範囲を限定することを意図するものではない。システムおよび方法の様々な側面で、様々なモジュールを使用できる。
本開示のいくつかの実施形態によれば、フローチャートは、システムによって実行される操作を説明するために使用される。上記または下記の操作は、順番に実行されることも、あるいは順番に実行されないこともある点を明確に理解する必要がある。逆に、操作は、逆の順序で、あるいは同時に実行することもできる。さらに、1つまたは複数の他の操作をフローチャートに追加することも、あるいは1つまたは複数の操作をフローチャートから省略することもできる。
これらおよび他の特徴、ならびに本開示の特徴も、構造の関連要素の操作方法および機能も、部品および製造経済の組合せも、すべてが本開示の一部を形成する添付の図面を参照しながら、以下の説明を考慮することにより、より明らかになり得る。しかしながら、図面は、例示および説明のみを目的としており、本開示の範囲を限定することを意図するものではないことを明確に理解されたい。図面は原寸に比例していないことが理解される。
本開示の実施形態の技術的解決策は、以下に記載される図面を参照して記載される。記載される実施形態は、網羅的ではなく、限定的ではないことは明らかである。本開示に記載された実施形態に基づいて、当業者によって創造的な作業を伴わずに得られた他の実施形態は、本開示の範囲内である。
本明細書で提供されるのは、異なる周波数応答を有する複数の音響変換器を含む装置である。音響変換器は、音声信号を検出し、それに応じて複数のサブバンド信号を生成することができる。この装置は、音響変換器の固有の特性を使用してサブバンド信号を生成する。これにより、デジタル信号の処理が不要になり、時間を節約できる。
図1は、従来技術の信号処理装置を示す。従来の信号処理装置100は、音響電気変換器110、サンプリングモジュール120、サブバンドフィルタリングモジュール130、および信号処理モジュール140を含み得る。音声信号105は、最初に、音響電気変換器110によって電気信号115に変換され得る。サンプリングモジュール120は、処理のために電気信号115をデジタル信号125に変換することができる。サブバンドフィルタリングモジュール130は、デジタル信号125を複数のサブバンド信号(例えば、サブバンド信号1351、1352、1353、…、1354)に分解することができる。信号処理モジュール140は、サブバンド信号をさらに処理することができる。
1つの点において、より広い帯域幅で電気信号115をサンプリングするために、サンプリングモジュール120は、より高いサンプリング周波数を要求することができる。別の点で、複数のサブバンド信号を生成するために、サブバンドフィルタリングモジュール130のフィルタ回路は、比較的複雑であり、比較的高次である必要がある。また、複数のサブバンド信号を生成するために、サブバンドフィルタリングモジュール130は、ソフトウェアプログラムを介してデジタル信号処理プロセスを実行することができ、これは、時間がかかり、デジタル信号処理プロセス中にノイズを導入する可能性がある。したがって、サブバンド信号を生成するためのシステムおよび方法を提供する必要がある。
図2は、本開示のいくつかの実施形態による例示的な信号処理装置200を示す。図2に示すように、信号処理装置200は、音響電気変換モジュール210、サンプリングモジュール220、および信号処理モジュール240を含み得る。
音響電気変換モジュール210は、複数の音響電気変換器(例えば、図2に示される音響電気変換器211、212、213、…、210)を含み得る。音響電気変換器は、並列に接続することができる。例えば、音響電気変換器は、電気的に並列に接続することができる。別の例として、音響電気変換器は、トポロジー的に並列に接続され得る。
音響電気変換モジュール210の音響電気変換器(例えば、音響電気変換器211、212、213、および/または210)は、音声信号を電気信号に変換するように構成され得る。いくつかの実施形態では、音響電気変換器211の1つまたは複数のパラメータは、音声信号(例えば、音声信号205)の検出に応答して変化し得る。例示的なパラメータは、静電容量、電荷、加速度、光強度など、またはそれらの組合せを含み得る。いくつかの実施形態では、1つまたは複数のパラメータの変化は、音声信号の周波数に対応し得、対応する電気信号に変換され得る。いくつかの実施形態では、音響電気変換モジュール210の音響電気変換器は、マイクロフォン、ハイドロホン、音響光学変調器など、またはそれらの組合せであり得る。
いくつかの実施形態では、音響電気変換器は、一次音響電気変換器または多次(例えば、二次、四次、六次など)音響電気変換器であり得る。いくつかの実施形態では、高次音響電気変換器の周波数応答は、より急峻なエッジを有し得る。
いくつかの実施形態では、音響電気変換モジュール210内の音響電気変換器は、1つまたは複数の圧電音響電気変換器(例えば、マイクロフォン)および/または1つまたは複数の圧電磁気音響電気変換器を含み得る。単なる例として、音響電気変換器のそれぞれは、マイクロフォンであり得る。いくつかの実施形態では、音響電気変換器は、1つまたは複数の空気伝導音響電気変換器および/または1つまたは複数の骨伝導音響電気変換器を含み得る。いくつかの実施形態では、複数の音響電気変換器は、1つまたは複数の高次広帯域音響電気変換器および/または1つまたは複数の高次狭帯域音響電気変換器を含み得る。本明細書で使用される場合、高次広帯域音響電気変換器は、1より大きい次数を有する広帯域音響電気変換器を指す場合がある。本明細書で使用される場合、高次狭帯域音響電気変換器は、1より大きい次数を有する狭帯域音響電気変換器を指す場合がある。広帯域音響電気変換器および/または狭帯域音響電気変換器の詳細な説明は、当業者には明らかであり得、本明細書で繰り返されないことがある。
いくつかの実施形態では、複数の音響電気変換器のうちの少なくとも2つは、異なる周波数応答を有し得、これは、異なる中心周波数および/または周波数帯域幅(または周波数幅と呼ばれる)を有し得る。例えば、音響電気変換器211、212、213、および210は、それぞれ第一の周波数応答、第二の周波数応答、第三の周波数応答、および第四の周波数応答を有し得る。いくつかの実施形態では、第一の周波数応答、第二の周波数応答、第三の周波数応答、および第三の周波数応答は、互いに異なっていてもよい。あるいは、第一の周波数応答、第二の周波数応答、および第三の周波数応答は互いに異なっていてもよく、第四の周波数応答は第三の周波数応答と同じであり得る。いくつかの実施形態では、音響電気変換モジュール210内の音響電気変換器は、同じ周波数帯域幅(図11Aおよびその説明に示される)または異なる周波数帯域幅(図11Bおよびその説明に示される)を有し得る。図11Aは、例示的な音響電気変換モジュール(または第一の音響電気変換モジュールと呼ばれる)の周波数応答を示す。図11Bは、別の例示的な音響電気変換モジュール(または第二の音響電気変換モジュールと呼ばれる)の周波数応答を示し、これは、図11Aに示される音響電気変換モジュールの周波数応答とは異なる。図11Aおよび図11Bに示されるように、第一の音響電気変換モジュールまたは第二の音響電気変換モジュールは、8つの音響電気変換器を含み得る。いくつかの実施形態では、音響電気変換器の周波数応答間の重複範囲は、音響電気変換器の構造パラメータを調整して、これらの音響電気変換器のうちの1つまたは複数の中心周波数および/または帯域幅を変更することによって調整することができる。いくつかの実施形態では、第一の音響電気変換モジュールまたは第二の音響電気変換モジュールは、音響電気変換器によって生成されたサブバンド信号の周波数帯域が処理される周波数をカバーし得るように、特定の数の音響電気変換器を含み得る。いくつかの実施形態では、第二の音響電気変換モジュール内の音響電気変換器は、異なる中心周波数を有し得る。いくつかの実施形態では、狭い周波数帯域幅を有する少なくとも1つの音響電気変換器は、特定の周波数帯域のサブバンド信号を生成するように設定され得る。いくつかの実施形態では、より高い中心周波数応答を有する音響電気変換器は、より高い周波数帯域幅を有するように設定され得る。
いくつかの実施形態では、音響電気変換器で、別の音響電気変換器の中心周波数よりも高い中心周波数を有するものは、別の音響電気変換器の周波数帯域幅よりも大きい周波数帯域幅を有し得る。
音響電気変換モジュール210内の音響電気変換器は、音声信号205を検出することができる。音声信号205は、音声信号を生成することができる音源からのものであり得る。音源は、信号処理装置200のユーザなどの生物、および/またはCDプレーヤー、テレビなどの非生物、またはそれらの組合せであり得る。いくつかの実施形態では、音声信号は、また、周囲音を含み得る。音声信号205は、特定の周波数帯域を有し得る。例えば、信号処理装置200のユーザによって生成された音声信号205は、10〜30,000Hzの周波数帯域を有し得る。音響電気変換器は、音声信号205に従って、複数のサブバンド電気信号(例えば、図2に示されるサブバンド電気信号2151、2152、2153、…、および2154)を生成することができる。音声信号205に従って生成されるサブバンド電気信号は、音声信号205の周波数帯域よりも狭い周波数帯域を有する信号を指す。サブバンド信号の周波数帯域は、対応する音声信号205の周波数帯域内にあってもよい。例えば、音声信号205は、10〜30,000Hzの周波数帯域を有し得、サブバンド音声信号の周波数帯域は、100〜200Hzであり得、これは、音声信号205の周波数帯域内、すなわち、10〜30,000Hz内にある。いくつかの実施形態では、音響電気変換器は、音声信号205を検出し、検出された音声信号に従って1つのサブバンド信号を生成することができる。例えば、音響電気変換器211、212、213、および210は、音声信号205を検出し、それぞれ検出された音声信号に従がって、サブバンド電気信号2151、サブバンド電気信号2152、サブバンド電気信号2153、およびサブバンド電気信号2154を生成することができる。いくつかの実施形態では、音響電気変換器によって生成された複数のサブバンド信号のうちの少なくとも2つは、異なる周波数帯域を有し得る。上述のように、音響電気変換器の少なくとも2つは、異なる周波数応答を有し得、これは、2つの異なる音響電気変換器による同じ音声信号205の検出に従って、2つの異なるサブバンド信号をもたらし得る。音響電気変換モジュール210は、生成されたサブバンド信号をサンプリングモジュール220に送信することができる。音響電気変換モジュール210は、1つまたは複数の送信機(図示せず)を介してサブバンド信号を送信することができる。例示的な送信機は、同軸ケーブル、通信ケーブル(例えば、電気通信ケーブル)、可撓性ケーブル、スパイラルケーブル、非金属シースケーブル、金属シースケーブル、マルチコアケーブル、ツイストペアケーブル、リボンケーブル、シールドケーブル、二重ストランドケーブル、光ファイバなど、またはそれらの組合せであり得る。いくつかの実施形態では、サブバンド信号は、信号送信機を介してサンプリングモジュール220に送信され得る。いくつかの実施形態では、サブバンド信号は、並列に接続された複数のサブバンド送信機を介してサンプリングモジュール220に送信され得る。複数のサブバンド送信機のそれぞれは、音響電気変換モジュール210内の音響電気変換器に接続し、音響電気変換器によって生成されたサブバンド信号をサンプリングモジュール220に送信することができる。例えば、サブバンド送信機は、音響電気変換器211に接続された第一のサブバンド送信機と、音響電気変換器212に接続された第二のサブバンド送信機とを含み得る。第一のサブバンド送信機および第二のサブバンド送信機は、並列に接続できる。第一のサブバンド送信機および第二のサブバンド送信機は、それぞれ、サブバンド電気信号2151およびサブバンド電気信号2152をサンプリングモジュール220に送信することができる。
音響電気変換モジュール210の周波数応答は、音響電気変換モジュール210に含まれる音響電気変換器の周波数応答に依存し得る。例えば、音響電気変換モジュール210の周波数応答の平坦性は、音響電気変換モジュール210内の音響電気変換器の周波数応答が互いに交差する場所に関連し得る。図10A〜図10C(および以下のその説明)に示すように、音響電気変換器の周波数応答が、電力半値点の近くまたは電力半値点で交差するとき、音響電気変換器を含む音響電気変換モジュール210の周波数応答は、その中の音響電気変換器が電力半値点の近くでも、電力半値点でも交差しない場合、音響電気変換モジュール210の周波数応答よりも平坦であり得る。本明細書で使用される場合、特定の周波数応答の電力半値点は、−3dBの電力レベルを有する周波数点を指す。本明細書で使用されるように、2つの周波数応答は、それらが電力半値点の近くの周波数点で交差するとき、電力半値点の近くで交差すると見なされ得る。本明細書で使用されるように、周波数点と電力半値点との間の電力レベル差が2dB以下である場合、周波数点は電力半値点に近いと見なされ得る。いくつかの実施形態では、音響電気変換モジュール210内の音響電気変換器の周波数応答が、周波数点(例えば、電力4分の1点、または電力8分の1点など)で互いに交差するとき、電力半値点のパワーレベルより2dB以上低いパワーレベルでは、隣接する音響電気変換器の周波数応答間の重複範囲が比較的小さくなる可能性があり、隣接する音響電気変換器の組合せの周波数応答を重複範囲内で減少させるため、隣接する音響電気変換器によって出力されるサブバンド信号の品質に影響を与える。いくつかの実施形態では、音響電気変換モジュール210内の音響電気変換器の周波数応答が、周波数点(例えば、電力4分の3点、または電力8分の7点など)で互いに交差するとき、電力半値点より1dB高いパワーレベルでは、隣接する音響電気変換器の周波数応答間の重複範囲が比較的高くなる可能性があり、音響電気変換器によって出力されるサブバンド信号間に比較的高い干渉範囲が発生する。
いくつかの実施形態では、特定の周波数帯域について、限られた数の音響電気変換器が、音響電気変換モジュール210に許容され得る。音響電気変換器が非不足減衰音響電気変換器ではなく、不足減衰音響電気変換器であるとき、より多くの音響電気変換器が音響電気変換モジュール210に含まれ得る。単なる例として、図13Aは、4つを含む音響電気変換モジュール210の周波数応答を示している(4つの破線は、別々に動作する場合の4つの個々の非不足減衰音響電気変換器の周波数応答であり、実線は、4つの非不足減衰音響電気変換器の組合せの周波数応答である)。いくつかの実施形態では、1つまたは複数の音響電気変換器が不足減衰状態にあるとき、より多くの音響電気変換器を音響電気変換モジュール210内に置くことができる場合がある。例えば、音響電気変換モジュール210は、6つ以上の不足減衰音響電気変換器を含み得る。単なる例として、図13Bは、6つの不足減衰音響電気変換器を有する音響電気変換モジュール210の周波数応答を示している。
サンプリングモジュール220は、複数のサンプリングユニット(例えば、図2に示されるサンプリングユニット221、222、223、…、および224)を含み得る。サンプリングユニットは並列に接続することができる。
サンプリングモジュール220内のサンプリングユニット(例えば、サンプリングユニット221、サンプリングユニット222、サンプリングユニット223、および/またはサンプリングユニット224)は、音響電気変換器と通信し、音響電気変換器によって生成されたサブバンド信号を受信して、サンプリングするように構成され得る。サンプリングユニットは、サブバンド送信機を介して音響電気変換器と通信することができる。単なる例として、サンプリングユニット221は、第一のサブバンド送信機に接続され、そこから受信されたサブバンド電気信号2151をサンプリングするように構成され得、一方、サンプリングユニット222は、第二のサブバンド送信機に接続され、そこから受信したサブバンド電気信号2152をサンプリングするように構成され得る。
いくつかの実施形態では、サンプリングモジュール内のサンプリングユニット(例えば、サンプリングユニット221、サンプリングユニット222、サンプリングユニット223、および/またはサンプリングユニット224)は、受信したサブバンド信号をサンプリングし、サンプリング済サブバンド信号に基づいてデジタル信号を生成することができる。例えば、サンプリングユニット221、サンプリングユニット222、サンプリングユニット223、およびサンプリングユニット224は、サブバンド信号をサンプリングし、それぞれデジタル信号2351、デジタル信号2352、デジタル信号2353、およびデジタル信号2354を生成することができる。
いくつかの実施形態では、サンプリングユニットは、バンドパスサンプリング技術を使用してサブバンド信号をサンプリングすることができる。例えば、サンプリングユニットは、サブバンド信号の周波数帯域に応じたサンプリング周波数でバンドパスサンプリングを使用してサブバンド信号をサンプリングするように構成され得る。単なる例として、サンプリングユニットは、サブバンド信号の周波数帯域の帯域幅の2倍以上である周波数帯域を有するサブバンド信号をサンプリングすることができる。いくつかの実施形態では、サンプリングユニットは、サブバンド信号の周波数帯域の帯域幅の2倍以上であり、サブバンド信号の周波数帯域の帯域幅の4倍以下である周波数帯域を有するサブバンド信号をサンプリングすることができる。いくつかの実施形態では、帯域幅サンプリング技術またはローパスサンプリング技術ではなくバンドパスサンプリング技術を使用することにより、サンプリングユニットは、比較的低いサンプリング周波数でサブバンド信号をサンプリングし、サンプリング処理の困難さおよびコストを低減し得る。また、バンドパスサンプリング技術を使用することにより、サンプリングプロセスでノイズまたは信号の歪みがほとんど発生しなくなり得る。図1に関連して説明したように、信号処理システム100(例えば、サブバンドフィルタリングモジュール130)は、ソフトウェアプログラムを介してデジタル信号処理プロセスを実行して、サブバンド信号を生成することができる。このため、信号処理プロセスで使用されるアルゴリズム、サンプリングプロセスで使用されるサンプリング方法、および信号処理システム100内の構成要素(例えば、音響電気変換器110、サンプリングモジュール120、および/またはサブバンドフィルタリングモジュール130)の構造などの要因により、信号の歪みが発生する可能性がある。サブバンドフィルタリングモジュール130と比較して、信号処理システム200は、音響電気変換器の構造および特性に基づいてサブバンド信号を生成することができる。
サンプリングユニットは、生成されたデジタル信号を信号処理モジュール240に送信することができる。いくつかの実施形態では、デジタル信号は、並列送信機を介して送信することができる。いくつかの実施形態では、デジタル信号は、特定の通信プロトコルに従って送信機を介して送信することができる。例示的な通信プロトコルには、AES3(オーディオ技術者協会)、AES/EBU(欧州放送連合)、EBU(欧州放送連合)、ADAT(自動データアキュムレータおよび転送)、I2S(Inter−IC Sound)、TDM(時間分割マルチプレックス)、MIDI(電子楽器デジタルインタフェース)、CobraNet、イーサネット(登録商標)AVB(イーサネットオーディオ/ビデオブリッジング)、Dante、ITU(国際電気通信連合)−T G.728、ITU−T G.711、ITU−T G.722、ITU−T G.722.1、ITU−T G.722.1 Annex C、AAC(先進的音響符号化)−LDなど、またはそれらの組合せを含み得る。デジタル信号は、CD(コンパクトディスク)、WAVE、AIFF(オーディオ交換ファイル形式)、MPEG(Moving Picture Experts Group)−1、MPEG−2、MPEG−3、MPEG−4、MIDI(電子楽器デジタルインタフェース)、WMA(Windows Media Audio)、RealAudio(登録商標)、VQF(Transform−domain Weighted Nterleave Vector Quantization)、AMR(適応マルチレート)、APE、FLAC(Free Lossless Audio Codec)、AAC(先進的音響符号化)など、またはそれらの組合せを含む特定の形式で送信され得る。
信号処理モジュール240は、信号処理装置200内の他の構成要素から受信したデータを処理することができる。例えば、信号処理モジュール240は、サンプリングモジュール220内のサンプリングユニットから送信されるデジタル信号を処理することができる。信号処理モジュール240は、サンプリングモジュール220に格納された情報および/またはデータにアクセスすることができる。別の例として、信号処理モジュール240は、格納された情報および/またはデータにアクセスするために、サンプリングモジュール220に直接接続され得る。いくつかの実施形態では、信号処理モジュール240は、マイクロコントローラ、マイクロプロセッサ、縮小命令セットコンピュータ(RISC)、アプリケーション固有の集積回路(ASIC)、アプリケーション固有の命令セットプロセッサ(ASIP)、中央処理装置(CPU)、グラフィック処理装置(GPU)、物理処理装置(PPU)、マイクロコントローラ装置、デジタル信号処理装置(DSP)、フィールドプログラマブルゲートアレイ(FPGA)、高度なRISCマシン(ARM)、プログラマブルロジック装置(PLD)などのプロセッサ、1つまたは複数の機能を実行できる任意の回路またはプロセッサなど、またはそれらの任意の組合せによって実装され得る。
信号処理装置200の上記の説明は、単に例示の目的で提供されており、本開示の範囲を限定することを意図するものではないことに留意されたい。当業者の場合、本発明の教示の下で、複数の変形および修正を行うことができる。しかしながら、それらの変形および修正は、本開示の範囲から逸脱するものではない。例えば、信号処理装置200は、他の構成要素から受信した信号を信号処理装置200(例えば、音響電気変換モジュール210、および/またはサンプリングモジュール220)に格納するためのストレージをさらに含むことができる。例示的なストレージには、大容量ストレージ、リムーバブルストレージ、揮発性の読み取りおよび書き込みメモリ、読み取り専用メモリ(ROM)など、またはそれらの組合せを含むことができる。別の例として、1つまたは複数の送信機を省略してもよい。複数のサブバンド信号は、赤外線、電磁波、音波などの波の媒体、またはそれらの組合せによって送信することができる。さらなる例として、音響電気変換モジュール210は、2つ、3つ、または4つの音響電気変換器を含むことができる。
図3は、本開示のいくつかの実施形態による、音声信号を処理するための例示的なプロセスのフローチャートである。プロセス300の少なくとも一部は、図2に示されるように、信号処理装置200上に実装され得る。
310において、音声信号205が検出され得る。音声信号205は、複数の音響電気変換器によって検出され得る。いくつかの実施形態では、音響電気変換器は、異なる周波数応答を有し得る。複数の音響電気変換器は、図2に示されるように、同じ信号処理装置200内に配置され得る。音声信号205は、特定の周波数帯域を有し得る。
320において、複数のサブバンド信号は、音声信号205に従って生成され得る。複数のサブバンド信号は、複数の音響電気変換器によって生成され得る。生成されたサブバンド信号の少なくとも2つは、異なる周波数帯域を有し得る。各サブバンド信号は、音声信号205の周波数帯域内にある周波数帯域を有し得る。
プロセス300に関する上記の説明は、単に例示の目的で提供されており、本開示の範囲を限定することを意図するものではないことに留意されたい。当業者の場合、本発明の教示の下で、複数の変形および修正を行うことができる。しかしながら、それらの変形および修正は、本開示の範囲から逸脱するものではない。いくつかの実施形態では、プロセス300における1つまたは複数の操作を省略してもよく、あるいは1つまたは複数の追加の操作を追加してもよい。例えば、プロセス300は、動作320の後にサブバンド信号をサンプリングするための動作をさらに含み得る。
図4は、本開示のいくつかの実施形態による例示的な音響電気変換器の概略図である。音響電気変換器211は、音声信号を電気信号に変換するように構成することができる。音響電気変換器211は、音響チャネル構成要素410、音感知構成要素420、および回路構成要素430を含み得る。
音響チャネル構成要素410は、音声信号が音感知構成要素420に到達する前に音声信号を処理することができる音響チャネル構成要素410の音響構造によって、音声信号が音感知構成要素420に送信される経路に影響を及ぼし得る。いくつかの実施形態では、音声信号は、空気伝導音信号であり得、音響チャネル構成要素410の音響構造は、空気伝導音信号を処理するように構成され得る。あるいは、音声信号は、骨伝導音信号であり得、音響チャネル構成要素410の音響構造は、骨伝導音信号を処理するように構成され得る。いくつかの実施形態では、音響構造は、1つまたは複数のチャンバ構造、1つまたは複数のパイプ構造など、またはそれらの組合せを含み得る。
いくつかの実施形態では、音響構造の音響インピーダンスは、検出された音声信号の周波数に従って変化し得る。いくつかの実施形態では、音響構造の音響インピーダンスは、特定の範囲内で変化し得る。したがって、いくつかの実施形態では、音声信号の周波数帯域は、音響構造の音響インピーダンスに対応する変化を引き起こし得る。言い換えれば、音響構造は、検出された音声信号のサブバンドを処理するフィルタとして機能し得る。いくつかの実施形態では、主にチャンバ構造を含む音響構造は、ハイパスフィルタとして機能することができ、一方、主にパイプ構造を含む音響構造は、ローパスフィルタとして機能することができる。
いくつかの実施形態では、主にチャンバ構造を含む音響構造の音響インピーダンスは、以下の式(1):
Figure 2022500938
に従って決定することができる。
ここで、Zは音響インピーダンス、ωは角周波数(例えば、チャンバ構造)、jは単位虚数、Cは音響容量、ρは空気の密度、cは音速、Vはチャンバの等価容積を表す。
いくつかの実施形態では、主にパイプ構造を含む音響構造の音響インピーダンスは、以下の式(2):
Figure 2022500938
に従って決定することができる。ここで、Zは音響インピーダンス、Mは音響質量、ωは音響構造(例えば、パイプ構造)の角周波数、ρは空気の密度、lはパイプの等価長さ、Sはオリフィスの断面積を表す。
チャンバパイプ構造は、直列の音響容量と音響質量の組合せであり、例えば、ヘルムホルツ共鳴器であり、インダクタ・コンデンサ(LC)共振回路を形成することができる。チャンバパイプ構造の音響インピーダンスは、以下の式(3):
Figure 2022500938
に従って決定することができる。
式(3)によれば、チャンバパイプ構造は、バンドパスフィルタとして機能し得る。バンドパスフィルタの中心周波数は、以下の式(4):
Figure 2022500938
に従って決定することができる。
チャンバパイプ構造に音響抵抗材料を使用する場合、抵抗・インダクタ・コンデンサ(RLC)直列ループが形成され得、RLC直列ループの音響インピーダンスは、以下の式(5):
Figure 2022500938
に従って決定することができる。
ここで、RはRLC直列ループの音響抵抗を表す。チャンバパイプ構造は、バンドパスフィルタとしても機能し得る。音響抵抗Rを調整すると、バンドパスフィルタの帯域幅が変わることがある。バンドパスフィルタの中心周波数は、以下の式(6):
Figure 2022500938
に従って決定することができる。
音感知構成要素420は、音響チャネル構成要素によって送信された音声信号を電気信号に変換することができる。例えば、音感知構成要素420は、音声信号を電気パラメータの変化に変換することができ、これは、電気信号として具体化することができる。音感知構成要素420の構造は、ダイアフラム、プレート、カンチレバーなどを含み得る。いくつかの実施形態では、音感知構成要素420は、1つまたは複数のダイアフラムを含み得る。1つのダイアフラムを含む音感知構成要素420の構造に関する詳細は、本開示の他の場所(例えば、図6Aおよび図6Bならびにそれらの説明)に見出すことができる。複数のダイアフラムを含む音感知構成要素420の構造に関する詳細は、本開示の他の場所(例えば、図7Aおよび図8Aおよびそれらの説明)に見出すことができる。音感知構成要素420に含まれるダイアフラムは、並列(例えば、図7Aに示されるように)または直列(例えば、図8Aに示されるように)に接続され得る。いくつかの実施形態では、図7Bおよび図7Cおよびその説明を参照すると、並列に接続された複数のダイアフラムを有する音感知構成要素420の周波数応答の帯域幅は、1つのダイアフラムを有する音感知構成要素420の周波数応答の帯域幅よりも広く、平坦であり得る。いくつかの実施形態では、図8Bおよびその説明において、直列に接続された複数のダイアフラムを有する音感知構成要素420の周波数応答の帯域幅は、1つのダイアフラムを有する音感知構成要素420の周波数応答の帯域幅よりもシャープなエッジを有し得る。音感知構成要素420の材料は、プラスチック、金属、複合材料、圧電材料などを含み得る。音感知構成要素420に関するより詳細な説明は、本開示の他の場所(例えば、図6A〜図9Dおよびその説明)に見出すことができる。
音響チャネル構成要素410に関連して説明されるように、音響チャネル構成要素410または音感知構成要素420は、フィルタとして機能し得る。音響チャネル構成要素410および音感知構成要素420を含む構造も、フィルタとして機能し得る。構造の詳細な説明は、図9Aおよび図9Bならびにそれらの説明に見出すことができる。
いくつかの実施形態では、音響チャネル構成要素410および/または音感知構成要素420のパラメータ(例えば、構造パラメータ)を変更することによって、音響チャネル構成要素410と音感知構成要素420との組合せの周波数応答は、それに応じて調整することができる。例えば、図9Cは、本開示のいくつかの実施形態による2つの組合せ構造の例示的な周波数応答を示す。点線931は、音響チャネル構成要素および音感知構成要素の組合せ(または第一の組合せ構造と呼ばれる)の周波数応答を表す。音響チャネル構成要素または音感知構成要素の1つまたは複数のパラメータ(例えば、構造パラメータ)が変更され得、その結果、第一の組合せ構造とは異なる第二の組合せ構造がもたらされる。実線933は、第二の組合せ構造の周波数応答を示し得る。図9Cに示されるように、第二の組合せ構造の周波数応答(すなわち、実線933)は、周波数帯域20Hz〜20,000Hzにおいて、第一の組合せ構造の周波数応答(すなわち、点線931)よりも平坦であり得る。
いくつかの実施形態では、音響チャネル構成要素410および音感知構成要素420の組合せの周波数応答は、音響チャネル構成要素410の周波数応答および/または音感知構成要素420の周波数応答に関連し得る。例えば、音響チャネル構成要素410と音感知構成要素420との組合せの周波数応答のエッジの急峻さは、音響チャネル構成要素410の周波数応答のカットオフ周波数が音感知構成要素420の周波数応答のカットオフ周波数にどの程度近いかに関係し得る。音響チャネル構成要素410および音感知構成要素420の組合せの周波数応答のエッジは、音響チャネル構成要素410の周波数応答のカットオフ周波数と音感知構成要素420の周波数応答のカットオフ周波数とが互いに近い場合、より急峻であり得る。例えば、図9Dは、本開示のいくつかの実施形態による組合せ構造の例示的な周波数応答を示す。破線941は、音感知構成要素の周波数応答を表す。点線943は、音響チャネル構成要素の周波数応答を表し、実線945は、音響チャネル構成要素と音感知構成要素との組合せの周波数応答を示し得る。図9Dに示されるように、音響チャネル構成要素(すなわち、点線943)のコーナー周波数(すなわち、カットオフ周波数とも呼ばれる)は、音感知構成要素(すなわち、破線941)のコーナー周波数に近いか、または同じであり得る。音響チャネル構成要素と音感知構成要素(すなわち、実線945)の組合せの周波数がより急峻なエッジを有する結果となり得る。
いくつかの実施形態では、音響チャネル構成要素410および/または音感知構成要素420の1つまたは複数の構造パラメータは、修正または調整され得る。例えば、音響チャネル構成要素410および/または音感知構成要素420内の異なる要素間の間隔は、本開示の他の場所に示されるフィードバックモジュールによって駆動されるモーターによって調整され得る。別の例として、音感知構成要素420を流れる電流は、例えば、フィードバックモジュールによって送信された命令の下で調整され得る。音響チャネル構成要素410および/または音感知構成要素420の1つまたは複数の構造パラメータの調整は、それらのフィルタリング特性の変化をもたらすことがある。
回路構成要素430は、電気パラメータ(例えば、電気信号)の変化を検出することができる。いくつかの実施形態では、回路構成要素430は、さらなる処理のために電気信号に対して1つまたは複数の機能を実行することができる。例示的な機能は、増幅、変調、単純なフィルタリングなど、またはそれらの組合せを含み得る。いくつかの実施形態では、回路構成要素430の1つまたは複数のパラメータを調整することにより、対応する通過帯域の感度を、互いに一致するように調整することができる。いくつかの実施形態では、回路構成要素430は、プリセット命令、フィードバック信号、またはコントローラなどによって送信される制御信号、またはそれらの組合せなどの条件に従って、1つまたは複数の通過帯域の感度を調整することができる。いくつかの実施形態では、回路構成要素430は、1つまたは複数の通過帯域の感度を自動的に調整することができる。
図5Aは、本開示のいくつかの実施形態による例示的な音響チャネル構成要素410を示す。音響チャネル構成要素410は、1つまたは複数のパイプ構造を含み得る。図5Aは、3つの例示的なパイプ構造、すなわち、第一のパイプ構造501、第二のパイプ構造502、および第三のパイプ構造503を示す。各パイプ構造は、音声信号を検出または受信するための前面音響抵抗材料、および音声信号に従って信号を出力する端部音響抵抗材料を含み得る。例えば、第一のパイプ構造501は、前面音響抵抗材料511および端部音響抵抗材料512を含み得る。第二のパイプ構造502は、前面音響抵抗材料513および端部音響抵抗材料514を含み得る。第三のパイプ構造503は、前面音響抵抗材料515および端部音響抵抗材料516を含み得る。音圧Pが第一のパイプ構造501、第二のパイプ構造502、および第三のパイプ構造503を連続して通過するとき、音圧Pは音圧P3となり得る。音響チャネル構成要素410(または音響フィルタリングネットワークと呼ばれる)に対応する例示的な回路を図5Bに示すことができる。
図5Bは、本開示のいくつかの実施形態による図5Aに示される音響チャネル構成要素410の例示的な等価回路モデルを示す。この回路は、第一の抵抗器541、第二の抵抗器542、第三の抵抗器543、第四の抵抗器544、第一のインダクタ551、第二のインダクタ552、第三のインダクタ553、第四のインダクタ554、第一のコンデンサ561、第二のコンデンサ562、および第三のコンデンサ563を含み得る。第一のコンデンサ561の第一の端部は、第一のインダクタ551の第一の端部、および第二の抵抗器542の第一の端部に接続することができる。第一のインダクタ551の第二の端部は、第一の抵抗器541の第一の端部に接続することができる。第二のコンデンサ562の第一の端部は、第二のインダクタ552の第一の端部、および第三の抵抗器543の第一の端部に接続することができる。第二のインダクタ552の第二の端部は、第二の抵抗器542の第二の端部に接続することができる。第三のコンデンサ563の第一の端部は、第三のインダクタ553の第一の端部、および第四の抵抗器544の第一の端部に接続することができる。第三のインダクタ553の第二の端部は、第三の抵抗器543の第二の端部に接続することができる。第四のインダクタ554の第一の端部は、第四の抵抗器544の第二の端部に接続することができる。
図6Aは、本開示のいくつかの実施形態による、音感知構成要素420の例示的な機械的モデルの概略図である。音感知構成要素420内の1つまたは複数の要素は、それに衝突する音声信号に従って振動することができる。音声信号は、音響チャネル構成要素410から送信され得る。いくつかの実施形態では、音感知構成要素420内の1つまたは複数の要素の振動は、音感知構成要素420の電気パラメータの変化をもたらすことがある。音感知構成要素420は、音声信号の特定の周波数帯域に敏感である。音声信号の周波数帯域は、音感知構成要素420の電気的パラメータの対応する変化を引き起こし得る。言い換えれば、音感知構成要素420は、音声信号のサブバンドを処理するフィルタとして機能し得る。
いくつかの実施形態では、音感知構成要素420は、ダイアフラムであり得る。図6Aは、ダイアフラム611および弾性構成要素613を含み得る例示的なダイアフラムを示す。ダイアフラム611の第一の点は、弾性構成要素613の第一の点に接続し得る。ダイアフラム611の第二の点は、弾性構成要素613の第二の点に接続し得る。
図6Bは、本開示のいくつかの実施形態による音感知構成要素420の例示的な機械的モデルの概略図である。音感知構成要素420は、ダイアフラムであり得る。図6Bに示されるように、ダイアフラムは、ダイアフラム621、減衰構成要素623、および弾性構成要素625を含み得る。ダイアフラム621の第一の端部は、減衰構成要素623の第一の端部、および弾性構成要素625の第一の端部(例えば、バネ)に接続され得る。減衰構成要素623の第二の端部は、固定され得る。弾性構成要素625の第二の端部は、固定され得る。
図6Cは、本開示のいくつかの実施形態による図6Aおよび図6Bに示される機械的モデルに対応する例示的な等価回路モデルの概略図である。回路は、抵抗器631、インダクタ633、およびコンデンサ635を含み得る。インダクタ633の第一の端部は、抵抗器631の第一の端部に接続し得る。インダクタ633の第二の端部は、コンデンサ635の第一の端部に接続し得る。回路は、バンドパスフィルタとして機能し得るRLC直列回路を構成し得る。バンドパスフィルタの中心周波数は、以下の式(9):
Figure 2022500938
に従って決定することができる。
ここで、Mはダイアフラムの質量、Kはダイアフラムの弾性係数、Rはダイアフラムの減衰を表す。Rは、RLC直列回路によって実装されるフィルタの帯域幅を変更するように調整できる。いくつかの実施形態では、音声信号が音感知構成要素420に送信される経路に影響を及ぼし得る音響構造、または音声信号を電気信号に変換し得る音感知構成要素420は、周波数領域と時間領域の両方で、音声信号に影響を及ぼし得る。いくつかの実施形態では、音感知構成要素420の1つまたは複数の特性は、特定のフィルタリング要件を満たすように、音感知構成要素420の材料の1つまたは複数の非線形時変特性を調整することによって調整することができる。例示的な非線形時変特性は、ヒステリシス遅延、クリープ、非ニュートン特性など、またはそれらの組合せを含み得る。
図7Aは、本開示のいくつかの実施形態による例示的な音感知構成要素420の機械的モデルの概略図である。いくつかの実施形態では、複数の音感知構成要素を組み合せて、特定のフィルタリング特性を達成することができる。
図7Aに示すように、機械的モデルは、複数の音感知構成要素を含み得る。音感知構成要素は、並列に接続することができる。各音感知構成要素に対応する機械的モデルは、ダイアフラム704、減衰構成要素721、および弾性構成要素723を含み得る。個々の音感知構成要素に関するより詳細な説明は、本開示の他の場所に見出され得る(例えば、図6Bおよび図6C、ならびにその説明)。いくつかの実施形態では、複数の音感知構成要素を含む音感知構成要素420は、マルチピークフィルタリング、マルチ中心周波数フィルタリング、またはマルチバンドパスフィルタリングを実行することができる。
図7Bは、本開示のいくつかの実施形態による異なる音感知構成要素に対応する例示的な周波数応答を示す。音感知構成要素420は、第一の音感知構成要素および第二の音感知構成要素を含む。第一の音感知構成要素および第二の音感知構成要素は、並列に接続され得る。第一の音感知構成要素の中心周波数は、第二の音感知構成要素の中心周波数とは異なる場合がある。例えば、図7Bに示すように、点線701は、第一の音感知構成要素の周波数応答を表し、破線702は、第二の音感知構成要素の周波数応答を表す。実線703は、第一の音感知構成要素と第二の音感知構成要素との組合せの周波数応答を示し得る。第一の音感知構成要素と第二の音感知構成要素)の組合せの周波数応答(すなわち、実線703の帯域幅は、第一の音感知構成要素の周波数応答(すなわち、点線701)または第二の音感知構成要素の周波数応答(すなわち、破線702)よりも広く平坦である。
いくつかの実施形態では、第一の音感知構成要素および第二の音感知構成要素の周波数応答は、互いに交差し得る。いくつかの実施形態では、第一の音感知構成要素および第二の音感知構成要素の周波数応答は、電力半値点の近くではない周波数点で交差し得る。図10A〜図10Cおよびその説明に関連して説明したように、音響電気変換器の周波数応答が電力半値点の近くまたは電力半値点で交差するとき、音響電気変換器を含む音響電気変換モジュール210の周波数応答は、その中の音響電気変換器が電力半値点の近くでも電力半値点でも交差しない場合、音響電気変換モジュール210の周波数応答よりも平坦であり得る。しかしながら、第一の音感知構成要素と第二の音感知構成要素は同じ音感知構成要素420に配置され、第一の音感知構成要素と第二の音感知構成要素の周波数応答の重複は、ベクトルの重複であり得る。これは、第一の音感知構成要素と第二の音感知構成要素の出力位相を考慮に入れる必要がある。したがって、第一の音感知構成要素の周波数応答と第二の音感知構成要素の周波数応答が、電力半値点に近くない周波数点で交差するとき、第一の音感知構成要素との組合せの周波数応答は、第二の音感知構成要素は、電力半値点の近くまたは電力半値点で交差する周波数応答を有する2つの音感知構成要素の組合せの周波数応答よりも平坦で広い場合がある。
図7Cは、本開示のいくつかの実施形態による異なる音感知構成要素の例示的な周波数応答を示す。図7Cに示すように、音感知構成要素420は、並列に接続された第一の音感知構成要素、第二の音感知構成要素、および第三の音感知構成要素を含み得る。第一の音感知構成要素、第二の音感知構成要素、および第三の音感知構成要素は、過小減衰の音感知構成要素であり得、それぞれ第一の不足減衰音感知構成要素、第二の不足減衰音感知構成要素、および第三の不足減衰音感知構成要素と呼ばれ得る。各音感知構成要素の中心周波数は異なる場合がある。例えば、図7Cに示すように、点線711、破線712、および一点鎖線713は、それぞれ第一の音感知構成要素、第二の音感知構成要素、および第三の音感知構成要素の周波数応答を表す。実線714は、第一の音感知構成要素、第二の音感知構成要素、および第三の音感知構成要素の組合せの周波数応答を示し得る。第一の音感知構成要素、第二の音感知構成要素および第三の音感知構成要素の組合せの周波数応答(すなわち、実線714)の帯域幅は、第一の音感知構成要素の周波数応答(すなわち、点線711、または第四の周波数応答と呼ばれる)、第二の音感知構成要素の周波数応答(すなわち、破線712、または第五の周波数応答と呼ばれる)、または第三の音感知構成要素の周波数応答(すなわち、一点鎖線713、または第六の周波数応答と呼ばれる)よりも広くて平坦である。
第二の不足減衰音感知構成要素の中心周波数(または第五の中心周波数と呼ばれる)は、第一の不足減衰音感知構成要素の中心周波数(または第四の中心周波数と呼ばれる)よりも高い。第三の不足減衰音感知構成要素の中心周波数(または第六の中心周波数と呼ばれる)は、第二の不足減衰音感知構成要素の中心周波数よりも高い。
いくつかの実施形態では、第四の周波数応答および第五の周波数応答は、第四の周波数応答の電力半値点および第五の周波数応答の電力半値点に近い点で交差する。つまり、第四の周波数応答と第五の周波数応答は、−5dB以上−1dB以下の電力レベルの点で交差する。
図7Bに関連して説明したように、第一の音感知構成要素、第二の音感知構成要素、および第三の音感知構成要素の周波数応答が、電力半値点に近くない周波数点で交差し得る場合、第一の音感知構成要素、第二の音感知構成要素、および第三の音感知構成要素の組合せの周波数応答は、電力半値点の近くまたは電力半値点で交差する周波数応答を有する3つの音感知構成要素の組合せの周波数応答よりも平坦で広い場合がある。
図8Aは、本開示のいくつかの実施形態による音感知構成要素420に対応する例示的な機械的モデルの概略図である。音感知構成要素420に対応する機械的モデルは、複数の音感知構成要素を含み得る。複数の音感知構成要素を直列に接続することができる。例えば、図8Aに示されるように、音感知構成要素420は、2つの音感知構成要素を含み得、各構成要素は、ダイアフラム811、減衰構成要素815、および弾性構成要素813を含み得る。音声信号(音圧はPである)は、ダイアフラム811に到達して、音感知構成要素420に電気信号(図示せず)を生成させることができる。個々の音感知構成要素のより詳細な説明は、本開示の他の場所(例えば、図6Bおよび6C、ならびにそれらの説明)に見出すことができる。
図8Bは、本開示のいくつかの実施形態による異なる音感知構成要素に対応する例示的な周波数応答を示す。実線821は、1つの音感知構成要素の周波数応答を表す。点線823は、直列に接続された2つの音感知構成要素の組合せの周波数応答を表す。破線825は、直列に接続された3つの音感知構成要素の組合せの周波数応答を表す。図8Bに示されるように、音感知構成要素の数は、それらが配置されている音響変換装置の周波数応答に影響を及ぼし得る。直列に接続された3つの音感知構成要素の組合せの周波数応答(すなわち、破線825)は、直列に接続された2つの音感知構成要素の組合せの周波数応答(すなわち、破線823)よりも急峻なエッジを有し得る。直列に接続された2つの音感知構成要素の組合せの周波数応答(すなわち、破線823)は、1つの音感知構成要素の周波数応答(すなわち、実線821)よりも急峻なエッジを有し得る。いくつかの実施形態では、より感度の高い構成要素が同じ音響変換装置に配置されている場合、音響変換装置の次数が増加する可能性がある。
いくつかの実施形態では、3つの音感知構成要素を直列に接続することができる。当業者に知られているように、音感知構成要素は、より低いカットオフ周波数およびより高いカットオフ周波数を有し得る。いくつかの実施形態では、3つの音感知構成要素のいずれかの中心周波数は、3つの音感知構成要素の下部カットオフ周波数のうちの最小のカットオフ周波数より大きく、3つの音感知構成要素の上部カットオフ周波数のうちの最大のカットオフ周波数よりも大きくないことがある。
図9Aは、本開示のいくつかの実施形態による音響チャネル構成要素と音感知構成要素との組合せの構造を示す。この構造は、前部チャンバと後部チャンバを有するダイアフラムマイクロフォンとして具現化することができる。図9Aに示すように、音声信号(音圧はPである)は、最初に、音響抵抗材料を含み得る音響チャネル構成要素のサウンドホール915に到達し得、次いで、ダイアフラム914および音感知構成要素の後部チャンバに到達し得る。Pは音声信号によって引き起こされるマイクの音圧で、Sはダイアフラムの有効面積である。音響チャネル構成要素に関するより詳細な説明は、本開示の他の場所(例えば、図5A〜図5Bおよびその説明)に見出すことができる。音感知構成要素に関するより詳細な説明は、本開示の他の場所(例えば、図6A〜図9Dおよびその説明)に見出すことができる。
図9Bは、本開示のいくつかの実施形態による図9Aに示される組合せ構造の例示的な回路の概略図である。回路において、抵抗器922(抵抗Sを有する)およびインダクタ923(インダクタンスSを有する)は、サウンドホールの音響抵抗および音響質量を示し得る。コンデンサ924(静電容量Sa1を有する)は、前部チャンバの音響静電容量を示し得る。コンデンサ928(静電容量Ca2/Sを有する)は、後部チャンバの音響静電容量を示し得る。抵抗器925(抵抗Rを有する)、インダクタ926(インダクタンスMを有する)、およびコンデンサ927(静電容量Cを有する)は、それぞれダイアフラムの抵抗、ダイアフラムの質量、およびダイアフラムの弾性係数を示し得る。
図10A〜図10Cは、本開示のいくつかの実施形態による異なる音響電気変換モジュールの周波数応答を示す。図10A、図10B、図10Cは、それぞれ、第一の音響電気変換モジュール、第二の音響電気変換モジュール、および第三の音響電気変換モジュールの周波数応答を示す。第一の音響電気変換モジュール、第二の音響電気変換モジュール、および第三の音響電気変換モジュールのそれぞれは、3つの音響電気変換器を含み得る。図10Aに示されるように、第一の音響電気変換モジュールは、変換器1、変換器2、および変換器3を含み得る。変換器1の周波数応答は、電力半値点に近くない周波数点で変換器2の周波数応答と交差し、変換器2の周波数応答は、電力半値点に近くない周波数点で変換器3の周波数応答と交差する。図10Bに示されるように、第一の音響電気変換モジュールは、変換器4(例えば、第一の音響電気変換器)、変換器5(例えば、第二の音響電気変換器)、および変換器6(例えば、第三の音響電気変換器)を含み得る。変換器4は第一の周波数帯域幅を有し、変換器5は第一の周波数帯域幅とは異なる第二の周波数帯域幅を有する。第二の周波数帯域幅は第一の周波数帯域幅よりも大きく、変換器5の中心周波数は変換器4の中心周波数よりも高い。変換器6の中心周波数は変換器5の中心周波数よりも高い。
変換器4の周波数応答は、電力半値点に近い周波数点で変換器5の周波数応答と交差し、変換器5の周波数応答は、電力半値点に近い周波数点で変換器6の周波数応答と交差する。例えば、変換器4の周波数応答および変換器5の周波数応答は、変換器4の周波数応答の電力半値点および変換器5の周波数応答の電力半値点に近い点で交差する。図示のように、変換器4の周波数応答および変換器5の周波数応答は、−5dB以上−1dB以下の電力レベルを有する点で交差する。
図10Cに示されるように、第一の音響電気変換モジュールは、変換器7、変換器8、および変換器9を含み得る。変換器7の周波数応答は、電力半値点に近くない周波数点で変換器8の周波数応答と交差する。変換器8の周波数応答は、電力半値点に近くない周波数点で変換器9の周波数応答と交差する。図10A〜図10Cに示すように、第二の音響電気変換モジュールの周波数応答は、第一の音響電気変換モジュールの周波数応答よりも平坦であり得、第三の音響電気変換モジュールの周波数応答は、第二の音響電気変換モジュールの周波数応答よりも隣接するチャネルからの干渉がより多いことを示す。以下に示す説明は、音響電気変換モジュールの周波数応答と、音響電気変換モジュール内の音響電気変換器が互いに交差する場所との間の関係を説明するために提供され得る。
音響電気変換器の周波数応答は、特定の周波数点で互いに交差する可能性があり、その結果、周波数応答間に特定の重複範囲が生じる。本明細書で使用される場合、重複範囲は、周波数応答が互いに交差する周波数点に関連する。音響電気変換器の周波数応答の重複は、音響電気変換モジュール210内の音響電気変換器によって生成された電気信号を出力するように構成された隣接チャネルで干渉を引き起こす可能性がある。場合によっては、重複範囲が大きいほど、干渉が大きくなる可能性がある。音響電気変換器の応答周波数の中心周波数および帯域幅は、音響電気変換器の周波数応答の間で、重複範囲をより狭くするために調整され得る。
例えば、音響電気変換モジュール210は、複数の一次音響電気変換器を含み得る。各音響電気変換器の中心周波数は、その構造パラメータを調整することによって調整して、特定の重複範囲を達成することができる。2つの隣接する音響電気変換器の2つの周波数応答間の重複範囲は、音響電気変換器によって出力されるサブバンド信号間の干渉範囲に関連し得る。理想的なシナリオでは、2つの隣接する音響電気変換器の2つの周波数応答間に重複範囲はない。しかしながら、実際には、2つの隣接する音響電気変換器の2つの周波数応答間に、特定の重複範囲が存在する場合があり、2つの音響電気変換器によって出力されるサブバンド信号の品質に影響を与える可能性がある。2つの隣接する音響電気変換器の2つの周波数応答間の重複範囲が比較的小さい場合、2つの隣接する音響電気変換器の組合せの周波数応答は、重複範囲内で減少する可能性がある。特定の周波数帯域での周波数応答の低下は、その周波数帯域での電力レベルの低下を示している可能性がある。本明細書で使用される場合、2つの周波数応答間の重複範囲は、周波数応答が−5dBよりも小さい電力レベルの周波数点で交差する場合、比較的小さいと見なされ得る。2つの隣接する音響電気変換器の2つの周波数応答の間の重複範囲が比較的大きい場合、2つの隣接する音響電気変換器の組合せの周波数応答は、重複範囲内で増加する可能性がある。特定の周波数帯域での周波数応答の増加は、その周波数帯域での電力レベルが、他の周波数範囲と比較して、高いことを示している可能性がある。周波数応答が−1dBより大きい電力レベルの周波数点で交差する場合、2つの周波数応答間の重複範囲は、比較的小さいと見なされ得る。2つの隣接する音響電気変換器の周波数応答が電力半値点の近くまたは電力半値点で交差する場合、各音響電気変換器の周波数応答は、特定の周波数帯域でエネルギーの損失も繰り返しもないように、2つの隣接する音響電気変換器の組合せの周波数応答に寄与する可能性がある。これにより、2つの隣接する音響電気変換器の周波数応答間に、適切な重複帯域が生じ得る。2つの隣接する音響電気変換器の周波数応答は、周波数応答が−5dB以上−1dB以下の電力レベルの周波数点で交差する場合、電力半値点の近くまたは電力半値点で交差すると見なすことができる。いくつかの実施形態では、2つの隣接する音響電気変換器の少なくとも1つの音響電気変換器の構造パラメータを調整することにより、2つの隣接する音響電気変換器の少なくとも1つの音響電気変換器の中心周波数および周波数帯域幅は、調整され、それに応じて音響電気変換器間の重複領域が調整される。
図12は、本開示のいくつかの実施形態による異なる次数の音響電気変換器の周波数応答を示す。音響電気変換モジュール210は、複数の音響電気変換器を含む。音響電気変換器の周波数応答は重複する可能性があり、音響電気変換モジュール210内の隣接する信号処理チャネル間で干渉が生じる。図12に示されるように、実線1201は一次音響電気変換器の周波数応答を表し、点線1202は二次音響電気変換器の周波数応答を表し、一点鎖線1204は四次音響電気変換器の周波数応答を表す。四次音響電気変換器の周波数応答(すなわち、一点鎖線1204)のバンドパスエッジは、二次音響電気変換器の周波数応答(すなわち、点線1202)よりも急峻であり得る。二次音響電気変換器の周波数応答(すなわち、点線1202)のバンドパスエッジは、一次音響電気変換器のそれ(すなわち、実線1201)よりも急峻であり得る。いくつかの実施形態では、音響電気変換器の次数が高いほど、音響電気変換器のバンドパスエッジの勾配が大きくなる可能性がある。理論的分析によれば、一次音響電気変換器のバンドパスエッジの勾配は6dB/octであり、音響電気変換器の次数が一次ごとに増加すると、バンドパスエッジの勾配は、6dB/octずつ増加する。したがって、音響電気変換器モジュール210に多次音響電気変換器を使用することにより、より多くの音響電気変換器をその中に含めることができる。これは、通常、検出される音声信号の周波数帯域の範囲を確実に、より広くするために望ましい。
いくつかの実施形態では、音響電気変換モジュール210内の音響電気変換器は、不足減衰バンドパス音響電気変換器であり得る。いくつかの実施形態では、不足減衰バンドパス音響電気変換器は、音響電気変換器の周波数応答の共振ピークの近くで、非不足減衰バンドパス音響電気変換器よりも急峻な勾配を有し得る。いくつかの実施形態では、特定の周波数帯域で許容される音響電気変換器の最大数は、バンドパス音響電気変換器のフィルタリング特性に従って決定され得る。例えば、音響電気変換器の周波数応答が電力半値点で互いに交差する場合、特定の周波数範囲で、1つの音響電気変換モジュール210に含めることができる特定の次数の音響電気変換器の最大数を表1に示すことができる。
Figure 2022500938
例えば、周波数帯域20Hz〜20kHzの場合、音響電気変換モジュール210は、10個以下の一次音響電気変換器を含み得る。いくつかの実施形態では、音響電気変換モジュール210内の1つまたは複数の音響電気変換器を減衰不足状態に調整することにより、音響電気変換モジュール210は、より大きな次数を有することができる。しかしながら、表1は、例示および説明のみを目的としており、本開示の範囲を限定することを意図するものではないことを明確に理解されたい。いくつかの実施形態では、様々な変更、改善、および修正は、発生する可能性があり、本明細書で明示的に述べられていないが、当業者に意図されている。これらの変更、改善、および修正は、本開示によって示唆されることを意図しており、本開示の例示的な実施形態の精神および範囲内にある。いくつかの実施形態では、音響電気変換モジュール210は、複数の第一の音響電気変換器を含み得る。いくつかの実施形態では、音響電気変換モジュール210は、10個以下の一次音響電気変換器を含み、各一次音響電気変換器は、幅が20kHz以下の周波数帯域に対応する。いくつかの実施形態では、音響電気変換モジュール210は、20個以下の二次音響電気変換器を含み、各二次音響電気変換器は、幅が20kHz以下の周波数帯域に対応する。いくつかの実施形態では、音響電気変換モジュール210は、30個以下の三次音響電気変換器を含み、各三次音響電気変換器は、幅が20kHz以下の周波数帯域に対応する。いくつかの実施形態では、音響電気変換モジュール210は、40個以下の四次音響電気変換器を含み、各四次音響電気変換器は、幅が20kHz以下の周波数帯域に対応する。いくつかの実施形態では、音響電気変換モジュール210は、8個以下の一次音響電気変換器を含み、各一次音響電気変換器は、幅が8kHz以下の周波数帯域に対応する。いくつかの実施形態では、音響電気変換モジュール210は、13個以下の二次音響電気変換器を含み、各二次音響電気変換器は、幅が8kHz以下の周波数帯域に対応する。いくつかの実施形態では、音響電気変換モジュール210は、19個以下の三次音響電気変換器を含み、各三次音響電気変換器は、幅が8kHz以下の周波数帯域に対応する。いくつかの実施形態では、音響電気変換モジュール210は、26個以下の四次音響電気変換器を含み、各四次音響電気変換器は、幅が8kHz以下の周波数帯域に対応する。いくつかの実施形態では、音響電気変換モジュール210は、4個以下の一次音響電気変換器を含み、各一次音響電気変換器は、幅が4kHz以下の周波数帯域に対応する。いくつかの実施形態では、音響電気変換モジュール210は、8個以下の二次音響電気変換器を含み、各二次音響電気変換器は、幅が4kHz以下の周波数帯域に対応する。いくつかの実施形態では、音響電気変換モジュール210は、12個以下の三次音響電気変換器を含み、各三次音響電気変換器は、幅が4kHz以下の周波数帯域に対応する。いくつかの実施形態では、音響電気変換モジュール210は、15個以下の四次音響電気変換器を含み、各四次音響電気変換器は、幅が4kHz以下の周波数帯域に対応する。
図13Aおよび図13Bは、本開示のいくつかの実施形態による例示的な音響電気変換モジュールの周波数応答を示す。図13Aは、一次バンドパス音響電気変換モジュール(一次バンドパス音響電気変換モジュール1と呼ばれる)の周波数応答を示す。図13Bは、一次バンドパス音響電気変換モジュール(一次バンドパス音響電気変換モジュール2と呼ばれる)の周波数応答を示す。一次バンドパス音響電気変換モジュール1の音響電気変換器は、非不足減衰音響電気変換器であり、一方、一次バンドパス音響電気変換モジュール1の音響電気変換器は、不足減衰音響電気変換器である。図13Aおよび図13Bに示されるように、音響電気変換器が不足減衰のものではなく、非不足減衰のものである場合、より多くの音響電気変換器が音響電気変換モジュールに含まれ得る。一次バンドパス音響電気変換モジュール1および一次バンドパス音響電気変換モジュール2は、それぞれ4つの一次バンドパス音響電気変換器および6つの一次バンドパス音響電気変換器を含む。図13Aの実線は、一次バンドパス音響電気変換モジュール1の周波数応答を表す。図13Aの4つの破線は、それぞれ4つの音響電気変換器の周波数応答を表す。図13Bの実線は、一次バンドパス音響電気変換モジュール2の周波数応答を表す。図13Bの破線は、それぞれ6つの音響電気変換器の周波数応答を表す。
いくつかの実施形態では、音響電気変換モジュールは、指定されたフィルタリング効果を達成するように構成されたフィルタと見なすことができる。いくつかの実施形態では、フィルタは、一次フィルタであっても、あるいは多次フィルタであってもよい。いくつかの実施形態では、フィルタは、線形フィルタでも、あるいは非線形フィルタであってもよい。いくつかの実施形態では、フィルタは、時変フィルタであっても、あるいは非時変フィルタであり得る。フィルタは、共振フィルタ、Roex関数フィルタ、ガンマトーンフィルタ、ガンマチャープフィルタなどを含み得る。
いくつかの実施形態では、音響電気変換モジュールは、ガンマトーンフィルタであり得る。具体的には、音響電気変換モジュール内の音響電気変換器の周波数応答の帯域幅は異なる場合がある。さらに、より高い中心周波数を有する音響電気変換器は、より広い帯域幅を有するように設定され得る。さらに、いくつかの実施形態では、音響電気変換器の中心周波数fは、以下の式(1):
Figure 2022500938
に従って決定することができる。ここで、fはカットオフ周波数を示し、αは重複係数を示す。
音響電気変換器の帯域幅Bは、以下の式(2):
Figure 2022500938
に従って設定することができる。
図14Aは、本開示のいくつかの実施形態による例示的な音響電気変換器211の概略図である。音響電気変換器211は、音響チャネル構成要素410、音感知構成要素420、および回路構成要素430を含み得る。
音響チャネル構成要素410は、二次構成要素1450を含み得る。音感知構成要素420は、二次バンドパスダイアフラム1421、および閉チャンバ1422を含み得る。回路構成要素430は、静電容量検出回路1431、および増幅回路1432を含み得る。
音響電気変換器211は、2つの空洞を備えた空気伝導音響電気変換器であり得る。二次バンドパスダイアフラム1421のダイアフラムを使用して、ダイアフラム表面上の音声信号によって引き起こされる音圧の変化をダイアフラムの機械的振動に変換することができる。静電容量検出回路1431を使用して、ダイアフラムとダイアフラムの振動によって引き起こされるプレートとの間の静電容量の変化を検出することができる。増幅回路1432を使用して、出力電圧の振幅を調整することができる。第一のチャンバにサウンドホールを設けることができ、必要に応じて、サウンドホールに音響抵抗材料を提供することができる。第二のチャンバは、閉じることができる。サウンドホールと周囲の空気の音響インピーダンスは、誘導性であり得る。抵抗性材料は、音響インピーダンスを有し得る。第一のチャンバは、容量性音響インピーダンスを有し得る。第二のチャンバは、容量性音響インピーダンスを有し得る。本明細書で使用される場合、第一のチャンバは、前部チャンバとも呼ばれ、第二のチャンバは、後部チャンバとも呼ばれ得る。
図14Bは、本開示のいくつかの実施形態による図14Aに示される音響電気変換器の例示的な音響力発生器の概略図である。
音響力発生器は、音声信号1401を検出することができ、第一のチャンバ1404および第二のチャンバ1406を含み得る。第一のチャンバ1404は、サウンドホール1402およびサウンドホール1402に埋め込まれた耐音材料1403を含み得る。第一のチャンバ1404および第二のチャンバ1406は、ダイアフラム1407によって分離することができる。ダイアフラム1407は、弾性構成要素1408を接続することができる。
図14Cは、本開示のいくつかの実施形態による図14Bに示される音響力発生器の例示的な構造の概略図である。図14Cに示すように、音圧Pは、サウンドホール1410に埋め込まれた音響抵抗材料1409を通過することができる。音圧Pは、ダイアフラム1412の振動に変換され得る。Pはマイクに到達する音圧、Ra1は音響材料1409の音圧、Ma1はサウンドホール1410付近の質量、Ca1は第一のチャンバの音圧、Sはダイアフラム1412の有効面積、Rはダイアフラム1412の減衰、Mはダイアフラム1412の質量、Kはダイアフラム1412の弾性係数、Ca2は第一のチャンバの音響容量を表す。
図14Dは、本開示のいくつかの実施形態による図14Bおよび図14Cに示される構造の等価回路の概略図である。回路において、抵抗器1415(抵抗Sを有する)およびインダクタ1416(インダクタンスSを有する)は、サウンドホール1410の音響抵抗および音響質量を示し得る。コンデンサ1421(静電容量Sa1を有する)は、第一のチャンバ1404の音響静電容量を示し得る。コンデンサ1420(静電容量Ca2/Sを有する)は、第二のチャンバ1406の音響静電容量を示し得る。抵抗器1417(抵抗Rを有する)、インダクタ1418(インダクタンスMを有する)、およびコンデンサ1419(静電容量Cを有する)は、それぞれダイアフラム1407の抵抗、ダイアフラム1407の質量、およびダイアフラム1407の弾性係数を示し得る。
回路では、回路電流はダイアフラム1412の振動速度に対応する。振動速度νMmは、以下の式(10):
Figure 2022500938
に従って決定することができる。ここで、ωは音響構造(例えば、図14Cに示される音響力構造)の角周波数、jは単位虚数、Zは抵抗器1415およびインダクタ1416の音響インピーダンス、Zは抵抗器1417、インダクタ1418、コンデンサ1419、およびコンデンサ1420の音響インピーダンスを表し、P、S、Ra1、Ma1、およびCa1の説明は、図14Cおよびその説明に見出され得、またAは、以下の式(11):
Figure 2022500938
に従って決定することができる。ここで、ωは音響構造(例えば、図14Cに示される音響力構造)の角周波数、jは単位虚数を表し、R、M、K、およびCa2の説明は、図14Cおよびその説明に見出され得る。
さらに、システムによって出力される静電容量変化は、ダイアフラムとプレートの間の距離に関係し、ダイアフラムとプレートの間の距離は、ダイアフラムの変形(ダイアフラムの変位)に関係している。したがって、ダイアフラムの変位は、以下の式(12):
Figure 2022500938
に従って決定することができる。
ここで、P、S、Ra1、Ma1、およびCa1の説明は、図14Cおよびその説明に見出され得る。
システムの伝達関数は、以下の式(13):
Figure 2022500938
に従って決定することができる。
ここで、ωは音響構造(例えば、図14Cに示される音響力構造)の角周波数、jは単位虚数を表し、Ra1、Ma1、およびCa1の説明は、図14Cおよびその説明に見出され得る。
ラプラス変換を実行することにより、伝達関数は、以下の式(14):
Figure 2022500938
に従って表すことができる。ここで、
Figure 2022500938
である。
結果として、第一のチャンバをサウンドホールと組み合わせると、多次バンドパスフィルタ(例えば、二次バンドパスフィルタ)として機能し得、また第二のチャンバの組合せは、閉チャンバとダイアフラムであり、二次バンドパスフィルタとして機能し得る。音感知要素として機能し得るダイアフラムは、音声信号をダイアフラムとプレートとの間の静電容量の変化に変換し得る。いくつかの実施形態では、四次システムは、音響チャネル構成要素と音響感知構成要素とを組み合わせることによって形成され得る。
上記の構成に従って構築された音響電気変換器は、バンドパスフィルタとして機能することができる。異なるフィルタリング特性を有する複数の音響電気変換器を音響電気変換モジュール210に設定して、音声信号に従って複数のサブバンド信号を生成することができるフィルタグループを形成することができる。いくつかの実施形態では、音響電気変換器は、音響抵抗材料および音響電気変換器のダイアフラムの減衰を調整することによって、非不足減衰状態に調整することができる。各音響電気変換器の周波数帯域幅は、中心周波数が増加するにつれて増加するように設定することができる。
図15は、本開示のいくつかの実施形態による音響電気変換モジュールの例示的な周波数応答を示す。音響電気変換モジュールは、11個の音響電気変換器を含み得る。図15の11個の点線は、個々の11個の音響電気変換器の周波数応答を表す。図15の実線は、音響電気変換モジュールの周波数応答を示し得る。上述のように、それぞれが音声信号のバンドパスフィルタとして機能し得る複数の音響電気変換器を同じ音響電気変換モジュールに配置し、音声信号に従ってサブバンド信号を生成することができる。図15に示すように、11個の音響電気変換器の周波数応答は、人間の耳の可聴周波数帯域20Hz〜20kHzをカバーすることができ、周波数帯域20Hz〜10kHzのみが図15に示されている。11個の音響電気変換器の周波数応答は、−1dB〜−5dBの範囲のエネルギーを有する周波数点で交差し得、音響電気変換モジュールの周波数応答は、±1dB以内の電力レベル変動を有し得る。
図16Aは、本開示のいくつかの実施形態による例示的な音響電気変換器211の概略図である。音響電気変換器211は、音響チャネル構成要素410、音感知構成要素420、および回路構成要素430を含み得る。音響チャネル構成要素410は、二次構成要素1610を含み得る。音感知構成要素420は、多次バンドパスダイアフラム1621、および閉チャンバ1622を含み得る。回路構成要素430は、静電容量検出回路1631、および増幅回路1632を含み得る。
音響電気変換器211は、2つの空洞を有する空気伝導音響電気変換器であり得る。多次バンドパスダイアフラム1621のダイアフラムを使用して、ダイアフラム表面上の音声信号205によって引き起こされる音圧変化をダイアフラムの機械的振動に変換することができる。静電容量検出回路1631を使用して、ダイアフラムとダイアフラムの振動によって引き起こされるプレートとの間の静電容量の変化を検出することができる。増幅回路1632を使用して、出力電圧を適切な振幅に調整することができる。第一のチャンバにサウンドホールを設けることができ、必要に応じて、サウンドホールに音響抵抗材料を提供することができる。第二のチャンバは、閉じることができる。
図16Bは、本開示のいくつかの実施形態による図16Aに示される音響電気変換器の例示的な音響力発生器の概略図である。
図14Aに関連して説明したように、サウンドホールを有する第一のチャンバは、二次バンドパスフィルタとして機能し得る。いくつかの実施形態では、ダイアフラムは、複合振動システムとして構成されている。ダイアフラムと第二のチャンバ(または閉チャンバと呼ばれる)を含むシステムは、高次(二次よりも大きい)バンドパスフィルタとして機能し得る。いくつかの実施形態では、図16Bに示される音響電気変換器は、図14Aに示される音響電気変換器よりも高次であり得る。
図17は、本開示のいくつかの実施形態による例示的な音響電気変換器の概略図である。
音響電気変換器211は、音感知構成要素420、および回路構成要素430を含み得る。音感知構成要素420は、二次バンドパスカンチレバー1721を含み得る。回路構成要素430は、検出回路1731、および増幅回路1732を含み得る。
カンチレバーは、カンチレバーに送信される音声信号を取得し、カンチレバー材料の電気パラメータの変化を引き起こすことができる。音声信号は、空気伝導信号、骨伝導信号、水力音声信号、機械的振動信号など、またはそれらの組合せを含み得る。カンチレバー材料は、圧電材料を含み得る。圧電材料は、圧電セラミックまたは圧電ポリマーを含み得る。圧電セラミックは、PZTを含み得る。検出回路1731は、カンチレバー材料の電気信号の変化を検出することができる。増幅回路1732は、電気信号の振幅を調整することができる。
カンチレバーに対応する回路(図6Cのダイアフラムに対応する回路と同様)によれば、カンチレバーのインピーダンスは、以下の式(20):
Figure 2022500938
に従って決定することができる。ここで、Zはカンチレバーのインピーダンス、ωは音響構造(カンチレバーなど)の角周波数、jは単位虚数、Rはカンチレバーの減衰、Mはカンチレバーの質量、Kはカンチレバーの弾性係数を表す。
いくつかの実施形態では、カンチレバーは二次システムとして機能することができ、角周波数は、以下の式(21):
Figure 2022500938
に従って決定することができる。ここで、ωは角周波数、Mはカンチレバーの質量、Kはカンチレバーの弾性係数を表す。
カンチレバー振動は、その角周波数に共振ピークを持つ場合がある。したがって、音声信号は、カンチレバーを使用してフィルタリングすることができる。さらに、フィルタ帯域幅が電力半値点で計算される場合、対応するカットオフ周波数は、以下の式(22)および(23):
Figure 2022500938
に従って決定することができる。ここで、Rはカンチレバーの減衰、Mはカンチレバーの質量、Kはカンチレバーの弾性係数を表す。
カンチレバーフィルタリングの品質係数(以下、Qと呼ぶ)は、以下の式(24):
Figure 2022500938
に従って決定することができる。ここで、Rはカンチレバーの減衰、Mはカンチレバーの質量、Kはカンチレバーの弾性係数を表す。
カンチレバーフィルタの角周波数(中心周波数)を決定した後、減衰Rを調整することにより、カンチレバーフィルタリングの品質係数Qを変更できることが分かる。減衰Rが小さいほど、品質係数Rは大きくなり、フィルタ帯域幅が狭いほど、フィルタ周波数応答曲線がシャープになる。
図18は、本開示のいくつかの実施形態による音響電気変換モジュールの例示的な周波数応答を示す。
音響電気変換モジュールは、19個の音響電気変換器を含み得る。図18の19個の破線は、それぞれ19個の音響電気変換器の周波数応答を表すことができる。図18の実線は、音響電気変換モジュールの周波数応答を示し得る。上述のように、それぞれが音声信号のバンドパスフィルタとして機能し得る複数の音響電気変換器を同じ音響電気変換モジュールに配置し、音声信号に従ってサブバンド信号を生成することができる。図18に示すように、19個の音響電気変換器の周波数応答は、300Hz〜4000Hzの周波数帯域をカバーし得る。音響電気変換モジュールの周波数応答は、±1dB以内の電力レベル変動を有し得る。
図19Aは、本開示のいくつかの実施形態による例示的な音響電気変換器の概略図である。音響電気変換器211は、音響チャネル構成要素410、音感知構成要素420、および回路構成要素430を含み得る。音響チャネル構成要素410は、二次伝送サブ構成要素1910を含み得る。音感知構成要素420は、多次バンドパスカンチレバー1921を含み得る。回路構成要素430は、検出回路1931、フィルタ回路1932、および増幅回路1933を含み得る。
カンチレバーは音声信号を取得し、カンチレバー材料の電気パラメータの変化を引き起こすことができる。音声信号は、空気伝導信号、骨伝導信号、水力音声信号、機械的振動信号など、またはそれらの組合せを含み得る。カンチレバー材料は、圧電材料を含み得る。圧電材料は、圧電セラミックまたは圧電ポリマーを含み得る。圧電セラミックは、PZTを含み得る。検出回路1931は、カンチレバー材料の電気信号の変化を検出することができる。増幅回路1932は、電気信号の振幅を調整することができる。いくつかの実施形態では、サスペンション構造は、弾性部材を介してベースに接続され、骨伝導音声信号の振動がサスペンション構造に作用する。サスペンション構造および対応する弾性部材は、振動をカンチレバーに伝達し、音声信号を伝達するための音響チャネルを構成することができる。これは、二次バンドパスフィルタとして機能することもできる。サスペンション構造に取り付けられたカンチレバーは、二次バンドパスフィルタとしても機能する。
図19Bは、本開示のいくつかの実施形態による例示的なカンチレバーの概略図である。図19Bに示すように、カンチレバー1902は、弾性構成要素1903に接続することができる。弾性構成要素(例えば、弾性構成要素1903)に到達する音声信号は、弾性構成要素の振動を引き起こし得る。弾性構成要素は、振動をカンチレバー1902に伝達することができる。弾性構成要素およびカンチレバー1902は、二次バンドパスフィルタとして機能することができる同じ音響電気変換モジュール210内に配置することができる。カンチレバーは、音声信号1900を取得し、カンチレバー材料の電気パラメータの変化を引き起こすことができる。
図19Cは、本開示のいくつかの実施形態による音感知構成要素420に対応する例示的な機械的モデルの概略図である。機械的モデルは、第一のカンチレバー1902、第二のカンチレバー1901、第一の弾性構成要素1908、第二の弾性構成要素1909、第一の減衰構成要素1905、および第二の減衰構成要素1907を含み得る。第二の弾性構成要素1909の端部は、固定され得る。第二の減衰構成要素1907の端部は、固定され得る。
図19Dは、本開示のいくつかの実施形態による図19Cに示される機械的モデルの例示的な回路の概略図である。
入力信号に対するシステムのインピーダンス(以下、Zと呼ぶ)は、以下の式(25):
Figure 2022500938
に従って決定することができる。
ここで、ωは音響構造(カンチレバーなど)の角周波数、jは単位虚数、Zは第二のカンチレバー1901のインピーダンスを示し、Zは第一のカンチレバー1902のインピーダンス、Rは第二のカンチレバー1901の音響抵抗、Rは第一のカンチレバー1902の音響抵抗、Mは第二のカンチレバー1901の質量、Mは第一のカンチレバー1902の質量、Kは第二のカンチレバー1901の弾性率、Kは第一のカンチレバー1902の弾性率を表す。
回路内の電流の振幅は、カンチレバーMの振動速度に対応し得る。したがって、カンチレバーMの振動速度νM2は、以下の式(26)および(27):
Figure 2022500938
に従って決定することができる。
ここで、Fは受信した音声信号の音響力、ωは音響構造(カンチレバーなど)の角周波数、jは単位虚数、Zは第二のカンチレバー1901のインピーダンスを示し、Zは第一のカンチレバー1902のインピーダンス、Rは第二のカンチレバー1901の音響抵抗、Rは第一のカンチレバー1902の音響抵抗、Mは第二のカンチレバー1901の質量、Mは第一のカンチレバー1902の質量、Kは第二のカンチレバー1901の弾性率、Kは第一のカンチレバー1902の弾性率を表す。
いくつかの実施形態では、音声信号下でのカンチレバーの変位SM2は、以下の式(28)および(29):
Figure 2022500938
に従って決定することができる。
ここで、Fは受信した音声信号の音響力、ωは音響構造(カンチレバーなど)の角周波数、jは単位虚数、Rは第二のカンチレバー1901の音響抵抗、Rは第一のカンチレバー1902の音響抵抗、Mは第二のカンチレバー1901の質量、Mは第一のカンチレバー1902の質量、Kは第二のカンチレバー1901の弾性率、Kは第一のカンチレバー1902の弾性率を表す。
ラプラス変換を実行することにより、伝達関数は、以下の式(24):
Figure 2022500938
に従って表すことができる。ここで、
Figure 2022500938
である。
伝達関数から四次システムであることが分かり、上記の設定方法でバンドパスフィルタの次数を増やすことができる。さらに、フィルタ回路1932を回路構成要素430に追加して、対応する電気信号をフィルタリングすることができる。上記の設定により、音声信号に対する音響電気変換器のフィルタリング周波数応答エッジの勾配が大きくなり、フィルタリング効果を向上させることができる。
図20Aは、本開示のいくつかの実施形態による例示的な音響電気変換モジュール210の概略図である。
音響電気変換モジュール210は、複数の音響電気変換器を使用して、音声信号に従ってサブバンド信号を生成することができる。音響電気変換器は、バンドパスフィルタとして機能し得る。処理される異なる周波数帯域について、対応する音響電気変換器は、異なる周波数応答を有するように設定され得る。いくつかの実施形態では、音響電気変換モジュール210内の音響電気変換器の帯域幅は、異なっていてもよい。音響電気変換器の帯域幅は、その中心周波数とともに増加するように設定することができる。いくつかの実施形態では、音響電気変換器は、高次の音響電気変換器であり得る。いくつかの実施形態では、低中周波数帯域の場合、対応する音響電気変換器は、高次の狭帯域であり得る。中高周波数帯域の場合、音響電気変換器は、高次広帯域であり得る。
図20Aに示すように、音響電気変換モジュール210は、中高周波数帯域に1つまたは複数の高次広帯域音響電気変換器(例えば、高次広帯域音響電気変換器2011、2012など)を、低中周波数帯域に1つまたは複数の高次狭帯域音響電気変換器(例えば、高次狭帯域音響電気変換器2013、2014など)を含み得る。
音響電気変換モジュール210は、音声信号205を取得し、複数のサブバンド電気信号、例えば、サブバンド電気信号2021、2022、2023、…、2024を出力することができる。
図20Bは、本開示のいくつかの実施形態による例示的な高次狭帯域音響電気変換器の概略図である。
図20Bに示すように、高次狭帯域音響電気変換器2013は、音響チャネル構成要素410、音感知構成要素420、および回路構成要素430を含み得る。
音感知構成要素420は、複数の不足減衰音感知サブ構成要素(例えば、不足減衰音感知サブ構成要素2010、2030、…、2050)を含み得る。複数の不足減衰音感知サブ構成要素を直列に接続することができる。不足減衰音感知サブ構成要素の中心周波数は、同じであることも、あるいは互いに近いこともある。直列に接続されている複数の不足減衰音感知サブ構成要素は、音感知構成要素420のフィルタリング特性の次数を増加させることができる。各不足減衰音感知サブ構成要素は、帯域幅を減らし、狭帯域フィルタリングを達成することができる。いくつかの実施形態では、変換器は、高次狭帯域音響電気変換器として機能し得る。図20Bに示すように、高次狭帯域音響電気変換器2013は、音声信号205を取得し、音声信号205に基づいてサブバンド電気信号450を出力することができる。
図20Cは、本開示のいくつかの実施形態による例示的な高次広帯域音響電気変換器の概略図である。
図20Cに示すように、高次広帯域音響電気変換器2011は、音響チャネル構成要素410、音感知構成要素420、および回路構成要素430を含み得る。音感知構成要素420は、複数の不足減衰音感知サブ構成要素(例えば、不足減衰音感知サブ構成要素2020、2040、…、2060)を含み得る。複数の不足減衰音感知サブ構成要素を並列に接続することができる。不足減衰音感知サブ構成要素の中心周波数は、異なる場合がある。複数の不足減衰音感知サブ構成要素を並列接続することによって、音感知構成要素420の帯域幅を広げることができる。いくつかの実施形態では、高次狭帯域音響電気変換器2011は、高次広帯域音響電気変換器として機能することができる。図20Cに示すように、高次狭帯域音響電気変換器2011は、音声信号205を取得し、それに応じてサブバンド電気信号450を出力することができる。
図21Aは、本開示のいくつかの実施形態による例示的な信号処理装置2100の概略図である。信号処理装置2100は、音響電気変換モジュール210、複数のサンプリングモジュール(例えば、サンプリングユニット221、222、223、…、224)、フィードバック分析モジュール230(またはフィードバックモジュールと呼ばれる)、および信号処理モジュール240を含み得る。音響電気変換モジュール210は、複数の音響電気変換器(例えば、音響電気変換器211、212、213、…、214)を含み得る。
図21Aに示すように、音響電気変換モジュール210は、音声信号205を取得し、複数のサブバンド電気信号(例えば、サブバンド電気信号2152、2152、2153、…、2154)を出力することができる。
複数の音響電気変換器のそれぞれは、音声信号205をサブバンド電気信号に変換し、対応するサブバンド電気信号を出力することができる。
複数のサンプリングモジュールのそれぞれは、対応するサブバンド電気信号をサンプリングし、サブバンド電気信号をデジタル信号に変換し、デジタル信号を出力することができる。
フィードバック分析モジュール230は、複数のサンプリングモジュールによって送信される複数のデジタル信号を取得することができる。フィードバック分析モジュール230は、サブバンド電気信号に対応する各デジタル信号を分析し、複数のフィードバック信号(例えば、フィードバック信号1、2、3、…、N)を出力し、各フィードバック信号を対応する音響電気変換器に送信することができる。対応する音響電気変換器は、フィードバック信号に基づいてそのパラメータを調整することができる。
信号処理モジュール240は、フィードバック分析モジュール230によって送信される複数のデジタル信号(例えば、デジタル信号2355、2356、2357、2358)を取得することができる。デジタル信号の送信モードは、異なる並列のラインを介して別々に出力することも、あるいは特定の送信プロトコルに従って1つのラインを共有することもできる。
図21Bは、本開示のいくつかの実施形態による例示的な音響電気変換器211の概略図である。音響電気変換器211は、音響チャネル構成要素410、音感知構成要素420、回路構成要素430、およびフィードバック処理構成要素460を含み得る。
フィードバック処理構成要素460は、フィードバック分析モジュール230からフィードバック信号470を取得し、音響電気変換器211のパラメータを調整するように構成され得る。
いくつかの実施形態では、フィードバック処理構成要素460は、音響チャネル構成要素410、音感知構成要素420、および回路構成要素430のうちの少なくとも1つを調整することができる。
いくつかの実施形態では、フィードバック処理構成要素460は、音響チャネル構成要素のパラメータ(例えば、サイズ、位置、および接続方法)を調整して、音響チャネル構成要素410のフィルタリング特性を調整するために、電気機械制御システムを使用することができる。例示的な電気機械制御システムは、空気圧機構、モーター駆動機構、油圧アクチュエータなど、またはそれらの組合せを含み得る。
いくつかの実施形態では、フィードバック処理構成要素460は、音感知構成要素420のパラメータ(例えば、サイズ、位置、または接続方法)を調整して、音感知構成要素のフィルタリング特性を調整するために、電気機械制御システムを使用することができる。
いくつかの実施形態では、フィードバック処理構成要素460は、回路構成要素430に直接結合され、回路構成要素430を調整するフィードバック回路を含み得る。
図22は、本開示のいくつかの実施形態による例示的な信号処理装置2200の概略図である。信号処理装置2200は、音響電気変換モジュール210、複数のサンプリングユニット(例えば、サンプリングユニット221、222、223、…、および224)、フィードバック分析モジュール230、および信号処理モジュール240を含み得る。
音響電気変換モジュール210は、複数の音響電気変換器(例えば、音響電気変換器211、212、213、…、214)を含み得る。
図22に示すように、音響電気変換モジュール210は、音声信号205を取得し、複数のサブバンド電気信号(例えば、サブバンド電気信号2152、2152、2153、…、2154)を出力することができる。
複数の音響電気変換器のそれぞれは、音声信号205を、対応するサブバンド電気信号に変換し、対応するサブバンド電気信号を出力することができる。複数のサンプリングユニットのそれぞれは、対応するサブバンド電気信号をサンプリングし、サブバンド電気信号をデジタル信号に変換し、デジタル信号を出力することができる。
信号処理モジュール240は、複数のサンプリングユニットによって送信される複数のデジタル信号(例えば、デジタル信号2351、2352、2353、2354)を取得することができる。デジタル信号は、異なる並列のラインを介して別々に出力することも、あるいは特定の送信プロトコルに従って1つのラインを共有することもできる。
フィードバック分析モジュール230は、信号処理モジュール240によって送信される複数のデジタル信号(例えば、デジタル信号2355、2357、2358)を取得することができる。フィードバック分析モジュール230は、サブバンド電気信号に対応する各デジタル信号を分析し、複数のフィードバック信号(例えば、フィードバック信号1、2、3…、N)を出力し、各フィードバック信号を対応する音響電気変換器に送信することができる。対応する音響電気変換器は、フィードバック信号に基づいて、そのパラメータを調整することができる。
信号処理装置2200内の音響電気変換器211は、信号処理装置2100内の音響電気変換器211と同様であり得る。信号処理装置2200内の音響電気変換器211に関するより詳細な説明は、本開示の他の場所(例えば、図21Bおよびその説明)に見出すことができる。
図23は、本開示のいくつかの実施形態による例示的な信号処理装置2300の概略図である。信号処理装置2300は、音響電気変換モジュール210、複数のバンドパスサンプリングモジュール(例えば、バンドパスサンプリングモジュール2321、2322、2323、…、2324)、および信号処理モジュール240を含み得る。
音響電気変換モジュール210は、複数の音響電気変換器(例えば、音響電気変換器211、212、213、…、214)を含み得る。
図23に示すように、音響電気変換モジュール210は、音声信号205を取得し、複数のサブバンド電気信号を出力することができる。複数の音響電気変換器のそれぞれは、音声信号205を対応するサブバンド電気信号に変換して、対応するサブバンド電気信号を出力することができる。複数のバンドパスサンプリングモジュールのそれぞれは、対応するサブバンド電気信号をサンプリングし、サブバンド電気信号をデジタル信号に変換し、デジタル信号を出力することができる。信号処理モジュール240は、複数のバンドパスサンプリングモジュールによって送信される複数のデジタル信号を取得することができる。
図24は、本開示のいくつかの実施形態による例示的な信号処理装置2400の概略図である。音響電気変換モジュール210は、1つまたは複数の空気伝導音響電気変換器2410(例えば、空気伝導音響電気変換器2415、2416、および2417)および1つまたは複数の骨伝導音響電気変換器2420(例えば、骨伝導音響電気変換器2418、2419)を含み得る。空気伝導音響電気変換器は、検出された音声信号を1つまたは複数のサブバンド電気信号に分解することができる。骨伝導音響電気変換器は、検出された音声信号を1つまたは複数のサブバンド電気信号に分解することができる。
空気伝導音響電気変換器は、音声信号を検出し、複数のサブバンド電気信号を出力することができる。各空気伝導音響電気変換器は、対応するサブバンド電気信号を出力することができる。例えば、空気伝導音響電気変換器2415、2517、2418は、それぞれ音声信号を検出し、それに対応してサブバンド電気信号2421、2422、2423を出力することができる。
骨伝導音響電気変換器は、音声信号を検出し、複数のサブバンド電気信号を出力することができる。各骨伝導音響電気変換器は、対応するサブバンド電気信号を出力することができる。例えば、骨伝導音響電気変換器2418および2419は、それぞれ音声信号を検出し、それに対応して、サブバンド電気信号2424および2415を出力することができる。
いくつかの実施形態では、同じ周波数帯域で、骨伝導音響電気変換器によって出力されたサブバンド電気信号を使用して、空気伝導音響電気変換器によって出力されるサブバンド電気信号の信号対雑音比(SNR)を向上させることができる。例えば、空気伝導音響電気変換器2416によって生成されたサブバンド電気信号2422は、骨伝導音響電気変換器2418によって生成されたサブバンド電気信号2424を重ね合わせることができる。サブバンド電気信号2424は、サブバンド電気信号2422のSNRよりも高いSNRを有し得る。空気伝導音響電気変換器2417によって出力されるサブバンド電気信号2423は、骨伝導音響電気変換器2419によって出力されるサブバンド電気信号2425を重ね合わせることができる。サブバンド電気信号2425は、サブバンド電気信号2423のSNRよりも高いSNRを有し得る。
いくつかの実施形態では、空気伝導音響電気変換器2401を使用して、骨伝導音響電気変換器2402によって出力されるサブバンド電気信号によってカバーすることができない周波数帯域を補うことができる。
図25は、本開示のいくつかの実施形態による例示的な信号変調プロセスを示す概略図である。図25に示すように、サブバンド電気信号は、周波数領域エンベロープ2501を含み得る。
各サブバンド電気信号は、中心周波数2502へのキャリアとして対応する中心周波数信号によって変調される周波数領域エンベロープ(周波数領域エンベロープ2501と同じ)を有する信号(または変調信号と呼ばれる)と見なすことができる。すなわち、サブバンド電気信号は、2つの部分を含み得る。一方の部分は、変調信号として周波数領域エンベロープ(周波数領域エンベロープ2501と同じ)を有する信号であり、他方の部分は、キャリアとして中心周波数(中心周波数2502と同じ)を有する信号である。
サブバンド電気信号の主な情報は、周波数領域エンベロープに集中している。したがって、サブバンド電気信号をサンプリングするときは、周波数領域エンベロープが効果的にサンプリングされ、サンプリング周波数がサブバンド電気信号の帯域幅の2倍以上であることを確認する必要がある。サンプリング後、周波数(中心周波数2502と同じ)を有する第二の信号を、サブバンド電気信号を復元するためのキャリアとして使用することができる。したがって、サブバンド電気信号は、バンドパスサンプリングモジュールを使用してサンプリングすることができる。具体的には、サンプリング周波数は、帯域幅の2倍以上で、帯域幅の4倍以下であり得る。サンプリング周波数fは、以下の式(34):
Figure 2022500938
に従って次のように設定される。ここで、fはサブバンド電気信号の帯域幅を表し、
Figure 2022500938
であり、fはサブバンド電気信号の中心周波数を表し、rはrよりも小さい最大の整数である。
本開示に記載されている様々なモジュール、ユニット、およびそれらの機能を実装するために、コンピュータハードウェアプラットフォームを、本明細書に記載されている1つまたは複数の要素のハードウェアプラットフォームとして使用することができる。ユーザインタフェース要素を備えたコンピュータを使用して、パーソナルコンピュータ(PC)または他の任意のタイプのワークステーションもしくは端末装置を実装することができる。適切にプログラムされていれば、コンピュータはサーバとしても機能する。
このように基本概念を説明したので、この詳細な開示を読んだ後、前述の詳細な開示は、例としてのみ提示されることを意図し、限定するものではないことは、当業者にはかなり明白であり得る。様々な変更、改善、および修正は、発生する可能性があり、本明細書で明示的に述べられていないが、当業者に意図されている。これらの変更、改善、および修正は、本開示によって示唆されることを意図しており、本開示の例示的な実施形態の精神および範囲内にある。
さらに、本開示の実施形態を説明するために特定の用語が使用されてきた。例えば、「一実施形態」、「実施形態」、および/または「いくつかの実施形態」という用語は、実施形態に関連して説明される特定の特徴、構造、または特性が、本開示の少なくとも1つの実施形態に含まれることを意味する。したがって、本明細書の様々な部分における「実施形態」または「一実施形態」または「代替実施形態」への2つ以上の言及は、必ずしもすべて同じ実施形態を指すとは限らないことが強調され、理解されるべきである。さらに、特定の特徴、構造または特性は、本開示の1つまたは複数の実施形態において、適切であるように組み合わせることができる。
さらに、当業者には、本開示の態様は、任意の新規で有用なプロセス、機械、製造、または物質の組成、あるいはその新しく有用な改善を含み、いくつかの特許性のあるクラスまたは文脈のいずれかで、本明細書に図示され、説明され得る。したがって、本開示の態様は、全体をハードウェアで、全体をソフトウェア(ファームウェア、常駐ソフトウェア、マイクロコードなどを含む)で、または本明細書で一般に「ユニット」、「モジュール」または「システム」と呼ばれるソフトウェアとハードウェアの実装を組み合わせて、実装することができる。さらに、本開示の態様は、その上に具現化されたコンピュータ可読プログラムコードを有する1つまたは複数のコンピュータ可読媒体に具体化されたコンピュータプログラム製品の形をとることができる。
コンピュータ可読信号媒体は、例えば、ベースバンドで、または搬送波の一部として、コンピュータ可読プログラムコードがその中に具現化された伝搬データ信号を含み得る。そのような伝搬信号は、電磁的、光学的などを含む様々な形態のいずれか、あるいはそれらの任意の適切な組合せをとることができる。コンピュータ可読信号媒体は、コンピュータ可読記憶媒体ではなく、命令実行システム、機器、または装置によって使用するプログラム、またはそれらに関連して使用するプログラムを通信、伝播、または転送することができる任意のコンピュータ可読媒体であり得る。コンピュータ可読信号媒体上に具現化されたプログラムコードは、無線、有線、光ファイバケーブル、RFなどを含む任意の適切な媒体、あるいはこれらの任意の適切な組合せを使用して送信することができる。
本開示の態様の動作を実行するためのコンピュータプログラムコードは、Java(登録商標)、Scala、Smalltalk、Eiffel、JADE、Emerald、C++、C#、VB.NET、Pythonなどのオブジェクト指向プログラミング言語、「C」プログラミング言語、Visual Basic、Fortran 2003、Perl、COBOL 2002、PHP、ABAPなどの従来の手続き型プログラミング言語、Python、Ruby、Groovyなどの動的プログラミング言語、または他のプログラミング言語を含む1つまたは複数のプログラミング言語の任意の組合せで書くことができる。プログラムコードは、全体をユーザのコンピュータ上で、一部をユーザのコンピュータ上で、スタンドアロンソフトウェアパッケージとして、一部はユーザのコンピュータ上で、一部はリモートコンピュータ上で、または全体をリモートコンピュータまたはサーバ上で実行することができる。後者のシナリオでは、リモートコンピュータは、ローカルエリアネットワーク(LAN)またはワイドエリアネットワーク(WAN)を含む任意のタイプのネットワーク、または外部コンピュータ(例えば 、インターネットサービスプロバイダを使用したインターネット経由)、またはクラウドコンピューティング環境で、ユーザのコンピュータに接続することができ、あるいはSoftware as a Service(SaaS)などのサービスとして提供される。
さらに、処理要素またはシーケンスの列挙された順序、または数字、文字、または他の指定の使用は、このように、請求項に指定されている場合を除いて、特許請求されるプロセスおよび方法を任意の順序に限定することを意図しない。上記の開示は、開示の様々な有用な実施形態であると現在考えられているものを様々な例を通して論じているが、そのような詳細はその目的のためだけであり、添付の特許請求の範囲は開示された実施形態に限定されないことを理解されたい。しかし、それどころか、開示された実施形態の精神および範囲内にある修正および配置をカバーすることを意図している。例えば、上記の様々な構成要素の実装は、ハードウェア装置で具現化され得るが、それは、またソフトウェアのみのソリューションとして、例えば、既存のサーバまたはモバイル装置へのインストールとして実装され得る。
同様に、本開示の実施形態の前述の説明において、様々な特徴は、開示を合理化して、様々な実施形態のうちの1つまたは複数の理解に役立てるために、単一の実施形態、図、またはその説明に一緒にグループ化されることがあることを理解されたい。しかしながら、この開示方法は、特許請求された主題が各請求項に明示的に記載されているよりも多くの特徴を必要とするという意図を反映していると解釈されるべきではない。むしろ、特許請求される主題は、前述の単一の開示された実施形態のすべての特徴よりも少ないこともある。

Claims (38)

  1. 音声信号を処理するための装置であって、
    第一の周波数応答を有する第一の音響電気変換器であって、
    前記音声信号を検出し、
    前記第一の音響電気変換器によって検出された前記音声信号に従って第一のサブバンド信号を生成するように
    構成された、第一の音響電気変換器と、
    第二の周波数応答を有する第二の音響電気変換器であって、前記第二の周波数応答は前記第一の周波数応答とは異なり、前記第二の音響電気変換器は、
    前記音声信号を検出し、
    前記第二の音響電気変換器によって検出された前記音声信号に従って第二のサブバンド信号を生成するように
    構成された、第二の音響電気変換器と、
    を備える、装置。
  2. 前記第一の音響電気変換器は、第一の周波数幅を有し、前記第二の音響電気変換器は、前記第一の周波数幅とは異なる第二の周波数幅を有する、請求項1に記載の装置。
  3. 前記第二の周波数幅は前記第一の周波数幅よりも大きく、前記第二の音響電気変換器の第二の中心周波数は前記第一の音響電気変換器の第一の中心周波数よりも高い、請求項2に記載の装置。
  4. 前記装置が第三の音響電気変換器をさらに含み、前記第三の音響電気変換器の第三の中心周波数が、前記第二の音響電気変換器の前記第二の中心周波数よりも高い、請求項2に記載の装置。
  5. 前記第一の周波数応答および前記第二の周波数応答は、前記第一の周波数応答の電力半値点および前記第二の周波数応答の電力半値点に近い点で交差する、請求項4に記載の装置。
  6. 前記第一の周波数応答および前記第二の周波数応答は、前記第一の周波数応答の電力半値点および前記第二の周波数応答の電力半値点に近い点で交差する、請求項2に記載の装置。
  7. 前記第一の音響電気変換器に接続され、前記第一のサブバンド信号をサンプリングして第一のサンプリング済サブバンド信号を生成するように構成された第一のサンプリングモジュールと、
    前記第二の音響電気変換器に接続され、前記第二のサブバンド信号をサンプリングして第二のサンプリング済サブバンド信号を生成するように構成された第二のサンプリングモジュールと、
    をさらに備える、請求項1に記載の装置。
  8. 前記第一のサンプリングモジュールまたは前記第二のサンプリングモジュールのうちの少なくとも1つがバンドパスサンプリングモジュールである、請求項7に記載の装置。
  9. 前記第一の音響電気変換器または前記第二の音響電気変換器のうちの前記少なくとも1つを調整するように構成されたフィードバックモジュールをさらに備える、請求項7に記載の装置。
  10. 前記フィードバックモジュールが、前記第一のサンプリング済サブバンド信号または前記第二のサンプリング済サブバンド信号の少なくとも1つに従って、前記第一の音響電気変換器または前記第二の音響電気変換器のうちの前記少なくとも1つを調整するように構成される、請求項9に記載の装置。
  11. 前記第一のサンプリング済サブバンド信号および前記第二のサンプリング済サブバンド信号をそれぞれ処理して、第一の処理済サブバンド信号および第二の処理済サブバンド信号を生成するように構成された処理モジュールをさらに備え、前記フィードバックモジュールは、前記第一の処理済サブバンド信号または前記第二の処理済サブバンド信号に従って、前記第一の音響電気変換器または前記第二の音響電気変換器のうちの少なくとも1つを調整するように構成される、請求項9に記載の装置。
  12. 前記第一の音響電気変換器は、前記音声信号に従って電気信号を生成するように構成された音感知構成要素と、音響チャネル構成要素とを含む、請求項1に記載の装置。
  13. 前記音響チャネル構成要素が二次構成要素を含み、
    前記音感知構成要素が多次バンドパスダイアフラムを含む、
    請求項12に記載の装置。
  14. 前記多次バンドパスダイアフラムが二次バンドパスダイアフラムを含む、請求項13に記載の装置。
  15. 前記音響チャネル構成要素が二次バンドパスカンチレバーを含む、請求項12に記載の装置。
  16. 前記二次バンドパスカンチレバーが圧電カンチレバーを含む、請求項15に記載の装置。
  17. 前記第一の音響電気変換器が一次バンドパスフィルタを含む、請求項1〜16のいずれか一項に記載の装置。
  18. 前記第一の音響電気変換器が多次バンドパスフィルタを含む、請求項1に記載の装置。
  19. 前記多次バンドパスフィルタは、二次バンドパスフィルタ、四次バンドパスフィルタ、または六次バンドパスフィルタを含む、請求項18に記載の装置。
  20. 前記第一の音響電気変換器がガンマトーンフィルタを含む、請求項1〜16のいずれか一項に記載の装置。
  21. 前記装置は、10個以下の一次音響電気変換器を含み、各一次音響電気変換器は、幅が20kHz以下の周波数帯域に対応する、請求項1に記載の装置。
  22. 前記装置は、20個以下の二次音響電気変換器を含み、各二次音響電気変換器は、幅が20kHz以下の周波数帯域に対応する、請求項1に記載の装置。
  23. 前記装置は、30個以下の三次音響電気変換器を含み、各三次音響電気変換器は、幅が20kHz以下の周波数帯域に対応する、請求項1に記載の装置。
  24. 前記装置は、40個以下の四次音響電気変換器を含み、各四次音響電気変換器は、幅が20kHz以下の周波数帯域に対応する、請求項1に記載の装置。
  25. 前記装置は、8個以下の一次音響電気変換器を含み、各一次音響電気変換器は、幅が8kHz以下の周波数帯域に対応する、請求項1に記載の装置。
  26. 前記装置は、13個以下の二次音響電気変換器を含み、各二次音響電気変換器は、幅が8kHz以下の周波数帯域に対応する、請求項1に記載の装置。
  27. 前記装置は、19個以下の三次音響電気変換器を含み、各三次音響電気変換器は、幅が8kHz以下の周波数帯域に対応する、請求項1に記載の装置。
  28. 前記装置は、26個以下の四次音響電気変換器を含み、各四次音響電気変換器は、幅が8kHz以下の周波数帯域に対応する、請求項1に記載の装置。
  29. 前記装置は、4個以下の一次音響電気変換器を含み、各一次音響電気変換器は、幅が4kHz以下の周波数帯域に対応する、請求項1に記載の装置。
  30. 前記装置は、8個以下の二次音響電気変換器を含み、各二次音響電気変換器は、幅が4kHz以下の周波数帯域に対応する、請求項1に記載の装置。
  31. 前記装置は、12個以下の三次音響電気変換器を含み、各三次音響電気変換器は、幅が4kHz以下の周波数帯域に対応する、請求項1に記載の装置。
  32. 前記装置は、15個以下の四次音響電気変換器を含み、各四次音響電気変換器は、幅が4kHz以下の周波数帯域に対応する、請求項1に記載の装置。
  33. 前記第一の音響電気変換器が空気伝導音響電気変換器であり、前記第二の音響電気変換器が骨伝導音響電気変換器である、請求項1に記載の装置。
  34. 前記第一の音響電気変換器が高次広帯域音響電気変換器であり、前記第二の音響電気変換器が高次狭帯域音響電気変換器である、請求項1に記載の装置。
  35. 前記高次広帯域音響電気変換器が、並列に接続された複数の不足減衰音感知構成要素を含む、請求項34に記載の装置。
  36. 前記複数の不足減衰音感知構成要素が、第四の周波数応答を有する第一の不足減衰音感知構成要素、第五の周波数応答を有する第二の不足減衰音感知構成要素、および第六の周波数応答を有する第三の不足減衰音感知構成要素を含み、
    前記第二の不足減衰音感知構成要素の第五の中心周波数は、前記第一の不足減衰音感知構成要素の第四の中心周波数よりも高く、前記第三の不足減衰音感知構成要素の第六の中心周波数は、前記第二の不足減衰音感知構成要素の第五の中心周波数よりも高く、
    前記第四の周波数応答および前記第五の周波数応答は、前記第四の周波数応答の電力半値点および前記第五の周波数応答の電力半値点に近い点で交差する、
    請求項35に記載の装置。
  37. 前記複数の不足減衰音感知構成要素が、第四の周波数応答を有する第一の不足減衰音感知構成要素、および第五の周波数応答を有する第二の不足減衰音感知構成要素を含み、
    前記第四の周波数応答および前記第五の周波数応答は、前記第四の周波数応答の電力半値点および前記第五の周波数応答の電力半値点に近い点で交差する、
    請求項35に記載の装置。
  38. 前記高次狭帯域音響電気変換器が、直列に接続された複数の不足減衰音感知構成要素を含む、請求項34に記載の装置。
JP2021514610A 2018-09-12 2018-09-12 複数の音響電気変換器を有する信号処理装置 Active JP7137694B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/105161 WO2020051786A1 (en) 2018-09-12 2018-09-12 Signal processing device having multiple acoustic-electric transducers

Publications (2)

Publication Number Publication Date
JP2022500938A true JP2022500938A (ja) 2022-01-04
JP7137694B2 JP7137694B2 (ja) 2022-09-14

Family

ID=69777353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021514610A Active JP7137694B2 (ja) 2018-09-12 2018-09-12 複数の音響電気変換器を有する信号処理装置

Country Status (6)

Country Link
US (2) US11373671B2 (ja)
EP (1) EP3834200A4 (ja)
JP (1) JP7137694B2 (ja)
KR (1) KR102568044B1 (ja)
BR (1) BR112021004719A2 (ja)
WO (1) WO2020051786A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3834200A4 (en) * 2018-09-12 2021-08-25 Shenzhen Voxtech Co., Ltd. SIGNAL PROCESSING DEVICE INCLUDING MULTIPLE ELECTROACOUSTIC TRANSDUCERS
BR112021021746A2 (pt) 2019-04-30 2021-12-28 Shenzhen Voxtech Co Ltd Aparelho de saída acústica
BR112022004181A2 (pt) 2019-09-30 2022-05-31 Shenzhen Shokz Co Ltd Sistemas e métodos para redução de ruído usando a técnica de redução de ruído de sub-banda

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06261389A (ja) * 1993-03-09 1994-09-16 Nippon Hoso Kyokai <Nhk> 超高感度収音方法および装置
JPH08111705A (ja) * 1994-10-12 1996-04-30 Saitama Nippon Denki Kk 送話器
JP2009055343A (ja) * 2007-08-27 2009-03-12 Fujitsu Ltd 音処理装置、位相差補正方法及びコンピュータプログラム
JP2010078941A (ja) * 2008-09-26 2010-04-08 Fujifilm Corp 像振れ補正装置及び像振れ補正方法
JP2012019322A (ja) * 2010-07-07 2012-01-26 Yamaha Corp コンデンサマイクロホン
US9084048B1 (en) * 2010-06-17 2015-07-14 Shindig, Inc. Audio systems and methods employing an array of transducers optimized for particular sound frequencies

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4485374A (en) 1980-06-16 1984-11-27 Francis P. Meserow Non-wired perimeter protective system
JPS59145957A (ja) 1983-01-08 1984-08-21 Horiba Ltd 光音響型濃度測定装置
EP0880235A1 (en) * 1996-02-08 1998-11-25 Matsushita Electric Industrial Co., Ltd. Wide band audio signal encoder, wide band audio signal decoder, wide band audio signal encoder/decoder and wide band audio signal recording medium
EP1083769B1 (en) 1999-02-16 2010-06-09 Yugen Kaisha GM &amp; M Speech converting device and method
US6704426B2 (en) * 1999-03-02 2004-03-09 American Technology Corporation Loudspeaker system
CN1123863C (zh) 2000-11-10 2003-10-08 清华大学 基于语音识别的信息校核方法
DE60204038T2 (de) * 2001-11-02 2006-01-19 Matsushita Electric Industrial Co., Ltd., Kadoma Vorrichtung zum codieren bzw. decodieren eines audiosignals
US7146014B2 (en) 2002-06-11 2006-12-05 Intel Corporation MEMS directional sensor system
US7464031B2 (en) 2003-11-28 2008-12-09 International Business Machines Corporation Speech recognition utilizing multitude of speech features
DK176894B1 (da) * 2004-01-29 2010-03-08 Dpa Microphones As Mikrofonstruktur med retningsvirkning
US8571227B2 (en) 2005-11-11 2013-10-29 Phitek Systems Limited Noise cancellation earphone
EP1845699B1 (en) 2006-04-13 2009-11-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Audio signal decorrelator
US8825149B2 (en) 2006-05-11 2014-09-02 Northwestern University Systems and methods for measuring complex auditory brainstem response
US7775113B2 (en) 2006-09-01 2010-08-17 Audiozoom Ltd. Sound sources separation and monitoring using directional coherent electromagnetic waves
NO328582B1 (no) 2006-12-29 2010-03-22 Tandberg Telecom As Mikrofon for lydkildesporing
CN101227763B (zh) * 2007-01-15 2013-01-23 昆山杰得微电子有限公司 音效处理装置及音效处理方法
TW200849219A (en) 2007-02-26 2008-12-16 Qualcomm Inc Systems, methods, and apparatus for signal separation
CN101276587B (zh) * 2007-03-27 2012-02-01 北京天籁传音数字技术有限公司 声音编码装置及其方法和声音解码装置及其方法
AU2008243406B2 (en) 2007-04-26 2011-08-25 Dolby International Ab Apparatus and method for synthesizing an output signal
CN101345050A (zh) 2007-07-09 2009-01-14 上海耀明仪表控制有限公司 一种智能语音识别的方法
GB2453118B (en) 2007-09-25 2011-09-21 Motorola Inc Method and apparatus for generating and audio signal from multiple microphones
US8139816B2 (en) 2007-09-26 2012-03-20 Sentient Magnetics, Inc. Acoustic transducer
US8812309B2 (en) 2008-03-18 2014-08-19 Qualcomm Incorporated Methods and apparatus for suppressing ambient noise using multiple audio signals
US20090319279A1 (en) 2008-06-19 2009-12-24 Hongwei Kong Method and system for audio transmit loopback processing in an audio codec
JP4977157B2 (ja) 2009-03-06 2012-07-18 株式会社エヌ・ティ・ティ・ドコモ 音信号符号化方法、音信号復号方法、符号化装置、復号装置、音信号処理システム、音信号符号化プログラム、及び、音信号復号プログラム
DE102009018812B4 (de) 2009-04-24 2015-05-28 Siemens Medical Instruments Pte. Ltd. Verfahren zum Betrieb einer Hörvorrichtung und Hörvorrichtung mit einer Frequenzweiche
JP5540581B2 (ja) 2009-06-23 2014-07-02 ソニー株式会社 音声信号処理装置および音声信号処理方法
EP3122072B1 (en) 2011-03-24 2020-09-23 Oticon A/s Audio processing device, system, use and method
US9536523B2 (en) 2011-06-22 2017-01-03 Vocalzoom Systems Ltd. Method and system for identification of speech segments
JP5545676B2 (ja) 2011-11-07 2014-07-09 株式会社ホンダアクセス 車室内のマイクアレイ配置構造
ITPD20120061A1 (it) 2012-03-02 2013-09-03 Dallan Spa Unità di impilatura di lamelle su semiscalette di sostegno per la produzione di tende veneziane e metodo di applicazione combinata di ganci e di semiscalette ad una lamella
EP2653846A1 (en) 2012-04-18 2013-10-23 Nxp B.V. Sensor circuit and a method of calibration
US20130315402A1 (en) * 2012-05-24 2013-11-28 Qualcomm Incorporated Three-dimensional sound compression and over-the-air transmission during a call
CN102737646A (zh) * 2012-06-21 2012-10-17 佛山市瀚芯电子科技有限公司 单一麦克风的实时动态语音降噪方法
US9443510B2 (en) 2012-07-09 2016-09-13 Lg Electronics Inc. Speech recognition apparatus and method
US9344811B2 (en) 2012-10-31 2016-05-17 Vocalzoom Systems Ltd. System and method for detection of speech related acoustic signals by using a laser microphone
CN202940957U (zh) 2012-11-08 2013-05-15 广州市锐丰音响科技股份有限公司 一种声接收系统
CN102970639B (zh) 2012-11-08 2016-01-06 广州市锐丰音响科技股份有限公司 一种声接收系统
EP2992686B1 (en) 2013-05-02 2019-03-06 Bugatone Ltd. Earphone active noise control
US9269352B2 (en) 2013-05-13 2016-02-23 GM Global Technology Operations LLC Speech recognition with a plurality of microphones
CN104050965A (zh) 2013-09-02 2014-09-17 广东外语外贸大学 具有情感识别功能的英语语音发音质量评价系统及方法
EP3806498B1 (en) * 2013-09-17 2023-08-30 Wilus Institute of Standards and Technology Inc. Method and apparatus for processing audio signal
US10299049B2 (en) * 2014-05-20 2019-05-21 Oticon A/S Hearing device
KR102207928B1 (ko) * 2014-08-13 2021-01-26 삼성전자주식회사 음향 센싱 소자 및 주파수 정보 획득 방법
US9311928B1 (en) 2014-11-06 2016-04-12 Vocalzoom Systems Ltd. Method and system for noise reduction and speech enhancement
CN104602162B (zh) 2014-12-17 2019-08-09 惠州Tcl移动通信有限公司 用于移动终端的外接降噪装置及其降噪方法
DE202015002315U1 (de) 2015-03-27 2015-05-06 Infineon Technologies Ag Gassensor
CN204993766U (zh) 2015-09-19 2016-01-20 中山阿迪通电子科技有限公司 一种双降噪入耳式耳机
US9654856B1 (en) 2015-12-29 2017-05-16 Harman International Industries, Inc. Noise-canceling concha headphone
US9666191B1 (en) 2016-03-17 2017-05-30 Vocalzoom Systems Ltd. Laser-based system and optical microphone having increased bandwidth
KR20180051189A (ko) 2016-11-08 2018-05-16 삼성전자주식회사 자동 음성 트리거 방법 및 이를 적용한 음향 분석기
US9980042B1 (en) 2016-11-18 2018-05-22 Stages Llc Beamformer direction of arrival and orientation analysis system
US9820032B1 (en) * 2017-06-16 2017-11-14 Unisinger LTD. Speaker system for high fidelity reproduction of audio signals
US10325583B2 (en) * 2017-10-04 2019-06-18 Guoguang Electric Company Limited Multichannel sub-band audio-signal processing using beamforming and echo cancellation
EP3834200A4 (en) * 2018-09-12 2021-08-25 Shenzhen Voxtech Co., Ltd. SIGNAL PROCESSING DEVICE INCLUDING MULTIPLE ELECTROACOUSTIC TRANSDUCERS

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06261389A (ja) * 1993-03-09 1994-09-16 Nippon Hoso Kyokai <Nhk> 超高感度収音方法および装置
JPH08111705A (ja) * 1994-10-12 1996-04-30 Saitama Nippon Denki Kk 送話器
JP2009055343A (ja) * 2007-08-27 2009-03-12 Fujitsu Ltd 音処理装置、位相差補正方法及びコンピュータプログラム
JP2010078941A (ja) * 2008-09-26 2010-04-08 Fujifilm Corp 像振れ補正装置及び像振れ補正方法
US9084048B1 (en) * 2010-06-17 2015-07-14 Shindig, Inc. Audio systems and methods employing an array of transducers optimized for particular sound frequencies
JP2012019322A (ja) * 2010-07-07 2012-01-26 Yamaha Corp コンデンサマイクロホン

Also Published As

Publication number Publication date
JP7137694B2 (ja) 2022-09-14
EP3834200A4 (en) 2021-08-25
US11875815B2 (en) 2024-01-16
EP3834200A1 (en) 2021-06-16
KR102568044B1 (ko) 2023-08-21
KR20210060523A (ko) 2021-05-26
US20200219526A1 (en) 2020-07-09
BR112021004719A2 (pt) 2021-06-22
US11373671B2 (en) 2022-06-28
US20220230654A1 (en) 2022-07-21
WO2020051786A1 (en) 2020-03-19

Similar Documents

Publication Publication Date Title
US11875815B2 (en) Signal processing device having multiple acoustic-electric transducers
WO2009145096A1 (ja) 音声入力装置及びその製造方法、並びに、情報処理システム
US20240071358A1 (en) Systems and methods for noise reduction using sub-band noise reduction technique
US20230045906A1 (en) Microphones
US10708690B2 (en) Method of an audio signal correction
RU2785002C1 (ru) Устройство для обработки сигнала, имеющее множество акустико-электрических преобразователей
US20240161767A1 (en) Signal processing device having multiple acoustic-electric transducers
RU2771919C1 (ru) Устройство для обработки сигнала, имеющее множество акустико-электрических преобразователей
RU2800552C1 (ru) Микрофон
RU2792614C1 (ru) Системы и способы шумоподавления с использованием технологии субполосного шумоподавления
US20210219069A1 (en) Systems and methods for suppressing sound leakage
US20230049593A1 (en) Microphone
CN115706880A (zh) 一种传声器
CN115914935A (zh) 一种传声器

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210430

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220902

R150 Certificate of patent or registration of utility model

Ref document number: 7137694

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150