JP2022189835A - Imaging apparatus - Google Patents

Imaging apparatus Download PDF

Info

Publication number
JP2022189835A
JP2022189835A JP2022160382A JP2022160382A JP2022189835A JP 2022189835 A JP2022189835 A JP 2022189835A JP 2022160382 A JP2022160382 A JP 2022160382A JP 2022160382 A JP2022160382 A JP 2022160382A JP 2022189835 A JP2022189835 A JP 2022189835A
Authority
JP
Japan
Prior art keywords
image
infrared
imaging
information
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022160382A
Other languages
Japanese (ja)
Inventor
治 川前
Osamu Kawamae
千代 大野
Chiyo Ono
宏安 大坪
Hiroyasu Otsubo
修 石崎
Osamu Ishizaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maxell Ltd filed Critical Maxell Ltd
Priority to JP2022160382A priority Critical patent/JP2022189835A/en
Publication of JP2022189835A publication Critical patent/JP2022189835A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a technique for imaging both a visual image and an infrared image, and imaging a high-quality image by improving color reproducibility in visible light imaging.
SOLUTION: An imaging system is configured to enable stereo imaging for both a visible image and an infrared image, and improve color reproducibility in visible light imaging. The imaging system includes: two imaging sensors 12; and two DBPFs which are optical filters having a visible light band and a second wavelength band with transparency and arranged for the two imaging sensors. The imaging system has at least four types of filter units which are different in spectral transmission characteristics in accordance with a wavelength in the visible light band and similar in transmittance in the second wavelength band, and two color filters arranged for the two imaging sensors, respectively. The imaging system measures a distance to an object based on two visible or infrared image signals.
SELECTED DRAWING: Figure 8
COPYRIGHT: (C)2023,JPO&INPIT

Description

本発明は、撮像装置および撮像システムに関する。 The present invention relates to an imaging device and an imaging system.

近年、画像認識技術と生体認証との組み合わせにより、犯罪者や万引き犯、テロリストなどを顔認証で検知する監視カメラや、自動車の自動運転に使用される車載カメラの開発が進められている。 In recent years, by combining image recognition technology and biometric authentication, the development of surveillance cameras that detect criminals, shoplifters, terrorists, etc. by facial recognition, and in-vehicle cameras that are used for automatic driving of automobiles is underway.

例えば、監視カメラでは、ステレオカメラを用いて距離検出を行い、不審者の侵入を検出するシステムが知られている(特許文献1参照)。特許文献1には、物体の形状や距離を計測する方法として、「ステレオ画像を用いた距離計測用画像認識装置」が記載されており、ステレオ画像から距離を求めるステレオ法と呼ばれる技術が知られている。このステレオ法は、まずステレオ画像と呼ばれる左右2枚の画像を入力し、画像中の特徴量の計算により左右画像の対応点(左画像のある位置の対象物体が、右画像ではどこの位置に写っているか)を求める。対応点の求め方の詳細は、例えば。特許文献2に「画像マッチング方法」として記載されている。そして、左右2枚の画像の対応点が求められると、三角測量の原理で物体表面までの距離を計算できるため、物体までの距離や物体表面の形状を知ることができる。 For example, as a surveillance camera, there is known a system that detects an intrusion of a suspicious person by detecting a distance using a stereo camera (see Patent Document 1). Patent Literature 1 describes an "image recognition device for distance measurement using stereo images" as a method for measuring the shape and distance of an object, and a technique called a stereo method for obtaining distances from stereo images is known. ing. In this stereo method, two left and right images, called stereo images, are first input, and the corresponding points in the left and right images are calculated by calculating the feature values in the images. Is it in the picture?) For details of how to find the corresponding points, see, for example. It is described in Patent Document 2 as an "image matching method". Then, when the corresponding points of the two left and right images are obtained, the distance to the object surface can be calculated by the principle of triangulation, so the distance to the object and the shape of the object surface can be known.

また、特許文献1には、ステレオ画像の既知の対応関係を利用することで、高精度かつ高速に動物体を検出しその形状や距離を測定することができる動物体認識装置が提案されている。 In addition, Patent Document 1 proposes a moving object recognition apparatus that can detect a moving object with high precision and high speed and measure its shape and distance by using known correspondence relationships of stereo images. .

監視カメラや自動運転用カメラでは、屋外と屋内、昼と夜など場所や時間によらず撮影が必要になるが、状況によっては十分な照明が得られない場合がある。この場合、人間には見えない赤外照明を用いて赤外撮影することが考えられる。また、自動運転用カメラにおいても、夜間の対向車へのヘッドライトの影響を考慮して、遠方を照らす照明として赤外光を用いて赤外撮影を行うことが考えられる。いずれにしろ、可視光の光量が十分である可能性が高い昼間は照明無しで可視光撮影し、夜間照明を必要とする場合に人間の目には見え難い赤外照明を用いて赤外撮影を行うことが考えられる。 Surveillance cameras and self-driving cameras need to shoot regardless of location or time, such as outdoors and indoors, day and night, but depending on the situation, there may be cases where sufficient lighting cannot be obtained. In this case, it is conceivable to perform infrared photographing using infrared illumination that is invisible to humans. Also, in the camera for automatic driving, taking into consideration the effect of headlights on oncoming vehicles at night, it is conceivable to perform infrared photography using infrared light as lighting for illuminating a distant place. In any case, during the day when there is a high possibility that the amount of visible light is sufficient, visible light photography is performed without lighting, and when nighttime lighting is required, infrared photography is performed using infrared lighting that is difficult for the human eye to see. can be considered.

このような状況を考慮すると、監視カメラや自動運転用カメラでは、カメラが可視光と赤外光との撮影を併用できることが好ましい。 Considering such a situation, it is preferable that the surveillance camera and the automatic driving camera are capable of photographing with both visible light and infrared light.

昼夜連続で撮影を行う監視カメラ等の撮像装置においては、夜間時には赤外光を検出して撮影することが行われている。CCDセンサやCMOSセンサといった撮像センサの受光部であるフォトダイオード(受光素子)は、1300nm程度の近赤外の波長帯域まで受光可能であるため、これらの撮像センサを用いた撮像装置であれば、赤外帯域まで撮影することが原理的に可能である。 2. Description of the Related Art An imaging device such as a monitoring camera that takes images continuously day and night detects infrared light to take images at night. A photodiode (light-receiving element), which is a light-receiving part of an imaging sensor such as a CCD sensor or a CMOS sensor, can receive light up to a near-infrared wavelength band of about 1300 nm. In principle, it is possible to capture images up to the infrared band.

なお、人間の視感度が高い光の波長帯域は400nm~700nmであることから、撮像センサにおいて近赤外光を検出すると、人間の目には映像が赤みを増して見えることになる。このため、昼間や屋内の明るい場所での撮影時は、撮像センサの感度を人間の視感度に合わせるために、撮像センサの前に赤外帯域の光を遮断する赤外カットフィルタを設けて、波長が700nm以上の光を除去することが望ましい。一方、夜間や暗い場所での撮影時には、赤外カットフィルタを設けずに撮影を行う必要がある。 Since the wavelength band of light for which human visibility is high is 400 nm to 700 nm, when the image sensor detects near-infrared light, the image appears redder to the human eye. For this reason, when shooting in the daytime or in a bright place indoors, in order to match the sensitivity of the image sensor to human visibility, an infrared cut filter that cuts off light in the infrared band is provided in front of the image sensor. It is desirable to remove light with a wavelength of 700 nm or more. On the other hand, when photographing at night or in a dark place, it is necessary to photograph without providing an infrared cut filter.

このような撮像装置としては、手動で赤外カットフィルタの取り付け・取り外しを行う撮像装置や、自動的に赤外カットフィルタを抜き差しする撮像装置が、従来から知られている。さらに、上述した赤外カットフィルタの抜き差しを不要とした撮像装置が開示されている。例えば、可視光帯域に透過特性を有し、可視光帯域の長波長側に隣接する第1の波長帯域に遮断特性を有し、前記第1の波長帯域内の一部分である第2の波長帯域に透過特性を有する光学フィルタが提案されている(特許文献3参照)。このフィルタによれば、可視光帯域と、可視光帯域の長波長側、すなわち、赤外側で、可視光帯域から離れた第2の波長帯域との両方で光が透過可能となっている。 As such an imaging device, an imaging device that manually attaches and detaches an infrared cut filter and an imaging device that automatically inserts and removes an infrared cut filter are conventionally known. Furthermore, an imaging device is disclosed that eliminates the need to insert and remove the infrared cut filter described above. For example, a second wavelength band that has transmission characteristics in the visible light band, has cutoff characteristics in a first wavelength band adjacent to the long wavelength side of the visible light band, and is a part of the first wavelength band An optical filter has been proposed that has a transmission characteristic of . According to this filter, light can be transmitted both in the visible light band and in a second wavelength band on the longer wavelength side of the visible light band, that is, on the infrared side and away from the visible light band.

以下、上述のように可視光帯域と、赤外側の第2の波長帯域との光を透過し、他の波長帯域の光を遮断する光学フィルタをDBPF(ダブル・バンド・パス・フィルタ)と称する。 Hereinafter, an optical filter that transmits light in the visible light band and the second infrared wavelength band and blocks light in other wavelength bands as described above will be referred to as a DBPF (double band pass filter). .

また、近年、生体認証として、指紋、顔、虹彩、静脈、署名、声紋、歩行など、様々な認証技術開発が進んでいるが、上記した監視カメラや自動運転用カメラで撮像した画像認識技術と一緒に使用される生体認証としては、主に顔認証、虹彩認証が挙げられる。 In recent years, as biometric authentication, various authentication technologies such as fingerprint, face, iris, vein, signature, voiceprint, and walking have been developed. Biometric authentication used together mainly includes face authentication and iris authentication.

特開平3-81878号公報JP-A-3-81878 特開昭62-107386号公報JP-A-62-107386 特許第5009395号公報Japanese Patent No. 5009395

特許文献3のDBPFでは、赤外(近赤外)の波長帯域に含まれる第2の波長帯域の光(赤外波長帯域に含まれる比較的狭い波長帯域)が常時遮断されずに光が透過することになる。すなわち、可視光帯域より長波長側をカットする赤外カットフィルタを用いた場合と異なり、可視光帯域での撮影において、第2の波長帯域を透過した赤外光の影響を少なからず受けることになる。 In the DBPF of Patent Document 3, the light in the second wavelength band (relatively narrow wavelength band included in the infrared wavelength band) included in the infrared (near-infrared) wavelength band is transmitted without being blocked at all times. will do. That is, unlike the case of using an infrared cut filter that cuts wavelengths longer than the visible light band, the infrared light transmitted through the second wavelength band is not a little affected when photographing in the visible light band. Become.

可視光帯域での撮影として、カラーの撮影を行う撮像センサには、カラーフィルタが用いられている。カラーフィルタは、撮像センサの各画素に対応して赤、緑、青の各色の領域(フィルタ部)が所定のパターンで配置され、基本的には、各色の波長帯域に光の透過率のピークを有し、他の色の波長帯域の光の透過を遮断する。 Color filters are used in imaging sensors that perform color imaging in the visible light band. The color filter consists of red, green, and blue regions (filter sections) arranged in a predetermined pattern corresponding to each pixel of the image sensor. and blocks the transmission of light in wavelength bands of other colors.

しかし、可視光帯域より長波長側では、各色の領域および波長によって光透過率が異なるが、基本的に光を透過してしまう。したがって、上述のDBPFのように赤外側の第2の波長帯域で赤外光を透過すると、この赤外光がカラーフィルタを通過して撮像センサのフォトダイオード(受光素子)に至ってフォトダイオードにおける光電効果による電子の発生量を多くしてしまう。 However, on the longer wavelength side than the visible light band, light is basically transmitted although the light transmittance differs depending on the region and wavelength of each color. Therefore, when infrared light is transmitted in the second wavelength band on the infrared side as in the DBPF described above, the infrared light passes through the color filter and reaches the photodiode (light receiving element) of the image sensor. It increases the amount of electrons generated by the effect.

また、可視光でのカラー撮影と赤外光照明での撮影との両方を行う場合、例えば、赤、緑、青の各色の領域が所定のパターンで配置されたカラーフィルタに、上述の第2の波長帯域に光透過率のピークを有するような赤外光用の領域(赤外領域)を設けることになる。すなわち、カラーフィルタの配列(パターン)は、赤R、緑G、青B、赤外IRの4つの領域からなる。この場合に赤外光用の領域は、可視光帯域の光を遮断し、第2の波長帯域の光を主に透過させるものであるから、カラーフィルタの赤外光用の領域を通過した光を受ける撮像センサから出力される赤外光の画像信号を利用して、赤、緑、青の各色の画像信号から赤外光成分を除去することが考えられる。しかし、このような信号処理によっても、赤外カットフィルタを用いた場合のカラー撮影時と略同等の色再現を行うことが難しかった。また、ステレオ化して距離を算出する場合に、左右の信号レベルにずれがあると、視差算出において誤差を発生させる要因となっていた。 Further, when both color photography with visible light and photography with infrared light illumination are performed, for example, a color filter in which regions of red, green, and blue are arranged in a predetermined pattern is provided with the above-described second A region for infrared light (infrared region) having a peak of light transmittance in the wavelength band of . That is, the array (pattern) of the color filters consists of four areas of red R, green G, blue B, and infrared IR. In this case, the region for infrared light blocks light in the visible light band and mainly transmits light in the second wavelength band. It is conceivable to remove infrared light components from image signals of red, green, and blue colors by using infrared light image signals output from an imaging sensor that receives the image. However, even with such signal processing, it has been difficult to achieve color reproduction substantially equivalent to that in color photography when an infrared cut filter is used. Further, when the distance is calculated in stereo, if there is a difference between the left and right signal levels, it causes an error in the parallax calculation.

さらに、カメラの撮像画像を用いて顔認証を使用する場合、大きく、オフィスやビル等の入退室管理システムや空港での搭乗手続き、入出国管理などでユーザが所定のカメラに顔を合わせてもらうタイプと、犯人追跡やテロ防止、不審者の早期摘発などを目的に公共施設や空港、交通機関などの場所でユーザが無意識のうちに複数のカメラで撮影した不特定多数のユーザに対して認証するタイプがある。前者のタイプでは、撮影条件が限定されるために、近年の技術でも精度良く認識することが可能であるが、後者のタイプでは、環境変化により照明の具合や顔の向き、角度等の撮影条件が大きくばらつくために、認識率が大きく左右される。 Furthermore, when using face authentication using images captured by a camera, the user is asked to face a predetermined camera in an entry/exit management system for offices, buildings, etc., boarding procedures at airports, immigration control, etc. Authentication for type and an unspecified number of users who unconsciously take pictures with multiple cameras at public facilities, airports, transportation facilities, etc. There is a type to In the former type, since the shooting conditions are limited, it is possible to recognize with high accuracy even with recent technology. , the recognition rate is greatly affected.

監視カメラを用いた不審者検知などを実施するためには、可視光と赤外光との両方を用いて撮影場所や撮影時間に依存することなく、24時間連続での撮影を行うことを可能とし、さらに、撮影された像をできるだけノイズの少なく鮮明で解像度の高いものにできれば、不審者の早期検出や犯罪発生時の状況解析の能力が格段に高まると思われる。 In order to detect suspicious persons using surveillance cameras, it is possible to shoot continuously for 24 hours using both visible light and infrared light without depending on the shooting location or shooting time. Furthermore, if the captured images can be made clear and high-resolution with as little noise as possible, it is believed that the ability to detect suspicious persons early and analyze the situation when a crime occurs will be greatly improved.

また、2つのカメラを用いてステレオ法で測距可能な構成とすることで、自動運転用カメラにおいても、上述のように赤外と可視による撮影を併用する場合に、ノイズの少ない鮮明な画像を得られることで、画像認識の精度の向上を図ることができる。 In addition, by adopting a configuration that enables distance measurement using the stereo method using two cameras, even in the case of the camera for autonomous driving, when using both infrared and visible imaging as described above, clear images with little noise can be obtained. can be obtained, the accuracy of image recognition can be improved.

以上のことから、赤外画像と可視画像の両方の同時撮影が可能で、かつ、ノイズや解像度、色再現性等の画質を、通常の赤外画像を含まない可視画像と同レベル以上とし、さらに2つのカメラ構成でステレオ撮影が可能であることが望まれている。 From the above, it is possible to capture both infrared and visible images at the same time, and the image quality such as noise, resolution, and color reproducibility is at the same level or higher than that of normal visible images that do not include infrared images. Furthermore, it is desirable to be able to shoot in stereo with a two-camera configuration.

本発明は、可視画像と赤外画像の両方が撮影可能であり、可視光撮影時の色再現性を向上して高品質な画像を撮像可能な技術を提供するものである。 INDUSTRIAL APPLICABILITY The present invention provides a technology capable of capturing both a visible image and an infrared image, improving color reproducibility during visible light capturing, and capturing a high-quality image.

本発明に係る撮像装置あるいは撮像システムは、撮像素子と、少なくとも、可視光波長領域と赤外波長領域を透過する特性を有し、該特性に基づき前記撮像素子からの信号をフィルタリングするフィルタ部と、前記フィルタ部によってフィルタリングされた信号を処理して可視光信号と赤外信号を出力する信号処理部と、前記信号処理部から出力された赤外信号から、前記撮像素子で撮像された画像内の動体に関する情報を生成する動体領域抽出部と、前記信号処理から出力された可視光信号あるいは赤外信号の少なくともどちらか一方を含む第1のデータと、前記動体領域抽出部で生成された前記動体に関する情報に基づく第2のデータとを外部へ送信する信号出力制御部と、を備えることを特徴とする。 An imaging device or an imaging system according to the present invention includes an imaging device, and a filter unit that has a characteristic of transmitting at least a visible light wavelength region and an infrared wavelength region, and filters a signal from the imaging device based on the characteristic. a signal processing unit that processes the signal filtered by the filter unit and outputs a visible light signal and an infrared signal; first data including at least one of a visible light signal and an infrared signal output from the signal processing; and the moving object region extraction unit generated by the and a signal output control unit that transmits second data based on information about the moving body to the outside.

さらに、本発明に係る撮像装置あるいは撮像システムは、2つの撮像素子と、少なくとも、可視光波長領域と赤外波長領域を透過する特性を有し、該特性に基づき前記撮像素子からの信号をフィルタリングする2つのフィルタ部と、前記フィルタ部によってフィルタリングされた信号を処理して可視光信号と赤外信号を出力する2つの信号処理部と、前記信号処理部から出力される2つの可視画像信号および/または2つの赤外画像信号を用いて可視画像信号による可視画像および/または赤外画像信号による赤外画像に写った被写体までの距離を算出する距離算出部と、前記信号処理部から出力された赤外信号から、前記撮像素子で撮像された画像内の動体に関する情報を生成する動体領域抽出部と、前記信号処理から出力された可視光信号あるいは赤外信号の少なくともどちらか一方を含む第1のデータと、前記動体領域抽出部で生成された前記動体に関する情報に基づく第2のデータと、前記距離算出部で算出した距離情報に基づく第3のデータとを、外部へ送信する信号出力制御部と、を備えることを別の特徴とする。 Further, the imaging device or imaging system according to the present invention has two imaging elements and a characteristic of transmitting at least a visible light wavelength region and an infrared wavelength region, and filters signals from the imaging elements based on the characteristics. two filter units, two signal processing units that process the signals filtered by the filter units and output visible light signals and infrared signals, two visible image signals output from the signal processing units, and / Or a distance calculation unit for calculating a distance to a subject captured in a visible image by a visible image signal and/or an infrared image by an infrared image signal using two infrared image signals, and output from the signal processing unit a moving object region extracting unit that generates information about a moving object in an image captured by the imaging element from the infrared signal obtained; and at least one of the visible light signal and the infrared signal output from the signal processing 1 data, second data based on the information about the moving object generated by the moving object region extracting unit, and third data based on the distance information calculated by the distance calculating unit, are transmitted to the outside. and a control unit.

本発明によれば、高品質な画像を得ることが可能となる。より詳細には、例えば本発明の一態様によれば、1つの撮像センサと1つの光学フィルムで構成されるカメラで高品質な赤外画像と可視画像の両方を同時に撮影することができるため、照明不足などの環境の変化や夜間においても視認性を向上することができる。また本発明の別の態様によれば、赤外画像と可視画像の両方で対象物の距離をより正確に測定でき、その情報を可視画像あるいは赤外画像と共に外部システムへ提供することできる。また本発明の別の態様によれば、可視画像ではなく赤外画像を用いることで、画像内の動体領域をより高速に抽出することができ、その情報を可視画像あるいは赤外画像と共に外部システムへ提供することできる。 According to the present invention, it is possible to obtain high-quality images. More specifically, for example, according to one aspect of the present invention, both a high-quality infrared image and a visible image can be simultaneously captured by a camera configured with one imaging sensor and one optical film. Visibility can be improved even in changing environments such as lack of lighting or at night. According to another aspect of the invention, both the infrared image and the visible image can more accurately measure the distance of an object, and the information can be provided to an external system along with the visible image or the infrared image. According to another aspect of the present invention, by using an infrared image instead of a visible image, it is possible to extract a moving object region in the image at a higher speed, and the information is transmitted to an external system together with the visible image or the infrared image. can be provided to

本発明の実施の形態1に係る撮像システムを示す概略図である。1 is a schematic diagram showing an imaging system according to Embodiment 1 of the present invention; FIG. 本発明の実施の形態1に係る撮像システムの撮像センサ部の構成を示す概略図である。1 is a schematic diagram showing the configuration of an imaging sensor unit of an imaging system according to Embodiment 1 of the present invention; FIG. 本発明の実施の形態1に係る撮像システムの撮像センサのDBPFとカラーフィルタの透過率スペクトルを示すグラフである。4 is a graph showing transmittance spectra of the DBPF and color filters of the imaging sensor of the imaging system according to Embodiment 1 of the present invention; 本発明の実施の形態1に係る撮像システムのカラーフィルタの一構成例を示す概略図である。1 is a schematic diagram showing one configuration example of a color filter of an imaging system according to Embodiment 1 of the present invention; FIG. 本発明の実施の形態1に係る撮像システムの信号処理部を説明するためのブロック図である。2 is a block diagram for explaining a signal processing section of the imaging system according to Embodiment 1 of the present invention; FIG. 本発明の実施の形態1に係る撮像システムのカメラとコントローラとの通信フローを説明するフローチャート図である。FIG. 4 is a flow chart diagram explaining a communication flow between the camera and the controller of the imaging system according to Embodiment 1 of the present invention; 本発明の実施の形態1に係る撮像システムで扱う各種の画像情報の一構成を示す図である。4 is a diagram showing one configuration of various image information handled by the imaging system according to Embodiment 1 of the present invention; FIG. 本発明の実施の形態2に係る撮像システムを示す概略図である。FIG. 4 is a schematic diagram showing an imaging system according to Embodiment 2 of the present invention; 本発明の実施の形態2に係る撮像システムで扱う各種の解析メタデータ情報の一構成を示す図である。FIG. 10 is a diagram showing one configuration of various types of analysis metadata information handled by the imaging system according to Embodiment 2 of the present invention; 本発明の実施の形態2に係る撮像システムのカメラとコントローラとの通信フローを説明するフローチャート図である。FIG. 10 is a flow chart diagram illustrating a communication flow between a camera and a controller of the imaging system according to Embodiment 2 of the present invention; 本発明の実施の形態2に係る撮像システムで扱う画像のイメージ画面例を示す図である。FIG. 10 is a diagram showing an image screen example of an image handled by the imaging system according to Embodiment 2 of the present invention; 本発明の実施の形態2に係る撮像システムで扱う解析メタデータ情報の一構成例を示す図である。FIG. 10 is a diagram showing a configuration example of analysis metadata information handled by the imaging system according to Embodiment 2 of the present invention; 本発明の実施の形態3に係る撮像システムを示す概略図である。FIG. 5 is a schematic diagram showing an imaging system according to Embodiment 3 of the present invention; 本発明の実施の形態3に係る撮像システムの別構成例を示す概略図である。FIG. 11 is a schematic diagram showing another configuration example of the imaging system according to Embodiment 3 of the present invention; 本発明の実施の形態3に係る撮像システムの別構成例を示す概略図である。FIG. 11 is a schematic diagram showing another configuration example of the imaging system according to Embodiment 3 of the present invention; 本発明の実施の形態3に係る撮像システムの別構成例を示す概略図である。FIG. 11 is a schematic diagram showing another configuration example of the imaging system according to Embodiment 3 of the present invention; 本発明の実施の形態3に係る撮像システムで扱う各種の画像情報の一構成を示す図である。FIG. 10 is a diagram showing one configuration of various image information handled by an imaging system according to Embodiment 3 of the present invention; 本発明の実施の形態3に係る撮像システムで扱う各種の画像情報の一構成を示す図である。FIG. 10 is a diagram showing one configuration of various image information handled by an imaging system according to Embodiment 3 of the present invention; 本発明の実施の形態3に係る撮像システムで扱う解析メタデータ情報の一構成を示す図である。FIG. 10 is a diagram showing one configuration of analysis metadata information handled by the imaging system according to Embodiment 3 of the present invention; 本発明の実施の形態3に係る撮像システムで扱う解析メタデータ情報の一構成例を示す図である。FIG. 10 is a diagram showing a configuration example of analysis metadata information handled by the imaging system according to Embodiment 3 of the present invention; 本発明の実施の形態1に係る撮像システムの撮像センサのDBPFとカラーフィルタの透過率スペクトルを示すグラフである。4 is a graph showing transmittance spectra of the DBPF and color filters of the imaging sensor of the imaging system according to Embodiment 1 of the present invention; 本発明の実施の形態3に係る撮像システムの撮像装置の処理フローを示す図である。FIG. 10 is a diagram showing a processing flow of an imaging device of an imaging system according to Embodiment 3 of the present invention; 本発明の実施の形態3に係る撮像システムを運用した一例である。It is an example of operating the imaging system according to Embodiment 3 of the present invention. 本発明の実施の形態3に係る撮像システムを運用した一例である。It is an example of operating the imaging system according to Embodiment 3 of the present invention.

(実施の形態1)
以下、図面を参照しながら、本発明の実施の形態について説明する。
(Embodiment 1)
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施の形態1に係る撮像システムの構成例を示す。撮像システムは、大きく、1台以上の撮像装置100((a)~(n))と1台以上のコントローラ装置200で構成される。撮像装置100とコントローラ装置200は、ネットワーク303を介して接続される。ネットワーク303は、本実施の形態では有線LAN(Local Area Network)を前提に説明するが、無線LAN(WiFi)、USB(Universal Serial Bus)、IEEE1394などの汎用ネットワークでも良い。 FIG. 1 shows a configuration example of an imaging system according to Embodiment 1 of the present invention. The imaging system is roughly composed of one or more imaging devices 100 ((a) to (n)) and one or more controller devices 200 . The imaging device 100 and controller device 200 are connected via a network 303 . Although the network 303 is assumed to be a wired LAN (Local Area Network) in this embodiment, it may be a general-purpose network such as a wireless LAN (WiFi), USB (Universal Serial Bus), IEEE1394, or the like.

ネットワーク303においては、ネットワークプロトコルとして標準のIP(Internet Protocol)を使用し、上位のトランスポートプロトコルとしてはTCP(Transmission Control Protocol)、UDP(User Datagram Protocol)を用いる。撮像装置100が撮影した画像の転送には、さらに上位のアプリケーションプロトコル、例えばRTP(Real-time Transport Protocol)/RTCP(RTP Control Protocol)やHTTP(Hyper Text Transfer Protocol)等を使用し、転送制御にはRTSP(Real-Time Streaming Protocol)等を用いる。なお、IPはIPv4、IPv6のどちらを使用しても良い。また、上述したHTTPやRTPなどの技術を用いたWebサービスを用いて、より上位アプリケーション間での通信も可能とする。また、図示していないが、ハブやルータを介してインターネット接続も可能である。 In the network 303, standard IP (Internet Protocol) is used as a network protocol, and TCP (Transmission Control Protocol) and UDP (User Datagram Protocol) are used as upper transport protocols. To transfer the image captured by the imaging device 100, a higher-level application protocol such as RTP (Real-time Transport Protocol)/RTCP (RTP Control Protocol) or HTTP (Hyper Text Transfer Protocol) is used to control the transfer. uses RTSP (Real-Time Streaming Protocol) or the like. Either IPv4 or IPv6 may be used for IP. Also, communication between higher-level applications is made possible by using Web services using techniques such as HTTP and RTP described above. Also, although not shown, it is possible to connect to the Internet via a hub or router.

コントローラ装置200は、複数の撮像装置100を制御することが可能であり、他のコントローラ装置200との間で情報をやり取りすることも可能である。 The controller device 200 can control multiple imaging devices 100 and can exchange information with other controller devices 200 .

本実施の形態の撮像システムは、監視用途や入退室管理などのアプリケーションやサービスで利用することができる。 The imaging system according to the present embodiment can be used for applications and services such as monitoring and entrance/exit management.

本実施の形態の特徴である撮像装置100は、レンズ11、撮像センサ部12、信号処理部13、信号出力制御部14、通信制御部15、IF部16、異常検出部17、照度監視部18、GPS19、時計20、メモリ21、保守IF部22、制御部23、赤外LED24から構成される。 The imaging apparatus 100, which is a feature of this embodiment, includes a lens 11, an imaging sensor section 12, a signal processing section 13, a signal output control section 14, a communication control section 15, an IF section 16, an abnormality detection section 17, an illuminance monitoring section 18, and a , GPS 19 , clock 20 , memory 21 , maintenance IF section 22 , control section 23 and infrared LED 24 .

レンズ11は、被写体からの可視光301、赤外光(非可視光)302を撮像センサ部12上の所定の焦点距離に結像させる撮影用の光学レンズであり、複数のレンズを含んで構成される。 The lens 11 is an optical lens for photographing that forms an image of visible light 301 and infrared light (invisible light) 302 from an object at a predetermined focal length on the imaging sensor unit 12, and includes a plurality of lenses. be done.

撮像センサ部12は、レンズ11によって結像された可視光と赤外光を各種フィルタにより分光して光電変換することで所定の波長成分に対応した複数の画素信号を出力する部分である。 The imaging sensor unit 12 is a unit that separates the visible light and infrared light imaged by the lens 11 using various filters and photoelectrically converts them, thereby outputting a plurality of pixel signals corresponding to predetermined wavelength components.

信号処理部13は、前記撮像センサ部12から出力される出力信号を処理して、内装処理や、カラー撮影時の第2の波長帯域を通過した赤外光の影響を除去する画像処理や、ガンマ補正や、ホワイトバランスや、RGBマトリックス補正等の画像処理を画像信号に施し、可視画像の出力信号と赤外画像の出力信号を出力する部分である。 The signal processing unit 13 processes the output signal output from the imaging sensor unit 12 to perform interior processing, image processing to remove the influence of infrared light that has passed through the second wavelength band during color photography, This is a portion that performs image processing such as gamma correction, white balance, RGB matrix correction, etc. on the image signal and outputs a visible image output signal and an infrared image output signal.

信号出力制御部14、前記信号処理部13から出力された「同じタイミングで対象物を撮影した」可視画像信号と赤外画像信号を、通信制御部15あるいは制御部23の指示にしたがって、IF部16を介して、ネットワーク接続された所定のコントローラ装置200へ送信する。 The signal output control unit 14 outputs the visible image signal and the infrared image signal "that the object was photographed at the same timing" output from the signal processing unit 13, according to the instruction of the communication control unit 15 or the control unit 23, the IF unit 16 to a predetermined network-connected controller device 200 .

通信制御部15は、前記信号出力制御部14からIF部16経由で出力する画像信号の制御と、IF部経由で前記コントローラ装置200との間で制御信号を送受信する部分である。前記したネットワークプロトコルやアプリケーションプロトコル、Webサービスなどを実行する部分でもある。 The communication control section 15 controls the image signal output from the signal output control section 14 via the IF section 16 and transmits and receives control signals to and from the controller device 200 via the IF section. It is also the part that executes the above-mentioned network protocol, application protocol, Web service, and the like.

IF部16は、撮像装置100とネットワーク303とを接続する通信IF部分である。 The IF section 16 is a communication IF section that connects the imaging device 100 and the network 303 .

異常検出部17は、撮像装置100のハードウェア、ソフトウェアに異常が発生していないかを常時あるいは定期的に監視し、異常を検出する部分である。例えば、撮像装置100が所定の設置場所から取り外された場合や画像撮影できなくなった場合、ネットワーク通信できなくなった場合など、不正アクセスがあった場合などである。 The abnormality detection unit 17 is a part that constantly or periodically monitors whether an abnormality has occurred in the hardware or software of the imaging apparatus 100 and detects an abnormality. For example, the imaging device 100 may be removed from a predetermined installation location, become unable to capture images, or become unable to perform network communication, or may be illegally accessed.

照度監視部18は、照度センサなどを利用して撮像装置100の撮影範囲の明るさを常時あるいは定期的に監視する部分である。照度が不足していることを検知した場合、制御部23にその旨を通知し、赤外LED24を照射する。 The illuminance monitoring unit 18 is a part that constantly or periodically monitors the brightness of the imaging range of the imaging device 100 using an illuminance sensor or the like. When it is detected that the illuminance is insufficient, it is notified to the control unit 23 and the infrared LED 24 is illuminated.

GPS19は、衛星から受信した位置情報から撮像装置100自身の現在位置を取得する部分である。取得した位置情報は、IF部16を介してコントローラ装置200へ通知することも可能である。 The GPS 19 is a part that acquires the current position of the imaging device 100 from position information received from satellites. The acquired position information can also be notified to the controller device 200 via the IF section 16 .

時計20は、現在の時間情報の管理、タイマー設定/解除を実行する部分である。時間情報は、NTP(Network Time Protocol)や標準電波など汎用的な技術を用いて自動調整する。 The clock 20 is a part that manages current time information and sets/cancels the timer. Time information is automatically adjusted using general-purpose techniques such as NTP (Network Time Protocol) and standard radio waves.

メモリ21は、プログラムや各種設定情報、プロパティ情報を記憶する記憶装置(ROM(Read-Only Memory)エリア、FROM(Flash ROM)エリア)、これらのプログラムやデータをロードして一時的に保管したり、ワークデータを記憶する記憶装置(RAM(Random Access Memory)エリア)である。ここで、記録装置は、内蔵メモリの他に、外付けメモリ(USBメモリやNAS(Network-Attached Storage))や可搬型媒体(マイクロフラッシュ、SDカード、磁気テープ等)を併用しても良い。 The memory 21 is a storage device (ROM (Read-Only Memory) area, FROM (Flash ROM) area) that stores programs, various setting information, and property information, and loads and temporarily stores these programs and data. , a storage device (RAM (Random Access Memory) area) for storing work data. Here, the recording device may use an external memory (USB memory or NAS (Network-Attached Storage)) or a portable medium (micro flash, SD card, magnetic tape, etc.) in addition to the built-in memory.

保守IF部22は、撮像装置100の保守員がプログラムの更新処理や故障発生時に診断するために通信するIF部分である。また、前記異常検出部17で異常を検知した場合に、遠隔にある保守サイトへ異常検知した内容を自動的に通知することも可能である。 The maintenance IF section 22 is an IF section with which a maintenance person of the imaging device 100 communicates for updating the program or diagnosing when a failure occurs. Further, when the abnormality detection unit 17 detects an abnormality, it is possible to automatically notify the remote maintenance site of the content of the detected abnormality.

制御部23は、上記した各構成要素の動作を統括的に制御する部分である。 The control unit 23 is a part that controls the operation of each component described above.

一方コントローラ装置200は、ユーザIF部201、表示部202、時計203、メモリ204、記録再生部205、通信制御部206、IF部207、カメラ管理部208、動体領域抽出部209、顔領域検出部210、顔特徴点検出部211、顔照合部212、顔DB213、制御部214から構成される。 On the other hand, the controller device 200 includes a user IF section 201, a display section 202, a clock 203, a memory 204, a recording/playback section 205, a communication control section 206, an IF section 207, a camera management section 208, a moving body area extraction section 209, and a face area detection section. 210 , a face feature point detection unit 211 , a face matching unit 212 , a face DB 213 and a control unit 214 .

ユーザIF部201は、リモコンやタッチパネル、キーボード、マウス、ボタンなどを用いてユーザがコントローラ装置200を操作する部分である。 A user IF section 201 is a section where a user operates the controller device 200 using a remote controller, touch panel, keyboard, mouse, buttons, and the like.

表示部202は、外付けあるいは内蔵のモニタに、コントローラ装置200の操作画面や、ネットワーク303経由で受信した可視画像や赤外画像、顔認証した結果、警告画面等を表示する部分である。 A display unit 202 displays an operation screen of the controller device 200, a visible image or an infrared image received via the network 303, a face authentication result, a warning screen, etc. on an external or built-in monitor.

時計203は、現在の時間情報の管理、タイマー設定/解除を実行する部分である。時間情報は、NTPや標準電波など汎用的な技術を用いて自動調整する。 A clock 203 is a part that manages current time information and sets/cancels a timer. Time information is automatically adjusted using general-purpose techniques such as NTP and standard radio waves.

メモリ204は、プログラムや各種設定情報、プロパティ情報を記憶する記憶装置(ROMエリア、FROMエリア)、これらのプログラムやデータをロードして一時的に保管したり、ワークデータを記憶する記憶装置(RAMエリア)である。ここで、記録装置は、内蔵メモリの他に、外付けメモリ(USBメモリやNAS)や可搬型媒体(マイクロフラッシュ、SDカード、DVD、Blu-ray(登録商標) Disc、磁気テープ等)を併用しても良い。 The memory 204 includes a storage device (ROM area, FROM area) for storing programs, various setting information, and property information, a storage device (RAM area) for loading and temporarily storing these programs and data, and storing work data. area). Here, in addition to the built-in memory, the recording device uses external memory (USB memory and NAS) and portable media (micro flash, SD card, DVD, Blu-ray (registered trademark) Disc, magnetic tape, etc.) You can

記録再生部205は、ネットワーク303とIF部207経由で受信した可視画像や赤外画像、これらの画像に付随したメタデータなどを前記メモリ204に記録、再生する部分である。必要に応じてこれら記録対象データの暗号・復号化、圧縮・伸長を行う。 The recording/reproducing unit 205 is a part that records and reproduces visible images and infrared images received via the network 303 and the IF unit 207 and metadata associated with these images in the memory 204 . The data to be recorded is encrypted/decrypted and compressed/decompressed as required.

通信制御部206は、ネットワーク303とIF部207経由で前記撮像装置100との間で制御信号を送受信する部分である。前記したネットワークプロトコルやアプリケーションプロトコル、Webサービスなどを実行する部分でもある。 A communication control unit 206 is a part that transmits and receives control signals between the imaging apparatus 100 via the network 303 and the IF unit 207 . It is also the part that executes the above-mentioned network protocol, application protocol, Web service, and the like.

IF部207は、コントローラ装置200とネットワーク303とを接続する通信IF部分である。 The IF section 207 is a communication IF section that connects the controller device 200 and the network 303 .

カメラ管理部208は、ネットワーク303経由で当該コントロール装置200が管理する1台以上の撮像装置100を管理する部分である。管理対象の前記撮像装置100に関する情報(例えば、IPアドレス、設置場所、メーカー名、型名、導入時期/稼動時間、機能スペック、保守連絡先など)を作成、保持、更新、削除する部分である。 The camera management unit 208 is a part that manages one or more imaging devices 100 managed by the control device 200 via the network 303 . It is a part that creates, holds, updates, and deletes information (for example, IP address, installation location, manufacturer name, model name, introduction time/operation time, function specifications, maintenance contact information, etc.) regarding the imaging device 100 to be managed. .

動体領域抽出部209は、IF部207経由で受信あるいは記録再生部205で記録した可視画像や赤外画像内に存在する人や動物、物体などの動体を抽出し、その位置情報を取得する部分である。画像内の動体を抽出する方法としては、連続する複数枚の画像(例えば、3枚)から差分画像(例えば、1枚目と2枚目の差分画像、2枚目と3枚目の差分画像)を作成し、それを比較することで動体を抽出したり、撮像画像より背景画像を生成しながら背景差分法を用いることで動体を抽出する方法などがある。 A moving body region extraction unit 209 extracts a moving body such as a person, an animal, or an object existing in a visible image or an infrared image received via the IF unit 207 or recorded by the recording/reproducing unit 205, and acquires position information thereof. is. As a method for extracting a moving object in an image, a difference image (for example, the first and second difference images, the second and third difference images, ) and comparing them to extract a moving object, or extracting a moving object by using a background subtraction method while generating a background image from a captured image.

顔領域検出部210は、IF部207経由で受信あるいは記録再生部205で記録した可視画像や赤外画像内から直接、あるいは前記動体領域抽出部209で抽出した動体領域の中から人の顔が存在する領域を検出する。検出する方法は、Viola&Johnsの積分画像とカスケード型識別器を用いた高速顔検出アルゴリズムの技術などがある。 The face area detection unit 210 detects a human face directly from the visible image or infrared image received via the IF unit 207 or recorded by the recording/reproducing unit 205, or from the moving object area extracted by the moving object area extraction unit 209. Detect areas that exist. Detection methods include Viola & Johns' high-speed face detection algorithm technology using an integral image and a cascade type classifier.

顔特徴点検出部211は、前記顔領域検出部210で検出した顔領域内の目や鼻、口端などの特徴点を検出する部分である。これにより、正確に顔の特徴を取り出せるように画像位置補正が可能となる。 The face feature point detection unit 211 is a part that detects feature points such as the eyes, nose, and corners of the mouth in the face area detected by the face area detection unit 210 . This makes it possible to correct the image position so that facial features can be extracted accurately.

顔照合部212は、前記顔特徴点検出部211で検出した特徴点の中から、個人を識別するために最適な特徴を選択し、顔DB213を用いてマッチングを行う部分である。ここで、顔を見分けるための特徴としては、顔領域内の濃淡情報全体を用いる方法(例えば、主成分分析を応用した固有法)や、顔領域内の局所的な濃淡変化の間隔と方向成分を特徴量とする方法(例えば、Elastic Bunch Graph Matching)、これら両方の方法を融合した方法などが利用できる。また、マッチングする方法として、最近傍法、線形判別分析などが適用できる。 The face matching unit 212 is a part that selects the optimum feature for identifying an individual from the feature points detected by the face feature point detection unit 211 and performs matching using the face DB 213 . Here, as a feature for distinguishing a face, a method using the entire grayscale information in the face region (for example, an eigenmethod that applies principal component analysis), or a method using the interval and direction component of local grayscale changes in the face region. can be used as a feature amount (for example, Elastic Bunch Graph Matching), a method combining these two methods, and the like. Also, as a matching method, a nearest neighbor method, a linear discriminant analysis, or the like can be applied.

顔DB213は、前記顔照合部212でマッチングするために予め顔画像を登録したデータを内蔵あるいは外付けの記憶媒体に格納する部分である。これらの登録した画像から照明変化や顔向き変化などを人工的に生成した画像を登録することもできる。例えば、入退室管理システムでは特定のエリアに入ることが許可されたユーザや従業員であるユーザの顔画像を登録する。また、特定の場所で顔認証した結果、本人であると確認できた画像を追加で登録しておくことも可能である。ここで、この顔DB213はコントローラ装置200ではなく、ネットワーク303経由でアクセス可能な外部のDBでも良い。例えば、空港などの監視カメラシステムでは、警察や法的機関から提供された容疑者やテロリストなどの顔DBを利用する。また、複数のコントローラ装置間でDBを共有するようにしても良い。 The face DB 213 is a part that stores data in which face images are registered in advance for matching by the face matching unit 212 in an internal or external storage medium. It is also possible to register an image that is artificially generated from these registered images with changes in lighting, face orientation, and the like. For example, in an entry/exit management system, facial images of users who are permitted to enter a specific area or users who are employees are registered. It is also possible to additionally register an image in which the identity of the individual is confirmed as a result of facial recognition performed at a specific location. Here, the face DB 213 may be an external DB accessible via the network 303 instead of the controller device 200 . For example, surveillance camera systems at airports and the like use face databases of suspects, terrorists, and the like provided by police and legal institutions. Also, the DB may be shared among a plurality of controller devices.

制御部214は、上記した各構成要素の動作を統括的に制御する部分である。また、前記顔照合部212でマッチングした結果、予め登録されたユーザでない(不審者など)場合や容疑者と一致した場合には、所定のフォーマットに基づくレポートを自動再生し、管理者や警察の連絡先に通知すると共に該レポートを送付することが可能となる。 The control unit 214 is a part that controls the operation of each component described above. As a result of matching by the face matching unit 212, if the user is not a pre-registered user (such as a suspicious person) or if the match is with a suspect, a report based on a predetermined format is automatically played back, and an administrator or police report is generated. It is possible to notify the contact and send the report.

図2は、カメラ部100の撮像センサ部12の構成例を示す。 FIG. 2 shows a configuration example of the imaging sensor unit 12 of the camera unit 100. As shown in FIG.

撮像センサ部12は、センサ本体2、カラーフィルタ3、カバーガラス4、DBPF5から構成される。 The imaging sensor unit 12 is composed of a sensor main body 2, a color filter 3, a cover glass 4, and a DBPF5.

センサ本体2は、CCD(Charge Coupled Device)イメージセンサであり、各画素に受光素子としてフォトダイオードが配置されている部分である。CCDイメージセンサの代わりにCMOS(Complementary Metal・Oxide Semiconductor)イメージセンサでも良い。 The sensor main body 2 is a CCD (Charge Coupled Device) image sensor, and is a portion in which a photodiode is arranged as a light receiving element in each pixel. A CMOS (Complementary Metal-Oxide Semiconductor) image sensor may be used instead of the CCD image sensor.

カラーフィルタ3は、上記センサ本体2に設けられており、センサ本体2の各画素に対して赤(R)、緑(G)、青(B)、赤外(IR)の各領域を所定の配列で配置した部分である。図4に本実施の形態で使用するカラーフィルタのバリエーションを示す。 The color filter 3 is provided in the sensor main body 2, and each pixel of the sensor main body 2 has red (R), green (G), blue (B), and infrared (IR) regions. This is the part arranged in the array. FIG. 4 shows variations of color filters used in this embodiment.

カバーガラス4は、前記センサ本体2およびカラーフィルタ3上を覆って保護するものである。 A cover glass 4 covers and protects the sensor main body 2 and the color filter 3 .

DBPF5は、前記カバーガラス4に成膜された光学フィルタである。DBPF5は、可視光帯域に透過特性を有し、可視光帯域の長波長側に隣接する第1の波長帯域に遮断特性を有し、前記第1の波長帯域内の一部分である第2の波長帯域に透過特性を有する光学フィルタである。なお、DBPF5の配置位置は限定されるものではなく、例えばレンズ11に設けても良い。 A DBPF 5 is an optical filter formed on the cover glass 4 . The DBPF 5 has transmission characteristics in the visible light band, has cutoff characteristics in a first wavelength band adjacent to the long wavelength side of the visible light band, and has a second wavelength that is a part of the first wavelength band. It is an optical filter having transmission characteristics in the band. Incidentally, the arrangement position of the DBPF 5 is not limited, and it may be provided on the lens 11, for example.

図3は、前記カラーフィルタ3のR,G,B,IRの各フィルタの透過率スペクトルを示し、縦軸が透過率、横軸が波長となっている。グラフにおける波長の範囲は、可視光帯域と近赤外帯域の一部を含むもので、例えば300nm~1100nmの波長範囲を示す。 FIG. 3 shows transmittance spectra of the R, G, B, and IR filters of the color filter 3, where the vertical axis represents the transmittance and the horizontal axis represents the wavelength. The wavelength range in the graph includes part of the visible light band and the near-infrared band, for example, the wavelength range of 300 nm to 1100 nm.

Rのフィルタ部は、グラフのR(二重線)に示すように、波長600nmで略最大の透過率となり、その長波長側は、1000nmを超えても透過率が略最大の状態が維持された状態となる。 As shown by R (double line) in the graph, the R filter portion has a substantially maximum transmittance at a wavelength of 600 nm, and the transmittance on the long wavelength side is maintained at a substantially maximum state even beyond 1000 nm. state.

Gのフィルタ部は、グラフのG(間隔の広い破線)に示すように、波長が540nm程度の部分に透過率極大となるピークを有し、その長波長側の620nm程度の部分に、透過率極小となる部分がある。また、Gのフィルタ部は、透過率極小となる部分より長波長側が上昇傾向となり、850nm程度で透過率が最大となる。それより長波長側では、1000nmを超えても透過率が最大となった状態となっている。 The G filter portion has a maximum transmittance peak at a wavelength of about 540 nm, and a transmittance peak at about 620 nm on the longer wavelength side, as indicated by G (dashed line with wide intervals) in the graph. There are parts that are extremely small. In addition, in the G filter portion, the transmittance tends to increase on the long wavelength side from the portion where the transmittance is minimal, and the transmittance becomes maximum at about 850 nm. On the longer wavelength side, the transmittance is maximized even if the wavelength exceeds 1000 nm.

Bのフィルタ部は、グラフのB(間隔の狭い破線)に示すように、波長が460nm程度の部分に透過率が極大となるピークを有し、その長波長側の630nm程度の部分に、透過率が極小となる部分がある。また、それより長波長側が上昇傾向となり、860nm程度で透過率が最大となり、それより長波長側では、1000nmを超えても透過率が最大となった状態となっている。 The filter part B has a maximum transmittance peak at a wavelength of about 460 nm, as shown by B (a dashed line with a narrow interval) in the graph, and has a transmittance peak at a wavelength of about 630 nm on the longer wavelength side. There is a part where the rate is extremely small. In addition, there is an upward trend on the longer wavelength side, and the transmittance reaches a maximum at about 860 nm, and on the longer wavelength side, the transmittance reaches a maximum even when it exceeds 1000 nm.

IRのフィルタ部は、780nm程度から短波長側の光を遮断し、1020nm程度から長波長側の光を遮断し、820nm~920nm程度の部分が透過率最大となっている。 The IR filter section blocks short-wavelength light from about 780 nm, blocks long-wavelength light from about 1020 nm, and has the maximum transmittance in the range of about 820 nm to 920 nm.

R,G,B,IRの各フィルタ部の透過率スペクトルは、図3等に示すものに限られるものではないが、現在、一般的に使用されているカラーフィルタ3では、これに近い透過率スペクトルを示すと思われる。なお、透過率を示す横軸の1は、光を100%透過することを意味するものではなく、カラーフィルタ3において、例えば、最大の透過率を示す。 The transmittance spectrum of each of the R, G, B, and IR filter portions is not limited to that shown in FIG. spectrum. Note that 1 on the horizontal axis indicating the transmittance does not mean that 100% of light is transmitted, but indicates the maximum transmittance in the color filter 3, for example.

ここで、本実施の形態で使用するDBPF5は、グラフでDBPF(実線)に示すように、DBPF(VR)で示す可視光帯域と、可視光帯域に対して長波長側の少し離れた位置のDBPF(IR)で示す赤外帯域(第2の波長帯域)の2つの帯域の透過率が高くなっている。また、可視光帯域の透過率の高い帯域としてのDBPF(VR)は、例えば、370nm~700nm程度の波長帯域となっている。また、赤外側で透過率が高い第2の波長帯域としてのDBPF(IR)は、例えば、830nm~970nm程度の帯域となっている。 Here, as shown by DBPF (solid line) in the graph, the DBPF 5 used in the present embodiment has a visible light band indicated by DBPF(VR) and a position slightly distant from the visible light band on the long wavelength side. The transmittance is high in two bands of the infrared band (second wavelength band) indicated by DBPF(IR). DBPF (VR) as a band with high transmittance in the visible light band is, for example, a wavelength band of approximately 370 nm to 700 nm. DBPF (IR) as a second wavelength band having high transmittance in the infrared region is, for example, a band of approximately 830 nm to 970 nm.

本実施の形態では、上述のカラーフィルタ3の各フィルタ部の透過率スペクトルと、DBPF5の透過率スペクトルの関係が以下のように規定されている。すなわち、DBPF5の透過率スペクトルの赤外光を透過する第2の波長帯域となるDBPF(IR)は、Rのフィルタ部、Gのフィルタ部、Bのフィルタ部の全てがほぼ最大の透過率となって各フィルタ部で透過率が略同じとなる図2に示す波長帯域A内に含まれ、かつ、IRのフィルタ部の最大の透過率で光を透過する波長帯域B内に含まれるようになっている。 In this embodiment, the relationship between the transmittance spectrum of each filter portion of the color filter 3 and the transmittance spectrum of the DBPF 5 is defined as follows. That is, in the DBPF (IR), which is the second wavelength band for transmitting infrared light in the transmittance spectrum of the DBPF 5, the R filter portion, the G filter portion, and the B filter portion all have substantially maximum transmittance. 2 in which the transmittance is substantially the same in each filter portion and within the wavelength band B in which light is transmitted with the maximum transmittance of the IR filter portion. It's becoming

ここで、R,G,Bの各フィルタ部の透過率が同じになる波長帯域Aとは、各フィルタ部の透過率の差が透過率で10%以下である部分とする。なお、この波長帯域Aより短波長側では、透過率が略最大のRのフィルタ部に対して、G、Bのフィルタ部の透過率が低くなる。DBPF5では、このR,G,Bの各フィルタ部の透過率に差がある部分が、可視光帯域の透過率が高い部分であるDBPF(VR)と、赤外光帯域の第2の波長帯域の透過率の高い部分であるDBPF(IR)との間のDBPF5の光を略遮断する透過率が極小となる部分に対応する。すなわち、赤外側では、R,G,Bの各フィルタ部の透過率の差が大きくなる部分の光の透過がカットされ、それより長波長側で各フィルタ部の透過率が最大となって透過率が同じになる波長帯域Aで光を透過するようになっている。 Here, the wavelength band A in which the R, G, and B filter portions have the same transmittance is defined as a portion where the transmittance difference between the filter portions is 10% or less. On the short wavelength side of this wavelength band A, the transmittances of the G and B filter portions are lower than that of the R filter portion, which has substantially the maximum transmittance. In the DBPF 5, the portions with different transmittances of the R, G, and B filter portions are the DBPF (VR), which is a portion with a high transmittance in the visible light band, and the second wavelength band in the infrared light band. It corresponds to a portion where the transmittance of the DBPF 5 between the DBPF 5 and the DBPF (IR), which is a portion with a high transmittance, is minimal. That is, in the infrared region, transmission of light is cut in portions where the difference in transmittance between the R, G, and B filter portions is large, and the transmittance of each filter portion becomes maximum on the longer wavelength side. It transmits light in the wavelength band A in which the ratio becomes the same.

以上のことから、本実施の形態において、赤外光カットフィルタに代えて用いられるDBPF5では、可視光帯域だけではなく、赤外光側の第2の波長帯域にも光を透過する領域があるため、可視光によるカラー撮影に際して、第2の波長帯域を通過した光の影響を受けることになる。しかし、上述のように第2の波長帯域がR,G,Bの各フィルタ部で透過率が異なる部分の光を透過せず、各フィルタ部の透過率が最大となって同じ透過率となる波長帯域の光だけを透過するようになっている。 From the above, in the present embodiment, the DBPF 5 used in place of the infrared light cut filter has a region that transmits light not only in the visible light band but also in the second wavelength band on the infrared side. Therefore, color imaging with visible light is affected by light that has passed through the second wavelength band. However, as described above, the second wavelength band does not transmit the light of the portions where the transmittance is different in each of the R, G, and B filter portions, and the transmittance of each filter portion becomes the maximum and becomes the same transmittance. Only light in the wavelength band is transmitted.

また、DBPF5の第2の波長帯域においては、IRのフィルタ部で透過率が最大となる部分の光を透過するようになっている。したがって、同じ光が照射される極めて近接した4つの画素にR,G,B,IRのフィルタ部がそれぞれ設けられていると仮定した場合に、第2の波長帯域においては、Rのフィルタ部、Gのフィルタ部、Bのフィルタ部、IRのフィルタ部で同様に光が通過することになり、赤外側の光としては、IRを含む各フィルタ部で同じ光量の光が撮像センサ本体のフォトダイオードに至ることになる。すなわち、R,G,Bの各フィルタを透過する光のうちの赤外側の第2の波長帯域を通過する光の光量は、IRのフィルタ部を通過する光の光量と同様となる。上述のように仮定した場合に、基本的にR,G,Bの各フィルタを透過した光を受光したセンサ本体2からの上述のように仮定された画素の出力信号とIRのフィルタを通過した光を受光したセンサ本体2からの上述のように仮定された画素の出力信号との差分が、各R,G,Bのフィルタ部で通過した赤外側の光をカットしたR,G,Bそれぞれの可視光部分の出力信号となる。 In addition, in the second wavelength band of the DBPF 5, the IR filter section transmits light in a portion where the transmittance is maximum. Therefore, assuming that four pixels that are irradiated with the same light and are extremely close to each other are provided with R, G, B, and IR filter units, in the second wavelength band, the R filter units, Light passes through the G filter portion, the B filter portion, and the IR filter portion in the same manner. It will reach That is, the amount of light passing through the second wavelength band on the infrared side of the light passing through each of the R, G, and B filters is the same as the amount of light passing through the IR filter section. When assuming as described above, the pixel output signal assumed as described above from the sensor main body 2 that basically received the light that passed through each of the R, G, and B filters and the IR filter The difference between the output signal of the pixel assumed as described above from the sensor body 2 that received the light is the R, G, and B that cut the infrared-side light that has passed through the respective R, G, and B filter units. is the output signal of the visible light portion of

実際には、カラーフィルタ3では、センサ本体2の各画素にR,G,B,IRのいずれか1つのフィルタ部が配置されることになり、各画素に照射される各色の光のそれぞれの光量が異なるものとなる可能性が高い。そのため、例えば、各画素において、周知の内挿法(補間法)を用いて、各画素の各色の輝度を求め、この補間された各画素のR,G,Bの輝度と、同じく補間されたIRの輝度との差分をそれぞれR,G,Bの輝度とすることが可能である。なお、R,G,Bの各色の輝度から赤外光成分を除く画像処理方法は、これに限られるものではなく、最終的にR,G,Bの各輝度から第2の波長帯域を通過した光の影響をカットできる方法であれば、いずれの方法を用いても良い。いずれの方法においても、DBPF5が、赤外側でR,G,Bのフィルタ部の透過率が10%より異なる部分、すなわち、透過率が所定割合より異なる部分をカットしているので、各画素において、赤外光の影響を除く処理が容易となる。 In fact, in the color filter 3, each pixel of the sensor main body 2 is provided with one of R, G, B, and IR filter portions, and each color of light irradiated to each pixel is There is a high possibility that the amount of light will be different. Therefore, for example, in each pixel, the brightness of each color of each pixel is obtained using a known interpolation method (interpolation method), and the brightness of each color of each pixel that has been interpolated and the brightness of R, G, and B that have been similarly interpolated It is possible to use the difference from the IR luminance as the luminance of R, G, and B, respectively. The image processing method for removing the infrared light component from the luminance of each color of R, G, and B is not limited to this. Any method may be used as long as the method can cut off the influence of light. In any method, since the DBPF 5 cuts a portion where the transmittance of the R, G, and B filter portions differs by more than 10% in the infrared region, that is, a portion where the transmittance differs from a predetermined ratio, in each pixel , processing to remove the influence of infrared light is facilitated.

以上、上記撮像センサ部12を用いることで、カラー撮影と、赤外光撮影との両方が可能な撮像装置100を実現できる。一般的には、通常の撮影をカラー撮影で行い、夜間に可視光の照明を用いることなく、人間には認識困難な赤外光の照明を用いて赤外撮影することが考えられる。例えば、各種監視カメラ等において、夜間照明を必要としないか、夜間照明されないことが好ましい場所での夜間撮影に際し、赤外光照明を用いた赤外光による夜間撮影を行うことが考えられる。また、野生動物の観察のための昼間の撮影と夜間の撮影などの用途にも用いることができる。 As described above, by using the imaging sensor unit 12, the imaging apparatus 100 capable of both color imaging and infrared imaging can be realized. In general, it is conceivable that normal photographing is performed in color, and infrared photographing is performed using infrared light, which is difficult for humans to recognize, without using visible light illumination at night. For example, in various surveillance cameras and the like, it is conceivable to perform night photography with infrared light using infrared light illumination when night photography is performed in places where night lighting is not required or where night lighting is not desirable. It can also be used for daytime photography and nighttime photography for observing wild animals.

赤外光撮影を夜間撮影として用いる場合には、赤外光であっても可視光と同様に、夜間は光量が不足するので、赤外光照明が必要となる。 When infrared light photography is used for nighttime photography, infrared light illumination is required because the amount of light is insufficient at night, even with infrared light, as with visible light.

図21に示すDBPF5の透過率スペクトル(A)と(B)は、R,G,B,IRの各フィルタ部の透過率スペクトルと、赤外光照明用の光、例えば、照明用赤外光LEDの発光スペクトルを考慮して決定されたものである。 The transmittance spectra (A) and (B) of DBPF5 shown in FIG. It is determined in consideration of the emission spectrum of the LED.

図21では、図2と同様の各色のフィルタ部の透過率スペクトルR,G,B,IRと、DBPF5の透過率スペクトルDBPFに加えて、LED照明の発光スペクトルIR-lightが図示されている。 FIG. 21 shows the transmittance spectra R, G, B, and IR of the respective color filters similar to FIG. 2, the transmittance spectrum DBPF of the DBPF 5, and the emission spectrum IR-light of the LED lighting.

図21(A)に示すDBPFの赤外光を透過する部分であるDBPF(IR)で示す第2の波長帯域は、図2に示すDBPFと同様に、Rのフィルタ部、Gのフィルタ部、Bのフィルタ部の全てが略最大の透過率となって各フィルタ部で透過率が略同じとなる図2に示す波長帯域A内に含まれ、かつ、IRのフィルタ部の最大の透過率で光を透過する波長帯域B内に含まれるようになっている。 The second wavelength band indicated by DBPF (IR), which is the portion of the DBPF shown in FIG. 21A that transmits infrared light, is similar to the DBPF shown in FIG. All of the B filter portions have substantially maximum transmittance, and each filter portion has substantially the same transmittance. It is included in the wavelength band B through which light is transmitted.

それに加えて、上述の波長帯域Aと波長帯域Bとの両方に含まれる赤外光照明の発光スペクトルのピークとなる波長帯域の略全体がDBPF(IR)の波長帯域に含まれるようになっている。なお、赤外光撮影を夜間の自然光ではなく、赤外光照明下で行う場合にDBPF(IR)で示す第2の波長帯域が赤外光照明の光学スペクトルのピーク幅より広い必要はなく、赤外光照明のスペクトルが上述の波長帯域Aおよび波長帯域Bの両方に含まれる場合に、赤外光照明の発光スペクトルの例えば860程度を頂点とするピークのピーク幅と略同様のピーク幅で第2の波長帯域としてDBPF(IR)で示されるDBPF5の透過率のピーク部分を設けても良い。 In addition, substantially the entire wavelength band that is the peak of the emission spectrum of infrared light illumination included in both the wavelength band A and the wavelength band B is included in the wavelength band of DBPF (IR). there is In addition, when infrared light photography is performed under infrared light illumination instead of natural light at night, the second wavelength band indicated by DBPF (IR) need not be wider than the peak width of the optical spectrum of infrared light illumination. When the spectrum of the infrared light illumination is included in both the wavelength band A and the wavelength band B described above, the peak width of the peak whose peak is, for example, about 860 in the emission spectrum of the infrared light illumination. A transmittance peak portion of the DBPF 5 indicated by DBPF(IR) may be provided as the second wavelength band.

すなわち、図21(A)においては、IR-lightで示す赤外光照明の発光スペクトルにおけるピークが上述の波長帯域Aおよび波長帯域Bの短波長側にあり、DBPF(IR)で示すDBPFの第2の波長帯域が波長帯域Aおよび波長帯域Bの短波長側部分のIR-lightにおける発光スペクトルのピークと重なるようになっている。 That is, in FIG. 21A, the peak in the emission spectrum of the infrared light illumination indicated by IR-light is on the short wavelength side of the wavelength bands A and B described above, and the peak of the DBPF indicated by DBPF(IR) is on the short wavelength side. 2 overlaps with the peak of the emission spectrum in IR-light on the short wavelength side of the wavelength band A and the wavelength band B. FIG.

また、図21(B)に示すグラフも、(A)と同様に、図2に示すグラフに赤外光照明の発光スペクトルを加えるとともに、DBPF5の透過率スペクトルの赤外側の透過率が高い部分であるDBPF(IR)で示す第2の波長帯域を上述の赤外光照明のIR-lightで示す発光スペクトルのピークに合わせたものである。 Similarly to (A), the graph shown in FIG. 21(B) also shows the graph shown in FIG. The second wavelength band indicated by DBPF(IR) is matched with the peak of the emission spectrum indicated by IR-light of the above infrared light illumination.

図21(B)においては、赤外光照明として、(A)よりも発光スペクトルのピークの波長が長いものを用いており、このピークは、上述の波長帯域Aおよび波長帯域Bに含まれるとともに、波長帯域Aおよび波長帯域Bの長波長側に存在する。それに対応してDBPF5のDBPF(IR)で示す第2の波長帯域が上述の波長帯域Aおよび波長帯域B内で赤外照明のIR-lightで示されるピークと重なるように設けられている。 In FIG. 21(B), infrared light illumination having a longer peak wavelength in the emission spectrum than that in (A) is used, and this peak is included in the above-described wavelength band A and wavelength band B. , on the longer wavelength side of the wavelength band A and the wavelength band B, respectively. Correspondingly, the second wavelength band indicated by DBPF(IR) of the DBPF 5 is provided so as to overlap the peak indicated by IR-light of the infrared illumination in the wavelength bands A and B described above.

DBPF5の第2の波長帯域は、図2、図21のいずれに示すものであっても良く、第2の波長帯域が上述の波長帯域Aと波長帯域Bとの両方に含まれていれば良い。また、夜間の赤外光撮影で用いられる赤外光照明の発光スペクトルのピークとなる波長帯域が決まっている場合に、その波長帯域を上述の波長帯域Aと波長帯域Bの両方に含まれるようにすると共に、赤外光照明の発光スペクトルのピークにDBPF5の第2の波長帯域を合わせることが好ましい。 The second wavelength band of the DBPF 5 may be that shown in either FIG. 2 or FIG. 21, as long as the second wavelength band is included in both the wavelength band A and the wavelength band B described above. . In addition, when the wavelength band that is the peak of the emission spectrum of the infrared light illumination used for nighttime infrared photography is determined, the wavelength band should be included in both the above-described wavelength band A and wavelength band B. In addition, it is preferable to match the second wavelength band of the DBPF 5 with the peak of the emission spectrum of the infrared light illumination.

このような撮像センサでは、DBPF5の赤外側で光を透過する第2の波長帯域が、R,G,B,IRの各フィルタ部の赤外側で、各フィルタ部の透過率が最大となって、各フィルタ部の透過率が同じと波長帯域Aに含まれるとともに、IRのフィルタ部の透過率が最大となる波長帯域Bに含まれる。言い換えれば、可視光帯域より長波長側で、R,G,Bの各フィルタの透過率がRのフィルタ部だけ最大となって、G、Bのフィルタ部は透過率が最大となっていないことにより、R,G,Bの各フィルタ部の透過率が同じとならずに異なる部分の光は、DBPF5によりカットされる。 In such an image sensor, the second wavelength band in which light is transmitted on the infrared side of the DBPF 5 is on the infrared side of each of the R, G, B, and IR filter portions, and the transmittance of each filter portion is maximized. , is included in the wavelength band A when the transmittance of each filter unit is the same, and is included in the wavelength band B where the transmittance of the IR filter unit is maximum. In other words, on the longer wavelength side than the visible light band, the transmittance of each of the R, G, and B filters is maximized only in the R filter portion, and the transmittance of the G and B filter portions is not maximized. Therefore, the DBPF 5 cuts the light in the portions where the transmittances of the respective R, G, and B filter portions are not the same and are different.

すなわち、R,G,B,IRの各フィルタ部では、赤外側で第2の波長帯域の光が透過するようになっていることから、各フィルタ部における赤外側の透過率が全て同じになる。第2の波長帯域となる光が同じ光量で照射されれば、R,G,B,IRの各フィルタ部における透過光量が同じになる。これにより、上述のようにR,G,Bの各フィルタ部に対応する画素からの出力信号に基づく色を補正し、カラー撮影時の色の第2の波長帯域を通過する赤外光による影響を抑制した画像を容易に得ることができる。 That is, since the R, G, B, and IR filter portions transmit the light of the second wavelength band in the infrared region, the transmittance in the infrared region in each filter portion is the same. . If the light of the second wavelength band is irradiated with the same amount of light, the amount of light transmitted through each of the R, G, B, and IR filter portions will be the same. As a result, as described above, the colors based on the output signals from the pixels corresponding to the respective R, G, and B filter sections are corrected, and the influence of infrared light passing through the second wavelength band on the colors during color photography is corrected. can be easily obtained.

また、第2の波長帯域を上述の波長帯域Aと波長帯域Bに含まれる赤外光照明の発光スペクトルのピークに対応させることにより、赤外光照明の光を効率的に用いられると共に、第2の波長帯域の幅を狭めて、カラー撮影時に、第2の波長帯域を通過する赤外光の影響を小さくすることができる。 Further, by making the second wavelength band correspond to the peak of the emission spectrum of the infrared light illumination included in the wavelength band A and the wavelength band B described above, the light of the infrared light illumination can be efficiently used, By narrowing the width of the second wavelength band, it is possible to reduce the influence of infrared light passing through the second wavelength band during color photography.

図5は、上記信号処理部12における信号処理をブロック図で示したものである。 FIG. 5 is a block diagram showing signal processing in the signal processing section 12. As shown in FIG.

図4に記載したカラーフィルタを搭載した前記撮像センサ部12からの出力信号に対する処理概要について説明する。 An outline of processing for an output signal from the imaging sensor unit 12 equipped with the color filter shown in FIG. 4 will be described.

R,G,B,IRの各画素の出力信号は、各内装処理ブロック21r、21g、21b、21irに送られる。各内装処理ブロック21r、21g、21b、21irでは、周知の方法を用いた内挿処理(補間処理)を用いて、上述のカラーフィルタ3の各フレームの画像データにおいて、それぞれ、全ての画素が赤Rで表された画像データ20r、全ての画素が緑Gで表された画像データ20gと、全ての画素が青Bで表された画像データ20bと、全ての画素が赤外IRで表された画像データ20irとするようにR,G,B,IRの信号を変換する。 Output signals of pixels of R, G, B, and IR are sent to respective internal processing blocks 21r, 21g, 21b, and 21ir. In each of the internal processing blocks 21r, 21g, 21b, and 21ir, interpolation processing (interpolation processing) using a well-known method is performed so that all pixels in the image data of each frame of the color filter 3 are red. Image data 20r represented in R, image data 20g represented in all pixels in green G, image data 20b represented in all pixels in blue B, and image data 20b represented in all pixels in infrared IR. The R, G, B, and IR signals are converted to form image data 20ir.

次に、赤外光除去信号作成ブロック22r、22g、22b、22irにおいて、上述の第2の波長帯域から受光される赤外光の影響を除去するために、R,G,Bの各色の信号から減算する信号をIRの信号から生成する。この赤外光除去信号作成ブロック22r、22g、22bでR,G,B毎に作成された信号を、R,G,Bの各色の信号から減算する。この場合に、上述のように同じ画素では、基本的にR,G,Bの各信号からIRの信号を除去すればいいので、処理が容易になる。実際には、各画素のフィルタ部の特性等により各色の画素毎に感度が異なるので、R,G,Bの画像毎にR,G,Bの各信号から減算する信号をIRの信号から作成する。 Next, in the infrared light elimination signal generation blocks 22r, 22g, 22b, and 22ir, signals of each color of R, G, and B are generated in order to eliminate the influence of the infrared light received from the second wavelength band. A signal to be subtracted from is generated from the signal of IR. The signals generated for each of R, G, and B by the infrared light removal signal generation blocks 22r, 22g, and 22b are subtracted from the signals of each color of R, G, and B. In this case, in the same pixel as described above, the IR signal is basically removed from each of the R, G, and B signals, so processing is facilitated. Actually, since the sensitivity differs for each pixel of each color due to the characteristics of the filter section of each pixel, a signal to be subtracted from each of the R, G, and B signals is created from the IR signal for each of the R, G, and B images. do.

次に、R,G,Bの各信号は、画像処理ブロック23において、行列式を用いてR,G,Bの各信号を変換して色を補正する周知のRGBマトリックス処理と、画像で白となる部分でR,G,Bの各信号の出力値が同じとなるようにする周知のホワイトバランス処理、ディスプレイ等への画像出力のための補正である周知のガンマ補正を行う。次いで、輝度マトリックスブロック24において、R,G,Bの各色の信号に係数を乗算して輝度Yの信号を生成する。また、青Bの信号と、赤Rの信号から輝度Yの信号を除算することにより、R-YとB-Yの色差信号を算出し、Y、R-Y、B-Yの信号を出力する。 Next, the R, G, and B signals are processed in an image processing block 23 using well-known RGB matrix processing, which transforms the R, G, and B signals using a determinant to correct the colors, and white in the image. Well-known white balance processing for making the output values of the respective R, G, and B signals the same, and well-known gamma correction, which is correction for image output to a display, etc. Next, in the luminance matrix block 24, the R, G, and B signals are multiplied by a coefficient to generate a luminance Y signal. Further, by dividing the luminance Y signal from the blue B signal and the red R signal, the RY and BY color difference signals are calculated, and the Y, RY, and BY signals are output. do.

また、IRの信号は、基本的に白黒のグラディエーションの画像として出力される。 Also, the IR signal is basically output as a black-and-white gradation image.

図6は、図1で示した撮像装置100とコントローラ装置200の間で可視画像や赤外画像、制御コマンドをやり取りするための通信フローを示す。ここで、通信フローは独自通信プロトコルでも良いが、例えば監視カメラの標準通信としてONVIF(Open Network Video Interface Forum)が策定したプロトコルなどを使用しても良い。 FIG. 6 shows a communication flow for exchanging visible images, infrared images, and control commands between the imaging device 100 and the controller device 200 shown in FIG. Here, the communication flow may use a unique communication protocol, but may also use, for example, a protocol established by ONVIF (Open Network Video Interface Forum) as standard communication for surveillance cameras.

最初に、撮像装置100を所定の場所に設置し、ネットワーク303に接続した後、電源を投入すると、該撮像装置100が起動し、撮像装置100の制御部23は初期設定処理を実行する。例えば、メモリ21に格納したプログラムのロードやGPS19の現在場所取得など、主にハードウェアの起動やソフトウェアの初期パラメータ設定処理などである。なお、PoE(Power Over Ethernet)を利用し、PoE対応ハブを利用してネットワーク303に接続したタイミングで起動するようにしても良い(ステップ601)。 First, when the imaging device 100 is installed at a predetermined location and connected to the network 303 and then turned on, the imaging device 100 is activated, and the control unit 23 of the imaging device 100 executes initialization processing. For example, loading of a program stored in the memory 21, acquisition of the current location of the GPS 19, etc., mainly start-up of hardware, initial parameter setting processing of software, and the like. It should be noted that PoE (Power Over Ethernet) may be used, and the PoE compliant hub may be used to activate at the timing of connecting to the network 303 (step 601).

必要な初期設定処理が終了すると、撮像装置100の制御部23は、通信制御部15やIF部16で使用するIPアドレスを設定する。IPアドレスは保守IF部22でPCやパッド端末などを直接接続し、Static IPアドレスを設定する方法や、DHCP(Dynamic Host Configuration Protocol )を使用して自動的にIPアドレスを設定する方法など、汎用のネットワークプロトコルを使用して設定する(ステップ602)。 After completing the necessary initial setting processing, the control unit 23 of the imaging device 100 sets IP addresses used by the communication control unit 15 and the IF unit 16 . The IP address can be set by a general-purpose method such as a method in which a PC or pad terminal is directly connected to the maintenance IF unit 22 and a static IP address is set, or a method in which an IP address is automatically set using DHCP (Dynamic Host Configuration Protocol). network protocol (step 602).

IPアドレスの設定が終了すると、撮像装置100の制御部23は通信制御部15に指示して、自身の存在をコントローラ装置200に通知する。ネットワーク上に存在する装置を自動発見する方法としてはUPnP(Universal Plug and Play)やWS-Discovery(Web Services Dynamic Discovery)などのプロトコルを利用しても良い。また、通知する際に、自身のメーカー名や型名、設置場所、日時などを含めても良い(ステップ603)。この際、設置場所は、予め初期設定された情報やGPS19から取得した情報でも良い。また、GPS19や照度監視部18を用いて屋外か屋内かを判定した情報を含んでも良い。 After setting the IP address, the control unit 23 of the imaging device 100 instructs the communication control unit 15 to notify the controller device 200 of its own existence. Protocols such as UPnP (Universal Plug and Play) and WS-Discovery (Web Services Dynamic Discovery) may be used as methods for automatically discovering devices existing on the network. In addition, when notifying, the manufacturer name, model name, installation location, date and time, etc. may be included (step 603). At this time, the installation location may be preset information or information acquired from the GPS 19 . Also, information obtained by determining whether the location is outdoors or indoors using the GPS 19 or the illuminance monitoring unit 18 may be included.

前記通知を受信したコントローラ装置200の制御部214は、撮像装置100のIPアドレスを取得することで、撮像装置100の存在を認識することができる。制御部214は、表示部202を介して新しい撮像装置100が接続された旨を管理者に通知し、自分がその撮像装置100を管理するか否かの管理者からの指示を待つ。ユーザIF部201経由で管理者からの指示があった場合、あるいは、当該コントローラ装置200が現在管理している撮像装置100の数を確認し、最大数に達していない場合には、自動的に通信制御部206に指示して、前記撮像装置100に対して搭載機能情報の取得要求を送信する(ステップ605)。 The control unit 214 of the controller device 200 that has received the notification can recognize the existence of the imaging device 100 by acquiring the IP address of the imaging device 100 . The control unit 214 notifies the administrator via the display unit 202 that the new imaging device 100 has been connected, and waits for an instruction from the administrator as to whether or not to manage the imaging device 100 by itself. If there is an instruction from the administrator via the user IF unit 201, or if the number of imaging devices 100 currently managed by the controller device 200 is checked, and if the maximum number has not been reached, the The communication control unit 206 is instructed to transmit a request to acquire the installed function information to the imaging device 100 (step 605).

前記機能情報取得要求を受信した撮像装置100の制御部23は、メモリ21に格納した機能情報を取得し、通信制御部15に指示して該機能情報をコントローラ装置200に送信する。機能情報は、例えば、装置管理情報(ネットワークやシステム、セキュリティに関するサポート有無やパラメータ値)や撮像装置性能情報(逆光補正や明るさ、コントラスト、ホワイトバランス、フォーカス調整、ワイドダイナミックレンジなどの画質に関するパラメータ値や、解像度、フレームレート、コーデック種別などのメディアのプロファイルに関するパラメータ値)、PTZ(パン・チルト・ズーム)機能情報(座標系の定義、可動パラメータ、プリセットポジションなど)、解析機能情報(サポートする解析機能や認証の種類、解析結果のフォーマットなど)がある(ステップ606)。 The control unit 23 of the imaging device 100 that has received the function information acquisition request acquires the function information stored in the memory 21 and instructs the communication control unit 15 to transmit the function information to the controller device 200 . Functional information includes, for example, device management information (support availability and parameter values related to networks, systems, and security), imaging device performance information (backlight correction, brightness, contrast, white balance, focus adjustment, parameters related to image quality such as wide dynamic range, etc.). values, media profile parameters such as resolution, frame rate, and codec type), PTZ (pan/tilt/zoom) function information (coordinate system definition, movable parameters, preset positions, etc.), analysis function information (supported analysis function, authentication type, analysis result format, etc.) (step 606).

ここで、図7に、本実施の形態の撮像装置100に関する情報の一構成を示す。本実施の形態の撮像装置100は、出力画像の種別701として「可視画像」と「赤外画像」があり、コントローラ装置200に送信する出力モード702として「可視画像のみ出力」、「赤外画像のみ出力」、「両画像を照度や時間によりどちらか一方に自動的に切り替えて出力」、「可視画像と赤外画像の両方を同時出力」の4種類を持つ。また、可視画像のアクセス先情報703として、コントローラ装置200が撮像装置100から可視画像に関する情報や実際の可視画像を取得するためにアクセスするURI/URL情報、同様に赤外画像のアクセス先情報704としてコントローラ装置200が撮像装置100から赤外画像に関する情報や実際の赤外画像を取得するためにアクセスするURI/URL情報を持つ。また、可視画像の情報705として出力可能な可視画像のコーデックや転送レート、解像度など、同様に赤外画像の情報706して出力可能な赤外画像のコーデックや転送レート、解像度などを含む。本構成は一例であり、その他情報を含んでも良い。 Here, FIG. 7 shows one configuration of information regarding the imaging device 100 of the present embodiment. The imaging apparatus 100 of the present embodiment has “visible image” and “infrared image” as output image types 701 , and “output visible image only” and “infrared image” as output modes 702 to be transmitted to the controller device 200 . There are four types of output: "only output", "automatic switching between both images depending on the illuminance and time", and "simultaneous output of both visible and infrared images". In addition, as the access destination information 703 of the visible image, URI/URL information accessed by the controller device 200 to acquire information on the visible image from the imaging device 100 and the actual visible image. has URI/URL information that the controller device 200 accesses to acquire information about infrared images and actual infrared images from the imaging device 100 . The visible image information 705 includes the visible image codec, transfer rate, resolution, etc. Similarly, the infrared image information 706 includes the infrared image codec, transfer rate, resolution, etc. that can be output. This configuration is an example, and may include other information.

前記撮像装置100の機能情報を受信したコントローラ装置200の制御部214は、機能情報の内容を表示部202を介して管理者に通知あるいは自動的に確認し、該コントローラ装置200で管理すると決定した場合にはカメラ管理部208に管理対象として追加する。カメラ管理部208はメモリ204に機能情報の全部あるいは一部を格納して管理する。また、制御部214は、コントローラ装置200自身がサポートする解析機能や認証機能を確認し、前記撮像装置100の画像を利用するか否かを判断する。あるいは/さらに、撮像装置100がサポートする解析機能情報を確認し、該撮像装置100を利用する際に実行する認証の方法や解析方法を決定するようにしても良い(ステップ607)。 The control unit 214 of the controller device 200 that has received the function information of the imaging device 100 notifies or automatically confirms the content of the function information to the administrator via the display unit 202, and determines that the controller device 200 will manage the function information. If so, it is added to the camera management unit 208 as a management target. A camera management unit 208 stores and manages all or part of the function information in the memory 204 . Also, the control unit 214 confirms the analysis function and authentication function supported by the controller device 200 itself, and determines whether or not to use the image of the imaging device 100 . Alternatively/in addition, the analysis function information supported by the imaging device 100 may be checked to determine the authentication method and analysis method to be executed when using the imaging device 100 (step 607).

コントローラ装置200の制御部214が前記撮像装置100を利用すると決定した場合、制御部214は、ステップ606で取得した機能情報に含まれるパラメータで変更や設定が必要なものを設定するために、通信制御部206に指示して、撮像装置100に対して機器設定要求を送信する。例えば、本実施の形態では、前記出力モード702として「可視画像と赤外画像の両方を同時出力」を設定する(ステップ608)。ここで、例えば前記撮像装置100の設置場所に基づき、前記出力モード702を決定するようにしても良い。 When the control unit 214 of the controller device 200 determines to use the imaging device 100, the control unit 214 performs communication in order to set parameters included in the function information acquired in step 606 that need to be changed or set. It instructs the control unit 206 to transmit a device setting request to the imaging apparatus 100 . For example, in this embodiment, the output mode 702 is set to "output both visible image and infrared image simultaneously" (step 608). Here, for example, the output mode 702 may be determined based on the installation location of the imaging device 100 .

前記機器設定要求を受信した撮像装置100の制御部23は、受信した設定が実行可能であるか否かを確認し、実行した結果をコントローラ装置200に返信する(ステップ609)。 The control unit 23 of the imaging device 100 that has received the device setting request confirms whether or not the received setting can be executed, and returns the execution result to the controller device 200 (step 609).

次に、コントローラ装置200の制御部214は、通信制御部206に指示して、実際に可視画像や赤外画像の取得に必要なプロトコルやパラメータを取得するためのアクセス先情報取得要求を送信する(ステップ610)。 Next, the control unit 214 of the controller device 200 instructs the communication control unit 206 to transmit an access destination information acquisition request for acquiring the protocol and parameters necessary for actually acquiring the visible image and the infrared image. (Step 610).

前記アクセス先情報取得要求を受信した撮像装置100の制御部23は、前記可視画像のアクセス先情報703や赤外画像のアクセス先情報704を含むメディアへのアクセス先情報(例えば、メディアタイプやポート番号、転送プロトコル、ペイロード番号など)を、通信制御部15に指示して返信する(ステップ611)。 Upon receiving the access destination information acquisition request, the control unit 23 of the imaging device 100 accesses the media including the access destination information 703 of the visible image and the access destination information 704 of the infrared image (for example, media type, port number, transfer protocol, payload number, etc.) to the communication control unit 15 (step 611).

前記アクセス先情報を受信したコントローラ装置200の制御部214は、引き続き、画像の受信に必要なセッション情報(DESCRIBE)の取得要求を撮像装置100に対して送信する(ステップ612)。 After receiving the access destination information, the control unit 214 of the controller device 200 subsequently transmits an acquisition request for session information (DESCRIBE) necessary for image reception to the imaging device 100 (step 612).

前記セッション情報取得要求を受信した撮像装置100の制御部23は、通信制御部15に指示して、SDP(Session Description Protocol)を用いて記述したセッション情報を生成し、コントローラ装置200へ送信する(ステップ613)。 Upon receiving the session information acquisition request, the control unit 23 of the imaging device 100 instructs the communication control unit 15 to generate session information described using SDP (Session Description Protocol) and transmit it to the controller device 200 ( step 613).

前記セッション情報を受信したコントローラ装置200の制御部214は、通信制御部206に指示して、撮像装置100との間でRTSPセッションを確立する。ここで、RTSPセッションは、通常、可視画像の転送用と赤外画像の転送用とで別々に確立する(ステップ614)。 The control unit 214 of the controller device 200 that has received the session information instructs the communication control unit 206 to establish an RTSP session with the imaging device 100 . Here, separate RTSP sessions are typically established for visible image transfer and infrared image transfer (step 614).

前記RTSPセッションを確立した後、コントローラ装置200はこれらの画像の受信準備や顔認証の準備を行い(ステップ615)、撮像装置100は可視画像や赤外画像の送信準備を行い(ステップ616)、結果を送信する(ステップ617)。 After establishing the RTSP session, the controller device 200 prepares for reception of these images and face authentication (step 615), the imaging device 100 prepares for transmission of visible images and infrared images (step 616), Send the result (step 617).

コントローラ装置200の制御部214は、全ての準備が完了したことを確認すると、通信制御部206に指示して、ストリーミング開始要求(PLAY)を撮像装置100に送信する(ステップ618)。 After confirming that all preparations have been completed, the control unit 214 of the controller device 200 instructs the communication control unit 206 to transmit a streaming start request (PLAY) to the imaging device 100 (step 618).

前記ストリーミング開始要求を受信した撮像装置100の制御部23は、ステップ608でコントローラ装置200が要求した通りの画像を出力するように信号出力制御部14に指示し、信号出力制御部14が出力する画像を前記ステップ612/613で確立したセッション上でRTPを用いて撮像装置100へ送信するように通信制御部15に指示する(ステップ620)。 The control unit 23 of the imaging device 100 that has received the streaming start request instructs the signal output control unit 14 to output the image as requested by the controller device 200 in step 608, and the signal output control unit 14 outputs The communication control unit 15 is instructed to transmit the image to the imaging device 100 using RTP on the session established in steps 612/613 (step 620).

また、コントローラ装置200の制御部214は、画像の受信を開始する(ステップ621)。 Also, the control unit 214 of the controller device 200 starts receiving the image (step 621).

その後、撮像装置100が撮影した可視画像と赤外画像のRTP転送を実行する(ステップ621,622)。ここで、撮像装置100の通信制御部15は、コントローラ装置側の処理負担を軽減するために、RTPヘッダのマーカビットを利用し、フレームの切れ目が分かるようにしても良い。 Thereafter, RTP transfer of the visible image and the infrared image captured by the imaging device 100 is executed (steps 621 and 622). Here, in order to reduce the processing load on the controller device side, the communication control unit 15 of the imaging device 100 may use the marker bit of the RTP header so that the breaks between frames can be recognized.

また、撮像装置100の通信制御部15は、所定のフレーム数を転送する毎に、RTCPの送信レポートをコントローラ装置200に送信する。可視画像と赤外画像が同時に撮像されたことを示すために、前記レポートの中に同じタイムスタンプやフレーム番号、パケットカウントなどを格納する(ステップ623)。 Further, the communication control unit 15 of the imaging device 100 transmits an RTCP transmission report to the controller device 200 each time a predetermined number of frames are transferred. The same time stamp, frame number, packet count, etc. are stored in the report to indicate that the visible and infrared images were taken at the same time (step 623).

撮像装置100から可視画像および赤外画像を受信するコントローラ装置200の制御部214は、記録再生部205を介してこれらの画像をメモリ204に格納しながら、動体領域抽出部209や顔領域検出部210、顔特徴点検出部211、顔照合部212を用いて顔認証を実行する。そして、必要に応じてストリームングの中断や停止を制御する(ステップ624)。 The control unit 214 of the controller device 200 that receives the visible image and the infrared image from the imaging device 100 stores these images in the memory 204 via the recording/reproducing unit 205, and extracts the moving object region extraction unit 209 and the face region detection unit. 210, a face feature point detection unit 211, and a face matching unit 212 are used to perform face authentication. Then, interruption or stop of streaming is controlled as necessary (step 624).

以上が、コントローラ装置200と撮像装置100間の基本的な通信フローである。 The above is the basic communication flow between the controller device 200 and the imaging device 100 .

ここで、上記の通信フローではRTP通信を用いているが、HTTP通信や他の独自通信方法でも良い。また、可視画像と赤外画像を個別のストリームで転送するのではなく、同じストリームに重畳して転送するようにしても良い(例えば、共通ヘッダ(タイムスタンプやシーケンス番号を含む)+1枚目の可視画像+1枚目の赤外画像+・・・等)。また、同時に両画像を転送すると通信帯域の使用率が高くなるため、赤外画像は1フレーム毎、可視画像は30フレーム毎といった転送でも良い。この場合も、同タイミングで撮影したフレームについては、赤外画像と可視画像で同じタイムスタンプとフレーム番号を使用するようにする。 Here, although RTP communication is used in the above communication flow, HTTP communication or another original communication method may be used. Also, instead of transferring the visible image and the infrared image in separate streams, they may be superimposed and transferred in the same stream (for example, common header (including time stamp and sequence number) + 1st visible image + first infrared image + etc.). In addition, if both images are transferred at the same time, the usage rate of the communication band increases. Therefore, the infrared image may be transferred every one frame, and the visible image may be transferred every 30 frames. Also in this case, the same time stamp and frame number are used for the infrared image and the visible image for frames captured at the same timing.

ここで、ステップ623では、撮像装置100がコントローラ装置200に対して送信レポートを送付しているが、同様にコントローラ装置200が撮像装置100に対してパケット欠落や転送遅延に関する情報を含んだ受信レポートを送付しても良い。 Here, in step 623, the imaging device 100 sends a transmission report to the controller device 200. Likewise, the controller device 200 sends a reception report containing information about packet loss and transfer delay to the imaging device 100. can be sent.

また、ステップ623で可視画像と赤外画像が同時に撮像されたことを示すために、同じタイムスタンプやフレーム番号を設定した送信レポートを送信すると記載したが、例えば、送信するRTPヘッダのタイムスタンプやシーケンス番号を同じ値に設定する方法や、RTPヘッダの拡張ヘッダに同じタイムスタンプとフレーム番号を設定する方法もある。 Also, in step 623, in order to indicate that the visible image and the infrared image were captured at the same time, it was described that the transmission report in which the same time stamp and frame number are set is transmitted. There is also a method of setting the sequence number to the same value, and a method of setting the same time stamp and frame number in the extension header of the RTP header.

コントローラ装置200の制御部214は、記録再生部205に指示して、受信した可視画像や赤外画像をメモリ204に格納し、動体領域抽出部209、顔領域検出部210、顔特徴点検出部211、顔照合部212を用いて、画像内に含まれた人物を検出し、不審者か否かなどの顔認証を実行する。この際、同タイミングで同対象物を撮影した可視画像と赤外画像を取得でき、さらに同じタイムスタンプやシーケンス番号が付加されることにより両画像の同期が容易であるメリットを生かし、両方の画像で顔認証して認証精度を向上させる方法や、通常はどちらか一方の画像だけで顔認証を行い(例えば、赤外画像のみ)、両画像を比較して確認したい場合(背景や色などの付加情報を把握したい、他方の画像で顔認証したい部分がある等)に同じシーケンス番号の他方の画像を利用する方法がある。 The control unit 214 of the controller device 200 instructs the recording/reproducing unit 205 to store the received visible image and infrared image in the memory 204, and extracts the moving object region extracting unit 209, the face region detecting unit 210, and the facial feature point detecting unit. 211, a face matching unit 212 is used to detect a person included in the image, and perform face authentication such as whether or not the person is a suspicious person. In this case, it is possible to acquire a visible image and an infrared image of the same object at the same timing, and the same time stamp and sequence number are added, making it easy to synchronize both images. If you want to perform face authentication using only one of the images (for example, infrared image only) and want to compare and check both images (such as background and color). There is a method of using the other image with the same sequence number when there is a part of the other image that you want to recognize additional information, or you want to recognize the face in the other image.

また、本実施の形態では、ステップ608で前記出力モード702として「可視画像と赤外画像の両方を同時出力」を設定したが、日中は「視画像と赤外画像の両方を同時出力」を設定し、夜間は「赤外画像のみ」を設定など、時間や周囲の環境によって変更するようにしても良い。あるいは、どちらか一方の画像を受信しながら同時に顔認証を実行する場合に、顔照合部212でマッチングした結果、不審者と思しき人物のさらなる情報を取得したい場合に、途中で両方画像を受信するように自動的に切り替えるようにしても良い。 In the present embodiment, "simultaneous output of both visible and infrared images" was set as the output mode 702 in step 608, but during the daytime, "simultaneous output of both visible and infrared images" may be set, and the setting may be changed according to the time and surrounding environment, such as setting "only infrared image" at night. Alternatively, if one of the images is received and face recognition is performed at the same time, and as a result of matching by the face matching unit 212, if it is desired to acquire further information on a person who is suspected to be a suspicious person, both images are received on the way. You may make it switch automatically like this.

コントローラ装置200の制御部214は、顔照合部212で照合した結果、画像内に不審者がいると判断あるいは不審者の候補がいると判断した場合、表示部202経由で管理者に通知、あるいはIF部207経由で他のコントローラ装置200に通知や情報共有し、複数の撮像装置100の間で当該不審者を追跡することも可能となる。 If the controller 214 of the controller device 200 determines that there is a suspicious person in the image as a result of matching by the face matching unit 212 or that there is a candidate for a suspicious person, the control unit 214 notifies the administrator via the display unit 202, or It is also possible to notify and share information with other controller devices 200 via the IF unit 207 and track the suspicious person among a plurality of imaging devices 100 .

(実施の形態2)
次に、本発明の実施の形態2に係る撮像システムの構成を説明する。
(Embodiment 2)
Next, the configuration of an imaging system according to Embodiment 2 of the present invention will be described.

図8は、本発明の実施の形態2に係る撮像システムの構成例を示す。なお、前記実施の形態1の撮像装置100と、本実施の形態の撮像装置800、810は、同じ撮像システム上に混在して複数設置することができ、コントローラ装置200はこれらの撮像装置を管理することが可能である。 FIG. 8 shows a configuration example of an imaging system according to Embodiment 2 of the present invention. Note that the imaging device 100 of the first embodiment and the imaging devices 800 and 810 of the present embodiment can be installed together on the same imaging system, and the controller device 200 manages these imaging devices. It is possible to

本実施の形態の撮像装置800は、前記実施の形態1の撮像装置100に、コントローラ装置200の動体領域抽出部209と同様の機能を備えた動体領域抽出部801を搭載した構成である。それ以外の構成部分は、撮像装置100と同様の構成である。 An imaging device 800 of the present embodiment is configured by mounting a moving body region extraction section 801 having the same function as the moving body region extraction section 209 of the controller device 200 on the imaging device 100 of the first embodiment. Other components have the same configuration as the imaging device 100 .

撮像装置800の制御部23は、信号処理部13が出力する可視画像と赤外画像の内、赤外画像のみを動体領域抽出部801へ入力する。赤外画像のみを用いる理由としては、可視画像で検出できない物体を検出できること、可視画像より人間と背景とのコントラストが大きく人検出に有効であること、などが挙げられる。 The control unit 23 of the imaging device 800 inputs only the infrared image out of the visible image and the infrared image output by the signal processing unit 13 to the moving object area extraction unit 801 . Reasons for using only an infrared image include the ability to detect objects that cannot be detected with a visible image, and the fact that the contrast between a person and the background is greater than in a visible image, making it effective for human detection.

前記動体領域抽出部801は、入力された赤外画像を用いて画像内の動体領域を抽出し、その数と位置情報を出力する。これらの結果は、制御部25あるいは信号出力制御部14に出力する。メモリ22に格納しても良い。 The moving object area extraction unit 801 extracts moving object areas in the image using the input infrared image, and outputs the number and position information thereof. These results are output to the control section 25 or the signal output control section 14 . It may be stored in the memory 22 .

以上により、前記撮像装置800は、同タイミングで撮影した可視画像と赤外画像の内、赤外画像を用いて常に画像内の動体領域を監視し、高精度に抽出した動体領域に関する情報を可視画像あるいは赤外画像と一緒にコントローラ装置200に提供できる。コントローラ装置200は、画像と共に動体領域に関する情報を取得できるため、画像処理負担を軽減できる。 As described above, the imaging device 800 always monitors the moving object region in the image using the infrared image among the visible image and the infrared image taken at the same timing, and visualizes the information on the moving object region extracted with high accuracy. It can be provided to the controller device 200 along with the image or the infrared image. Since the controller device 200 can acquire information about the moving object area together with the image, the image processing load can be reduced.

ここで、撮像装置800の制御部23は、ネットワーク上の通信帯域の使用量を減らすために、動体領域抽出部801で動体領域を抽出した場合のみ信号出力制御部14からIF部16を介して画像を出力し、動体領域が抽出できない場合は信号出力制御部14から画像を出力しない、あるいは信号出力制御部14から出力する画像のフレームレートを落とすようにしても良い。 Here, in order to reduce the usage of the communication band on the network, the control unit 23 of the imaging device 800 outputs the signal from the signal output control unit 14 via the IF unit 16 only when the moving object region extracting unit 801 extracts the moving object region. An image may be output, and if the moving object region cannot be extracted, the image may not be output from the signal output control unit 14, or the frame rate of the image output from the signal output control unit 14 may be reduced.

また、撮像装置800の制御部23は、動体領域抽出部801で抽出した動体領域と信号処理部13で出力する可視画像および/または赤外画像を組み合わせ、画像上に動体領域が矩形で囲まれた画像を生成/加工するように信号出力制御部14に指示するようにしても良い。 In addition, the control unit 23 of the imaging device 800 combines the moving object region extracted by the moving object region extracting unit 801 with the visible image and/or the infrared image output by the signal processing unit 13 so that the moving object region is surrounded by a rectangle on the image. Alternatively, the signal output control unit 14 may be instructed to generate/process the image.

同様に、本実施の形態の撮像装置810は、前記撮像装置800に、コントローラ装置200の顔領域検出部210と同様の機能を備えた顔領域検出部802を搭載した構成である。それ以外の構成部分は、撮像装置100と同様の構成である。 Similarly, imaging device 810 of the present embodiment has a configuration in which face region detection section 802 having the same function as face region detection section 210 of controller device 200 is mounted on imaging device 800 . Other components have the same configuration as the imaging device 100 .

撮像装置810の制御部23は、信号処理部13が出力する可視画像と赤外画像の内、赤外画像のみを動体領域抽出部801へ入力する。前記動体領域抽出部801は、入力された赤外画像を用いて画像内の動体領域を抽出し、その数と位置情報を制御部23あるいは信号出力制御部14に出力すると同時に、顔領域検出部802に入力する。前記顔領域検出部802は、入力された動体領域の中から人の顔が存在する領域を検出し、制御部23あるいは信号出力制御部14に出力する。 The control unit 23 of the imaging device 810 inputs only the infrared image out of the visible image and the infrared image output by the signal processing unit 13 to the moving object area extraction unit 801 . The moving object area extraction unit 801 extracts moving object areas in the image using the input infrared image, and outputs the number and position information to the control unit 23 or the signal output control unit 14, and at the same time, the face area detection unit Enter 802 . The face area detection section 802 detects an area in which a human face exists from the input moving body area, and outputs it to the control section 23 or the signal output control section 14 .

以上により、前記撮像装置810は、同タイミングで撮影した可視画像と赤外画像の内、赤外画像を用いて常に画像内の動体領域を監視し、高精度に動体領域を抽出でき、さらにその動体領域から人の顔が存在する領域を検出し、可視画像あるいは赤外画像と一緒に動体領域の情報と顔領域の情報をコントローラ装置200に提供できる。コントローラ装置200は、画像と共にこれらの情報を取得できるため、画像処理負担を軽減できる。 As described above, the imaging device 810 can constantly monitor a moving object region in an image using an infrared image among visible images and infrared images taken at the same timing, and extract the moving object region with high accuracy. An area in which a human face is present can be detected from the moving object area, and information on the moving object area and information on the face area can be provided to the controller device 200 together with a visible image or an infrared image. Since the controller device 200 can acquire these pieces of information together with the image, the image processing load can be reduced.

ここで、撮像装置810の制御部23は、ネットワーク上の通信帯域の使用量を減らすために、顔領域検出部802で人の顔領域を検知した場合のみ信号出力制御部14からIF部16を介して画像を出力し、動体領域を抽出しても人の顔領域が検出できない場合は信号出力制御部14から画像を出力しない、あるいは信号出力制御部14から出力する画像のフレームレートを落とすようにしても良い。同様に、物体のみを検知するために、人の顔領域が検出できなかった動体領域を検知した場合のみ、信号出力制御部14からIF部16を介して画像を出力するようにしても良い。 Here, in order to reduce the usage of the communication band on the network, the control unit 23 of the imaging device 810 controls the IF unit 16 from the signal output control unit 14 only when the face area detection unit 802 detects a person's face area. If the human face region cannot be detected even after extracting the moving object region, the image is not output from the signal output control unit 14, or the frame rate of the image output from the signal output control unit 14 is reduced. You can do it. Similarly, in order to detect only an object, an image may be output from the signal output control section 14 via the IF section 16 only when a moving body region, in which a human face region cannot be detected, is detected.

また、撮像装置810の制御部23は、顔領域検出部802で抽出した顔領域(および動体領域抽出部801で抽出した動体領域)と信号処理部13で出力する可視画像および/または赤外画像を組み合わせ、画像上に顔領域が矩形で囲まれた画像を生成/加工するように信号出力制御部14に指示するようにしても良い。 Further, the control unit 23 of the imaging device 810 detects the face area extracted by the face area detection unit 802 (and the moving object area extracted by the moving object area extraction unit 801) and the visible image and/or infrared image output by the signal processing unit 13. may be combined to instruct the signal output control unit 14 to generate/process an image in which the face area is surrounded by a rectangle.

撮像装置800、810とコントローラ装置200間の通信フローは、実施の形態1の図6に記載した内容とほぼ同じであるが、異なる点のみ以下に記載する。 The communication flow between the imaging devices 800 and 810 and the controller device 200 is almost the same as the content described in FIG. 6 of Embodiment 1, but only the different points are described below.

まず、図6のステップ606において、撮像装置800、810がコントローラ装置200へ提供する機能情報は、例として図7に示した情報に加え、図9に示すような情報を前記した解析機能情報として提供する。すなわち、機能情報の中に、撮像装置800は自身が「動体領域抽出機能」を搭載することを示す内容を、撮像装置801は「動体領域抽出機能」と「顔領域検出機能」を搭載することを示す内容を含める。 First, in step 606 of FIG. 6, the function information provided by the imaging devices 800 and 810 to the controller device 200 includes the information shown in FIG. 7 as an example, and the information shown in FIG. offer. In other words, in the function information, the imaging device 800 has contents indicating that it has a "moving body region extraction function", and the imaging device 801 has a "moving body region extraction function" and a "face region detection function". Include content that indicates

本実施の形態では、これらの情報を解析メタデータとし、機能情報(解析機能情報)として図9に示すような解析メタデータの種別901.解析メタデータの出力モード902、動体領域メタデータのアクセス先情報903、顔領域メタデータのアクセス先情報904、動体領域/顔領域メタデータのアクセス先情報905、動体領域メタデータの情報906、顔領域メタデータの情報907を含む。 In the present embodiment, these pieces of information are used as analysis metadata, and as function information (analysis function information), analysis metadata types 901 . Analysis metadata output mode 902, moving body region metadata access destination information 903, face region metadata access destination information 904, moving body region/face region metadata access destination information 905, moving body region metadata information 906, face Contains region metadata information 907 .

前記機能情報を受信したコントローラ装置200の制御部214は、ステップ607において、コントローラ装置200自身がサポートする解析機能や認証機能を確認し、前記撮像装置800が出力する解析メタデータを利用するか否かを判断する。例えば、撮像装置800、810の両方に対して解析メタデータ「動体領域の位置情報」のみを利用する、あるいは撮像装置800の解析メタデータは利用せず、撮像装置810の解析メタデータの「顔領域の位置情報」のみを利用する、といった選択が可能となる。 In step 607, the control unit 214 of the controller device 200 that has received the function information confirms the analysis function and authentication function supported by the controller device 200 itself, and determines whether or not to use the analysis metadata output by the imaging device 800. to judge whether For example, only the analysis metadata “moving object region position information” is used for both the imaging devices 800 and 810, or the analysis metadata of the imaging device 800 is not used, and the analysis metadata of the imaging device 810 “face information” is used. It is possible to make a selection such as using only "location information of the area".

図10は、撮像装置800、810とコントローラ装置200との間で可視画像や赤外画像、解析メタデータを送信するための通信フローを示す。この説明では、撮像装置800は「動体領域の位置情報」、撮像装置810は「動体領域の位置情報」「顔領域の位置情報」の両方の解析メタデータを送信するものとする。また、撮像装置800、810は、図6のステップ614において、可視画像と赤外画像に加え、解析メタデータ転送用のセッションも確立するものとする。 FIG. 10 shows a communication flow for transmitting visible images, infrared images, and analysis metadata between imaging devices 800 and 810 and controller device 200 . In this description, it is assumed that the imaging device 800 transmits analysis metadata of both “moving body region position information” and the imaging device 810 transmits both “moving body region position information” and “face region position information”. It is also assumed that imaging devices 800 and 810 establish a session for transferring analysis metadata in addition to visible and infrared images in step 614 of FIG.

撮像装置800、810は、可視画像と赤外画像のフレーム転送を開始し(ステップ1001、1002)、所定のフレーム数を転送する毎に(ステップ1003、1004)、動体領域抽出部801や顔領域検出部802で抽出した解析メタデータを送信する(ステップ1005)。ここで、解析メタデータの送付は、動体領域や顔領域を検出したタイミングで送付するようにしても良い。 The imaging devices 800 and 810 start frame transfer of the visible image and the infrared image (steps 1001 and 1002), and every time a predetermined number of frames are transferred (steps 1003 and 1004), the moving object region extraction unit 801 and the face region The analysis metadata extracted by the detection unit 802 is transmitted (step 1005). Here, the analysis metadata may be sent at the timing when the moving object area or the face area is detected.

前記解析メタデータ1200を受信したコントローラ装置200の制御部214は、前記解析メタデータ1200に動体領域の情報か顔領域の情報が含まれているか否かを確認する(ステップ1006)。そして、動体領域の情報が含まれていない場合は自身が持つ動体領域抽出部209を用いて動体領域の抽出処理を実行する(ステップ1007)。 The control unit 214 of the controller device 200 that has received the analysis metadata 1200 checks whether or not the analysis metadata 1200 contains moving body area information or face area information (step 1006). If the moving object area information is not included, the moving object area extracting section 209 is used to execute the moving object area extraction processing (step 1007).

一方、動体領域の情報か顔領域の情報が含まれている場合は、顔領域の情報が含まれているか否かを確認する(ステップ1008)。そして、顔領域の情報が含まれていない(すなわち、動体領域の情報のみ含まれる)場合は受信した動体領域の情報と、自身が持つ顔領域検出部210を用いて顔領域の検出処理を実行する(ステップ1008)。 On the other hand, if the moving body area information or face area information is included, it is checked whether or not the face area information is included (step 1008). If no face region information is included (that is, only moving body region information is included), face region detection processing is performed using the received moving body region information and the own face region detection unit 210 . (step 1008).

一方、顔領域の情報が含まれている場合は、受信した顔領域の情報と、自身が持つ顔特徴点検出部211を用いて顔の特徴点を抽出し(ステップ1010)、顔照合部212を用いてマッチングを実行する(ステップ10100)。 On the other hand, if the face region information is included, the face feature points are extracted using the received face region information and the face feature point detection unit 211 (step 1010). (step 10100).

図11に、撮像装置800、810で扱う画像イメージを示す。画像1100は、撮像装置800、810が撮影した可視画像の例である。画像1100から背景を除去し、動体領域のみを抽出したものが画像1101である。この画像例では、(A)(B)(C)の3つの領域(点線の四角で囲っている部分)が抽出できている。画像1101からさらに顔領域を抽出したものが画像1102である。この画像例では、(a)(b)の2つの領域(実線の四角で囲っている部分)が抽出できている。 FIG. 11 shows images handled by imaging devices 800 and 810 . An image 1100 is an example of a visible image captured by imaging devices 800 and 810 . An image 1101 is obtained by removing the background from the image 1100 and extracting only the moving object region. In this image example, three regions (A), (B), and (C) (portions surrounded by dotted-line rectangles) can be extracted. An image 1102 is obtained by extracting a face area from the image 1101 . In this image example, two regions (a) and (b) (parts surrounded by solid-line squares) can be extracted.

図12に、ステップ1005で撮像装置800、810が送付する解析メタデータ1200の構成例を示す。 FIG. 12 shows a configuration example of analysis metadata 1200 sent by the imaging devices 800 and 810 in step 1005 .

解析メタデータ1200は、大きく通信ヘッダ1201とペイロード1210で構成される。通信ヘッダ1201は例えば、RTPヘッダやHTTPヘッダなどと同様である。 Analysis metadata 1200 is roughly composed of a communication header 1201 and a payload 1210 . The communication header 1201 is similar to, for example, an RTP header or HTTP header.

ペイロード1210には、解析メタデータを格納する。例えば、動体領域あるいは顔領域の抽出に使用した赤外画像のフレーム番号1211、可視画像のフレーム番号1212、撮像装置800、810が抽出できる動体領域の最大数1213、実際に動体領域抽出部801で抽出できた動体領域抽出数1214(ここではn個)、抽出した動体領域の座標情報1~n(1215~1216)、撮像装置810が抽出できる顔領域の最大数1217、実際に顔領域検出部802で抽出できた顔領域抽出数1218(ここではm個≦n個)、抽出した動体領域の座標情報1~m(1219~1220)から構成される。 The payload 1210 stores analysis metadata. For example, the frame number 1211 of the infrared image used to extract the moving object area or the face area, the frame number 1212 of the visible image, the maximum number of moving object areas 1213 that can be extracted by the imaging devices 800 and 810, The number of extracted moving object regions 1214 (here, n pieces), the coordinate information 1 to n (1215 to 1216) of the extracted moving object regions, the maximum number of face regions that can be extracted by the imaging device 810 1217, the actual face region detection unit It consists of the number 1218 of extracted face areas (here, m≦n) extracted in 802 and coordinate information 1 to m (1219 to 1220) of the extracted moving body areas.

以上により、本実施の形態の前記撮像装置800、810は、可視画像、赤外画像に加え、赤外画像を用いて精度良く抽出した動体領域に関する情報や人領域に関する情報を、必要な画像出力と同時にコントローラ装置200へ提供することができる。 As described above, the imaging devices 800 and 810 according to the present embodiment can output the information on the moving object region and the information on the human region accurately extracted using the infrared image in addition to the visible image and the infrared image as required image output. can be provided to the controller device 200 at the same time.

一方、コントローラ装置200は、受信した動体領域の情報や人領域の情報を即座に利用することで従来の手順を省くことができるため、従来よりも顔認証の実行時間を短縮することができる。これは、1台のコントローラ装置200で多くの撮像装置を管理する場合に、コントローラ装置200の処理負荷を軽減する点で有効である。 On the other hand, the controller device 200 can omit the conventional procedure by immediately using the received information of the moving body region and the information of the human region, so that the face authentication execution time can be shortened. This is effective in reducing the processing load of the controller device 200 when managing many imaging devices with one controller device 200 .

ここで、本実施の形態では、撮像装置800、810がコントローラ装置200に対して、少なくとも可視画像、赤外画像のいずれか1つの画像と解析パラメータを送信する例について記載したが、ネットワーク上のデータ量を削減するために、解析パラメータと、解析パラメータが示す部分(動体領域、顔領域)のみの画像を送付するようにしても良い。 Here, in the present embodiment, an example in which the imaging devices 800 and 810 transmit at least one of the visible image and the infrared image and the analysis parameters to the controller device 200 has been described. In order to reduce the amount of data, the analysis parameters and the image of only the portion indicated by the analysis parameters (moving body area, face area) may be sent.

また、撮像装置800、810の制御部23は、動体領域抽出部801で画像内の動体領域を最初に検知すると該当する画像のフレーム番号を保持し、その画像に連続して撮像された画像からその動体領域の対象が存在しなくなるまで追跡し、図12に示す解析メタデータ1200内の座標情報の付属情報として前記フレーム番号を追加するようにしても良い。これにより、コントローラ装置200は、解析メタデータ1200を参照することで、動体領域が含まれるフレーム番号を容易に把握し、時間を算出することができる。 Further, when the moving body region extracting unit 801 first detects a moving body region in the image, the control unit 23 of the imaging devices 800 and 810 retains the frame number of the corresponding image, The moving object area may be tracked until it no longer exists, and the frame number may be added as attached information to the coordinate information in the analysis metadata 1200 shown in FIG. Thereby, the controller device 200 can easily grasp the frame number in which the moving object region is included and calculate the time by referring to the analysis metadata 1200 .

(実施の形態3)
次に、本発明の実施の形態3に係る撮像システムの構成を説明する。
(Embodiment 3)
Next, the configuration of an imaging system according to Embodiment 3 of the present invention will be described.

前述の実施の形態1、実施の形態2の撮像装置は、1組のレンズ11、撮像センサ部12、信号処理部13を用いて可視画像と赤外画像を撮影していた。本実施の形態の撮像装置は、2組のレンズ11、撮像センサ部12、信号処理部13を左右に配置した構成とし、可視光と赤外光とでそれぞれ左右2つの画像からなるステレオ画像(距離画像)を撮影可能とする。 The imaging apparatuses of the first and second embodiments described above use one set of lens 11, imaging sensor unit 12, and signal processing unit 13 to capture a visible image and an infrared image. The imaging apparatus of the present embodiment has a configuration in which two sets of lenses 11, an imaging sensor unit 12, and a signal processing unit 13 are arranged on the left and right, and a stereo image ( distance image) can be taken.

図13は、本実施の形態の撮像システムの構成例を示す。本撮像システムは、1台以上の撮像装置1300とコントローラ装置1310から構成する。 FIG. 13 shows a configuration example of an imaging system according to this embodiment. This imaging system comprises one or more imaging devices 1300 and a controller device 1310 .

撮像装置1300は、前述した通り、2組のレンズ11、撮像センサ部12、信号処理部13を備え、新たに補正パラメータ算出部1301、距離算出部1302を備える。2つのレンズ11(a)(b)は、それぞれの光軸が互いに平行になるように左右に配置する。それ以外の構成部分は、基本的に実施の形態1、実施の形態2の撮像装置100、800、810と同様の構成である。 As described above, the imaging apparatus 1300 includes two sets of lenses 11, an imaging sensor unit 12, and a signal processing unit 13, and newly includes a correction parameter calculation unit 1301 and a distance calculation unit 1302. FIG. The two lenses 11(a) and 11(b) are arranged left and right so that their optical axes are parallel to each other. Other components are basically the same as those of the imaging devices 100, 800, and 810 of the first and second embodiments.

補正パラメータ算出部1301は、2つの信号処理部13(a)(b)から出力されるそれぞれの可視画像の信号強度(信号レベル)を近似させるようにクリップレベルや信号レベルの補正値(例えば、可視画像信号や赤外画像信号、赤外信号や各色信号等の信号に加算や減算や乗算や除算される補正値)等のパラメータを設定して、2つの可視画像信号(2つの赤外画像信号)の信号レベルが近似するようにする。画像信号補正処理部203における補正量については、2つの信号処理部13(a)(b)からの出力を見て、それぞれに設定することで画像信号のレベル合わせ込む。左右の画像信号のレベルを合わせ込む処理は、赤外画像信号と可視画像信号の両方で行うことが可能である。 The correction parameter calculator 1301 calculates clip levels and signal level correction values (for example, By setting parameters such as visible image signals, infrared image signals, correction values that are added, subtracted, multiplied, or divided to signals such as infrared signals and each color signal, two visible image signals (two infrared images signals) should be similar. The amount of correction in the image signal correction processing unit 203 is adjusted according to the level of the image signal by checking the outputs from the two signal processing units 13(a) and 13(b) and setting them accordingly. The process of matching the levels of the left and right image signals can be performed on both the infrared image signal and the visible image signal.

すなわち、補正パラメータ算出部1301が2つの信号処理部13(a)(b)から出力される画像信号の信号レベルに基づいて補正量を決定して、2つの信号処理部13(a)(b)から出力される画像信号の信号レベルが近似するようにする。これにより、2つの画像データで例えば輝度レベルが異なることにより、被写体の異なる部分を同じ部分(対応点)と認知して、測定する距離に誤差が生じたり、エラー発生したりするのを抑制することができる。 That is, the correction parameter calculation unit 1301 determines the amount of correction based on the signal levels of the image signals output from the two signal processing units 13(a) and 13(b). ) so that the signal levels of the image signals output from are approximate to each other. As a result, it is possible to recognize different parts of the subject as the same parts (corresponding points) due to, for example, different luminance levels in the two image data, and to suppress errors in the measured distance. be able to.

距離算出部1302は、2つの信号処理部13(a)(b)からそれぞれ入力される2つの可視画像信号あるいは赤外画像信号を用いて、対象物までの距離を算出する。この際、2つの画像から同一の被写体(対応点)を決定し、これら同一の被写体の画像上の位置の違いとしての視差を検出することで、従来と同様に距離を求める。すなわち、差の測定用の対応点は、画像認識により決定し、対応点の画像中の位置の違いである視差に基づいて距離を算出する。そして、各画素に対応した距離情報を元にステレオ画像(距離画像)を生成し、信号出力制御部14に出力する。 The distance calculation unit 1302 calculates the distance to the object using two visible image signals or infrared image signals respectively input from the two signal processing units 13(a) and 13(b). At this time, the same subject (corresponding point) is determined from the two images, and the distance is obtained in the same manner as in the conventional art by detecting the parallax as the difference in the positions of these same subjects on the images. That is, the corresponding points for measuring the difference are determined by image recognition, and the distance is calculated based on the parallax, which is the difference in the positions of the corresponding points in the image. Based on the distance information corresponding to each pixel, a stereo image (distance image) is generated and output to the signal output control section 14 .

信号出力制御部14は、左右で撮像した2つの可視画像、赤外画像に加え、前記距離算出部1302が生成したステレオ画像(距離画像)をコントローラ装置1310に提供することが可能となる。 The signal output control unit 14 can provide the stereo image (distance image) generated by the distance calculation unit 1302 to the controller device 1310 in addition to the two visible images captured on the left and right sides and the infrared image.

以上から、本撮像装置1300では、被写体の可視光画像、赤外画像を同時に取得することができ、両方の画像から距離を算出することができる。この際、可視画像と赤外画像の位置があっているので、両画像間で計測される距離が変化してしまうことを防止できる。 As described above, the imaging apparatus 1300 can acquire a visible light image and an infrared image of the subject at the same time, and can calculate the distance from both images. At this time, since the positions of the visible image and the infrared image are aligned, it is possible to prevent the distance measured between the two images from changing.

ここで、上記距離算出部1302は、2枚の可視画像、2枚の赤外画像を用いて、それぞれの距離を算出した後、2枚のステレオ画像(距離画像)を生成してそのまま出力しても良い。あるいは、生成した2枚のステレオ画像を比較し、それら距離情報の差異が所定の閾値範囲内であればどちらか一方の距離画像を出力し、閾値を超える場合は両方の距離画像を出力する、あるいは予め出力設定していた距離画像(例えば、赤外画像で計算した距離画像を優先、距離が近い値を示している距離画像など)を出力する、あるいは超えている領域部分を解析メタデータとして個別に出力するようにしても良い。図22に、距離算出部1302の処理概要の一例を示す。 Here, the distance calculation unit 1302 uses two visible images and two infrared images to calculate respective distances, then generates two stereo images (distance images) and outputs them as they are. can be Alternatively, the two generated stereo images are compared, and if the difference in the distance information is within a predetermined threshold range, one of the distance images is output, and if the difference exceeds the threshold, both distance images are output. Alternatively, output the distance image that was set in advance (for example, the distance image calculated with the infrared image is prioritized, the distance image showing the value of the close distance, etc.), or output the area part that exceeds it as analysis metadata You may make it output individually. FIG. 22 shows an example of an outline of processing of the distance calculation unit 1302. As shown in FIG.

また、本撮像装置1300の制御部23は、コントローラ装置200の指示に従い、信号出力制御部14を用いて、2つの信号処理部13(a)(b)から出力された可視画像、赤外画像と、距離算出部1302から出力されたステレオ画像(距離画像)のうち、IF部16経由で出力するデータを制御する。例えば、本撮像装置1300がプライベート保護の必要な場所(例えば、トイレや更衣室)に設置されている場合にはステレオ画像のみを出力し、高いセキュリティが要求される場所に設置されている場合は全ての画像を出力する、といった利用が可能となる。 In addition, the control unit 23 of the imaging device 1300 uses the signal output control unit 14 according to instructions from the controller device 200 to generate visible images and infrared images output from the two signal processing units 13(a) and 13(b). , the data to be output via the IF unit 16 out of the stereo image (distance image) output from the distance calculation unit 1302 is controlled. For example, when the imaging device 1300 is installed in a place where privacy protection is required (for example, a restroom or a changing room), only stereo images are output, and when it is installed in a place where high security is required, It is possible to use such as outputting all images.

一方、コントローラ装置1310は、実施の形態1、実施の形態2のコントローラ装置200の動体領域抽出部209、顔領域検出部210、顔特徴点検出部211、顔照合部212、顔DB213の代わりに、可視画像と赤外画像に加えてステレオ画像(距離画像)を使用あるいはステレオ画像のみを使用して解析処理や認証処理を行うために、異なる動体領域抽出部1311、顔領域検出部1312、顔特徴点検出部1313、顔照合部1314、3D顔DB1315を搭載する。これにより、例えば、顔認識において、顔の凸凹に関する3次元データを取得し、それを利用することで、精度良くかつ容易に顔領域の検出や、顔特徴点の検出を実行することができる。 On the other hand, the controller device 1310 replaces the moving body region extraction unit 209, the face region detection unit 210, the face feature point detection unit 211, the face verification unit 212, and the face DB 213 of the controller device 200 of the first and second embodiments. , a stereo image (distance image) in addition to a visible image and an infrared image, or only a stereo image to perform analysis processing and authentication processing. A feature point detection unit 1313, a face matching unit 1314, and a 3D face DB 1315 are installed. As a result, for example, in face recognition, by obtaining three-dimensional data on the unevenness of the face and using it, it is possible to accurately and easily detect a face region and face feature points.

また、コントローラ装置1310は、撮像装置1300からステレオ画像(距離画像)を取得することで、動体領域抽出部209で抽出した動体領域の距離を参照し、所定の距離以内であれば顔認証を実行し、それ以外は実行しない等を判断することができる。 Further, the controller device 1310 acquires a stereo image (distance image) from the imaging device 1300, refers to the distance of the moving body region extracted by the moving body region extraction unit 209, and executes face authentication if the distance is within a predetermined distance. It is possible to determine whether or not to execute other operations.

図23に、コントローラ装置1310が別々の場所に設置された撮像装置1300(a)(b)(c)の様子を表示した例を示す。オフィスやビル等のエントランスに設置された撮像装置1300(a)から受信した可視画像あるいは赤外画像と距離画像を用いて、コントローラ装置1310は3Dベースの顔認証を行い、実行結果を表示する。これにより、来場者や不審者の確認が容易となり、受付時の混雑解消に役立つ。また、公共施設や商業施設等の店舗に設置された撮像装置1300(b)から受信した距離画像を用いて、コントローラ装置1310は商品棚を眺める人の数や、人物が特定できない範囲の情報(例えば、性別や身長、顔の向き、身体の向き、姿勢など)を表示する。これにより、買い物客の購買層や視線や姿勢による関心度などを判断し、商品や陳列に関するマーケティング/販売力強化に役立つ。遊園地や公園等の屋外に設置された撮像装置1300(c)から受信した可視画像、赤外画像、距離画像を用いて、コントローラ装置1310は、画像の中から人物を抽出し、3Dベースの顔認証を行い、予め登録した人物であると確認できた場合はその部分を距離画像で表示し、確認できなかった人物のみを可視画像あるいは赤外画像で表示する。あるいは、人物が特定できない範囲の情報(例えば、性別や身長、顔の向き、子供連れ、姿勢など)を表示する。これにより、来園客の安全確保と不審者の早期発見に役立つ。 FIG. 23 shows an example in which the image pickup devices 1300(a), (b), and (c) in which the controller device 1310 is installed at different locations are displayed. The controller device 1310 performs 3D-based face recognition using the visible image or infrared image and the distance image received from the imaging device 1300(a) installed at the entrance of an office or building, and displays the execution result. This makes it easier to check visitors and suspicious persons, and helps to reduce congestion at reception. Also, using the distance image received from the imaging device 1300 (b) installed in a store such as a public facility or a commercial facility, the controller device 1310 can determine the number of people looking at the product shelf and information ( For example, gender, height, face direction, body direction, posture, etc.). This will help us to determine the level of interest from shoppers' purchasing demographics, line of sight and attitude, and strengthen marketing/sales capabilities related to products and displays. Using visible images, infrared images, and range images received from imaging devices 1300(c) installed outdoors in amusement parks, parks, etc., the controller device 1310 extracts a person from the image and performs a 3D-based Face authentication is performed, and if the person is confirmed to be a pre-registered person, that part is displayed as a distance image, and only the person who cannot be confirmed is displayed as a visible image or an infrared image. Alternatively, information that cannot identify a person (for example, gender, height, face direction, whether the person is with children, posture, etc.) is displayed. This helps ensure the safety of visitors and early detection of suspicious individuals.

次に、図14に、本実施の形態の撮像システムの別構成例を示す。本撮像システムは、1台以上の撮像装置1400とコントローラ装置1410から構成する。また、図示していないが、ネットワーク303上に、実施の形態1の撮像装置100、実施の形態2の撮像装置800、810、そして上記撮像装置1300が混在しても良い。コントローラ装置1410は、いずれの撮像装置も管理可能とする。 Next, FIG. 14 shows another configuration example of the imaging system of this embodiment. This imaging system comprises one or more imaging devices 1400 and a controller device 1410 . Although not shown, the network 303 may include the imaging device 100 according to the first embodiment, the imaging devices 800 and 810 according to the second embodiment, and the imaging device 1300 described above. The controller device 1410 can manage any imaging device.

撮像装置1400は、前記撮像装置1300に、2つの動体領域抽出部1401(a)(b)を搭載する。この動体領域抽出部1401は、前記コントローラ装置1310の動体領域抽出部1311と同様でも良い。それ以外の構成部分は、撮像装置1300と同様の構成である。 The image pickup device 1400 includes two moving object region extraction units 1401(a) and 1401(b) in the image pickup device 1300 described above. The moving body region extraction unit 1401 may be the same as the moving body region extraction unit 1311 of the controller device 1310 . Other components have the same configuration as the imaging device 1300 .

動体領域抽出部1401(a)(b)は、2つの信号処理部13(a)(b)から出力される赤外画像を用いて、それぞれの画像から動体領域を抽出する部分である。これらの抽出した動体領域の情報は、前記実施の形態2と同様に、信号出力制御部14あるいは制御部23に出力し、コントローラ装置1410に提供することが可能である。また、動体領域抽出部1401(a)(b)は、前記距離算出部1302から出力されるステレオ画像(距離画像)を用いて動体領域を抽出し、前述の方法と結果を比較することでより精度良く動体領域を抽出できる。あるいは、最初にステレオ画像(距離画像)を用いて動体領域を抽出し、次に赤外画像を用いて前記抽出した動体領域の部分のみをさらに詳細に確認するようにしても良い。 The moving object region extracting units 1401(a) and 1401(b) are portions that use infrared images output from the two signal processing units 13(a) and 13(b) to extract moving object regions from the respective images. Information on these extracted moving object areas can be output to the signal output control section 14 or the control section 23 and provided to the controller device 1410, as in the second embodiment. Further, the moving object region extracting units 1401(a) and 1401(b) extract a moving object region using the stereo image (distance image) output from the distance calculating unit 1302, and compare the result with the above-described method to obtain a A moving object region can be extracted with high accuracy. Alternatively, a stereo image (distance image) may be used first to extract a moving object area, and then an infrared image may be used to check only the extracted moving object area in more detail.

ここで、制御部23は、前記動体領域抽出部1401(a)(b)から出力された2つの動体領域の情報を参照し、抽出した数や位置を比較し、その比較結果を解析メタデータとして送信することもできる。コントローラ装置1410は、前記解析メタデータを利用し、左右どちらの可視画像あるいは赤外画像を用いて顔認証するかを選択することができる。例えば、動体領域抽出部1401(a)(b)で動体領域を抽出した結果、動体領域抽出部1401(a)(あるいは動体領域抽出部1401(b))で抽出した結果の方が動体領域の数が多い場合に、撮像装置1400の制御部23は動体領域抽出部1401(a)(あるいは動体領域抽出部1401(b))で抽出した動体領域の情報と信号処理部13(a)(あるいは信号処理部13(b))から出力される可視画像あるいは赤外画像を送付する。 Here, the control unit 23 refers to the information of the two moving object regions output from the moving object region extracting units 1401(a) and 1401(b), compares the extracted numbers and positions, and stores the comparison result as analysis metadata. It can also be sent as The controller device 1410 can use the analysis metadata to select which of the right or left visible image or infrared image is used for face authentication. For example, as a result of extracting a moving object region by the moving object region extracting units 1401(a) and 1401(b), the results of extraction by the moving object region extracting unit 1401(a) (or moving object region extracting unit 1401(b)) are When the number is large, the control unit 23 of the imaging device 1400 combines the moving object region information extracted by the moving object region extracting unit 1401(a) (or the moving object region extracting unit 1401(b)) with the signal processing unit 13(a) (or A visible image or an infrared image output from the signal processing unit 13(b)) is sent.

一方、コントローラ装置1410は、前記コントローラ装置1310に、実施の形態1に記載したコントローラ装置200の顔領域検出部210、顔特徴点211、顔照合部212、顔DB213と、総合判定部1411を搭載する。 On the other hand, in the controller device 1410, the controller device 1310 is equipped with the face area detection unit 210, the face feature point 211, the face matching unit 212, the face DB 213, and the comprehensive determination unit 1411 of the controller device 200 described in the first embodiment. do.

これにより、撮像装置1400は、実施の形態1に記載した顔領域検出部210、顔特徴点211、顔照合部212、顔DB213を用いた顔認証処理(可視画像、赤外画像を使用)と、前述した顔領域検出部1312、顔特徴点検出部1313、顔照合部1314、3D顔DB1315を用いた顔認証処理(可視画像、赤外画像、ステレオ画像を使用)とを併用して実行することができる。総合判定部1411は、両方の顔認証処理を実行した結果に基づき、人認証結果の最終判定を行う部分である。これにより2種類の異なる顔認証方法を実行することで、より精度の高い顔認証を実行できる。 As a result, the imaging device 1400 performs face authentication processing (visible image and infrared image are used) using the face area detection unit 210, the face feature point 211, the face matching unit 212, and the face DB 213 described in Embodiment 1. , the above-described face region detection unit 1312, face feature point detection unit 1313, face matching unit 1314, and face authentication processing using the 3D face DB 1315 (using a visible image, an infrared image, and a stereo image). be able to. A comprehensive determination unit 1411 is a part that makes a final determination of the result of human authentication based on the results of executing both face authentication processes. By executing two different face recognition methods, face recognition with higher accuracy can be executed.

同様に、図15に、本実施の形態の撮像システムの別構成例を示す。本撮像システムは、1台以上の撮像装置1500とコントローラ装置1510から構成する。また、図示していないが、ネットワーク303上に、実施の形態1の撮像装置100、実施の形態2の撮像装置800、810、そして上記撮像装置1300、1400が混在しても良い。コントローラ装置1510は、いずれの撮像装置も管理可能とする。 Similarly, FIG. 15 shows another configuration example of the imaging system of this embodiment. This imaging system comprises one or more imaging devices 1500 and a controller device 1510 . Although not shown, the network 303 may include the imaging device 100 of the first embodiment, the imaging devices 800 and 810 of the second embodiment, and the imaging devices 1300 and 1400 described above. The controller device 1510 can manage any imaging device.

撮像装置1500は、前記撮像装置1400に、2つの顔領域検出部1502(a)(b)を搭載する。この顔領域検出部1502は、前記コントローラ装置1310の顔領域検出部1312と同様でも良い。それ以外の構成部分は、撮像装置1400と同様の構成である。 The image pickup device 1500 includes two face area detection units 1502(a) and 1502(b) in the image pickup device 1400 described above. The face area detection section 1502 may be the same as the face area detection section 1312 of the controller device 1310 . Other components have the same configuration as the imaging device 1400 .

顔領域検出部1501(a)(b)は、2つの動体領域抽出部1401(a)(b)から出力される動体領域の情報を用いて、人の顔領域を抽出する部分である。これらの抽出した顔領域の情報は、前記実施の形態2と同様に、信号出力制御部14あるいは制御部23に出力し、コントローラ装置1510に提供することが可能である。 The face area detection units 1501(a) and 1501(b) are parts for extracting a human face area using the moving object area information output from the two moving object area extraction units 1401(a) and 1401(b). Information on these extracted face areas can be output to the signal output control section 14 or the control section 23 and provided to the controller device 1510, as in the second embodiment.

ここで、制御部23は、前記顔領域検出部1501(a)(b)から出力された2つの顔領域の情報を参照し、抽出した数や位置、そして顔の向きを比較し、その比較結果を解析メタデータとして送信することができる。コントローラ装置1510は、前記解析メタデータを利用し、より顔認証に適した画像を選択することで、より精度の高い顔認証を実行できる。 Here, the control unit 23 refers to the information of the two face regions output from the face region detection unit 1501(a) and (b), compares the number and positions of the extracted faces, and the direction of the face. Results can be sent as analysis metadata. The controller device 1510 can use the analysis metadata to select an image more suitable for face authentication, thereby performing face authentication with higher accuracy.

一方、コントローラ装置1510は、前記コントローラ装置200あるいはコントローラ装置1410に、新たに認証方式選択部1511、虹彩検出部1512、虹彩照合部1513、虹彩DB1514を搭載する。 On the other hand, the controller device 1510 has an authentication method selection unit 1511 , an iris detection unit 1512 , an iris collation unit 1513 and an iris DB 1514 newly installed in the controller device 200 or the controller device 1410 .

認証方式選択部1511は、撮像装置1500から受信した可視画像、赤外画像、ステレオ画像(距離画像)、解析パラメータ情報などを用いて、顔認証と虹彩認証のどちらを実行するかを選択する部分である。例えば、対象物が所定の距離範囲に入った場合は虹彩認証を実行し、それ以外は顔認証を実行する。あるいは、通常は顔認証を実行し、虹彩認証が可能な条件を満たしている場合には虹彩認証も実行する。 An authentication method selection unit 1511 selects whether to perform face authentication or iris authentication using a visible image, an infrared image, a stereo image (distance image), analysis parameter information, etc. received from the imaging device 1500. is. For example, iris authentication is performed when an object enters a predetermined distance range, and face authentication is performed otherwise. Alternatively, face authentication is normally performed, and iris authentication is also performed when conditions for iris authentication are satisfied.

虹彩検出部1512は、撮像装置1500から受信した赤外画像と、その画像から抽出した顔領域を含む解析パラメータを用いて、人の目の虹彩位置を検出し、さらに虹彩と白目の境の検出および虹彩と同行の境を検出し、虹彩エリアの特定を行い、瞳孔コードを生成する。なお、これらの方法は、周知のいずれの手法を適用しても良い。 The iris detection unit 1512 detects the iris position of the human eye using the infrared image received from the imaging device 1500 and the analysis parameters including the face region extracted from the image, and further detects the boundary between the iris and the white of the eye. Then, the iris and accompanying boundary are detected, the iris area is specified, and the pupil code is generated. Any well-known technique may be applied to these methods.

虹彩照合部1513は、前記虹彩検出部1512で検出した情報を元に、顔認証と同様に、虹彩DB1514を用いてマッチングを行う。 Based on the information detected by the iris detection unit 1512, the iris matching unit 1513 performs matching using the iris DB 1514, similar to face authentication.

これによりコントローラ装置1510は、撮像装置1500から受信した可視画像、赤外画像、ステレオ画像(距離画像)、解析パラメータ情報などを用いて、最適な生体認証を選択することができ、より精度の高い本人認証を実行することが可能となる。 As a result, the controller device 1510 can select the optimum biometric authentication using the visible image, the infrared image, the stereo image (range image), the analysis parameter information, etc. received from the imaging device 1500. It is possible to perform personal authentication.

図24に、空港やビルエントランスなどに設置された撮像装置1500の撮像映像を、コントローラ装置1410、コントローラ装置1510が処理する例を示す。本例では、コントローラ装置1410は、撮像装置1500から可視画像と解析パラメータとして顔領域と距離情報を取得することで、距離が遠い顔領域に対しては比較的画像処理負担が軽い2D顔認証を実施し、距離が近い顔領域については画像処理負担の大きい3D顔認証する。また、コントローラ装置1510は、撮像装置1500から可視画像、赤外画像、解析パラメータとして顔領域と距離情報を取得することで、距離が遠い顔領域に対しては可視画像を用いて顔認証し、距離が近い顔領域に対しては赤外画像を用いて虹彩認証を行う。また、順番待ちなどによる混雑を解消するために、撮像画像内で所定の位置から近い距離に居る人を判断し、その順番に顔認証を実行することもできる。 FIG. 24 shows an example in which a controller device 1410 processes an image captured by an imaging device 1500 installed at an airport, a building entrance, or the like. In this example, the controller device 1410 acquires a visible image and a face region and distance information as analysis parameters from the imaging device 1500, thereby performing 2D face authentication with a relatively light image processing load for a face region at a long distance. 3D face authentication, which requires a large image processing load, is performed for face regions that are close to each other. In addition, the controller device 1510 acquires a visible image, an infrared image, and a face region and distance information as analysis parameters from the imaging device 1500, and performs face authentication using the visible image for a face region at a long distance, Infrared images are used to perform iris authentication for face regions that are close to each other. In addition, in order to eliminate congestion caused by waiting for a turn, it is possible to determine persons who are close to a predetermined position in the captured image, and perform face authentication in that order.

図16は、本実施の形態の撮像システムの別構成例を示す。本撮像システムは、例えばスマートフォンやタブレットのような携帯端末に搭載した例を示す。 FIG. 16 shows another configuration example of the imaging system of this embodiment. This imaging system shows an example in which it is installed in a mobile terminal such as a smart phone or a tablet.

図17、図18は、本実施の形態の形態で使用する撮像装置1400、1500に関する機能情報や解析パラメータの構成例を示す。 17 and 18 show configuration examples of functional information and analysis parameters relating to imaging devices 1400 and 1500 used in this embodiment.

前記撮像装置が生成するステレオ画像(距離画像)は、図17に示すように、可視画像や赤外画像と同様の転送方法で、コントローラ装置へ提供することが可能である。 A stereo image (distance image) generated by the imaging device can be provided to the controller device by a transfer method similar to that for visible images and infrared images, as shown in FIG. 17 .

あるいは、図18に示すように、動体領域の位置情報や顔領域の位置情報に付加した方法で提供することも可能である。その場合は、動体領域や顔領域に該当する座標領域に関する距離情報のみを切り出して付加する。 Alternatively, as shown in FIG. 18, it is also possible to provide by adding to the position information of the moving body area or the position information of the face area. In that case, only the distance information about the coordinate area corresponding to the moving body area or the face area is extracted and added.

図20に、解析パラメータの一部として距離情報を送付する構成例を示す。ペイロード1210内に距離情報を格納し、例えば抽出した動体領域(個数n)に関する距離情報は動体領域の座標情報の直後に格納(2001、2002)し、顔領域(個数m)に関する距離情報は顔領域の座標情報直後に格納(2003、2004)する。この構成の他、座標情報と距離情報を交互に格納した構成でも良い。 FIG. 20 shows a configuration example for sending distance information as part of analysis parameters. Distance information is stored in the payload 1210. For example, the distance information on the extracted moving body region (number n) is stored immediately after the coordinate information of the moving body region (2001, 2002), and the distance information on the face region (number m) is stored on the face. Store immediately after the coordinate information of the area (2003, 2004). In addition to this configuration, a configuration in which coordinate information and distance information are alternately stored may be used.

図19は、本実施の形態の撮像システムの別構成例を示す。本撮像システムの撮像装置1900は、1つの動体領域抽出部1901を備え、左右の信号処理部13(a)(b)のどちらか一方の赤外画像を用いて動体領域を抽出する構成である。あるいはどちらか一方の赤外画像と、距離算出部1302から出力されたステレオ画像とを用いて動体領域を抽出する構成である。 FIG. 19 shows another configuration example of the imaging system of this embodiment. An imaging device 1900 of this imaging system includes one moving object region extraction unit 1901, and is configured to extract a moving object region using infrared images from either one of the left and right signal processing units 13(a) and 13(b). . Alternatively, one of the infrared images and the stereo image output from the distance calculation unit 1302 are used to extract the moving object region.

2…センサ本体、3…カラーフィルタ、5…DBPF(光学フィルタ)、11…レンズ(光学系)、12…撮像センサ部、13…信号処理部、14…信号出力制御部、15…通信制御部、16…IF部、23…制御部、100、800、810、1300、1400、1500…撮像装置、200、1310、1410、1510…コントローラ装置、801、1401…動体領域抽出部、802、1501…顔領域検出部、1301…補正パラメータ算出部、1302…距離算出部、1600…携帯端末。 DESCRIPTION OF SYMBOLS 2... Sensor main body 3... Color filter 5... DBPF (optical filter) 11... Lens (optical system) 12... Imaging sensor part 13... Signal processing part 14... Signal output control part 15... Communication control part , 16... IF unit 23... control unit 100, 800, 810, 1300, 1400, 1500... imaging device 200, 1310, 1410, 1510... controller device 801, 1401... moving body region extraction unit 802, 1501... Face area detection unit 1301 Correction parameter calculation unit 1302 Distance calculation unit 1600 Portable terminal.

Claims (1)

2つの撮像素子と、
前記2つの撮像素子のそれぞれに対応して設けられ、少なくとも、可視光波長領域と赤外波長領域とを透過する特性を有し、前記特性に基づき前記2つの撮像素子のそれぞれに入射される光をフィルタリングする2つのフィルタ部と、
前記フィルタ部を通過した光を前記撮像素子で撮像して得られた信号を処理して可視光信号と赤外信号とを出力する2つの信号処理部と、
前記2つの信号処理部によって出力される2つの前記可視光信号又は2つの前記赤外信号を用いて、対象物までの距離を算出する距離算出部と、
前記信号処理部から信号出力制御部に出力される前記可視光信号に基づく第1のデータ、もしくは前記赤外信号に基づく第3のデータに、前記距離算出部により生成される距離画像に基づく第2のデータを付加し又は掛け合わせ、前記付加された又は掛け合わされた第1のデータ又は第3のデータを外部に送信する信号出力制御部と、
を備え、
時刻または周囲の環境に応じて、前記信号出力制御部が外部に送信するデータを、前記付加された又は掛け合わされた第1のデータか、前記付加された又は掛け合わされた第3のデータかに自動的に切り替える、
撮像装置。
two imaging elements;
Light that is provided corresponding to each of the two imaging elements, has a characteristic of transmitting at least a visible light wavelength region and an infrared wavelength region, and is incident on each of the two imaging elements based on the characteristics. two filter sections for filtering the
two signal processing units that process a signal obtained by imaging the light that has passed through the filter unit with the imaging element and output a visible light signal and an infrared signal;
a distance calculation unit that calculates a distance to an object using the two visible light signals or the two infrared signals output by the two signal processing units;
The first data based on the visible light signal or the third data based on the infrared signal output from the signal processing unit to the signal output control unit is combined with the third data based on the distance image generated by the distance calculation unit. a signal output control unit that adds or multiplies two data and transmits the added or multiplied first data or third data to the outside;
with
Depending on the time of day or the surrounding environment, the data to be transmitted to the outside by the signal output control unit is selected from the added or multiplied first data or the added or multiplied third data. switch automatically,
Imaging device.
JP2022160382A 2020-07-08 2022-10-04 Imaging apparatus Pending JP2022189835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022160382A JP2022189835A (en) 2020-07-08 2022-10-04 Imaging apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020117477A JP7154257B2 (en) 2020-07-08 2020-07-08 Imaging device
JP2022160382A JP2022189835A (en) 2020-07-08 2022-10-04 Imaging apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020117477A Division JP7154257B2 (en) 2020-07-08 2020-07-08 Imaging device

Publications (1)

Publication Number Publication Date
JP2022189835A true JP2022189835A (en) 2022-12-22

Family

ID=72746089

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020117477A Active JP7154257B2 (en) 2020-07-08 2020-07-08 Imaging device
JP2022160382A Pending JP2022189835A (en) 2020-07-08 2022-10-04 Imaging apparatus

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020117477A Active JP7154257B2 (en) 2020-07-08 2020-07-08 Imaging device

Country Status (1)

Country Link
JP (2) JP7154257B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7450668B2 (en) 2022-06-30 2024-03-15 維沃移動通信有限公司 Facial recognition methods, devices, systems, electronic devices and readable storage media

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6182396B2 (en) * 2013-08-30 2017-08-16 日立オートモティブシステムズ株式会社 Imaging device
WO2016084926A1 (en) * 2014-11-28 2016-06-02 日立マクセル株式会社 Image pickup system

Also Published As

Publication number Publication date
JP7154257B2 (en) 2022-10-17
JP2020171057A (en) 2020-10-15

Similar Documents

Publication Publication Date Title
JP6732902B2 (en) Imaging device and imaging system
WO2020057355A1 (en) Three-dimensional modeling method and device
US8373755B2 (en) Network camera and system and method for operating the network camera and system
US9648285B2 (en) Monitoring method and camera
KR101514061B1 (en) Wireless camera device for managing old and weak people and the management system thereby
JP6572535B2 (en) Image recognition system, server device, and image recognition method
JP2011130271A (en) Imaging device and video processing apparatus
JP2011130271A5 (en)
JP2004219277A (en) Method and system, program, and recording medium for detection of human body
KR20190090544A (en) Camera surveillance system using infrared sensor and face recognition technology
JP2022189835A (en) Imaging apparatus
KR20180086045A (en) Video management system and video management method
KR100995949B1 (en) Image processing device, camera device and image processing method
JP6809114B2 (en) Information processing equipment, image processing system, program
KR101077777B1 (en) Network camera system, method for processing video data thereof and method for managing thereof
KR102386277B1 (en) Street parking lot license plate recognition system with reliability improved
JP4367177B2 (en) Monitoring device
TWI448976B (en) Ultra-wide-angle imaging method and system using the same
CN112507948A (en) Mask wearing prompting method and related device
JP7085925B2 (en) Information registration device, information processing device, control method of information registration device, control method of information processing device, system, and program
JP2005033649A (en) Monitor circuit, monitor camera and monitor system
KR20170033459A (en) A door security system with hat detection
KR102237114B1 (en) A home camera apparatus
KR20240035785A (en) Image information provision apparatus and method
KR100896292B1 (en) Monitoring camera system and mothod for controlling the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230912

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240402