JP2022186667A - Circuit for re-liquefying fluid and supplying re-liquefied fluid to consumption unit - Google Patents

Circuit for re-liquefying fluid and supplying re-liquefied fluid to consumption unit Download PDF

Info

Publication number
JP2022186667A
JP2022186667A JP2022090716A JP2022090716A JP2022186667A JP 2022186667 A JP2022186667 A JP 2022186667A JP 2022090716 A JP2022090716 A JP 2022090716A JP 2022090716 A JP2022090716 A JP 2022090716A JP 2022186667 A JP2022186667 A JP 2022186667A
Authority
JP
Japan
Prior art keywords
fluid
pipe
flowing
cooling
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022090716A
Other languages
Japanese (ja)
Inventor
パーベル、ボリシェビキ
BORISEVICH Pavel
ベルナール、アウン
Aoun Bernard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gaztransport et Technigaz SA
Original Assignee
Gaztransport et Technigaz SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport et Technigaz SA filed Critical Gaztransport et Technigaz SA
Publication of JP2022186667A publication Critical patent/JP2022186667A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/38Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/04Vessels not under pressure with provision for thermal insulation by insulating layers
    • F17C3/06Vessels not under pressure with provision for thermal insulation by insulating layers on the inner surface, i.e. in contact with the stored fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • F25J1/0025Boil-off gases "BOG" from storages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B17/00Vessels parts, details, or accessories, not otherwise provided for
    • B63B17/0027Tanks for fuel or the like ; Accessories therefor, e.g. tank filler caps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J2/00Arrangements of ventilation, heating, cooling, or air-conditioning
    • B63J2/12Heating; Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0203Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
    • F02M21/0209Hydrocarbon fuels, e.g. methane or acetylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0245High pressure fuel supply systems; Rails; Pumps; Arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/004Details of vessels or of the filling or discharging of vessels for large storage vessels not under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • F17C13/025Special adaptations of indicating, measuring, or monitoring equipment having the pressure as the parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • F17C13/026Special adaptations of indicating, measuring, or monitoring equipment having the temperature as the parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/04Arrangement or mounting of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • F17C9/04Recovery of thermal energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/005Pipe-line systems for a two-phase gas-liquid flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/08Pipe-line systems for liquids or viscous products
    • F17D1/14Conveying liquids or viscous products by pumping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D3/00Arrangements for supervising or controlling working operations
    • F17D3/01Arrangements for supervising or controlling working operations for controlling, signalling, or supervising the conveyance of a product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0045Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0201Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
    • F25J1/0202Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration in a quasi-closed internal refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0204Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a single flow SCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0212Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a single flow MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0229Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock
    • F25J1/023Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock for the combustion as fuels, i.e. integration with the fuel gas system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0236Heat exchange integration providing refrigeration for different processes treating not the same feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0277Offshore use, e.g. during shipping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0308Radiation shield
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0123Mounting arrangements characterised by number of vessels
    • F17C2205/013Two or more vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0338Pressure regulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0352Pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/035Propane butane, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0146Two-phase
    • F17C2225/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0135Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • F17C2227/0323Heat exchange with the fluid by heating using another fluid in a closed loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0341Heat exchange with the fluid by cooling using another fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0358Heat exchange with the fluid by cooling by expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • F17C2227/039Localisation of heat exchange separate on the pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0626Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0631Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/031Dealing with losses due to heat transfer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/05Improving chemical properties
    • F17C2260/056Improving fluid characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/033Treating the boil-off by recovery with cooling
    • F17C2265/034Treating the boil-off by recovery with cooling with condensing the gas phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/037Treating the boil-off by recovery with pressurising
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/066Fluid distribution for feeding engines for propulsion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/64Propane or propylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/66Butane or mixed butanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/60Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being hydrocarbons or a mixture of hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/60Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being (a mixture of) hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/34Details about subcooling of liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system
    • Y02T70/5218Less carbon-intensive fuels, e.g. natural gas, biofuels

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

To execute control to prevent the pressure in the highest part of a tank from damaging the tank relating to a field of a vessel using, storing, and/or conveying liquefied natural gas and/or liquefied petroleum gas.SOLUTION: The present invention is related to a circuit (1) in which first fluid (4) stored in a first tank (2) and second fluid (8) stored in a second tank (6) flow. The circuit (1) includes at least one management pipe (20) for managing the state of the second fluid (8) intended for the second fluid (8) taken in a liquid state from the second tank (6) to pass and flow through. The circuit (1) includes a supply pipe (15) extending from a second pipe (16) to a consumption device (17) for supplying the first fluid (4) to the consumption device (17) that uses it as a fuel. The supply pipe (15) is configured so that the first fluid (4) in a liquid state passes and flows through it, and the supply pipe (15) includes at least one pump element (19) for increasing the pressure of the first fluid (4) in the supply pipe (15).SELECTED DRAWING: Figure 1

Description

本発明は、液化天然ガス、および/または液化石油ガスを使用、貯蔵、および/または輸送する船舶の分野に関連し、より詳細には、そのような船舶で輸送される液化天然ガス、および/または液化石油ガスの状態を管理するためのシステムの分野に属する。 The present invention relates to the field of ships that use, store and/or transport liquefied natural gas and/or liquefied petroleum gas, and more particularly liquefied natural gas and/or transported on such ships. Or belongs to the field of systems for controlling the condition of liquefied petroleum gas.

そのような船舶は、慣例的に液体状態の天然ガス、および/または液体状態の石油ガスを収容するタンクを含む。そのような船舶は、例えば、液状の天然ガスを貯蔵するための第1タンクと、液状の石油ガスを貯蔵するための第2タンクを含むことがある。一方で、そのような船舶は、第1タンクに収容される第1石油ガスと、第2タンクに収容される第2石油ガスを輸送することがあり、第1石油ガスは例えばその組成が第2石油ガスとは異なる。つまり、そのような船舶は、液化天然ガスまたは液化石油ガスでありうる第1流体と、第1流体とは異なり、かつ液化天然ガスまたは液化石油ガスでありうる第2流体を輸送することがある。 Such vessels customarily include tanks containing natural gas in liquid form and/or petroleum gas in liquid form. Such vessels may, for example, include a first tank for storing natural gas in liquid form and a second tank for storing petroleum gas in liquid form. On the one hand, such a vessel may transport a first petroleum gas contained in a first tank and a second petroleum gas contained in a second tank, the first petroleum gas being e.g. 2 Different from petroleum gas. That is, such vessels may transport a first fluid, which may be liquefied natural gas or liquefied petroleum gas, and a second fluid, different from the first fluid, which may be liquefied natural gas or liquefied petroleum gas. .

天然ガスは、例えば大気圧で-160℃より下の温度では液体である。こうしたタンクは決して完全には熱的に絶縁されておらず、これは、天然ガスの少なくとも一部はタンク内で蒸発することを意味する。それゆえ、こうしたタンクは液状の天然ガスとガス状の天然ガスの両方を収容しており、ガス状の天然ガスは「BOG」または「ボイルオフガス」とも呼ばれて、タンクの最上部に蓄積する。このタンクの最上部における圧力は、タンクを損傷させないように制御する必要がある。 Natural gas is liquid at temperatures below −160° C. at atmospheric pressure, for example. Such tanks are never completely thermally insulated, which means that at least part of the natural gas evaporates within the tank. Such tanks therefore contain both liquid and gaseous natural gas, the gaseous natural gas, also called "BOG" or "boil-off gas", accumulating at the top of the tank. . The pressure at the top of this tank must be controlled so as not to damage the tank.

石油ガスは、大気圧ではその組成に応じて概して0℃~50℃の沸点を有する。また、石油ガスは、タンクに貯蔵された場合に少なくとも部分的に蒸発する傾向があり、蒸発した石油ガスにより生じたタンクの最上部における圧力も、タンクを損傷させないように制御されなければならない。 Petroleum gas generally has a boiling point between 0° C. and 50° C. at atmospheric pressure, depending on its composition. Also, petroleum gas tends to at least partially evaporate when stored in a tank, and the pressure at the top of the tank caused by the evaporated petroleum gas must also be controlled so as not to damage the tank.

一般的に、そのような船舶は、このような流体のそれぞれがタンクの最上部で蒸発するのを制限するために、第1流体および第2流体の状態を管理するための複数のシステムを備える。それゆえこうした管理システムは、一方では第1流体を液化するよう構成され、他方では第1流体の液化とは関係なしに第2流体を液化するよう構成される。さらに、複数の流体のどちらか一方を管理するためのシステムは概して、蒸発した第1流体および/または第2流体を圧縮する圧縮要素を含み、これらの圧縮要素により前記流体の圧力を上昇させることができる。その結果、この種類の管理システムは概してかなりの大きさであり、船舶上で、または波止場周辺のいずれでもかなりの空間を占める。また、それらの管理システムは、複数の流体のどちらか一方を燃料として用いる消費装置への供給には適していない。 Typically, such vessels are equipped with multiple systems for managing the condition of the first and second fluids in order to limit the evaporation of each such fluid at the top of the tank. . Such a management system is therefore arranged to liquefy the first fluid on the one hand and to liquefy the second fluid independently of the liquefaction of the first fluid on the other hand. Further, systems for managing either one of a plurality of fluids generally include compression elements for compressing the vaporized first fluid and/or the second fluid, increasing the pressure of said fluids by means of these compression elements. can be done. As a result, this type of management system is generally quite bulky and takes up considerable space either on the ship or around the docks. Also, these management systems are not suitable for supplying consuming devices that use either one of multiple fluids as fuel.

本発明は、第1流体および/または第2流体を燃料として用いる消費装置へ第1流体および/または第2流体を供給しながら、管理システムが占める体積を少なくするため、および、これら2つの流体の状態を管理するために、これらの圧縮要素が占める空間を減らすことを目標としている。より詳細には、本発明は蒸発した第1流体の状態を管理するためのシステムを提案し、このシステムにより液体状態の第2流体を冷却することも可能となり、これにより蒸発する第2流体の量を減少させながら、液体状態の第1流体の一部を燃料として消費装置へ送ることも可能となる。 The present invention aims to reduce the volume occupied by the management system while supplying the first fluid and/or the second fluid to a consumer that uses the first fluid and/or the second fluid as fuel, and to reduce the volume of these two fluids. The goal is to reduce the space occupied by these compression elements in order to manage the state of More particularly, the present invention proposes a system for controlling the state of the vaporized first fluid, which system also makes it possible to cool the second fluid in its liquid state, whereby the vaporized second fluid It is also possible to send a portion of the first fluid in liquid state as fuel to the consumer in a decreasing amount.

本発明は、主に第1タンクに収容される第1流体、および第2タンクに収容される第2流体が流れることができる回路に関連し、第1流体は第2流体の沸点より低い沸点を有し、回路は第1タンクから熱交換要素まで延びる第1配管を少なくとも含み、気体状態で第1タンクから取り込まれた第1流体は第1配管を通って流れるように意図され、熱交換要素は第1流体を凝縮するよう構成され、回路は熱交換要素から第1タンクまで延びる第2配管を含み、液体状態および/または二相状態の第1流体は第2配管を通って流れるように意図され、回路は第2タンクから液体状態で取り込まれた第2流体が通って流れるように意図された、第2流体の状態を管理するための少なくとも1つの管理配管を含み、回路は少なくとも第1流体を燃料として用いる消費装置へ供給するための、第2配管から消費装置まで延びる供給管を含むことを含み、供給管は少なくとも液体状態の第1流体が通って流れるよう構成され、供給管は少なくとも供給管内の第1流体の圧力を上昇させる少なくとも1つのポンプ要素を含むことを特徴とする。 The present invention primarily relates to a circuit through which a first fluid contained in a first tank and a second fluid contained in a second tank can flow, the first fluid having a boiling point lower than the boiling point of the second fluid wherein the circuit includes at least a first pipe extending from the first tank to the heat exchange element, a first fluid taken from the first tank in gaseous state being intended to flow through the first pipe and heat exchanging The element is configured to condense the first fluid, the circuit includes a second pipe extending from the heat exchange element to the first tank, the first fluid in liquid state and/or two-phase state flowing through the second pipe. and the circuit includes at least one control line for controlling the condition of the second fluid, through which the second fluid taken in liquid form from the second tank is intended to flow, the circuit comprising at least including a supply pipe extending from the second pipe to the consuming device for supplying the first fluid to the consuming device for use as fuel, the supply pipe being configured to flow at least the first fluid in liquid state therethrough; The tube is characterized by at least one pumping element for increasing the pressure of the first fluid in at least the supply tube.

回路は、一方で第1タンクに収容される第1流体および第2タンクに収容される第2流体の、少なくとも圧力および温度、より一般的には状態を制御し、他方では、消費ユニットに少なくとも第1流体を燃料として供給するということに留意されたい。消費ユニットは、例えば、本発明に係る回路ならびに第1タンクおよび第2タンクが設置される船舶に搭載される、推進エンジンまたは補助エンジンとすることができる。 The circuit controls on the one hand at least the pressure and temperature, more generally the state, of the first fluid contained in the first tank and the second fluid contained in the second tank, and on the other hand at least Note that the first fluid is supplied as fuel. The consuming unit can be, for example, a propulsion engine or an auxiliary engine onboard the ship in which the circuit according to the invention and the first and second tanks are installed.

ポンプ要素は、具体的には、液体状態で供給管を消費ユニットへ流れる、少なくとも第1流体の圧力を上昇させることを可能とする。本発明は、第1流体が第1配管を通過する際の第1流体の圧力が高いという事実を利用し、この高い圧力は、一方では第1流体を液化して第1タンク内の圧力、またそれに応じて第2タンク内の圧力を管理するのに用いられ、他方では消費装置へ供給するのに用いられる。したがって、消費装置へ供給するのに必要な圧力は、第1配管内で広がっている圧力とポンプ要素により供給される圧力の組み合わせである。この巧妙な組み合わせにより、あまり複雑ではなく、より安価で、より信頼性の高いポンプ要素を用いることが可能となる。 The pump element in particular makes it possible to increase the pressure of at least the first fluid flowing in liquid state through the supply line to the consumption unit. The present invention takes advantage of the fact that the pressure of the first fluid is high as it passes through the first pipe, and this high pressure on the one hand liquefies the first fluid to create the pressure in the first tank, It is also used accordingly to manage the pressure in the second tank and, on the other hand, to supply the consumer. The pressure required to supply the consumer is therefore a combination of the pressure prevailing in the first line and the pressure supplied by the pump element. This clever combination allows the use of less complex, cheaper and more reliable pumping elements.

さらに、第1流体を燃料として用いることには、第1タンクに収容される第1流体の熱管理に必要なエネルギーの消費を削減する利点がある。この削減は、消費装置へ供給するそのような配管を含まない回路と比べて、最大で30%のエネルギーの節約を意味しうる。 Furthermore, using the first fluid as fuel has the advantage of reducing the energy consumption required for thermal management of the first fluid contained in the first tank. This reduction can represent an energy savings of up to 30% compared to a circuit that does not include such plumbing supplying consumers.

第1流体および第2流体は、例えば、タンクに液体状態で貯蔵された石油ガスであり、第1流体は、例えば92%のプロパンと8%のブタンから成る大気圧で-47℃の沸点を有する混合物であり、つまり、第1流体はその温度が大気圧で-47℃より低い場合には液状であり、第2流体は例えば約100%のブタンから成り、大気圧で0℃の沸点を有する、つまり、第2流体はその温度が大気圧で0℃より低い場合には液状である。 The first and second fluids are, for example, petroleum gas stored in liquid form in tanks, the first fluid comprising, for example, 92% propane and 8% butane, having a boiling point of −47° C. at atmospheric pressure. That is, the first fluid is liquid when its temperature is below −47° C. at atmospheric pressure, and the second fluid consists, for example, of about 100% butane and has a boiling point of 0° C. at atmospheric pressure. have, ie, the second fluid is liquid if its temperature is below 0° C. at atmospheric pressure.

本発明の別の実施形態によれば、第1流体は例えば大部分がメタンなどの天然ガスであり、大気圧で約-160℃の沸点を有する。 According to another embodiment of the invention, the first fluid is, for example, mostly natural gas, such as methane, and has a boiling point of about -160°C at atmospheric pressure.

本発明の別の実施形態によれば、第1流体は例えば100%のエタンから成り、-89℃の蒸発温度を有し、第2流体は92%のプロパンと8%のブタンの混合物を含む液化石油ガスから成り、-47℃の蒸発温度を有する。 According to another embodiment of the invention, the first fluid consists for example of 100% ethane and has an evaporation temperature of −89° C. and the second fluid comprises a mixture of 92% propane and 8% butane. It consists of liquefied petroleum gas and has an evaporation temperature of -47°C.

本発明の別の実施形態によれば、第1流体は例えば100%のエタンから成り、-89℃の蒸発温度を有し、第2流体は-33℃の蒸発温度を有する100%のアンモニアから成る。 According to another embodiment of the invention, the first fluid consists for example of 100% ethane and has an evaporation temperature of -89°C and the second fluid consists of 100% ammonia with an evaporation temperature of -33°C. Become.

本発明の別の実施形態によれば、第1流体は例えば100%のプロパンから成り、-42℃の蒸発温度を有し、第2流体は-33℃の蒸発温度を有する100%のアンモニアから成る。 According to another embodiment of the invention, the first fluid consists for example of 100% propane and has an evaporation temperature of -42°C and the second fluid consists of 100% ammonia with an evaporation temperature of -33°C. Become.

上記の温度は大気圧で測定される。 The above temperatures are measured at atmospheric pressure.

さらに、「供給管は少なくとも液体状態の第1流体が通って流れるよう構成される」というのは、本発明の第1実施形態において、供給管には第1流体だけが流れるということを意味する、あるいは、本発明の第2実施形態において、供給管には第1流体および少なくとも1つの別の流体、例えば第2流体が流れるということを意味する。 Furthermore, "the supply tube is configured to allow at least the first fluid in liquid state to flow therethrough" means that in the first embodiment of the invention, only the first fluid flows through the supply tube. Alternatively, in a second embodiment of the invention, it is meant that the supply tube carries a first fluid and at least one other fluid, such as a second fluid.

本発明の別の任意選択の特徴によれば、回路は、第2配管から第1配管まで延びて第1流体が流れるように意図された少なくとも1つの冷却管を含み、第1配管は第1圧縮要素と第2圧縮要素とを少なくとも含み、冷却管は第1圧縮要素と第2圧縮要素の間で第1配管に接続される。 According to another optional feature of the invention, the circuit comprises at least one cooling pipe extending from the second pipe to the first pipe intended for the flow of the first fluid, the first pipe At least a compression element and a second compression element are included, and the cooling pipe is connected to the first pipe between the first compression element and the second compression element.

本発明の別の任意選択の特徴によれば、回路は、第2流体の状態を管理するための管理配管を流れる液体状態の第2流体を冷却する少なくとも1つの冷却ユニットを含み、冷却ユニットにより生成される冷気は、第2配管から第1配管まで延びて第1流体が流れるように意図された少なくとも1つの冷却管を流れる第1流体の蒸発(ボイルオフ)により生じる。 According to another optional feature of the invention, the circuit includes at least one cooling unit for cooling the second fluid in liquid state flowing through the management piping for managing the condition of the second fluid, the cooling unit The cold produced is caused by evaporation (boil-off) of the first fluid flowing through at least one cooling pipe extending from the second pipe to the first pipe and through which the first fluid is intended to flow.

管理配管を流れる第2流体は冷却ユニットにより冷却され、冷却ユニットの下流の管理配管を流れる第2流体の温度は冷却ユニットの下流の冷却管を流れる第1流体の温度よりも低い。これには、第2タンクに収容される第2流体の温度を下げる効果があり、その結果、第2タンク内に存在する第2流体の蒸発が制限される。 The second fluid flowing through the management pipe is cooled by the cooling unit, and the temperature of the second fluid flowing through the management pipe downstream of the cooling unit is lower than the temperature of the first fluid flowing through the cooling pipe downstream of the cooling unit. This has the effect of reducing the temperature of the second fluid contained in the second tank, thereby limiting the evaporation of the second fluid present in the second tank.

管理配管を流れる第2流体の温度を下げるために用いられる冷気は、冷却管を流れる第1流体の一部の蒸発によりもたらされる。より詳細には、この第1流体の一部は膨張させられる、つまり、この第1流体の一部の圧力は下げられて、その結果、第1流体と第2流体の間の熱交換によって第2流体の温度が下げられる。 The cold air used to lower the temperature of the second fluid flowing through the management pipes comes from the evaporation of a portion of the first fluid flowing through the cooling pipes. More specifically, a portion of this first fluid is expanded, i.e. a portion of this first fluid is depressurized so that the heat exchange between the first and second fluids causes the second The temperature of the two fluids is lowered.

本発明の別の任意選択の特徴によれば、冷却ユニットは、熱交換器と膨張要素を少なくとも含み、熱交換器は冷却管を流れる第1流体と管理配管を流れる第2流体の間で熱エネルギーを交換する。 According to another optional feature of the invention, the cooling unit includes at least a heat exchanger and an expansion element, the heat exchanger providing heat transfer between the first fluid flowing through the cooling pipes and the second fluid flowing through the management pipes. exchange energy.

より詳細には、冷却管を流れる第1流体は、熱交換器内を流れる前に膨張要素により膨張させられる。管理配管を流れる第2流体は、熱交換器を通過する際に、冷却管を流れてやはり熱交換器を通過する膨張した第1流体へ熱エネルギーを渡す。したがって、管理配管を流れる第2流体は、冷却ユニットの下流で、冷却管を流れる第1流体の温度に近い温度まで冷却される。 More specifically, the first fluid flowing through the cooling tubes is expanded by an expansion element before flowing through the heat exchanger. As the second fluid flowing through the management pipe passes through the heat exchanger, it transfers thermal energy to the expanded first fluid flowing through the cooling tubes and also passing through the heat exchanger. Therefore, the second fluid flowing through the management pipe is cooled downstream of the cooling unit to a temperature close to the temperature of the first fluid flowing through the cooling pipe.

換言すれば、冷却管を流れて熱交換器を通過する第1流体は、管理配管を流れる第2流体から熱エネルギーを獲得することにより、熱交換器内で温められて蒸発する。そして、温められ蒸発した第1流体は、第1配管に取り付けられた複数の圧縮要素のうちの一つにより吸入される。 In other words, the first fluid flowing through the cooling pipes and passing through the heat exchanger is warmed and vaporized within the heat exchanger by gaining thermal energy from the second fluid flowing through the management pipes. The warmed and vaporized first fluid is then sucked by one of the plurality of compression elements attached to the first pipe.

さらに、管理配管を流れる第2流体の温度が低下するのは熱交換器の内部であり、具体的には管理配管を流れる第2流体から冷却管を流れる第1流体への熱エネルギーの伝送により、冷却管を流れる第1流体の温度に近づく。管理配管を流れる第2流体の温度は、熱交換器内で行われる熱エネルギーの交換の間に低下することに留意されたい。 Furthermore, it is inside the heat exchanger that the temperature of the second fluid flowing through the management pipe decreases. Specifically, heat energy is transferred from the second fluid flowing through the management pipe to the first fluid flowing through the cooling pipe. , approaches the temperature of the first fluid flowing through the cooling pipe. It should be noted that the temperature of the second fluid flowing through the management pipe will drop during the exchange of thermal energy taking place in the heat exchanger.

本発明の別の任意選択の特徴によれば、熱交換器は、冷却管を構成する第1通路と、管理配管を構成する第2通路とを少なくとも含み、膨張要素が第1通路と第2配管の間に配置される。 According to another optional feature of the invention, the heat exchanger includes at least a first passageway forming a cooling pipe and a second passageway forming a management pipe, the expansion element comprising the first passageway and the second passageway. Placed between pipes.

この構成では、冷却管を流れる第1流体は、第1流体が熱交換器の第1通路を流れる前に膨張要素により膨張させられることに留意されたい Note that in this configuration, the first fluid flowing through the cooling tubes is expanded by the expansion element before the first fluid flows through the first passage of the heat exchanger.

本発明の別の任意選択の特徴によれば、回路は、第2配管から第1配管まで延びて第1流体が通って流れる少なくとも1つのパイプを含み、回路は、第2配管を流れる第1流体を冷却する少なくとも1つの冷却装置を含み、冷却装置により生成される冷気はパイプを流れる第1流体の蒸発により生じる。 According to another optional feature of the invention, the circuit includes at least one pipe extending from the second pipe to the first pipe through which the first fluid flows, the circuit comprising the first pipe flowing through the second pipe. At least one cooling device is included for cooling a fluid, the cold air produced by the cooling device resulting from evaporation of the first fluid flowing through the pipe.

第2配管を流れる第1流体は冷却装置により冷却され、冷却装置の下流の第2配管を流れる第1流体の温度は冷却装置の下流のパイプを流れる第1流体の温度よりも低い。 The first fluid flowing through the second pipe is cooled by the cooling device, and the temperature of the first fluid flowing through the second pipe downstream of the cooling device is lower than the temperature of the first fluid flowing through the pipe downstream of the cooling device.

第2配管を流れる第1流体の温度を下げるために用いられる冷気は、パイプを流れる第1流体の一部の蒸発によりもたらされる。より詳細には、この第1流体の一部は膨張させられる、つまり、この第1流体の一部の圧力は下げられて、その結果、この第1流体により第2配管を流れる第1流体の温度が下げられる。 The cold air used to reduce the temperature of the first fluid flowing through the second pipe comes from evaporation of a portion of the first fluid flowing through the pipe. More specifically, a portion of this first fluid is expanded, i.e. a portion of this first fluid is depressurized so that the first fluid flows through the second pipe with this first fluid. temperature is lowered.

本発明の別の任意選択の特徴によれば、供給管は、熱交換要素と冷却装置の間の第2配管上に配置される分流点で第2配管に接続される。つまり、第2配管と供給管の間の分流点は、冷却装置の上流、かつ熱交換要素の下流に配置される。 According to another optional feature of the invention, the supply pipe is connected to the second pipe at a branch point arranged on the second pipe between the heat exchange element and the cooling device. That is, the branching point between the second pipe and the supply pipe is arranged upstream of the cooling device and downstream of the heat exchange element.

本発明の別の任意選択の特徴によれば、回路は、第2配管上に配置される第1流体用の少なくとも1つの相分離要素を含み、第1流体はこの相分離要素から第2配管を通って第1タンクまで流れ、回路は、この相分離要素から第2配管まで延びるガス管を含む。分流点は、相分離要素の下流の第2配管の一部に配置されることに留意されたい。 According to another optional feature of the invention, the circuit includes at least one phase separating element for the first fluid arranged on the second pipe, the first fluid flowing from the phase separating element to the second pipe. to the first tank and the circuit includes a gas line extending from the phase separation element to the second line. Note that the flow diversion point is located in a portion of the second piping downstream of the phase separation element.

本発明の別の任意選択の特徴によれば、供給管は、相分離要素と冷却装置の間の第2配管上に配置される分流点で第2配管に接続される。したがって、供給管を通って流れる第1流体は、相分離要素において液体状態の第1流体が蓄積することで生じることになる。 According to another optional feature of the invention, the feed pipe is connected to the second pipe at a branching point arranged on the second pipe between the phase separation element and the cooling device. Therefore, the first fluid flowing through the feed pipe is caused by the accumulation of the first fluid in liquid state in the phase separation element.

本発明の別の任意選択の特徴によれば、供給管は冷却管から消費装置まで延び、供給管と冷却管の分岐点は、冷却装置と冷却ユニットの間に配置される。第1流体は、供給管を流れる前に冷却装置により冷却されることに留意されたい。 According to another optional feature of the invention, the supply pipe extends from the cooling pipe to the consumer, and the junction of the supply pipe and the cooling pipe is arranged between the cooling device and the cooling unit. Note that the first fluid is cooled by the cooling device before flowing through the supply pipe.

本発明の別の任意選択の特徴によれば、供給管は冷却管から消費装置まで延び、供給管と冷却管の分岐点は、冷却ユニットの膨張要素と冷却装置の間に配置される。 According to another optional feature of the invention, the supply pipe extends from the cooling pipe to the consumer, and the junction of the supply pipe and the cooling pipe is arranged between the expansion element of the cooling unit and the cooling device.

本発明の別の任意選択の特徴によれば、回路は、供給管を流れる第1流体の流量を制御するための制御弁を含む。つまり、制御弁はポンプ要素の上流の供給管に取り付けられる。 According to another optional feature of the invention, the circuit includes a control valve for controlling the flow rate of the first fluid through the supply pipe. That is, the control valve is attached to the supply line upstream of the pump element.

本発明の別の任意選択の特徴によれば、回路は、管理配管と供給管の間に延びる搬送管を含む。したがって、搬送管は管理配管を供給管に流体連結させることになる。 According to another optional feature of the invention, the circuit includes a carrier pipe extending between the management pipe and the supply pipe. Thus, the carrier pipe will fluidly connect the management pipe to the supply pipe.

本発明の更なる特徴、詳細、および利点は、一方では以下の説明を読むことで、他方では添付の図面を参照しながら非限定的な実例として提供されるいくつかの実施形態を読むことでより明確となるであろう。図面において、 Further features, details and advantages of the invention will be obtained on the one hand from reading the following description and on the other hand from some embodiments given as non-limiting examples with reference to the accompanying drawings. will be clearer. In the drawing:

第1実施形態に係る回路を模式的に表す。1 schematically represents a circuit according to a first embodiment; 第2実施形態に係る回路を模式的に表す。2 schematically represents a circuit according to a second embodiment; 第3実施形態に係る回路を模式的に表す。3 schematically represents a circuit according to a third embodiment;

本発明の特徴、変形、および異なる実施形態は、矛盾する、または相互排他的でない限り、様々な組み合わせで互いに関連しうる。具体的には、記載された他の特徴とは別に、以下に記載される複数の特徴から選択した一つのみを含む本発明の変形を、この選択された特徴が技術的利点を提供する、および/または本発明を先行技術と差別化するのに充分であれば、想定することもできる。 Features, variations and different embodiments of the invention may be associated with each other in various combinations unless contradictory or mutually exclusive. Specifically, a variation of the invention that includes, apart from other features described, only a selected one of the plurality of features described below, wherein the selected feature provides a technical advantage, and/or if sufficient to differentiate the present invention from the prior art.

さらに、以下で説明において用いられる「上流」、および「下流」という用語は、第1流体および第2流体が流れることができる回路における第1流体、および/または第2流体の循環の方向を指す。 Furthermore, the terms "upstream" and "downstream" used in the description below refer to the direction of circulation of the first and/or second fluids in a circuit through which the first and second fluids can flow. .

図1は、少なくとも第1流体4および第2流体8を含む回路1と、第1流体4を収容する第1タンク2と、第2流体8を収容する第2タンク6を示す。第1タンク2、第2タンク6、および/または回路1は、例えば第1流体4および第2流体8を輸送する船舶に設置することができる。 FIG. 1 shows a circuit 1 containing at least a first fluid 4 and a second fluid 8 , a first tank 2 containing the first fluid 4 and a second tank 6 containing the second fluid 8 . The first tank 2 , the second tank 6 and/or the circuit 1 can be installed, for example, on a ship that transports the first fluid 4 and the second fluid 8 .

第1流体4は第2流体8の沸点より低い沸点を有し、これら2つの温度は同じ圧力で測定される。第1流体4は例えばメタンなどの天然ガスで約-160℃の沸点を有する、つまり、第1流体4は大気圧で-160℃より下の温度である場合には液状である。第2流体8は、例えばプロパン、ブタン、またはプロパンとブタンの混合物などの石油ガスであり、大気圧で0℃~-51℃の沸点を有する。ただし、第1流体4は、第1流体4が第2流体8の沸点より低い沸点を有する限りはプロパン、ブタン、またはプロパンとブタンの混合物などの石油ガスとすることもできる。 The first fluid 4 has a boiling point lower than that of the second fluid 8 and these two temperatures are measured at the same pressure. The first fluid 4 is for example natural gas such as methane and has a boiling point of about -160°C, ie the first fluid 4 is liquid at temperatures below -160°C at atmospheric pressure. The second fluid 8 is petroleum gas, for example propane, butane, or a mixture of propane and butane, and has a boiling point between 0°C and -51°C at atmospheric pressure. However, the first fluid 4 can also be a petroleum gas such as propane, butane, or a mixture of propane and butane, so long as the first fluid 4 has a boiling point lower than that of the second fluid 8 .

本明細書で示される例によれば、第1流体4および第2流体8は石油ガスであり、第1流体4は例えば約92%のプロパンと約8%のブタンから成り、大気圧で-47℃の沸点を有する混合物であり、第2流体8は例えば約100%のブタンから成り、大気圧で0℃の沸点を有する。 According to the example shown herein, the first fluid 4 and the second fluid 8 are petroleum gas, the first fluid 4 comprising, for example, about 92% propane and about 8% butane, at atmospheric pressure - A mixture having a boiling point of 47° C., the second fluid 8 consists, for example, of about 100% butane and has a boiling point of 0° C. at atmospheric pressure.

本発明の第1の代替例によれば、第1流体4はエタンであって-89℃の沸点を有し、第2流体8はプロパンとブタンの混合物を含む液化石油ガスであって-47℃の沸点を有する。 According to a first alternative of the invention, the first fluid 4 is ethane and has a boiling point of -89°C and the second fluid 8 is a liquefied petroleum gas comprising a mixture of propane and butane and is -47°C. It has a boiling point of °C.

本発明の第2の代替例によれば、第1流体4はエタンであって-89℃の蒸発温度を有し、第2流体8はアンモニアであって-33℃の沸点を有する。 According to a second alternative of the invention, the first fluid 4 is ethane and has an evaporation temperature of -89°C and the second fluid 8 is ammonia and has a boiling point of -33°C.

本発明の第3の代替例によれば、第1流体4はプロパンであって-42℃の沸点を有し、第2流体8はアンモニアであって-33℃の沸点を有する。 According to a third alternative of the invention, the first fluid 4 is propane and has a boiling point of -42°C and the second fluid 8 is ammonia and has a boiling point of -33°C.

第1タンク2および第2タンク6は、第1流体4および第2流体8を、大気圧でのそれぞれの沸点より下の温度で液状で貯蔵するよう設計されている。この目的に向けて、タンク2および6はそれぞれ、少なくとも、これら流体のどちらか一方と接触する封止膜と、封止膜を取り囲んでこれら流体のどちらか一方をその沸点より下の温度に保つのを助ける断熱バリアから構成される。 The first tank 2 and the second tank 6 are designed to store the first fluid 4 and the second fluid 8 in liquid form at temperatures below their respective boiling points at atmospheric pressure. To this end, the tanks 2 and 6 each have at least a sealing membrane in contact with one or the other of these fluids and a sealing membrane surrounding the sealing membrane to keep one or the other of the fluids at a temperature below its boiling point. consists of an insulating barrier that helps

有利には、タンク2、6のそれぞれは、これら流体のどちらか一方と接触する一次封止膜と一次封止膜を取り囲む一次断熱バリアとから構成されている一次層と、一次層を取り囲み、一次断熱バリアと接触する二次封止膜と二次封止膜を取り囲む二次断熱バリアとから構成されている二次層を有する。 Advantageously, each of the tanks 2, 6 surrounds a primary layer consisting of a primary sealing membrane in contact with one of these fluids and a primary insulating barrier surrounding the primary sealing membrane, and It has a secondary layer comprised of a secondary sealing membrane in contact with the primary insulating barrier and a secondary insulating barrier surrounding the secondary sealing membrane.

第1流体4は、大気圧下では主に液状で第1タンク2に貯蔵される。ただし、第1流体4の一部は蒸発して第1タンク2の最上部10において覆いを形成し、したがって、最上部10において第1流体4はガス状で存在する。 The first fluid 4 is mainly liquid under atmospheric pressure and stored in the first tank 2 . However, part of the first fluid 4 evaporates and forms a cover at the top 10 of the first tank 2, where the first fluid 4 is therefore present in gaseous form.

同様に、第2流体8は大気圧下では主に液状で第2タンク6に貯蔵される。ただし、第2流体8の一部は蒸発して第2タンク6の最上部11において覆いを形成し、したがって、最上部11において第2流体8はガス状で存在する。 Similarly, the second fluid 8 is mainly liquid under atmospheric pressure and stored in the second tank 6 . However, part of the second fluid 8 evaporates and forms a cover at the top 11 of the second tank 6, where the second fluid 8 is therefore present in gaseous form.

回路1は、第1タンク2の最上部10に存在するガス状の第1流体4の少なくとも一部を再液化するよう構成され、かつ、第1流体4を燃料として用いる消費装置に第1流体4を供給するよう構成される。この目的に向けて、回路1は、第1流体4が第1タンク2から複数の圧縮要素14へ流れる際に通る第1配管12と、第1流体4が液体状態、および/または二相状態でその中を第1配管12から第1タンク2へ流れる、第1配管12から第1タンク2まで延びる第2配管16とを少なくとも含む。さらに、回路1は、第1流体4が第2配管16から第1配管12へ流れる際に通る、第2配管16から第1配管12まで延びる冷却管18を含む。 The circuit 1 is arranged to re-liquefy at least part of the gaseous first fluid 4 present in the top 10 of the first tank 2 and to supply the first fluid to a consumer using the first fluid 4 as fuel. 4. Towards this end, the circuit 1 comprises a first pipe 12 through which the first fluid 4 flows from the first tank 2 to the plurality of compression elements 14, and a first pipe 12 through which the first fluid 4 is in a liquid state and/or in a two-phase state. and a second line 16 extending from the first line 12 to the first tank 2 through which the first line 12 flows to the first tank 2 . Furthermore, the circuit 1 includes a cooling tube 18 extending from the second line 16 to the first line 12 through which the first fluid 4 flows from the second line 16 to the first line 12 .

本発明によれば、回路1は、第1流体を燃料として用いる消費装置17へ供給するための供給管15を含み、この供給管15は第2配管16から消費装置17まで延び、液体状態の第1流体4がこの供給管15を通って流れ、供給管15は、供給管15内の第1流体4の圧力を上昇させる少なくとも1つのポンプ要素19を含む。第2配管16を流れる第1流体4の一部は、消費装置17用の燃料として使用するために、供給管15を通って流れるように意図されていることに留意されたい。さらに、供給管を通って流れる第1流体4は液体状態であり、ポンプ要素19は消費装置17まで供給管15を流れる第1流体4の圧力を上昇させる。 According to the invention, the circuit 1 comprises a supply pipe 15 for supplying the first fluid to a consumer 17 using it as fuel, which supply pipe 15 extends from the second pipe 16 to the consumer 17 and which is in liquid state. A first fluid 4 flows through this supply tube 15 , which includes at least one pumping element 19 for increasing the pressure of the first fluid 4 within the supply tube 15 . It should be noted that part of the first fluid 4 flowing through the second pipe 16 is intended to flow through the supply pipe 15 for use as fuel for the consumer 17 . Furthermore, the first fluid 4 flowing through the supply pipe is in a liquid state and the pump element 19 increases the pressure of the first fluid 4 flowing through the supply pipe 15 to the consumer 17 .

供給管15のより詳細な説明がさらに後で、より詳細には第1配管12、第2配管16、冷却ユニット24、冷却管18、および管理配管20の後で提供される。 A more detailed description of supply pipe 15 is provided further below, and more particularly after first pipe 12 , second pipe 16 , cooling unit 24 , cooling pipe 18 , and management pipe 20 .

さらに、回路1は第2流体の状態を管理するための少なくとも1つの管理配管20をさらに含み、この管理配管20を通って、第2流体8の少なくとも一部は第2タンク6から第2タンク6の第2流体8用の液体排出口22へ流れる。具体的には、液体排出口22は、具体的には第2タンク6の最上部11に存在する第2流体8を冷却するために、冷却された第2流体8を第2タンク6に噴霧することを可能とする。第2タンク6の最上部11に存在する第2流体8の温度を下げることで、第2タンク6の前記最上部11に存在する蒸発した第2流体8により加えられる圧力を下げることができる。本明細書で図1に示される実施形態によれば、液体排出口22は、第2タンク6の最上部11に噴霧された第2流体8の分配を促進するスプレー棒の形を取っている。 Furthermore, the circuit 1 further comprises at least one control line 20 for controlling the condition of the second fluid, through which control line 20 at least part of the second fluid 8 flows from the second tank 6 to the second tank. 6 to the liquid outlet 22 for the second fluid 8 . Specifically, the liquid outlet 22 sprays the cooled second fluid 8 into the second tank 6 , specifically to cool the second fluid 8 present at the top 11 of the second tank 6 . make it possible to By reducing the temperature of the second fluid 8 present at the top 11 of the second tank 6 , the pressure exerted by the vaporized second fluid 8 present at said top 11 of the second tank 6 can be reduced. According to the embodiment shown herein in FIG. 1, the liquid outlet 22 is in the form of a spray bar that facilitates distribution of the sprayed second fluid 8 onto the top 11 of the second tank 6. .

管理システム1は管理配管20を流れる液体状態の第2流体8を冷却する冷却ユニット24を含み、冷却ユニット24により生成される冷気は、冷却管18を流れる第1流体4の蒸発の結果である。ここで、第1流体4が冷却管18および冷却ユニット24を通って流れて管理配管20を流れる第2流体8を冷却する場合、第1流体4は充分に低い温度であることに留意されたい。この場合、第2流体8は熱エネルギーを第1流体4へ渡す。 The management system 1 comprises a cooling unit 24 for cooling the liquid state second fluid 8 flowing through the management pipe 20 , the cold generated by the cooling unit 24 being the result of the evaporation of the first fluid 4 flowing through the cooling pipes 18 . . Note that the first fluid 4 is at a sufficiently low temperature if the first fluid 4 flows through the cooling pipe 18 and the cooling unit 24 to cool the second fluid 8 flowing through the management pipe 20. . In this case the second fluid 8 transfers thermal energy to the first fluid 4 .

回路1の第2配管16、冷却ユニット24、冷却管18、管理配管20、および供給管15のより詳細な説明が、特に図1を参照する以下の第1配管12の説明の後に提供される。 A more detailed description of the second piping 16, the cooling unit 24, the cooling pipes 18, the management piping 20, and the supply pipes 15 of the circuit 1 is provided after the description of the first piping 12 below, with particular reference to FIG. .

第1配管12は第1タンク2の内部から延びて、より詳細には、第1タンク2の最上部10にある、気相の第1流体4が存在する第1タンク2の最上部10へ開口するガス注入口26を含む。したがって、第1タンク2の最上部10に存在する気体状態の第1流体4は、第1配管12のガス注入口26と直接接触し、その結果、気体状態の第1流体4を複数の圧縮要素14により吸入することができる。 The first pipe 12 extends from the interior of the first tank 2, more specifically to the top 10 of the first tank 2, where the first fluid 4 in gaseous phase is present. It includes an open gas inlet 26 . Thus, the gaseous first fluid 4 present at the top 10 of the first tank 2 is in direct contact with the gas inlet 26 of the first pipe 12, resulting in a plurality of compressions of the gaseous first fluid 4. It can be inhaled by element 14 .

気体状態の第1流体4は、複数の圧縮要素14により生じた吸引の影響下で第1タンク2の最上部10から第1配管12を通って複数の圧縮要素14へと移動する。より詳細には、複数の圧縮要素14は、気体状態の第1流体4が消費装置へ送られる前に気体状態の第1流体4の圧力を上昇させるよう構成される。 The first fluid 4 in gaseous state moves from the top 10 of the first tank 2 through the first pipe 12 to the plurality of compression elements 14 under the influence of suction created by the plurality of compression elements 14 . More particularly, the plurality of compression elements 14 are configured to increase the pressure of the first gaseous fluid 4 before the first gaseous fluid 4 is delivered to the consumer.

図1に示されるように、複数の圧縮要素14は第1圧縮要素14a、第2圧縮要素14b、および第3圧縮要素14cを含み、第1配管12上に、前記第1配管内での第1流体4の循環の方向にこの順番で配置されている。複数の圧縮要素14は、ガス注入口26と第1圧縮要素14aの間に延びる第1配管12の第1部分28と、第1圧縮要素14aと第2圧縮要素14bの間に延びる第1配管12の第2部分30と、第2圧縮要素14bと第3圧縮要素14cの間に延びる第1配管12の第3部分32と、第3圧縮要素14cと第2配管16の間に延びる第1配管12の第4部分34を規定するのに役立つ。 As shown in FIG. 1, the plurality of compression elements 14 includes a first compression element 14a, a second compression element 14b, and a third compression element 14c, on the first pipe 12 and within said first pipe. They are arranged in this order in the direction of circulation of one fluid 4 . The plurality of compression elements 14 includes a first portion 28 of the first pipe 12 extending between the gas inlet 26 and the first compression element 14a and a first pipe extending between the first compression element 14a and the second compression element 14b. 12, a third portion 32 of the first pipe 12 extending between the second compression element 14b and the third compression element 14c, and a first pipe 16 extending between the third compression element 14c and the second pipe 16. It helps define the fourth portion 34 of the tubing 12 .

気体状態の第1流体4の圧力は、複数の圧縮要素14を通って第1配管12を流れるにつれて上昇し、第1流体4は第1部分28では大気圧であり、第4部分34では約24バールの圧力に達する。 The pressure of the gaseous first fluid 4 increases as it flows through the plurality of compression elements 14 and through the first pipe 12, the first fluid 4 being at atmospheric pressure in the first portion 28 and about A pressure of 24 bar is reached.

図1に示されるように、冷却液循環システム36は、循環システム36を流れる冷却液と第1配管12を流れる気体状態の第1流体4の間の熱交換のために少なくとも1つの熱交換要素38を含む。この熱交換要素38は第1配管12を第2配管16から分離する。より詳細には、熱交換要素38は第1配管12の第4部分34の下流に配置される。 As shown in FIG. 1 , the coolant circulation system 36 includes at least one heat exchange element for heat exchange between the coolant flowing through the circulation system 36 and the gaseous first fluid 4 flowing through the first pipe 12 . 38. This heat exchange element 38 separates the first pipe 12 from the second pipe 16 . More specifically, the heat exchange element 38 is arranged downstream of the fourth section 34 of the first pipe 12 .

熱交換要素38は、冷却液と第1流体4の間で熱エネルギーを交換する。冷却液は熱伝導流体、および/または水とすることができて、循環システム36は、例えば船舶に設置することができて、船舶が航行している水域に直接接続される。 A heat exchange element 38 exchanges thermal energy between the coolant and the first fluid 4 . The coolant may be a heat transfer fluid and/or water, and the circulation system 36 may be installed, for example, on a vessel and directly connected to the body of water in which the vessel is navigating.

有利には、循環システム36は、第1配管12の第2部分30に取り付けられる第1熱交換要素40と、第1配管12の第3部分32に取り付けられる第2熱交換要素42と、第1配管12の第4部分34に取り付けられる第3熱交換要素38とを含み、熱交換要素38、40、42のそれぞれは、第1配管12を流れる気体状態の第1流体4と冷却液の間で熱エネルギーを交換する。第1配管12に沿って配置される圧縮要素14と熱交換要素38、40、42を交互にすることで、圧縮要素により行われる圧縮の各段階の後に第1流体4の温度を下げることができることに留意されたい。 Advantageously, the circulation system 36 comprises a first heat exchange element 40 attached to the second portion 30 of the first pipe 12, a second heat exchange element 42 attached to the third portion 32 of the first pipe 12, and a and a third heat exchange element 38 attached to a fourth portion 34 of the first pipe 12 , each of the heat exchange elements 38 , 40 , 42 , each of which separates the first fluid 4 in gaseous state and the cooling liquid flowing through the first pipe 12 . exchange heat energy between Alternating compression elements 14 and heat exchange elements 38, 40, 42 arranged along the first pipe 12 reduce the temperature of the first fluid 4 after each stage of compression performed by the compression elements. Note that you can.

本明細書で図1で示される例では、第1流体4が複数の圧縮要素14を通過する場合、流体の圧力および温度は上昇する。この温度が高くなり過ぎるのを防ぐため、第1流体4は、第1、第2、および第3の熱交換要素40、42、38を用いて冷却液と熱エネルギーを交換する。例えば、第1熱交換要素40の下流の第2部分30を流れる第1流体4の温度は約7℃であり、第2熱交換要素42の下流の第3部分32を流れる第1流体4の温度は約40℃であり、第3熱交換要素38の下流の第4部分34を流れる第1流体4の温度は43℃より上である。 In the example shown herein in FIG. 1, when the first fluid 4 passes through multiple compression elements 14, the pressure and temperature of the fluid increases. To prevent this temperature from becoming too high, the first fluid 4 exchanges thermal energy with the coolant using first, second and third heat exchange elements 40,42,38. For example, the temperature of the first fluid 4 flowing through the second portion 30 downstream of the first heat exchange element 40 is about 7° C., and the temperature of the first fluid 4 flowing through the third portion 32 downstream of the second heat exchange element 42 is about 7° C. The temperature is about 40°C and the temperature of the first fluid 4 flowing through the fourth portion 34 downstream of the third heat exchange element 38 is above 43°C.

さらに、流体の沸点も流体が受ける圧力に応じて変化する。例えば約92%のプロパンと約8%のブタンから成る混合物とすることができる第1流体4は、約24バールの圧力を受けた場合に約43℃の沸点を有する。したがって、第1流体4は第3熱交換要素38の上流の第4部分34では気体状態であり、冷却液と熱エネルギーを交換することで第3熱交換要素38を通過しながら液相状態または二相状態へ移行し、液体状態または二相状態で第3熱交換要素38の下流の第2配管16を流れることになる。したがって、第1流体4は、第2配管16において第3熱交換要素38の下流を液体状態または二相状態で流れる。 Furthermore, the boiling point of the fluid also changes according to the pressure to which the fluid is subjected. The first fluid 4, which can be, for example, a mixture of about 92% propane and about 8% butane, has a boiling point of about 43°C when subjected to a pressure of about 24 bar. Thus, the first fluid 4 is in a gaseous state in the fourth portion 34 upstream of the third heat exchange element 38 and is in a liquid state or liquid state while passing through the third heat exchange element 38 by exchanging thermal energy with the coolant. It will transition to a two-phase state and flow through the second pipe 16 downstream of the third heat exchange element 38 in a liquid or two-phase state. Therefore, the first fluid 4 flows downstream of the third heat exchange element 38 in the second pipe 16 in a liquid state or a two-phase state.

さらに、「二相状態」は、第1流体4の一部が液体状態であり、第1流体4の別の部分が気体状態である状態を意味する。 Furthermore, "two-phase state" means a state in which a portion of the first fluid 4 is in a liquid state and another portion of the first fluid 4 is in a gaseous state.

冷却ユニット24、冷却管18、管理配管20、および供給管15についてより詳細に説明する前に、これより、回路1の第2配管16について、特に図1を参照してより詳細に説明する。 Before discussing the cooling unit 24, the cooling pipes 18, the management pipes 20 and the supply pipes 15 in more detail, the second pipes 16 of the circuit 1 will now be described in more detail, particularly with reference to FIG.

第1流体4は、第1配管12から第2配管16を、より詳細には第3熱交換要素38から、第1タンク2へと流れる。 The first fluid 4 flows from the first pipe 12 through the second pipe 16 and more particularly from the third heat exchange element 38 to the first tank 2 .

図1に示されるように、管理システム1は、第2配管16上に配置される第1流体4用の相分離装置44を含む。相分離装置44は、第2配管16を流れる第1流体4に存在する複数の相を分離するよう構成される。つまり、相分離装置44は、液体状態の第1流体4が気体状態の第1流体4から分離されるように構成される。そして、相分離装置44内で分離された液体状態の第1流体4は第2配管16へ流れる。 As shown in FIG. 1, the management system 1 includes a phase separation device 44 for the first fluid 4 arranged on the second pipe 16 . The phase separator 44 is configured to separate multiple phases present in the first fluid 4 flowing through the second conduit 16 . That is, the phase separation device 44 is configured such that the first fluid 4 in liquid state is separated from the first fluid 4 in gaseous state. The liquid state first fluid 4 separated in the phase separator 44 flows to the second pipe 16 .

回路1は、第1流体4が相分離装置44から第2配管16へ流れる際に通るガス管46を含む。 The circuit 1 includes a gas line 46 through which the first fluid 4 flows from the phase separation device 44 to the second line 16 .

図1に示されるように、管理システム1は第1配管12を第2配管16と接続し、第1流体4が第2配管16から第1配管12へ流れる際に通る少なくとも1つのパイプ48を含む。管理システム1は第2配管16を流れる第1流体4を冷却する少なくとも1つの冷却装置50を含み、冷却装置50により生成される冷気はパイプ48を流れる第1流体4の蒸発により生じる。 As shown in FIG. 1 , the management system 1 connects the first pipe 12 with the second pipe 16 and provides at least one pipe 48 through which the first fluid 4 flows from the second pipe 16 to the first pipe 12 . include. The management system 1 includes at least one cooling device 50 for cooling the first fluid 4 flowing through the second pipe 16 , the cold produced by the cooling device 50 resulting from evaporation of the first fluid 4 flowing through the pipe 48 .

パイプ48と第2配管16の間に交差部52が形成され、第1流体4はこの交差部において、第2配管16を通って第1タンク2、またはパイプ48を通って第1配管12のいずれかへ流れることができて、冷却装置50は、パイプ48を流れる第1流体4の蒸発によって第2配管16を流れる第1流体4の温度が低下するように構成される。 An intersection 52 is formed between the pipe 48 and the second pipe 16 , and the first fluid 4 flows through the second pipe 16 to the first tank 2 or through the pipe 48 to the first pipe 12 at this intersection. Able to flow either way, the cooling device 50 is configured such that evaporation of the first fluid 4 flowing through the pipe 48 reduces the temperature of the first fluid 4 flowing through the second line 16 .

さらに、図1に示されるように、ガス管46が第2配管16とパイプ48の交差部52の下流の第2配管16に接続される。ガス管46を流れる気体状態の第1流体4が交差部52の下流の第2配管16を流れる液体状態の第1流体4と混合するので、第1流体4は、第2配管16において交差部52と冷却装置50の間で二相状態である。 Further, as shown in FIG. 1, gas pipe 46 is connected to second pipe 16 downstream of intersection 52 of second pipe 16 and pipe 48 . As the first fluid 4 in gaseous state flowing in the gas pipe 46 mixes with the first fluid 4 in liquid state flowing in the second pipe 16 downstream of the intersection 52 , the first fluid 4 flows in the second pipe 16 at the intersection 52 and the cooling device 50 in two phases.

より詳細には、冷却装置50は熱交換器54と膨張装置56を少なくとも含み、熱交換器54は第2配管16を構成する第1通路58とパイプ48を構成する第2通路60を含み、膨張装置56は第2通路60の上流のパイプ48上に配置される。熱交換器54は、第2配管16を流れる第1流体4とパイプ48を流れる第1流体4の間で熱を交換するよう構成される。 More specifically, the cooling device 50 includes at least a heat exchanger 54 and an expansion device 56, the heat exchanger 54 includes a first passage 58 forming the second pipe 16 and a second passage 60 forming the pipe 48, The expansion device 56 is positioned on the pipe 48 upstream of the second passageway 60 . The heat exchanger 54 is configured to exchange heat between the first fluid 4 flowing through the second conduit 16 and the first fluid 4 flowing through the pipe 48 .

このように構成されて、熱交換器54は第2配管16を流れる第1流体4とパイプ48を流れる第1流体4の間で熱エネルギーを交換し、第2配管16を流れる第1流体4とパイプ48を流れる第1流体4の間の熱エネルギーの交換は、具体的には熱交換器54の第1通路58および第2通路60において行われる。第2配管16を流れる第1流体4とパイプ48を流れる第1流体4の間で交換された熱エネルギーにより、第2配管16を流れる第1流体4の温度が低下し、第2配管16を流れる第1流体4はパイプ48を流れる第1流体4へ熱エネルギーを渡す。 With this configuration, the heat exchanger 54 exchanges thermal energy between the first fluid 4 flowing through the second pipe 16 and the first fluid 4 flowing through the pipe 48 , and the first fluid 4 flowing through the second pipe 16 . and the first fluid 4 flowing through the pipe 48 specifically takes place in the first passage 58 and the second passage 60 of the heat exchanger 54 . Due to the thermal energy exchanged between the first fluid 4 flowing through the second pipe 16 and the first fluid 4 flowing through the pipe 48, the temperature of the first fluid 4 flowing through the second pipe 16 decreases, causing the second pipe 16 to The flowing first fluid 4 transfers thermal energy to the first fluid 4 flowing through pipe 48 .

この熱エネルギーの移動は、パイプ48を流れる第1流体4の圧力を下げてその状態の変化を促進する膨張装置56が存在するおかげで達成される。 This transfer of thermal energy is achieved thanks to the presence of the expansion device 56 which lowers the pressure of the first fluid 4 flowing through the pipe 48 and facilitates its change of state.

第2配管16の第1通路58の上流を流れる第1流体4と第2配管16の第1通路58の下流を流れる第1流体4の間の温度の低下は、少なくとも20℃である。有利には、この温度差は25℃~35℃である。 The temperature drop between the first fluid 4 flowing upstream of the first passage 58 of the second pipe 16 and the first fluid 4 flowing downstream of the first passage 58 of the second pipe 16 is at least 20°C. Advantageously, this temperature difference is between 25°C and 35°C.

第2配管16を流れる第1流体4の温度の低下により、第1流体4は二相状態から液体状態へと変わる。したがって、第2配管16において熱交換器54の第1通路58の下流を流れる第1流体4は液体状態であり、例えば、約14℃の温度と約24バールの圧力を有することになる。 Due to the decrease in temperature of the first fluid 4 flowing through the second pipe 16, the first fluid 4 changes from a two-phase state to a liquid state. Accordingly, the first fluid 4 flowing in the second line 16 downstream of the first passage 58 of the heat exchanger 54 is in a liquid state, for example having a temperature of about 14° C. and a pressure of about 24 bar.

図1に示されるように、冷却装置50の膨張要素56は第2通路60の上流のパイプ48に取り付けられる。換言すれば、第2通路60へ供給される液体状態の第1流体4は第2通路60に到達する前に膨張する、つまり、圧力が低下して第1流体4の状態が変化し、その結果、第2通路60内で二相状態から気体状態へ移行することに留意されたい。例えば、第1流体4は約3バールの圧力へ膨張させられて、第1流体4が膨張要素56の上流での約24バールの圧力から膨張要素56と第1配管12の間での3バールの圧力へと変化しうる。 As shown in FIG. 1, the expansion element 56 of the cooling device 50 is attached to the pipe 48 upstream of the second passageway 60 . In other words, the first fluid 4 in the liquid state supplied to the second passage 60 expands before reaching the second passage 60, that is, the pressure decreases and the state of the first fluid 4 changes, Note the resulting transition from a two-phase state to a gaseous state within the second passageway 60 . For example, the first fluid 4 may be expanded to a pressure of about 3 bar so that the first fluid 4 expands from a pressure of about 24 bar upstream of the expansion element 56 to a pressure of 3 bar between the expansion element 56 and the first pipe 12 . can change to a pressure of

第2通路60を流れる気体状態の第1流体4と第1通路58を流れる液体状態または二相状態の第1流体4の間の圧力差、およびそれによる温度差により、第1通路58を流れる液体状態または二相状態の第1流体4が冷却されて、第2通路60へ入る二相状態の第1流体4が蒸発する。 The pressure difference between the gaseous first fluid 4 flowing through the second passageway 60 and the liquid or two-phase first fluid 4 flowing through the first passageway 58 , and the resulting temperature difference, causes the first fluid 4 to flow through the first passageway 58 . The liquid or two-phase first fluid 4 is cooled and the two-phase first fluid 4 entering the second passageway 60 evaporates.

図1に示されるように、第2通路60の下流を流れる、膨張した気体状態の第1流体4は、その後第1配管12に到達する。有利には、パイプ48は第1配管12にその第2部分30で、より詳細には、第1熱交換要素40と第2圧縮要素14bの間で接続される。したがって、膨張した気体状態の第1流体4は第1熱交換要素40からの第1流体4と混合されて、この混合物は第2圧縮要素14bにより第1配管12の第3部分32へ吸入される。 As shown in FIG. 1 , the expanded gaseous first fluid 4 flowing downstream of the second passage 60 then reaches the first pipe 12 . Advantageously, the pipe 48 is connected to the first pipe 12 at its second portion 30, more particularly between the first heat exchange element 40 and the second compression element 14b. Accordingly, the expanded gaseous first fluid 4 is mixed with the first fluid 4 from the first heat exchange element 40 and this mixture is sucked into the third portion 32 of the first pipe 12 by the second compression element 14b. be.

図1に示されるように、管理システム1は冷却装置50の下流の第2配管16に取り付けられた第1流体4用の相分離装置62を含み、管理システム1は相分離装置62と第1配管12の間に延びる返送管64を含み、気体状態の第1流体4がこの返送管を通って流れる。 As shown in FIG. 1, the management system 1 includes a phase separator 62 for the first fluid 4 attached to the second pipe 16 downstream of the cooling device 50, the management system 1 comprising the phase separator 62 and the first It includes a return line 64 extending between the lines 12 through which the gaseous first fluid 4 flows.

分離装置62は、相分離装置主部66と、相分離装置主部66の上流の第2配管16上に配置される膨張要素68とを含む。膨張要素68により、相分離装置主部66へ流れる第1流体4を第1タンク2に収容される第1流体4の圧力とほぼ同じ圧力、すなわち大気圧とすることが可能となる。 Separator 62 includes a phase separator main section 66 and an expansion element 68 positioned on second line 16 upstream of phase separator main section 66 . The expansion element 68 allows the first fluid 4 flowing to the phase separator main section 66 to be at substantially the same pressure as the first fluid 4 contained in the first tank 2, i.e. atmospheric pressure.

より詳細には、第2配管16を第1タンク2まで流れる液体状態の第1流体4は、第2配管に存在する第1流体4の圧力を第1タンク2に収容される第1流体4の圧力と合わせるために第1タンク2に到達する前に膨張する、つまり、その圧力が低下することに留意されたい。膨張要素68による第1流体4の膨張によって第1流体4の状態が変化し、その結果、液体状態から、第1流体4の一部が液体状態で別の部分が気体状態である二相状態へ移行する。また、この圧力の低下により、第1流体4の温度も低下する。例えば、第1流体4はほぼ1.2バールの圧力へ膨張させられて、第1流体4が膨張要素68の上流での約24バールの圧力から膨張要素68の下流での約1.2バールの圧力へと変化することがあり、第1流体4は約-50℃の温度を有する。 More specifically, the first fluid 4 in liquid state flowing through the second pipe 16 to the first tank 2 increases the pressure of the first fluid 4 existing in the second pipe to the pressure of the first fluid 4 contained in the first tank 2 . Note that it expands before reaching the first tank 2 to match the pressure of , ie its pressure drops. Expansion of the first fluid 4 by the expansion element 68 changes the state of the first fluid 4 so that it changes from a liquid state to a two-phase state in which part of the first fluid 4 is in a liquid state and another part is in a gaseous state. Move to Moreover, the temperature of the first fluid 4 also decreases due to this decrease in pressure. For example, the first fluid 4 may be expanded to a pressure of approximately 1.2 bar so that the first fluid 4 expands from a pressure of approximately 24 bar upstream of the expansion element 68 to a pressure of approximately 1.2 bar downstream of the expansion element 68 . and the first fluid 4 has a temperature of about -50°C.

そして、第1流体4は相分離装置主部66へと流れ、第1流体4はその正確な温度に応じて液体状態、および/または二相状態となっている。相分離装置主部66は、膨張要素68から第1タンク2へと流れる第1流体4に存在する複数の相を分離するよう構成される。つまり、相分離装置主部66は、液体状態の第1流体4が気体状態の第1流体4から分離されるように構成される。そして、相分離装置主部66で分離された液体状態の第1流体4は第1タンク2へと流れ、気体状態の第1流体4は返送管64を通って第1配管12の第1部分28へ移動する。 The first fluid 4 then flows to the phase separator main part 66, where the first fluid 4 is in a liquid state and/or a two-phase state depending on its exact temperature. The phase separator main section 66 is configured to separate multiple phases present in the first fluid 4 flowing from the expansion element 68 to the first tank 2 . That is, the phase separator main part 66 is configured to separate the first fluid 4 in the liquid state from the first fluid 4 in the gaseous state. Then, the first fluid 4 in the liquid state separated by the main part 66 of the phase separator flows into the first tank 2, and the first fluid 4 in the gaseous state passes through the return pipe 64 to the first portion of the first pipe 12. Go to 28.

有利には、第2配管16は第1タンク2内、具体的には第1タンク2の底部にある流体排出口65へ開口し、その結果、液体状態の第1流体4は相分離装置主部66から第2配管16を通って第1タンク2の底部へと流れる。代替案によれば、第2配管16は第1タンク2の最上部10で開口し、液体状態の第1流体4は例えば第1タンク2の最上部10で噴霧されて、その結果、第1タンク2の最上部10に存在する気体状態の第1流体4を冷却する。 Advantageously, the second pipe 16 opens into the first tank 2, in particular to a fluid outlet 65 at the bottom of the first tank 2, so that the first fluid 4 in its liquid state reaches the main phase separator. It flows from the part 66 through the second pipe 16 to the bottom of the first tank 2 . According to an alternative, the second pipe 16 opens at the top 10 of the first tank 2 and the first fluid 4 in liquid state is for example sprayed at the top 10 of the first tank 2 so that the first The gaseous first fluid 4 present at the top 10 of the tank 2 is cooled.

本明細書で図1に示される例では、管理システム1は、返送管64上に配置されて、例えば気体状態の第1流体4を返送管64を通って流れさせて1.2バールの圧力から大気圧へ変化させるよう構成されている、第1流体4を膨張させるための膨張ブロック70を含む。 In the example shown here in FIG. 1, the management system 1 is arranged on the return pipe 64 to cause the first fluid 4, for example in gaseous state, to flow through the return pipe 64 to a pressure of 1.2 bar. an expansion block 70 for expanding the first fluid 4 configured to change from pressure to atmospheric pressure.

管理システム1は、膨張ブロック70の下流の返送管64に接続され、管理システム1の外部環境へと開口する、排出管72をさらに含む。 The management system 1 further includes an exhaust pipe 72 connected to the return pipe 64 downstream of the expansion block 70 and opening to the environment outside the management system 1 .

管理システム1は、管理システム1の外部環境へ排出される第1流体4の流量を制御するために、排出管72上に配置される、気体状態の第1流体4の流量を制御するための制御弁74を含む。 The management system 1 includes a flow control device for controlling the flow rate of the first fluid 4 in a gaseous state, which is arranged on the discharge pipe 72 to control the flow rate of the first fluid 4 discharged to the external environment of the management system 1. A control valve 74 is included.

供給管15について説明する前に、これより、冷却管18、管理配管20、および冷却ユニット24について、特に図1を参照してより詳細に説明する。 Before discussing supply pipe 15, cooling pipe 18, management pipe 20, and cooling unit 24 will now be described in more detail, particularly with reference to FIG.

図1に示されるように、冷却管18は、第2配管16と第1配管12の間に延びる。したがって、第1流体4は、冷却管18を通って第2配管16から第1配管12へ流れることになる。 As shown in FIG. 1, cooling pipe 18 extends between second pipe 16 and first pipe 12 . Therefore, the first fluid 4 flows from the second pipe 16 to the first pipe 12 through the cooling pipe 18 .

本発明の一つの特徴によれば、冷却管18は冷却装置50の下流の第2配管16に接続される。冷却管18を通って第2配管16から第1配管12へ流れる第1流体4は、パイプ48の少なくとも一部を通過して、冷却装置50の下流のパイプ48を流れる第1流体4と混合される。したがって、冷却管18からの第1流体4は、第1熱交換要素40と第2圧縮要素14bの間へ注入されることで、第1配管12の第2部分30を流れる第1流体4と混合されることになる。 According to one aspect of the invention, the cooling pipe 18 is connected to the second pipe 16 downstream of the cooling device 50 . The first fluid 4 flowing through the cooling pipe 18 from the second pipe 16 to the first pipe 12 passes through at least a portion of the pipe 48 and mixes with the first fluid 4 flowing in the pipe 48 downstream of the cooling device 50 . be done. Therefore, the first fluid 4 from the cooling pipe 18 is injected between the first heat exchange element 40 and the second compression element 14b, and the first fluid 4 flowing through the second portion 30 of the first pipe 12 and will be mixed.

本発明によれば、図1に示されるように、管理システム1は第2流体8の状態、具体的にはその圧力、および/または温度を管理するための管理配管20を含み、液体状態で第2タンク6から取り込まれた第2流体8はこの管理配管20を通って流れることが意図されている。この目的に向けて、管理配管20は、例えば第2タンク6に収容される液体状態の第2流体8と接触している、第2タンク6の底部に位置する液体注入口76を含む。 According to the present invention, as shown in FIG. 1, the management system 1 comprises management piping 20 for managing the condition of the second fluid 8, specifically its pressure and/or temperature, which in liquid state A second fluid 8 taken from the second tank 6 is intended to flow through this management line 20 . Towards this end, the management line 20 includes a liquid inlet 76 located at the bottom of the second tank 6 , for example in contact with the second fluid 8 contained in the second tank 6 in liquid state.

本発明の一実施形態によれば、管理システム1は、冷却ユニット24の上流の管理配管20上に配置される少なくとも1つのポンプ要素78を含む。ポンプ要素78は、液体状態の第2流体8に管理配管20を通って流れさせるよう構成される。この目的に向けて、ポンプ要素78は液体注入口76に取り付けられる。換言すれば、ポンプ要素78は、第2タンク6に収容される液体状態の第2流体8に浸漬される。ただし、ポンプ要素78は、液体状態の第2流体8を管理配管20を通して送り出している限り、管理配管20上のどこにでも取り付けることができる。 According to one embodiment of the invention, the management system 1 includes at least one pump element 78 arranged on the management piping 20 upstream of the cooling unit 24 . The pumping element 78 is configured to cause the second fluid 8 in liquid state to flow through the management line 20 . To this end, a pump element 78 is attached to the liquid inlet 76 . In other words, the pump element 78 is immersed in the second fluid 8 in liquid state contained in the second tank 6 . However, the pumping element 78 can be mounted anywhere on the control line 20 as long as it pumps the second fluid 8 in its liquid state through the control line 20 .

ポンプ要素78は、管理配管20を流れる液体状態の第2流体8の圧力を上昇させる。例えば、ポンプ要素78の下流を流れる液体状態の第2流体8は約4バールの圧力を有し、この結果、ポンプ要素78は液体状態の第2流体8の圧力をポンプ要素78の上流の大気圧からポンプ要素78の下流の約4バールの圧力へ変化させる。 The pumping element 78 increases the pressure of the liquid state second fluid 8 flowing through the management line 20 . For example, the second fluid 8 in liquid state flowing downstream of the pump element 78 has a pressure of about 4 bar, so that the pump element 78 reduces the pressure of the second fluid 8 in liquid state to a large pressure upstream of the pump element 78 . Change from atmospheric pressure to a pressure of about 4 bar downstream of the pump element 78 .

図1に示されるように、管理配管20は液体排出口22を含み、液体状態の第2流体8は管理配管20を通ってこの液体排出口22へ流れる。一実施形態によれば、液体排出口22は、液体状態の第2流体8を第2タンク6の最上部11にある管理配管20から噴霧することができるスプレー要素を含みうる。 As shown in FIG. 1 , the management line 20 includes a liquid outlet 22 through which the second fluid 8 in liquid state flows through the management line 20 to the liquid outlet 22 . According to one embodiment, the liquid outlet 22 may comprise a spray element capable of spraying the second fluid 8 in liquid form from the management pipe 20 at the top 11 of the second tank 6 .

本発明によれば、管理システム1は管理配管20を流れる第2流体8を冷却する冷却ユニット24を含み、冷却ユニット24により生成される冷気は、冷却管18を流れる第1流体4の蒸発により生じる。したがって、管理配管20は、冷却ユニット24の上流にある第1部分80と、冷却ユニット24の下流にある第2部分82とを含む。したがって、管理配管20の第2部分82を通って流れる液体状態の第2流体8は、管理配管20の第1部分80を流れる液体状態の第2流体8の温度より下の温度を有する。 According to the invention, the management system 1 comprises a cooling unit 24 for cooling the second fluid 8 flowing through the management pipe 20 , the cold produced by the cooling unit 24 being generated by evaporation of the first fluid 4 flowing through the cooling pipe 18 . occur. Thus, the management line 20 includes a first portion 80 upstream of the cooling unit 24 and a second portion 82 downstream of the cooling unit 24 . Accordingly, the liquid state second fluid 8 flowing through the second portion 82 of the management pipe 20 has a temperature below the temperature of the liquid state second fluid 8 flowing through the first portion 80 of the management pipe 20 .

より詳細には、図1に示されるように、冷却ユニット24は、熱交換器84と、熱交換器84の上流の冷却管18に取り付けられた膨張要素86とを少なくとも含み、熱交換器84は冷却管18を流れる第1流体4と管理配管20を流れる第2流体8の間で熱を交換するよう構成される。熱交換器84は、第1流体4および第2流体8が熱交換器84を通過するように、冷却管18と管理配管20のいずれにも取り付けられることに留意されたい。 More specifically, as shown in FIG. 1 , the cooling unit 24 includes at least a heat exchanger 84 and an expansion element 86 attached to the cooling tubes 18 upstream of the heat exchanger 84 . are configured to exchange heat between the first fluid 4 flowing through the cooling pipe 18 and the second fluid 8 flowing through the management pipe 20 . Note that the heat exchangers 84 are attached to both the cooling pipes 18 and the management pipes 20 such that the first fluid 4 and the second fluid 8 pass through the heat exchangers 84 .

この目的に向けて、熱交換器84は、冷却管18を構成する第1通路88と、管理配管20を構成する第2通路90とを少なくとも含み、膨張要素86が第1通路88の上流に配置される。冷却管18を流れる第1流体4は第1通路88を通って熱交換器84を通過し、管理配管20を流れる第2流体8は第2通路90を通って熱交換器84を通過する。このように構成されて、熱交換器84は冷却管18を流れる第1流体4と管理配管20を流れる第2流体8の間で熱エネルギーを交換し、冷却管18を流れる第1流体4と管理配管20を流れる第2流体8の間の熱エネルギーの交換は、具体的には熱交換器84の第1通路88および第2通路90において行われる。第1流体4と第2流体8の間で交換された熱エネルギーにより、第2流体8の温度が低下し、第2流体8は第1流体4へ熱エネルギーを渡す。 Towards this end, the heat exchanger 84 includes at least a first passageway 88 forming the cooling pipe 18 and a second passageway 90 forming the management pipe 20, with an expansion element 86 upstream of the first passageway 88. placed. The first fluid 4 flowing through the cooling pipe 18 passes through the heat exchanger 84 through the first passageway 88 and the second fluid 8 flowing through the management pipe 20 passes through the heat exchanger 84 through the second passageway 90 . Constructed in this way, the heat exchanger 84 exchanges thermal energy between the first fluid 4 flowing through the cooling pipe 18 and the second fluid 8 flowing through the management pipe 20 , and heats the first fluid 4 flowing through the cooling pipe 18 . The exchange of thermal energy between the second fluid 8 flowing through the management pipe 20 specifically takes place in the first passage 88 and the second passage 90 of the heat exchanger 84 . The thermal energy exchanged between the first fluid 4 and the second fluid 8 reduces the temperature of the second fluid 8 and the second fluid 8 transfers thermal energy to the first fluid 4 .

さらに、この熱エネルギーの移動は、冷却管18を流れる第1流体4の圧力を下げてその状態の変化を促進する膨張要素86が存在するおかげで達成される。 Furthermore, this thermal energy transfer is achieved thanks to the presence of the expansion element 86 which lowers the pressure of the first fluid 4 flowing through the cooling tube 18 and facilitates its change of state.

図1に示されるように、冷却ユニット24の膨張要素86は第1通路88の上流の冷却管18に取り付けられる。換言すれば、第1通路88へ供給される液体状態の第1流体4は第1通路88に到達する前に膨張する、つまり、圧力が低下して第1通路88で蒸発することに留意されたい。この膨張によって第1流体4の状態が変化し、第2通路90において二相状態から気体状態へ移行する。それゆえ、第1流体4は約3バールの圧力へ膨張させられて、第1流体4が膨張要素86の上流での約24バールの圧力から膨張要素86の下流での3バールの圧力へと変化しうることに留意されたい。 As shown in FIG. 1, expansion element 86 of cooling unit 24 is attached to cooling tube 18 upstream of first passage 88 . In other words, it should be noted that the liquid state first fluid 4 supplied to the first passageway 88 expands before reaching the first passageway 88; sea bream. This expansion causes the state of the first fluid 4 to change, transitioning from a two-phase state to a gaseous state in the second passage 90 . Therefore, the first fluid 4 is expanded to a pressure of about 3 bar, causing the first fluid 4 to go from a pressure of about 24 bar upstream of the expansion element 86 to a pressure of 3 bar downstream of the expansion element 86. Note that it can change.

膨張要素86を通る第1流体4の圧力の低下により第1流体4の状態が変化し、並行してその温度が低下する。例えば、第1流体4は膨張要素86の上流で約14℃の温度を有し、膨張要素86と熱交換器84の第1通路88の間で約-30℃の温度を有する。 A decrease in the pressure of the first fluid 4 through the expansion element 86 changes the state of the first fluid 4 and concurrently decreases its temperature. For example, first fluid 4 has a temperature of approximately 14° C. upstream of expansion element 86 and a temperature of approximately −30° C. between expansion element 86 and first passage 88 of heat exchanger 84 .

有利には、第1通路88を流れる第1流体4と第2通路90を流れる液体状態の第2流体8との間の温度差により、第2通路90を流れる液体状態の第2流体8が冷却されて、第1通路88へ入る二相状態の第1流体4が蒸発する。ここで、第2通路90を流れる第2流体8は第1通路88を流れる第1流体4へ熱エネルギーを渡し、第1流体4が第1通路88を通過する際に第1流体4の温度が上昇し、その結果、その状態が二相状態から気体状態へと変わる。 Advantageously, the temperature difference between the first fluid 4 flowing through the first passageway 88 and the second fluid 8 in liquid state flowing through the second passageway 90 causes the second fluid 8 in liquid state flowing through the second passageway 90 to Cooled, the two-phase first fluid 4 entering the first passageway 88 evaporates. Here, the second fluid 8 flowing through the second passageway 90 transfers thermal energy to the first fluid 4 flowing through the first passageway 88 , increasing the temperature of the first fluid 4 as it passes through the first passageway 88 . rises, thereby changing its state from a two-phase state to a gaseous state.

例えば、液体状態の第2流体8の温度は管理配管20の第1部分80、すなわち熱交換器84の第2通路90の上流で約0℃であり、管理配管20の第2部分82、すなわち第2通路90の下流で約-10℃である。 For example, the temperature of the second fluid 8 in liquid state is about 0° C. in the first portion 80 of the management pipe 20, i.e. upstream of the second passage 90 of the heat exchanger 84, and in the second portion 82 of the management pipe 20, i.e. Downstream of the second passage 90 is about -10°C.

さらに、膨張要素86の上流の冷却管18を流れる第1流体4は液体状態であり、膨張要素86と熱交換器84の間の冷却管18を流れる第1流体4は二相状態であり、冷却管18を流れる第1流体4は熱交換器84内およびその下流で気体状態である。例えば、膨張要素86の上流の冷却管18を流れる第1流体4の温度は約14℃であり、膨張要素86と熱交換器84の間の冷却管18を流れる第1流体4の温度は約-30℃であり、熱交換器84の下流を流れる第1流体4の温度は約-3℃である。 Furthermore, the first fluid 4 flowing through the cooling tube 18 upstream of the expansion element 86 is in a liquid state and the first fluid 4 flowing through the cooling tube 18 between the expansion element 86 and the heat exchanger 84 is in a two-phase state, The first fluid 4 flowing through the cooling tube 18 is in a gaseous state within and downstream of the heat exchanger 84 . For example, the temperature of the first fluid 4 flowing through the cooling tube 18 upstream of the expansion element 86 is approximately 14° C., and the temperature of the first fluid 4 flowing through the cooling tube 18 between the expansion element 86 and the heat exchanger 84 is approximately It is -30°C, and the temperature of the first fluid 4 flowing downstream of the heat exchanger 84 is about -3°C.

有利には、膨張要素86、膨張装置56、および第1圧縮要素14aは、第1流体4を同じ圧力とするよう構成される。したがって、第1圧縮要素14aは第1配管12を流れる第1流体4の圧力を例えば3バールの圧力へ上昇させることになる。膨張要素86および膨張装置56は、冷却管18を流れる第1流体4およびパイプ48を流れる第1流体4の圧力を第1配管12の第2部分30を流れる第1流体4の圧力と同じような圧力、すなわち、例えば3バールの圧力へ下げる。したがって、冷却装置50の下流のパイプ48を流れる気体状態の第1流体4は例えば3バールの圧力であり、熱交換器84の下流の冷却管18を流れる気体状態の第1流体4も3バールの圧力である。 Advantageously, expansion element 86, expansion device 56 and first compression element 14a are configured to bring first fluid 4 to the same pressure. The first compression element 14a will thus increase the pressure of the first fluid 4 flowing through the first pipe 12 to a pressure of, for example, 3 bar. The expansion element 86 and the expansion device 56 cause the pressure of the first fluid 4 flowing through the cooling pipe 18 and the first fluid 4 flowing through the pipe 48 to be the same as the pressure of the first fluid 4 flowing through the second portion 30 of the first pipe 12 . pressure, ie to a pressure of, for example, 3 bar. Thus, the gaseous first fluid 4 flowing through the pipe 48 downstream of the cooling device 50 is at a pressure of, for example, 3 bar, and the gaseous first fluid 4 flowing through the cooling pipe 18 downstream of the heat exchanger 84 is also at 3 bar. is the pressure of

これより、供給管15について、特に図1を参照してより詳細に説明する。 The supply tube 15 will now be described in more detail with particular reference to FIG.

念のため注意喚起すると、供給管15は第2配管16と第1流体4を燃料として用いる消費装置17の間を延び、したがって、第1流体は供給管15を通って第2配管16から消費装置17まで流れる。供給管15に取り付けられたポンプ要素19は、例えば、第1流体4に供給管15を通って消費装置17まで流れさせるよう構成される。 As a reminder, the supply pipe 15 extends between the second pipe 16 and the consumer 17 using the first fluid 4 as fuel, so that the first fluid is consumed from the second pipe 16 through the supply pipe 15. It flows to device 17 . A pumping element 19 attached to the supply tube 15 is for example arranged to cause the first fluid 4 to flow through the supply tube 15 to the consumer 17 .

本発明によれば、図1に示されるように、供給管15は、第3熱交換要素38と冷却装置50の間の第2配管16上に配置される分流点21で第2配管16に接続される。つまり、供給管15は、第3熱交換要素38と冷却装置50の間で第2配管16に接続される。この構成では、消費装置17に向けて供給管を流れる第1流体4は液状であることに留意されたい。 According to the invention, as shown in FIG. Connected. That is, the supply pipe 15 is connected to the second pipe 16 between the third heat exchange element 38 and the cooling device 50 . It should be noted that in this arrangement the first fluid 4 flowing through the supply pipe towards the consumer 17 is in liquid form.

さらに、第1流体4は、第3熱交換要素38と冷却装置50の間の第2配管16を、例えば約43℃の温度で約24バールの圧力で流れる。また、供給管15を通って少なくとも分流点21とポンプ要素19の間を流れる第1流体4も、第3熱交換要素38と冷却装置50の間の第2配管16を流れる第1流体と同じような温度および圧力、すなわち、約43℃の温度と約24バールの圧力を有する。 Furthermore, the first fluid 4 flows through the second pipe 16 between the third heat exchange element 38 and the cooling device 50, for example at a temperature of about 43° C. and a pressure of about 24 bar. Also, the first fluid 4 flowing through the supply pipe 15 at least between the branch point 21 and the pumping element 19 is the same as the first fluid flowing through the second pipe 16 between the third heat exchange element 38 and the cooling device 50. , ie a temperature of about 43° C. and a pressure of about 24 bar.

したがって、上記から、ポンプ要素19が供給管15の2つの部分、すなわち、ポンプ要素19の前にある前方部23とポンプ要素19の後ろにある後方部25を規定することになる。より詳細には、供給管15の前方部23は分流点21からポンプ要素19まで延び、一方で供給管15の後方部25はポンプ要素19から消費装置17まで延びる。 Thus, from the above it follows that the pump element 19 defines two portions of the supply tube 15 , a front portion 23 in front of the pump element 19 and a rear portion 25 behind the pump element 19 . More specifically, the front portion 23 of the supply tube 15 extends from the flow dividing point 21 to the pump element 19 , while the rear portion 25 of the supply tube 15 extends from the pump element 19 to the consumer 17 .

本発明によれば、ポンプ要素19は、供給管15を流れる第1流体4の圧力を少なくとも5バール上昇させる。有利には、ポンプ要素19は供給管15を流れる第1流体4の圧力を、35バールを超えないように約10~20バール上昇させる。例えば、前方部23を通って流れる第1流体4の圧力は約24バールであるが、後方部25を通って流れる第1流体4の圧力は約45バールである。有利には、後方部25を通って流れる第1流体4の圧力は、約35~55バールである。したがって、この場合に消費装置17へ届けられる圧力は、1つまたは複数の圧縮要素14により生じた力とポンプ要素19により生じた力の組み合わせであり、その結果、より小さく、より安価で、より信頼性の高いポンプ要素を用いて第1流体の液化、第2流体の圧力の管理、および消費ユニットへの燃料の供給が可能となることに留意されたい。 According to the invention, the pump element 19 raises the pressure of the first fluid 4 flowing through the supply pipe 15 by at least 5 bar. Advantageously, the pump element 19 raises the pressure of the first fluid 4 flowing through the supply pipe 15 by approximately 10-20 bar, not exceeding 35 bar. For example, the pressure of the first fluid 4 flowing through the front portion 23 is approximately 24 bar, while the pressure of the first fluid 4 flowing through the rear portion 25 is approximately 45 bar. Advantageously, the pressure of the first fluid 4 flowing through the rear portion 25 is approximately 35-55 bar. Therefore, the pressure delivered to the consumer 17 in this case is a combination of the force produced by the compression element(s) 14 and the force produced by the pump element 19, resulting in a smaller, cheaper and more It should be noted that a reliable pumping element can be used to liquefy the first fluid, manage the pressure of the second fluid and supply fuel to the consuming unit.

さらに、供給管15を通って流れる第1流体4の温度は、例えば20℃~40℃である。この温度では、具体的には、第1流体4の圧力が35~55バールの場合は、第1流体4は液状である。 Furthermore, the temperature of the first fluid 4 flowing through the supply pipe 15 is, for example, 20°C to 40°C. At this temperature, in particular when the pressure of the first fluid 4 is between 35 and 55 bar, the first fluid 4 is liquid.

本発明の代替案によれば、ポンプ要素19は、第2配管16へ開口する相分離装置44の流体排出口に直接配置される。この構成では、ポンプ要素19は、第2配管16を通る第1流体4を第1タンク2へ直接送り、供給管15を通して消費機械17へと送る。 According to an alternative of the invention, the pump element 19 is arranged directly at the fluid outlet of the phase separator 44 opening into the second pipe 16 . In this arrangement the pump element 19 delivers the first fluid 4 through the second line 16 directly to the first tank 2 and through the supply line 15 to the consuming machine 17 .

さらに、回路1は、供給管15を流れる第1流体4の流量を制御するための制御弁27を含む。制御弁27が消費装置17へ流れる第1流体4の量を調整することができるように、制御弁27は第1流体4を通過させることができる。例えば、制御弁27は、第1流体4が消費ユニットの要求に適合する流量となるように、供給管15を流れる第1流体4の流量を調整する。したがって、制御弁27は、供給管15を流れる第1流体4の流量を燃料に関する消費装置17の要求に適合させる。 Furthermore, circuit 1 includes a control valve 27 for controlling the flow rate of first fluid 4 through supply tube 15 . The control valve 27 allows the first fluid 4 to pass through so that the control valve 27 can regulate the amount of the first fluid 4 flowing to the consumer 17 . For example, the control valve 27 adjusts the flow rate of the first fluid 4 through the supply pipe 15 so that the flow rate of the first fluid 4 meets the requirements of the consumption unit. The control valve 27 thus adapts the flow rate of the first fluid 4 through the supply line 15 to the demand of the consumer 17 for fuel.

有利には、制御弁27は供給管15の前方部23に取り付けられる。つまり、制御弁27は、分流点21とポンプ要素19の間の供給管15上に配置される。したがって、制御弁27がポンプ要素19の上流の供給管15を流れる第1流体4の流量を調整することになる。ただし、制御弁27がポンプ要素19と消費装置17の間、つまり供給管15の後方部25に取り付けられた回路は、本発明の範囲から逸脱しないであろう。 Advantageously, the control valve 27 is attached to the forward portion 23 of the supply pipe 15 . That is, the control valve 27 is arranged on the supply pipe 15 between the flow dividing point 21 and the pump element 19 . The control valve 27 thus regulates the flow rate of the first fluid 4 through the supply pipe 15 upstream of the pump element 19 . However, a circuit in which the control valve 27 is mounted between the pump element 19 and the consumer 17, ie in the rear portion 25 of the supply tube 15, would not depart from the scope of the invention.

図3に示される別の実施形態によれば、回路1は、管理配管20と供給管15の間に延びる搬送管31を含む。したがって、搬送管31は管理配管20を供給管15に流体連結させることになる。 According to another embodiment shown in FIG. 3, circuit 1 includes a conveying pipe 31 extending between management pipe 20 and supply pipe 15 . Thus, the carrier pipe 31 fluidly connects the management pipe 20 to the supply pipe 15 .

この目的に向けて、管理配管20は、搬送管31と管理配管20の交差区間33を含み、その結果、管理配管20を流れる第2流体8の少なくとも一部が交差区間33において搬送管31を通って供給管15へ流れる。交差区間33は、この場合は管理配管20の第1部分80に配置されるが、管理配管20の第2部分82に配置することが可能であり、それにより本発明の範囲から逸脱することはない。 Towards this end, the management pipe 20 includes an intersection section 33 of the conveying pipe 31 and the management pipe 20 , so that at least a portion of the second fluid 8 flowing through the management pipe 20 passes through the conveying pipe 31 at the intersection section 33 . through to supply pipe 15 . The crossover section 33 is in this case located on the first portion 80 of the management pipe 20, but could be located on the second portion 82 of the management pipe 20 without thereby departing from the scope of the invention. do not have.

一方で、供給管15は搬送管31との分岐区間35を含み、その結果、搬送管31を流れる第2流体8が分岐区間35を通って供給管15を流れる。この構成では、消費装置17に第2流体8を供給することができて、消費装置17は第2流体8を燃料として用いることができる。分岐区間35は、この場合は供給管15の前方部23に配置されるが、供給管15の後方部25に配置することが可能であり、それにより本発明の範囲から逸脱することはない。 On the one hand, the supply tube 15 comprises a branch section 35 with the carrier tube 31 , so that the second fluid 8 flowing through the carrier tube 31 flows through the branch section 35 through the supply tube 15 . In this arrangement, the consumer 17 can be supplied with the second fluid 8 and the consumer 17 can use the second fluid 8 as fuel. The branch section 35 is in this case arranged in the front part 23 of the supply pipe 15, but it can also be arranged in the rear part 25 of the supply pipe 15 without departing from the scope of the invention.

さらに、分岐区間35において、搬送管31を通って流れる管理配管20からの第2流体8は供給管15を流れる第1流体4と混合される。分岐区間35の下流には、第1流体4と第2流体8の混合物が消費機械17まで流れることに留意されたい。 Furthermore, in the branch section 35 , the second fluid 8 from the management pipe 20 flowing through the carrier pipe 31 is mixed with the first fluid 4 flowing through the supply pipe 15 . Note that downstream of the branch section 35 a mixture of the first fluid 4 and the second fluid 8 flows to the consumer machine 17 .

さらに、搬送管31は、搬送管31を通って流れる第2流体8の流量を調整するための調整弁37を含む。調整弁37により、第2流体8が搬送管31を通って供給管15へ、また消費機械17へ流れることができることに留意されたい。搬送管31内の第2流体8の流量は調整弁37により制御されて、その結果、供給管15を流れる第2流体8の量は、この調整弁37により調整されることに留意されたい。 Further, the carrier pipe 31 includes a regulating valve 37 for adjusting the flow rate of the second fluid 8 flowing through the carrier pipe 31 . Note that the regulating valve 37 allows the second fluid 8 to flow through the carrier pipe 31 to the supply pipe 15 and to the consumer machine 17 . Note that the flow rate of the second fluid 8 in the carrier tube 31 is controlled by a regulating valve 37 so that the amount of the second fluid 8 flowing through the supply tube 15 is regulated by this regulating valve 37 .

消費機械17は第1流体4を燃料として使用できるが、第2流体8、および/または第1流体4と第2流体8の混合物も燃料として使用できることに留意されたい。 Note that the consuming machine 17 can use the first fluid 4 as fuel, but also the second fluid 8 and/or a mixture of the first fluid 4 and the second fluid 8 as fuel.

これより、本発明の第2実施形態について、特に図2を参照して説明する。第2実施形態を第1実施形態と差別化する要素について以下で説明する。同一の要素については第1実施形態の詳細な説明を参照すること。 A second embodiment of the invention will now be described with particular reference to FIG. The elements that differentiate the second embodiment from the first embodiment are described below. Refer to the detailed description of the first embodiment for identical elements.

図2に示されるように、回路1は第1パイプ92および第2パイプ94を含み、それぞれが独立して第2配管16と第1配管12の間に延びる。 As shown in FIG. 2, the circuit 1 includes a first pipe 92 and a second pipe 94 each independently extending between the second pipe 16 and the first pipe 12 .

第1パイプ92は、一方では第2配管16に接続され、他方では第2熱交換要素42と第3圧縮要素14cの間で第1配管12の第3部分32に接続される。第1パイプ92を流れる第1流体4は、第2熱交換要素42と第3圧縮要素14cの間にある位置で第1配管12の第3部分32を流れる第1流体4と混合することに留意されたい。 The first pipe 92 is connected on the one hand to the second pipe 16 and on the other hand to the third section 32 of the first pipe 12 between the second heat exchange element 42 and the third compression element 14c. The first fluid 4 flowing through the first pipe 92 mixes with the first fluid 4 flowing through the third portion 32 of the first pipe 12 at a location between the second heat exchange element 42 and the third compression element 14c. Please note.

回路1は、第2配管16および第1パイプ92に取り付けられた第1冷却装置96を含み、第1冷却装置96は、第1熱交換器98と第1熱交換器98の上流の第1パイプ92上に配置される第1膨張装置100とを含む。第1熱交換器98は、第1パイプ92を流れる第1流体4と第2配管16を流れる第1流体4の間で熱エネルギーの交換を行うよう構成される。この目的に向けて、第1熱交換器98は、第2配管16を構成する第1導管102と、第1パイプ92を構成する第2導管104とを含む。第2配管16を流れる第1流体4は第1導管102を通って第1熱交換器98を通過し、第1パイプ92を流れる第1流体4は第2導管104を通って第1熱交換器98を通過することに留意されたい。 The circuit 1 includes a first cooling device 96 attached to the second pipe 16 and the first pipe 92 , the first cooling device 96 being connected to a first heat exchanger 98 and a first heat exchanger upstream of the first heat exchanger 98 . and a first expansion device 100 disposed on the pipe 92 . The first heat exchanger 98 is configured to exchange thermal energy between the first fluid 4 flowing through the first pipe 92 and the first fluid 4 flowing through the second pipe 16 . To this end, the first heat exchanger 98 includes a first conduit 102 forming the second pipe 16 and a second conduit 104 forming the first pipe 92 . The first fluid 4 flowing through the second pipe 16 passes through the first conduit 102 through the first heat exchanger 98 and the first fluid 4 flowing through the first pipe 92 passes through the second conduit 104 to the first heat exchanger 98 . Note that it passes through vessel 98 .

さらに、第1パイプ92と第2配管16の第1交差部521は、相分離装置44と第1冷却装置96の間に配置されることに留意されたい。したがって、第1交差部521を流れる第1流体4は、第1冷却装置96まで第2配管16を流れ続ける、および/または第1配管12まで第1パイプ92を流れ続けることができる。 Furthermore, it should be noted that the first intersection 521 of the first pipe 92 and the second pipe 16 is located between the phase separator 44 and the first cooling device 96 . Thus, the first fluid 4 flowing through the first intersection 521 can continue to flow through the second pipe 16 to the first cooling device 96 and/or continue to flow through the first pipe 92 to the first pipe 12 .

第1膨張装置100は、この場合、第1パイプ92を流れる液体状態の第1流体4の圧力を第1配管12の第3部分32を流れる気体状態の第1流体4の圧力とほぼ同じ圧力へ下げるよう構成される。例えば、第1冷却装置96の下流を流れる第1流体4の圧力は約10.5バールであり、第1膨張装置100が第1パイプ92を流れる第1流体4の圧力を第1膨張装置100の上流での約24バールの圧力から第1膨張装置100の下流での約10.5バールの圧力へ変化させる。 The first expansion device 100 in this case causes the pressure of the first fluid 4 in a liquid state flowing through the first pipe 92 to be approximately the same as the pressure of the first fluid 4 in a gaseous state flowing through the third portion 32 of the first pipe 12 . configured to lower to For example, the pressure of the first fluid 4 flowing downstream of the first cooling device 96 is approximately 10.5 bar and the first expansion device 100 reduces the pressure of the first fluid 4 flowing through the first pipe 92 to from a pressure of about 24 bar upstream of the first expansion device 100 to a pressure of about 10.5 bar downstream of the first expansion device 100 .

第2配管16を流れる第1流体4と第1パイプ92を流れる第1流体4の間の熱交換は、具体的には第1熱交換器98において、より詳細には第1導管102および第2導管104において行われる。第1導管102を流れる第1流体4は、第2導管104を流れる膨張した第1流体4へ熱エネルギーを渡す。換言すれば、第2導管104を流れる第1流体4は第1導管102を流れる第1流体4を冷却し、第1導管102を流れる第1流体4の温度は低下する一方、第2導管104を流れる第1流体4の温度は上昇する。第2導管104を流れる第1流体4の温度の上昇により、前記第1流体4は二相状態から気体状態へ移行する。 Heat exchange between the first fluid 4 flowing through the second pipe 16 and the first fluid 4 flowing through the first pipe 92 is specifically in the first heat exchanger 98, more specifically in the first conduit 102 and the first pipe 92. 2 conduit 104 . The first fluid 4 flowing through the first conduit 102 transfers thermal energy to the expanded first fluid 4 flowing through the second conduit 104 . In other words, the first fluid 4 flowing through the second conduit 104 cools the first fluid 4 flowing through the first conduit 102 and the temperature of the first fluid 4 flowing through the first conduit 102 decreases while the second conduit 104 cools. The temperature of the first fluid 4 flowing through increases. The increase in temperature of the first fluid 4 flowing through the second conduit 104 causes said first fluid 4 to transition from a two-phase state to a gaseous state.

図2に示されるように、第2パイプ94は、一方では第2配管16に接続され、他方では第1熱交換要素40と第2圧縮要素14bの間で第1配管12の第2部分30に接続される。第2パイプ94を流れる第1流体4は、第1熱交換要素40と第2圧縮要素14bの間にある位置で第1配管12の第2部分30を流れる第1流体4と混合することに留意されたい。 As shown in FIG. 2, the second pipe 94 is connected to the second pipe 16 on the one hand and the second section 30 of the first pipe 12 between the first heat exchange element 40 and the second compression element 14b on the other hand. connected to The first fluid 4 flowing through the second pipe 94 mixes with the first fluid 4 flowing through the second portion 30 of the first pipe 12 at a location between the first heat exchange element 40 and the second compression element 14b. Please note.

さらに、第2パイプ94は第1冷却装置96の下流の第2配管16に接続される。第2パイプ94と第2配管16の第2交差部522は、第1冷却装置96と相分離装置62の間に配置されることに留意されたい。第2パイプ94を流れる第1流体4は、第1冷却装置96により冷却されて第2配管16を流れる第1流体4に由来する。 Furthermore, the second pipe 94 is connected to the second pipe 16 downstream of the first cooling device 96 . Note that the second intersection 522 of the second pipe 94 and the second pipe 16 is located between the first cooling device 96 and the phase separation device 62 . The first fluid 4 flowing through the second pipe 94 originates from the first fluid 4 cooled by the first cooling device 96 and flowing through the second pipe 16 .

回路1は第2配管16および第2パイプ94に取り付けられた第2冷却装置106を含み、第2冷却装置106は第2熱交換器108と、第2熱交換器108の上流の第2パイプ94上に配置される第2膨張装置110とを含む。第2熱交換器108は、第2パイプ94を流れる第1流体4と第1冷却装置96の下流の第2配管16を流れる第1流体4の間で熱エネルギーの交換を行うよう構成される。この目的に向けて、第2熱交換器108は、第2配管16を構成する第1導管112と、第2パイプ94を構成する第2導管114とを含む。第2配管16を流れる第1流体4は第1導管112を通って第2熱交換器108を通過し、第2パイプ94を流れる第1流体4は第2導管114を通って第2熱交換器108を通過することに留意されたい。 Circuit 1 includes a second cooling device 106 attached to a second pipe 16 and a second pipe 94 , the second cooling device 106 includes a second heat exchanger 108 and a second pipe upstream of the second heat exchanger 108 . and a second inflation device 110 disposed on 94 . The second heat exchanger 108 is configured to exchange thermal energy between the first fluid 4 flowing through the second pipe 94 and the first fluid 4 flowing through the second pipe 16 downstream of the first cooling device 96 . . Towards this end, the second heat exchanger 108 includes a first conduit 112 forming the second pipe 16 and a second conduit 114 forming the second pipe 94 . The first fluid 4 flowing through the second pipe 16 passes through the second heat exchanger 108 through the first conduit 112 and the first fluid 4 flowing through the second pipe 94 passes through the second conduit 114 to the second heat exchanger 108 . Note that it passes through vessel 108 .

第2膨張装置110は、この場合、第2パイプ94を流れる液体状態の第1流体4の圧力を第1配管12の第2部分30を流れる気体状態の第1流体4の圧力とほぼ同じ圧力へ下げるよう構成される。例えば、第2冷却装置106の下流を流れる第1流体4の圧力は約3バールであり、第2膨張装置110が第2パイプ94を流れる第1流体4の圧力を第1膨張装置100の上流での約24バールの圧力から第2膨張装置110の下流での約3バールの圧力へ変化させる。 The second expansion device 110 in this case causes the pressure of the first fluid 4 in a liquid state flowing through the second pipe 94 to be approximately the same as the pressure of the first fluid 4 in a gaseous state flowing through the second portion 30 of the first pipe 12 . configured to lower to For example, the pressure of the first fluid 4 flowing downstream of the second cooling device 106 is about 3 bar and the second expansion device 110 reduces the pressure of the first fluid 4 flowing through the second pipe 94 to from a pressure of about 24 bar at , to a pressure of about 3 bar downstream of the second expansion device 110 .

第2パイプ94を流れる第1流体4の約24バールの圧力から約3バールの圧力への膨張により、第2導管114を流れる第1流体4の温度が低下する。第2膨張装置110と第2導管114の間を流れる第1流体4は二相状態であり、第1流体4は第2導管114を通過する際に蒸発する。 The expansion of the first fluid 4 flowing through the second pipe 94 from a pressure of approximately 24 bar to a pressure of approximately 3 bar reduces the temperature of the first fluid 4 flowing through the second conduit 114 . The first fluid 4 flowing between the second expansion device 110 and the second conduit 114 is in a two-phase state and the first fluid 4 evaporates as it passes through the second conduit 114 .

第2配管16を流れる第1流体4と第2パイプ94を流れる第1流体4の間の熱交換は、具体的には第2熱交換器108において、より詳細には第1導管112および第2導管114において行われる。第1導管112を流れる第1流体4は、第2導管114を流れる膨張した第1流体4へ熱エネルギーを渡す。換言すれば、第2導管114を流れる第1流体4は第1導管112を流れる第1流体4を冷却し、第1導管112を流れる第1流体4の温度は低下する一方、第2導管114を流れる第1流体4の温度は上昇する。第2導管114を流れる第1流体4の温度の上昇により、前記第1流体4は二相状態から気体状態へ移行する。 Heat exchange between the first fluid 4 flowing through the second pipe 16 and the first fluid 4 flowing through the second pipe 94 occurs specifically in the second heat exchanger 108, more specifically in the first conduit 112 and the second pipe 94. 2 conduit 114 . The first fluid 4 flowing through the first conduit 112 transfers thermal energy to the expanded first fluid 4 flowing through the second conduit 114 . In other words, the first fluid 4 flowing through the second conduit 114 cools the first fluid 4 flowing through the first conduit 112 and the temperature of the first fluid 4 flowing through the first conduit 112 decreases while the second conduit 114 cools. The temperature of the first fluid 4 flowing through increases. The increase in temperature of the first fluid 4 flowing through the second conduit 114 causes said first fluid 4 to transition from a two-phase state to a gaseous state.

冷却管18と第2配管16の分岐116は、第1冷却装置96と第2冷却装置106の間に配置される。第1冷却装置96の下流の第2配管16を流れる第1流体4は、冷却管18を通って冷却ユニット24へ、もしくは第2パイプ94を通って第1配管12へ、または第2配管16を通って第1タンク2まで流れることができることに留意されたい。有利には、冷却管18と第2配管16の分岐116は、第2配管16と第2パイプ94の第2交差部522と第1冷却装置96との間に取り付けられる。 A branch 116 of the cooling pipe 18 and the second pipe 16 is arranged between the first cooling device 96 and the second cooling device 106 . The first fluid 4 flowing in the second pipe 16 downstream of the first cooling device 96 flows through the cooling pipe 18 to the cooling unit 24 or through the second pipe 94 to the first pipe 12 or the second pipe 16 Note that it can flow to the first tank 2 through the . Advantageously, the branch 116 of the cooling pipe 18 and the second pipe 16 is attached between the second intersection 522 of the second pipe 16 and the second pipe 94 and the first cooling device 96 .

この構成では、冷却管18は第2配管16と第2パイプ94の間に延びて、冷却管18は第2冷却装置106の下流の第2パイプ94に接続される。ここで、冷却ユニット24の下流の冷却管18を流れる気体状態の第1流体4は、第1配管12の第2部分30を流れる気体状態の第1流体4に取り込まれる前に、第2冷却装置106の下流の第2パイプ94を流れる気体状態の第1流体4と混合することに留意されたい。 In this configuration, the cooling pipe 18 extends between the second pipe 16 and the second pipe 94 and the cooling pipe 18 is connected to the second pipe 94 downstream of the second cooling device 106 . Here, the first gaseous fluid 4 flowing through the cooling pipe 18 downstream of the cooling unit 24 is subjected to a second cooling before being incorporated into the first gaseous fluid 4 flowing through the second portion 30 of the first pipe 12 . Note that it mixes with the gaseous first fluid 4 flowing through the second pipe 94 downstream of the device 106 .

したがって、上記のことから、第1流体4の一部は管理システム1により再循環されて、この第1流体4の一部は、主に第1流体4、および/または第2流体8を冷却するのを助けることになる。 Therefore, from the above it follows that part of the first fluid 4 is recycled by the management system 1 and this part of the first fluid 4 mainly cools the first fluid 4 and/or the second fluid 8. will help you to

本発明の一つの特徴によれば、供給管15は冷却管18から消費装置17まで延び、供給管15と冷却管18の分岐116は、冷却装置96と冷却ユニット24の間に配置される。供給管15を流れる第1流体4は、供給管15を通って消費装置17へ流れる前に、まず第1冷却装置96を通過する間に冷却されていることに留意されたい。 According to one feature of the invention, the supply pipe 15 extends from the cooling pipe 18 to the consumer 17 and the branch 116 of the supply pipe 15 and the cooling pipe 18 is arranged between the cooling device 96 and the cooling unit 24 . It should be noted that the first fluid 4 flowing through the supply pipe 15 is first cooled while passing through the first cooling device 96 before flowing through the supply pipe 15 to the consumer 17 .

さらに、供給管15は冷却管18から消費装置17まで延び、供給管15と冷却管18の分岐点29は、冷却ユニット24の膨張要素86の上流に配置される。冷却管18を冷却ユニット24の膨張要素86へと流れる第1流体4は、分岐点29において、供給管15を通って消費装置17へ流れることができることに留意されたい。 Furthermore, the supply pipe 15 extends from the cooling pipe 18 to the consumer 17 , and the branching point 29 of the supply pipe 15 and the cooling pipe 18 is arranged upstream of the expansion element 86 of the cooling unit 24 . It should be noted that the first fluid 4 flowing through the cooling pipe 18 to the expansion element 86 of the cooling unit 24 can flow through the supply pipe 15 to the consumer 17 at the junction 29 .

この実施形態では、供給管15を消費装置17まで流れる第1流体4は、第1実施形態と比べて、第1冷却装置96により冷却される。この実施形態の利点は、第1流体4は供給管15を通って消費装置17まで流れる場合はより好ましくは液状で、消費装置17による第1流体4の燃料としての使用が最適化されることにある。さらに、第1流体4の温度を下げることで、ポンプ要素19で発生するキャビテーションの危険性が低下する。 In this embodiment, the first fluid 4 flowing through the supply pipe 15 to the consumer 17 is cooled by the first cooling device 96 compared to the first embodiment. An advantage of this embodiment is that the first fluid 4 is more preferably liquid when flowing through the supply pipe 15 to the consumer 17, optimizing the use of the first fluid 4 as fuel by the consumer 17. It is in. Furthermore, by reducing the temperature of the first fluid 4, the risk of cavitation occurring in the pump element 19 is reduced.

ただし、本発明は、本明細書で記載され示された手段および構成には限定されず、また、すべての同等の手段および構成、ならびにそのような手段の技術的に機能する任意の組み合わせにまで及ぶ。具体的には、第1流体4の圧力、温度、および/もしくは状態、ならびに/または第2流体8の圧力、温度、および/もしくは状態を変化させる要素のすべては、それらの要素が本明細書に記載される機能を提供するのであれば、本発明に不利益をもたらすことなく変更することが可能である。 However, the invention is not limited to the means and arrangements described and shown herein, but also to all equivalent means and arrangements and to any technically working combination of such means. reach. Specifically, all of the elements that change the pressure, temperature, and/or state of the first fluid 4 and/or the pressure, temperature, and/or state of the second fluid 8 are those elements herein Modifications are possible without detrimental to the invention, provided that they provide the functionality described in .

Claims (12)

第1タンク(2)に収容される第1流体(4)および第2タンク(6)に収容される第2流体(8)が流れることができる回路(1)であって、前記第1流体(4)は前記第2流体(8)の沸点より低い沸点を有し、前記回路(1)は前記第1タンク(2)から熱交換要素(38、40、42)まで延びる第1配管(12)を少なくとも含み、気体状態で前記第1タンク(2)から取り込まれた前記第1流体(4)は前記第1配管(12)を通って流れるように意図され、前記熱交換要素(38、40、42)は前記第1流体(4)を凝縮するよう構成され、前記回路(1)は前記熱交換要素(38、40、42)から前記第1タンク(2)まで延びる第2配管(16)を含み、液体状態および/または二相状態の前記第1流体(4)は前記第2配管(16)を通って流れるように意図され、前記回路(1)は前記第2タンク(6)から液体状態で取り込まれた前記第2流体(8)が通って流れるように意図された、前記第2流体(8)の状態を管理するための少なくとも1つの管理配管(20)を含み、前記回路(1)は少なくとも前記第1流体(4)を燃料として用いる消費装置(17)へ供給するための、前記第2配管(16)から前記消費装置(17)まで延びる供給管(15)を含み、前記供給管(15)は少なくとも液体状態の前記第1流体(4)が通って流れるよう構成され、前記供給管(15)は少なくとも前記供給管(15)内の前記第1流体(4)の圧力を上昇させる少なくとも1つのポンプ要素(19)を含むことを特徴とする、回路(1)。 A circuit (1) through which a first fluid (4) contained in a first tank (2) and a second fluid (8) contained in a second tank (6) can flow, said first fluid (4) has a boiling point lower than the boiling point of said second fluid (8) and said circuit (1) comprises a first pipe ( 12), wherein said first fluid (4) taken from said first tank (2) in gaseous state is intended to flow through said first pipe (12), said heat exchange element (38) , 40, 42) are adapted to condense said first fluid (4) and said circuit (1) is a second pipe extending from said heat exchange element (38, 40, 42) to said first tank (2). (16), said first fluid (4) in liquid state and/or two-phase state is intended to flow through said second pipe (16), said circuit (1) being connected to said second tank ( 6) for managing the condition of said second fluid (8), through which said second fluid (8) taken in liquid state from , said circuit (1) comprises a supply pipe (15) extending from said second pipe (16) to said consumer (17) for supplying at least said first fluid (4) to a consumer (17) using said first fluid (4) as fuel. ), wherein said supply tube (15) is configured to flow through at least said first fluid (4) in liquid state, said supply tube (15) at least said first fluid in said supply tube (15) A circuit (1), characterized in that it comprises at least one pumping element (19) for increasing the pressure of (4). 前記第2配管(16)から前記第1配管(12)まで延びる、前記第1流体(4)が流れるように意図された少なくとも1つの冷却管(18)を含み、前記第1配管(12)は第1圧縮要素(14、14a)と第2圧縮要素(14、14b、14c)とを少なくとも含み、前記冷却管(18)は前記第1圧縮要素(14、14a)と前記第2圧縮要素(14、14b、14c)の間で前記第1配管(12)に接続される、請求項1に記載の回路(1)。 said first pipe (12) comprising at least one cooling pipe (18) intended for the flow of said first fluid (4), extending from said second pipe (16) to said first pipe (12); includes at least a first compression element (14, 14a) and a second compression element (14, 14b, 14c), said cooling pipe (18) connecting said first compression element (14, 14a) and said second compression element A circuit (1) according to claim 1, connected to said first pipe (12) between (14, 14b, 14c). 前記第2流体(8)の状態を管理するための前記管理配管(20)を流れる液体状態の前記第2流体(8)を冷却する少なくとも1つの冷却ユニット(24)を含み、前記冷却ユニット(24)により生成される冷気は、前記第2配管(16)から前記第1配管(12)まで延び前記第1流体(4)が流れるように意図された前記少なくとも1つの冷却管(18)を流れる前記第1流体(4)の蒸発により生じる、請求項1または2に記載の回路(1)。 At least one cooling unit (24) for cooling the second fluid (8) in a liquid state flowing through the management pipe (20) for managing the state of the second fluid (8), the cooling unit ( 24) passes through said at least one cooling pipe (18) extending from said second pipe (16) to said first pipe (12) and through which said first fluid (4) is intended to flow. 3. Circuit (1) according to claim 1 or 2, caused by evaporation of the flowing first fluid (4). 前記冷却ユニット(24)は、熱交換器(84)と膨張要素(86)を少なくとも含み、前記熱交換器(84)は前記冷却管(18)を流れる前記第1流体(4)と前記管理配管(20)を流れる前記第2流体(8)の間で熱エネルギーを交換する、請求項3に記載の回路(1)。 Said cooling unit (24) comprises at least a heat exchanger (84) and an expansion element (86), said heat exchanger (84) connecting said first fluid (4) flowing through said cooling pipe (18) and said management fluid (4). 4. Circuit (1) according to claim 3, for exchanging thermal energy between said second fluid (8) flowing in a pipe (20). 前記熱交換器(84)は、前記冷却管(18)を構成する第1通路(88)と、前記管理配管(20)を構成する第2通路(90)とを少なくとも含み、前記膨張要素(86)は前記第1通路(88)と前記第2配管(16)の間に配置される、請求項4に記載の回路(1)。 The heat exchanger (84) includes at least a first passage (88) forming the cooling pipe (18) and a second passage (90) forming the management pipe (20), and the expansion element ( 5. Circuit (1) according to claim 4, wherein 86) is arranged between said first passage (88) and said second pipe (16). 前記第2配管(16)から前記第1配管(12)まで延びて前記第1流体(4)が通って流れる少なくとも1つのパイプ(48)を含み、前記回路(1)は前記第2配管(16)を流れる前記第1流体(4)を冷却する少なくとも1つの冷却装置(50)を含み、前記冷却装置(50)により生成される冷気は前記パイプ(48)を流れる前記第1流体(4)の蒸発により生じる、請求項1~5のいずれか一項に記載の回路(1)。 Said circuit (1) comprises at least one pipe (48) extending from said second pipe (16) to said first pipe (12) through which said first fluid (4) flows, wherein said circuit (1) comprises said second pipe ( at least one cooling device (50) for cooling said first fluid (4) flowing through said pipe (48), wherein the cold air generated by said cooling device (50) cools said first fluid (4) flowing through said pipe (48); 6. The circuit (1) according to any one of claims 1 to 5, resulting from the evaporation of ). 前記供給管(15)は、前記熱交換要素(38、40、42)と前記冷却装置(50)の間の前記第2配管(16)上に配置される分流点(21)で前記第2配管(16)に接続される、請求項6に記載の回路(1)。 Said supply pipe (15) is connected to said second pipe at a branch point (21) arranged on said second pipe (16) between said heat exchange element (38, 40, 42) and said cooling device (50). 7. Circuit (1) according to claim 6, connected to a pipe (16). 前記供給管(15)は、分離要素(44)と前記冷却装置(50)の間の前記第2配管(16)上に配置される前記分流点(21)で前記第2配管(16)に接続される、請求項7に記載の回路(1)。 Said supply pipe (15) enters said second pipe (16) at said diversion point (21) arranged on said second pipe (16) between a separation element (44) and said cooling device (50). Circuit (1) according to claim 7, connected. 前記第2配管(16)上に配置される、前記第1流体(4)用の少なくとも1つの前記相分離要素(44)を含み、前記第1流体(4)は前記相分離要素(44)から前記第2配管を通って前記第1タンク(2)へ流れ、前記回路(1)は、前記分離要素(44)から前記第2配管(16)まで延びるガス管(46)を含む、請求項1~8のいずれか一項に記載の回路(1)。 at least one said phase separation element (44) for said first fluid (4) disposed on said second pipe (16), said first fluid (4) said phase separation element (44) through said second pipe to said first tank (2), said circuit (1) comprising a gas pipe (46) extending from said separating element (44) to said second pipe (16). A circuit (1) according to any one of Clauses 1-8. 前記供給管(15)は前記冷却管(18)から前記消費装置(17)まで延び、前記供給管(15)と前記冷却管(18)との間の分岐点(29)は、前記冷却装置(50)と前記冷却ユニット(24)の間に配置される、請求項6に従属する請求項3~5のいずれか一項に記載の回路(1)。 Said supply pipe (15) extends from said cooling pipe (18) to said consumer device (17) and a junction (29) between said supply pipe (15) and said cooling pipe (18) is connected to said cooling device A circuit (1) according to any one of claims 3 to 5 as dependent on claim 6, arranged between (50) and said cooling unit (24). 前記供給管(15)は前記冷却管(18)から前記消費装置(17)まで延び、前記供給管(15)と前記冷却管(18)との間の前記分岐点(29)は、前記冷却ユニット(24)の前記膨張要素(86)と前記冷却装置(50)の間に配置される、請求項4に従属する請求項10に記載の回路(1)。 Said supply pipe (15) extends from said cooling pipe (18) to said consumer (17) and said junction (29) between said supply pipe (15) and said cooling pipe (18) is connected to said cooling 11. A circuit (1) as claimed in claim 10 when dependent on claim 4, arranged between the expansion element (86) of the unit (24) and the cooling device (50). 前記供給管(15)を流れる前記第1流体(4)の流量を制御するための制御弁(27)を含む、請求項1~11のいずれか一項に記載の回路(1)。 A circuit (1) according to any preceding claim, comprising a control valve (27) for controlling the flow rate of said first fluid (4) through said supply pipe (15).
JP2022090716A 2021-06-04 2022-06-03 Circuit for re-liquefying fluid and supplying re-liquefied fluid to consumption unit Pending JP2022186667A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2105885 2021-06-04
FR2105885A FR3123717B1 (en) 2021-06-04 2021-06-04 Circuit for reliquefaction of a fluid and supplying a consumer.

Publications (1)

Publication Number Publication Date
JP2022186667A true JP2022186667A (en) 2022-12-15

Family

ID=77519227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022090716A Pending JP2022186667A (en) 2021-06-04 2022-06-03 Circuit for re-liquefying fluid and supplying re-liquefied fluid to consumption unit

Country Status (4)

Country Link
JP (1) JP2022186667A (en)
KR (1) KR20220165201A (en)
CN (1) CN115435237A (en)
FR (1) FR3123717B1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140053600A1 (en) * 2011-03-22 2014-02-27 Daewoo Shipbuilding & Marine Engineering Co., Ltd. System for supplying fuel to high-pressure natural gas injection engine having excess evaporation gas consumption means
KR101767557B1 (en) * 2016-09-01 2017-08-11 대우조선해양 주식회사 BOG Reliquefaction System and Method for Vessel
FR3077867B1 (en) * 2018-02-09 2020-01-31 Gaztransport Et Technigaz METHOD AND SYSTEM FOR GAS TREATMENT OF A GAS STORAGE FACILITY FOR A GAS TRANSPORT VESSEL
FR3089282B1 (en) * 2018-11-30 2023-02-24 Gaztransport Et Technigaz GAS TREATMENT SYSTEM OF A RECEPTION TERMINAL EQUIPPED WITH A REGASIFICATION UNIT AND CORRESPONDING GAS TREATMENT METHOD
US20220196209A1 (en) * 2019-04-15 2022-06-23 Agility Gas Technologies Subcooled cyrogenic storage and transport of volatile gases

Also Published As

Publication number Publication date
CN115435237A (en) 2022-12-06
KR20220165201A (en) 2022-12-14
FR3123717B1 (en) 2023-12-08
FR3123717A1 (en) 2022-12-09

Similar Documents

Publication Publication Date Title
KR101489738B1 (en) System for supplying fuel gas in ships
KR102082362B1 (en) Apparatus, system and method for the capture, utilization and sendout of latent heat in boil off gas onboard a cryogenic storage vessel
KR101711997B1 (en) Fuel supply system
US20210164728A1 (en) Method and system for processing gas in a gas storage facility for a gas tanker
KR20170033649A (en) A ReGasification System Of Liquefied Gas
EP2682666B1 (en) Liquefied gas regasificaion device and method for manufacturing regasified gas
JP7490787B2 (en) Liquefied gas revaporization system and liquefied gas revaporization method for ship
JP2022186667A (en) Circuit for re-liquefying fluid and supplying re-liquefied fluid to consumption unit
CN110945277B (en) Method and device for storing liquefied gas in a container and for extracting boil-off gas from the container
JP2024511643A (en) Method for cooling heat exchangers of gas supply systems for gas consumers of ships
US20080295527A1 (en) Lng tank ship with nitrogen generator and method of operating the same
JP2024503496A (en) Gas supply systems for high-pressure and low-pressure gas consumers
KR20190041859A (en) Reliquefaction apparatus of liquified gas using fuel LNG and liquefied gas carrier having the same
JP2023502422A (en) System for supplying gas to at least one gas consuming device on board a ship
KR20190124000A (en) Regasification System of liquefied Gas and Ship Having the Same
JP2022186666A (en) Management system for managing state of fluid
KR20160115147A (en) Apparatus for reliquefaction of boil off gas in liquefied gas carrier
KR20130023329A (en) System for supplying fuel gas of ship
RU2772630C2 (en) Method and system for processing gas in installation for gas storage of gas transportation tanker
JP7476355B2 (en) Liquefied gas regasification method and system for ships
KR102433265B1 (en) gas treatment system and offshore plant having the same
KR102433264B1 (en) gas treatment system and offshore plant having the same
JP2023545979A (en) Gas supply systems for high-pressure and low-pressure gas consumers
KR20160097494A (en) Lng fuel supplying system able to reliquefy bog and ship with the system
KR20240103934A (en) gas treatment system and ship having the same