JP2022186666A - Management system for managing state of fluid - Google Patents

Management system for managing state of fluid Download PDF

Info

Publication number
JP2022186666A
JP2022186666A JP2022090711A JP2022090711A JP2022186666A JP 2022186666 A JP2022186666 A JP 2022186666A JP 2022090711 A JP2022090711 A JP 2022090711A JP 2022090711 A JP2022090711 A JP 2022090711A JP 2022186666 A JP2022186666 A JP 2022186666A
Authority
JP
Japan
Prior art keywords
pipe
fluid
cooling
flowing
management system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022090711A
Other languages
Japanese (ja)
Inventor
パーベル、ボリシェビキ
BORISEVICH Pavel
ベルナール、アウン
Aoun Bernard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gaztransport et Technigaz SA
Original Assignee
Gaztransport et Technigaz SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport et Technigaz SA filed Critical Gaztransport et Technigaz SA
Publication of JP2022186666A publication Critical patent/JP2022186666A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • F25J1/0025Boil-off gases "BOG" from storages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/02Pipe-line systems for gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J2/00Arrangements of ventilation, heating, cooling, or air-conditioning
    • B63J2/12Heating; Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/004Details of vessels or of the filling or discharging of vessels for large storage vessels not under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/02Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with liquefied gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C6/00Methods and apparatus for filling vessels not under pressure with liquefied or solidified gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • F17C7/02Discharging liquefied gases
    • F17C7/04Discharging liquefied gases with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/08Pipe-line systems for liquids or viscous products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0045Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0201Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
    • F25J1/0202Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration in a quasi-closed internal refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0204Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a single flow SCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0212Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a single flow MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0229Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock
    • F25J1/023Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock for the combustion as fuels, i.e. integration with the fuel gas system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0236Heat exchange integration providing refrigeration for different processes treating not the same feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0277Offshore use, e.g. during shipping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/035Propane butane, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0171Arrangement
    • F17C2227/0185Arrangement comprising several pumps or compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0341Heat exchange with the fluid by cooling using another fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0358Heat exchange with the fluid by cooling by expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/031Dealing with losses due to heat transfer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/05Improving chemical properties
    • F17C2260/056Improving fluid characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/033Treating the boil-off by recovery with cooling
    • F17C2265/034Treating the boil-off by recovery with cooling with condensing the gas phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/037Treating the boil-off by recovery with pressurising
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/038Treating the boil-off by recovery with expanding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/64Propane or propylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/66Butane or mixed butanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/34Details about subcooling of liquids

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Ocean & Marine Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

To reduce overall consumed energy when different types of liquefied gases are stored in a first tank and a second tank.SOLUTION: A management system 1 manages the state of a first fluid 4 stored in a first tank 2, and the state of a second fluid 8 whose boiling point is higher than that of the first fluid 4 stored in the second tank 6. The management system 1 includes a first pipe 12 through which the first fluid 4 taken from the first tank 2 in a gaseous state flows, includes a second pipe 16 through which the first fluid 4 in a liquid state and/or in a two-phase state flows, includes a cooling pipe 18 extending from the second pipe 16 to the first pipe 12, through which the first fluid 4 is intended to flow, and includes a management pipe 20 through which the second fluid 8 flows. The management system 1 includes at least one cooling unit 24 for cooling the second fluid 8 flowing through the management pipe 20. The cool air formed by the cooling unit 24 is generated by evaporation of the first fluid 4 flowing through the cooling pipe 18.SELECTED DRAWING: Figure 1

Description

本発明は、液化天然ガス、および/または液化石油ガスを使用、貯蔵、および/または輸送する船舶の分野に関連し、より詳細には、そのような船舶で輸送される液化天然ガス、および/または液化石油ガスの状態を管理するためのシステムの分野に属する。 The present invention relates to the field of ships that use, store and/or transport liquefied natural gas and/or liquefied petroleum gas, and more particularly liquefied natural gas and/or transported on such ships. Or belongs to the field of systems for controlling the condition of liquefied petroleum gas.

そのような船舶は、慣例的に液体状態の天然ガス、および/または液体状態の石油ガスを収容するタンクを含む。そのような船舶は、例えば、液状の天然ガスを貯蔵するための第1タンクと、液状の石油ガスを貯蔵するための第2タンクを含むことがある。一方で、そのような船舶は、第1タンクに収容される第1石油ガスと、第2タンクに収容される第2石油ガスを輸送することがあり、第1石油ガスは例えばその組成が第2石油ガスとは異なる。つまり、そのような船舶は、液化天然ガスまたは液化石油ガスでありうる第1流体と、第1流体とは異なり、かつ液化天然ガスまたは液化石油ガスでありうる第2流体を輸送することがある。 Such vessels customarily include tanks containing natural gas in liquid form and/or petroleum gas in liquid form. Such vessels may, for example, include a first tank for storing natural gas in liquid form and a second tank for storing petroleum gas in liquid form. On the one hand, such a vessel may transport a first petroleum gas contained in a first tank and a second petroleum gas contained in a second tank, the first petroleum gas being e.g. 2 Different from petroleum gas. That is, such vessels may transport a first fluid, which may be liquefied natural gas or liquefied petroleum gas, and a second fluid, different from the first fluid, which may be liquefied natural gas or liquefied petroleum gas. .

天然ガスは、例えば大気圧で-160℃より下の温度では液体である。こうしたタンクは決して完全には熱的に絶縁されておらず、これは、天然ガスの少なくとも一部はタンク内で蒸発することを意味する。それゆえ、こうしたタンクは液状の天然ガスとガス状の天然ガスの両方を収容しており、ガス状の天然ガスは「BOG」または「ボイルオフガス」とも呼ばれて、タンクの最上部に蓄積する。このタンクの最上部における圧力は、タンクを損傷させないように制御する必要がある。 Natural gas is liquid at temperatures below −160° C. at atmospheric pressure, for example. Such tanks are never completely thermally insulated, which means that at least part of the natural gas evaporates within the tank. Such tanks therefore contain both liquid and gaseous natural gas, the gaseous natural gas, also called "BOG" or "boil-off gas", accumulating at the top of the tank. . The pressure at the top of this tank must be controlled so as not to damage the tank.

石油ガスは、大気圧ではその組成に応じて概して0℃~50℃の沸点を有する。また、石油ガスは、タンクに貯蔵された場合に少なくとも部分的に蒸発する傾向があり、蒸発した石油ガスにより生じたタンクの最上部における圧力も、タンクを損傷させないように制御されなければならない。 Petroleum gas generally has a boiling point between 0° C. and 50° C. at atmospheric pressure, depending on its composition. Also, petroleum gas tends to at least partially evaporate when stored in a tank, and the pressure at the top of the tank caused by the evaporated petroleum gas must also be controlled so as not to damage the tank.

一般的に、そのような船舶は、このような流体のそれぞれがタンクの最上部で蒸発するのを制限するために、第1流体および第2流体の状態を管理するための複数のシステムを備える。それゆえ、例えば、こうした管理システムは、一方では第1流体を液化するよう構成され、他方では第1流体の再液化とは関係なしに第2流体を液化するよう構成される。 Typically, such vessels are equipped with multiple systems for managing the condition of the first and second fluids in order to limit the evaporation of each such fluid at the top of the tank. . Thus, for example, such a management system is arranged to liquefy a first fluid on the one hand and a second fluid independently of the re-liquefaction of the first fluid on the other hand.

しかし、管理システムのそれぞれは概して、蒸発した第1流体、および/または蒸発した第2流体を圧縮する複数の圧縮要素を含み、これら複数の圧縮要素は前記ガスの圧力を上昇させることができる。こうした圧縮要素は概して大きく、管理システムは船舶上でかなりの量の表面積、および/または体積を占める。 However, each of the management systems generally includes multiple compression elements for compressing the vaporized first fluid and/or the vaporized second fluid, which multiple compression elements can increase the pressure of said gas. These compression elements are generally large and the management system takes up a significant amount of surface area and/or volume on the vessel.

さらに、冗長性の理由で、追加の熱調節回路を追加するのが通例であり、この熱調節回路が船舶上で管理システムが占める表面積、および/または体積をさらに増やす。この追加の熱調節回路を追加することで、さらに、管理システムの残りの部分を設置および使用するのにすでに必要なコストに加えて、更なるコストが必要となる。 Furthermore, for redundancy reasons, it is customary to add additional thermal conditioning circuits, which further increase the surface area and/or volume occupied by the management system on board the vessel. Adding this additional thermal conditioning circuit also introduces additional costs on top of those already required to install and use the rest of the management system.

本発明は、このような管理システムが占める体積とこのような管理システムにより消費されるエネルギーを少なくするために、こうした圧縮要素が占める空間を減らすことを目標としており、この目的に向けて、本発明は、蒸発した第1流体の状態を管理するためのシステムを提案し、これにより液体状態の第2流体を冷却することも可能となり、その結果、第2流体の状態を管理するのに用いられる技術的資源、およびそのような状態管理システムを設置することの財務的影響を低減させることができる。 The present invention aims at reducing the space occupied by such compression elements in order to reduce the volume occupied by such management systems and the energy consumed by such management systems. The invention proposes a system for managing the state of the vaporized first fluid, which also allows cooling of the second fluid in liquid state, so that it can be used to manage the state of the second fluid. The technical resources required and the financial impact of installing such a condition management system can be reduced.

本発明は、主に第1タンクに収容される第1流体の状態と第2タンクに収容される第2流体の状態を管理するための管理システムに関連し、第1流体は同じ圧力で第2流体の沸点より低い沸点を有し、管理システムは気体状態で第1タンクから取り込まれた第1流体が流れるように意図された第1配管であって第1タンクへ開口するよう構成されているガス注入口から第1流体を凝縮するよう構成されている熱交換要素まで延びる第1配管を少なくとも含み、第1配管は第1圧縮要素と第2圧縮要素とを少なくとも含み、管理システムは液体状態、および/または二相状態の第1流体が流れるように意図された第2配管であって熱交換要素から第1タンクへ開口するよう構成されている第2ポートまで延びる第2配管を含み、管理システムは第2配管から第1配管まで延びる、第1流体が流れるように意図された少なくとも1つの冷却管であって第1圧縮要素と第2圧縮要素の間で第1配管に接続される冷却管を含み、管理システムは第2流体が流れるように意図された、第2流体の状態を管理するための少なくとも1つの管理配管を含み、管理システムは管理配管を流れる第2流体を冷却する少なくとも1つの冷却ユニットを含み、冷却ユニットにより生成される冷気は冷却管を流れる第1流体の蒸発(ボイルオフ)により生じることを特徴とする。 The present invention mainly relates to a management system for managing the state of a first fluid contained in a first tank and the state of a second fluid contained in a second tank, the first fluid being the same pressure as the second fluid. having a boiling point lower than that of the two fluids, the management system comprising a first conduit intended for the flow of a first fluid taken from the first tank in a gaseous state and configured to open into the first tank; a first pipe extending from a gas inlet to a heat exchange element configured to condense a first fluid, the first pipe including at least a first compression element and a second compression element; and/or second piping intended for flow of a first fluid in a two-phase state, the second piping extending from the heat exchange element to a second port configured to open into the first tank. , the management system includes at least one cooling pipe extending from the second pipe to the first pipe and intended for the flow of the first fluid and connected to the first pipe between the first compression element and the second compression element; and the management system includes at least one management conduit through which the second fluid is intended to flow for managing the condition of the second fluid, the management system cooling the second fluid flowing through the management conduit. at least one cooling unit for cooling, wherein the cold air generated by the cooling unit is caused by evaporation (boil-off) of the first fluid flowing through the cooling pipes.

任意選択の一構成によれば、管理システムは第1流体および第2流体を含み、具体的には、これらの流体は管理システムを通って流れる。 According to one optional configuration, the management system includes a first fluid and a second fluid, specifically these fluids flow through the management system.

管理システムは、それぞれ第1タンクおよび第2タンクに収容される第1流体と第2流体の状態、つまり、第1流体または第2流体の少なくとも圧力、および/または温度を制御する。管理配管を流れる第2流体は冷却ユニットにより冷却され、冷却ユニットの下流の管理配管を流れる第2流体の温度は冷却ユニットの下流の冷却管を流れる第1流体の温度よりも低い。これには、第2タンクに収容される第2流体の温度を下げる効果があり、その結果、第2タンク内に存在する第2流体の蒸発が制限される。さらに、第2タンクを流れる蒸発した第2流体も冷却されて、冷却ユニットの下流の管理配管を流れる冷却された第2流体に接触することで、および/またはタンク内に噴霧された第2流体に接触することで、凝縮しうる。 A management system controls the condition of the first and second fluids contained in the first and second tanks respectively, ie at least the pressure and/or the temperature of the first or second fluids. The second fluid flowing through the management pipe is cooled by the cooling unit, and the temperature of the second fluid flowing through the management pipe downstream of the cooling unit is lower than the temperature of the first fluid flowing through the cooling pipe downstream of the cooling unit. This has the effect of reducing the temperature of the second fluid contained in the second tank, thereby limiting the evaporation of the second fluid present in the second tank. Furthermore, the vaporized second fluid flowing through the second tank is also cooled and contacted with the cooled second fluid flowing through the control piping downstream of the cooling unit and/or the second fluid sprayed into the tank. can condense on contact with

管理配管を流れる第2流体の温度を下げるために用いられる冷気は、冷却管を流れる第1流体の一部の蒸発によりもたらされる。より詳細には、この第1流体の一部は膨張させられる、つまり、この第1流体の一部の圧力は下げられて、その結果、この第1流体により第2流体の温度が下げられる。 The cold air used to lower the temperature of the second fluid flowing through the management pipes comes from the evaporation of a portion of the first fluid flowing through the cooling pipes. More specifically, a portion of this first fluid is expanded, ie the pressure of a portion of this first fluid is reduced, so that the first fluid lowers the temperature of the second fluid.

第1流体および第2流体は例えば石油ガスであり、第1流体は例えば92%のプロパンと8%のブタンから成り、大気圧で-47℃の沸点を有する混合物であり、第2流体は例えば100%のブタンから成り、大気圧で0℃の沸点を有する。 The first and second fluids are, for example, petroleum gas, the first fluid is, for example, a mixture of 92% propane and 8% butane, having a boiling point of −47° C. at atmospheric pressure, and the second fluid is, for example, It consists of 100% butane and has a boiling point of 0°C at atmospheric pressure.

本発明の別の実施形態によれば、第1流体は例えばメタンなどの天然ガスで約-160℃の沸点を有する、つまり、第1流体は、大気圧で-160℃より下の温度である場合には液状である。 According to another embodiment of the invention, the first fluid is a natural gas such as methane and has a boiling point of about −160° C., ie the first fluid is at atmospheric pressure and at a temperature below −160° C. In some cases it is liquid.

本発明の別の実施形態によれば、第1流体は例えば100%のエタンから成り、-89℃の蒸発温度を有し、第2流体は92%のプロパンと8%のブタンの混合物を含む液化石油ガスから成り、-47℃の蒸発温度を有する。 According to another embodiment of the invention, the first fluid consists for example of 100% ethane and has an evaporation temperature of −89° C. and the second fluid comprises a mixture of 92% propane and 8% butane. It consists of liquefied petroleum gas and has an evaporation temperature of -47°C.

本発明の別の実施形態によれば、第1流体は例えば100%のエタンから成り、-89℃の蒸発温度を有し、第2流体は-33℃の蒸発温度を有する100%のアンモニアから成る。 According to another embodiment of the invention, the first fluid consists for example of 100% ethane and has an evaporation temperature of -89°C and the second fluid consists of 100% ammonia with an evaporation temperature of -33°C. Become.

本発明の別の実施形態によれば、第1流体は例えば100%のプロパンから成り、-42℃の蒸発温度を有し、第2流体8は-33℃の蒸発温度を有する100%のアンモニアから成る。 According to another embodiment of the invention, the first fluid consists for example of 100% propane and has an evaporation temperature of -42°C and the second fluid 8 is 100% ammonia with an evaporation temperature of -33°C. consists of

上記の温度は大気圧で測定される。 The above temperatures are measured at atmospheric pressure.

さらに、第1配管内での第1流体の凝結は、第1流体と熱交換要素内の冷却液の間の熱エネルギーの交換により起こる。 Furthermore, the condensation of the first fluid within the first pipe occurs due to the exchange of thermal energy between the first fluid and the coolant within the heat exchange element.

本発明の任意選択の特徴によれば、冷却ユニットは、熱交換器と、第2配管と熱交換器の間の冷却管に取り付けられた膨張要素とを少なくとも含み、熱交換器は冷却管を流れる第1流体と管理配管を流れる第2流体の間で熱を交換するよう構成される。 According to an optional feature of the invention, the cooling unit includes at least a heat exchanger and an expansion element attached to a cooling pipe between the second pipe and the heat exchanger, the heat exchanger connecting the cooling pipe to the cooling pipe. It is configured to exchange heat between the flowing first fluid and the second fluid flowing through the management piping.

より詳細には、冷却管を流れる第1流体は、熱交換器内を流れる前に膨張要素により膨張させられる。管理配管を流れる第2流体は、熱交換器を通過する際に、冷却管を流れてやはり熱交換器を通過する膨張した第1流体へ熱エネルギーを渡す。 More specifically, the first fluid flowing through the cooling tubes is expanded by an expansion element before flowing through the heat exchanger. As the second fluid flowing through the management pipe passes through the heat exchanger, it transfers thermal energy to the expanded first fluid flowing through the cooling tubes and also passing through the heat exchanger.

換言すれば、冷却管を流れて熱交換器を通過する第1流体は、管理配管を流れる第2流体から熱エネルギーを獲得することにより、熱交換器内で温められて蒸発する。そして、温められ蒸発した第1流体は、第1配管に取り付けられた複数の圧縮要素のうちの一つにより吸入される。 In other words, the first fluid flowing through the cooling pipes and passing through the heat exchanger is warmed and vaporized within the heat exchanger by gaining thermal energy from the second fluid flowing through the management pipes. The warmed and vaporized first fluid is then sucked by one of the plurality of compression elements attached to the first pipe.

さらに、管理配管を流れる第2流体の温度が低下するのは熱交換器の内部であり、具体的には管理配管を流れる第2流体から冷却管を流れる第1流体への熱エネルギーの伝送により、冷却管を流れる第1流体の温度に近づく。管理配管を流れる第2流体の温度は、熱交換器内で行われる熱エネルギーの交換の間に低下することに留意されたい。 Furthermore, it is inside the heat exchanger that the temperature of the second fluid flowing through the management pipe decreases. Specifically, heat energy is transferred from the second fluid flowing through the management pipe to the first fluid flowing through the cooling pipe. , approaches the temperature of the first fluid flowing through the cooling pipe. It should be noted that the temperature of the second fluid flowing through the management pipe will drop during the exchange of thermal energy taking place in the heat exchanger.

本発明の任意選択の特徴によれば、熱交換器は、冷却管を構成する第1通路と、管理配管を構成する第2通路とを少なくとも含み、膨張要素が第2配管と第1通路の間に配置される。 According to an optional feature of the invention, the heat exchanger includes at least a first passageway forming a cooling pipe and a second passageway forming a management pipe, wherein an expansion element is located between the second pipe and the first passageway. placed in between.

この構成では、冷却管を流れる第1流体の圧力は、第1流体が熱交換器の第1通路を流れる前に膨張要素により下げられることに留意されたい。 Note that in this configuration, the pressure of the first fluid flowing through the cooling pipe is lowered by the expansion element before the first fluid flows through the first passageway of the heat exchanger.

本発明の任意選択の特徴によれば、管理システムは、冷却ユニットの上流の管理配管上に配置される少なくとも1つのポンプ要素を含む。ポンプ要素は、第2流体に管理配管を通って循環させるよう構成される。 According to an optional feature of the invention, the management system includes at least one pump element arranged on the management piping upstream of the cooling unit. A pumping element is configured to circulate the second fluid through the control line.

本発明の任意選択の特徴によれば、管理システムは第2配管と第1配管の間に延びる少なくとも1つのパイプを含み、このパイプは第1圧縮要素と第2圧縮要素の間で第1配管に接続され、管理システムは第2配管を流れる第1流体を冷却する少なくとも1つの冷却装置を含み、冷却装置により生成される冷気はパイプを流れる第1流体の蒸発により生じる。 According to an optional feature of the invention, the management system includes at least one pipe extending between the second pipe and the first pipe, the pipe extending from the first pipe between the first compression element and the second compression element. and the management system includes at least one cooling device for cooling the first fluid flowing through the second pipe, the cold generated by the cooling device resulting from evaporation of the first fluid flowing through the pipe.

第2配管を流れる第1流体の温度を下げるために用いられる冷気は、パイプを流れる第1流体の一部の蒸発によりもたらされる。より詳細には、この第1流体の一部は膨張させられる、つまり、この第1流体の一部の圧力は下げられて、その結果、この第1流体により第2配管を流れる第1流体の温度が下げられる。 The cold air used to reduce the temperature of the first fluid flowing through the second pipe comes from evaporation of a portion of the first fluid flowing through the pipe. More specifically, a portion of this first fluid is expanded, i.e. a portion of this first fluid is depressurized so that the first fluid flows through the second pipe with this first fluid. temperature is lowered.

本発明の任意選択の特徴によれば、冷却装置は熱交換器および膨張装置を少なくとも含み、熱交換器は第2配管を構成する第1通路とパイプを構成する第2通路とを含み、膨張装置は第2配管と第2通路の間のパイプ上に配置され、熱交換器は第2配管を流れる第1流体とパイプを流れる第1流体の間で熱を交換するよう構成される。 According to an optional feature of the invention, the cooling device comprises at least a heat exchanger and an expansion device, the heat exchanger comprising a first passage forming a second pipe and a second passage forming a pipe, wherein the expansion The device is disposed on the pipe between the second pipe and the second passageway, and the heat exchanger is configured to exchange heat between the first fluid flowing through the second pipe and the first fluid flowing through the pipe.

より詳細には、パイプを流れる第1流体は、熱交換器内を流れる前に膨張装置により膨張させられる。第2配管を流れる第1流体は、熱交換器を通過する際に、パイプを流れる膨張した第1流体が熱交換器を通過する際にこの第1流体へ熱エネルギーを渡す。 More specifically, the first fluid flowing through the pipe is expanded by an expansion device before flowing through the heat exchanger. As the first fluid flowing through the second pipe passes through the heat exchanger, it transfers thermal energy to the expanded first fluid flowing through the pipe as it passes through the heat exchanger.

換言すれば、パイプを流れて熱交換器を通過する第1流体は、第2配管を流れる第1流体から熱エネルギーを獲得することにより、熱交換器内で温められて蒸発する。そして、温められ蒸発した第1流体は、第1配管に取り付けられた複数の圧縮要素のうちの一つにより吸入される。 In other words, the first fluid flowing through the pipe and passing through the heat exchanger is warmed and vaporized within the heat exchanger by gaining thermal energy from the first fluid flowing through the second pipe. The warmed and vaporized first fluid is then sucked by one of the plurality of compression elements attached to the first pipe.

さらに、第2配管を流れる第1流体の温度が低下するのは熱交換器の内部であり、具体的には第2配管を流れる第1流体からパイプを流れる第1流体への熱エネルギーの伝送により、パイプを流れる第1流体の温度に近づく。 Furthermore, it is inside the heat exchanger that the temperature of the first fluid flowing through the second pipe is lowered. Specifically, thermal energy is transferred from the first fluid flowing through the second pipe to the first fluid flowing through the pipe. approaches the temperature of the first fluid flowing through the pipe.

本発明の任意選択の特徴によれば、管理システムは第1流体と冷却液の間の熱交換のための第1熱交換要素と、第1流体と冷却液の間の熱交換のための第2熱交換要素を少なくとも含み、第1熱交換要素は第1圧縮要素と第2圧縮要素の間に取り付けられ、パイプは第1熱交換要素と第2圧縮要素の間で第1配管に接続される。パイプを流れる気体状態の第1流体は、第1熱交換要素と第2圧縮要素の間にある位置で第1配管を流れる気体状態の第1流体と混合される。 According to an optional feature of the invention, the management system comprises a first heat exchange element for heat exchange between the first fluid and the coolant and a first heat exchange element for heat exchange between the first fluid and the coolant. at least two heat exchange elements, the first heat exchange element mounted between the first compression element and the second compression element, and a pipe connected to the first pipe between the first heat exchange element and the second compression element. be. The first fluid in gaseous state flowing through the pipe is mixed with the first fluid in gaseous state flowing through the first pipe at a location between the first heat exchange element and the second compression element.

本発明の任意選択の特徴によれば、冷却管は第1配管と冷却装置の間でパイプに接続される。冷却管を流れる気体状態の第1流体は、冷却装置を通過した後にパイプを流れる気体状態の第1流体と混合されることに留意されたい。 According to an optional feature of the invention, a cooling pipe is connected to the pipe between the first pipe and the cooling device. Note that the gaseous first fluid flowing through the cooling pipe mixes with the gaseous first fluid flowing through the pipe after passing through the cooling device.

本発明の任意選択の特徴によれば、管理システムは、第1タンク内に配置される第2ポートと冷却装置の間に取り付けられた、冷却管と第2配管の分岐を含む。 According to an optional feature of the invention, the management system includes a branch of a cooling pipe and a second pipe mounted between a second port located in the first tank and the cooling device.

本発明の任意選択の特徴によれば、管理システムは第2配管を流れる第1流体を冷却するための第1冷却装置と、第2配管を流れる第1流体を冷却するための第2冷却装置とを含み、管理システムは第2冷却装置の下流に取り付けられた、第2配管と冷却管の分岐を含む。 According to an optional feature of the invention, the management system comprises a first cooling device for cooling the first fluid flowing through the second pipe and a second cooling device for cooling the first fluid flowing through the second pipe. and the management system includes a branch of the second pipe and the cooling pipe mounted downstream of the second cooling device.

本発明の任意選択の特徴によれば、管理システムは、第2圧縮要素と冷却装置の間に取り付けられた、冷却管と第2配管の分岐を含む。 According to an optional feature of the invention, the management system includes a branch of the cooling pipe and the second pipe mounted between the second compression element and the cooling device.

本発明の任意選択の特徴によれば、管理システムは第2配管を流れる第1流体を冷却するための第1冷却装置と第2配管を流れる第1流体を冷却するための第2冷却装置とを含み、管理システムは第1冷却装置の上流に取り付けられた、冷却管と第2配管の分岐を含む。 According to an optional feature of the invention, the management system comprises a first cooling device for cooling the first fluid flowing through the second pipe and a second cooling device for cooling the first fluid flowing through the second pipe. and the management system includes a branch of the cooling pipe and the second pipe mounted upstream of the first cooling device.

本発明の任意選択の特徴によれば、管理システムはパイプと第2配管の交差部と第2圧縮要素との間で第2配管に取り付けられた第1流体用の少なくとも1つの相分離装置を含み、管理システムはこの相分離装置と第2配管の間に延びるガス管を含み、このガス管はパイプと第2配管の交差部と冷却装置との間で第2配管に接続され、液体状態の第1流体は相分離装置から第2配管を通ってパイプと第2配管の交差部へ流れることができて、気体状態の第1流体は相分離装置からガス管を通って第2配管へ流れることができる。 According to an optional feature of the invention, the management system includes at least one phase separator for the first fluid attached to the second pipe between the intersection of the pipe and the second pipe and the second compression element. and the management system includes a gas pipe extending between the phase separator and the second pipe, the gas pipe being connected to the second pipe between the intersection of the pipe and the second pipe and the cooling device, wherein the liquid state is the first fluid can flow from the phase separator through the second pipe to the intersection of the pipe and the second pipe, and the first fluid in gaseous state can flow from the phase separator through the gas pipe to the second pipe; can flow.

本発明の任意選択の特徴によれば、管理システムは冷却装置の下流の第2配管に取り付けられた第1流体用の相分離装置を含み、管理システムはこの相分離装置と第1配管の間に延びて気体状態の第1流体が通って流れる返送管を含む。 According to an optional feature of the invention, the management system includes a phase separator for the first fluid mounted in the second pipe downstream of the cooling device, the management system between the phase separator and the first pipe. and a return line through which the first fluid in gaseous state flows.

本発明の任意選択の特徴によれば、管理システムは第1配管と第2配管の間に延びる第1パイプと第1配管と第2配管の間に延びる第2パイプとを含み、管理システムは第1配管に取り付けられた第3圧縮要素を含み、第2圧縮要素は第1圧縮要素と第3圧縮要素の間に取り付けられ、第1パイプは第2圧縮要素と第3圧縮要素の間で第1配管へ開口し、第2パイプは第1圧縮要素と第2圧縮要素の間で第1配管へ開口し、管理システムは第2配管を流れる第1流体を冷却するための第1冷却装置と第2配管を流れる第1流体を冷却するための第2冷却装置とを含み、第1冷却装置により生成される冷気は第1パイプを流れる第1流体の蒸発により生じ、第2冷却装置により生成される冷気は第2パイプを流れる第1流体の蒸発により生じ、第1冷却装置は第2冷却装置の上流の第2配管に取り付けられる。この場合、第2配管を第1タンクまで流れる第1流体は、1回目は第1冷却装置内で、2回目は第2冷却装置内で冷却されることに留意されたい。 According to an optional feature of the invention, the management system includes a first pipe extending between the first pipe and the second pipe and a second pipe extending between the first pipe and the second pipe, the management system comprising: a third compression element attached to the first pipe, the second compression element attached between the first compression element and the third compression element, and the first pipe between the second compression element and the third compression element. A first cooling device opening into the first pipe, the second pipe opening into the first pipe between the first compression element and the second compression element, and the management system for cooling the first fluid flowing through the second pipe. and a second cooling device for cooling the first fluid flowing through the second pipe, wherein the cold generated by the first cooling device is generated by evaporation of the first fluid flowing through the first pipe, and the second cooling device The cold air produced is caused by evaporation of the first fluid flowing through the second pipe, and the first cooling device is attached to the second pipe upstream of the second cooling device. In this case, it should be noted that the first fluid flowing through the second pipe to the first tank is cooled first in the first cooling device and second time in the second cooling device.

本発明の任意選択の特徴によれば、冷却管は第1冷却装置と第2冷却装置の間で第2配管に接続される。 According to an optional feature of the invention, the cooling pipe is connected to the second pipe between the first cooling device and the second cooling device.

本発明の任意選択の特徴によれば、冷却管は第2冷却装置の下流の第2パイプに接続される。 According to an optional feature of the invention, the cooling pipe is connected to a second pipe downstream of the second cooling device.

代替案によれば、冷却管は第1冷却装置の上流の第2パイプに接続される。 According to an alternative, the cooling pipe is connected to the second pipe upstream of the first cooling device.

本発明の更なる特徴、詳細、および利点は、一方では以下の説明を読むことで、他方では添付の図面を参照しながら非限定的な実例として提供されるいくつかの実施形態を読むことでより明確となるであろう。図面において、 Further features, details and advantages of the invention will be obtained on the one hand from reading the following description and on the other hand from some embodiments given as non-limiting examples with reference to the accompanying drawings. will be clearer. In the drawing:

本発明に係る管理システムの第1実施形態を模式的に表す。1 schematically represents a first embodiment of a management system according to the invention; 本発明に係る管理システムの第2実施形態を模式的に表す。Figure 2 schematically represents a second embodiment of a management system according to the invention; 本発明に係る管理システムの第3実施形態を模式的に表す。Figure 3 schematically represents a third embodiment of a management system according to the invention; 本発明に係る管理システムの第4実施形態を模式的に表す。Figure 4 schematically represents a fourth embodiment of a management system according to the invention; 本発明に係る管理システムの第5実施形態を模式的に表す。5 schematically represents a fifth embodiment of a management system according to the invention;

本発明の特徴、変形、および異なる実施形態は、矛盾する、または相互排他的でない限り、様々な組み合わせで互いに関連しうる。具体的には、記載された他の特徴とは別に、以下に記載される複数の特徴から選択した一つのみを含む本発明の変形を、この選択された特徴が技術的利点を提供する、および/または本発明を先行技術と差別化するのに充分であれば、想定することもできる。 Features, variations and different embodiments of the invention may be associated with each other in various combinations unless contradictory or mutually exclusive. Specifically, a variation of the invention that includes, apart from other features described, only a selected one of the plurality of features described below, wherein the selected feature provides a technical advantage, and/or if sufficient to differentiate the present invention from the prior art.

さらに、以下で説明において用いられる「上流」、および「下流」という用語は、以下で詳細に記載される実施形態のいずれかに係る管理システム内での第1流体、および/または第2流体の循環の方向を指す。 Further, the terms "upstream" and "downstream" as used in the description below refer to the first fluid and/or the second fluid within a management system according to any of the embodiments described in detail below. Point in the direction of circulation.

図1は、少なくとも第1流体4および第2流体8の状態を管理するための管理システム1と、第1流体4を収容する第1タンク2と、第2流体8を収容する第2タンク6を示す。第1タンク2、第2タンク6、および/または管理システム1は、例えば第1流体4および第2流体8を輸送する船舶に設置することができる。 FIG. 1 shows a management system 1 for managing the state of at least a first fluid 4 and a second fluid 8, a first tank 2 containing the first fluid 4 and a second tank 6 containing the second fluid 8. indicates The first tank 2 , the second tank 6 and/or the management system 1 can be installed, for example, on a ship that transports the first fluid 4 and the second fluid 8 .

第1流体4は第2流体8の沸点より低い沸点を有し、これら2つの温度は同じ圧力で測定される。第1流体4は例えばメタンなどの天然ガスで約-160℃の沸点を有する、つまり、第1流体4は大気圧で-160℃より下の温度である場合には液状である。第2流体8は例えばプロパン、ブタン、またはプロパンとブタンの混合物などの石油ガスであり、大気圧で0℃~-51℃の沸点を有する。ただし、第1流体4は第1流体4が第2流体8の沸点より低い沸点を有する限りはプロパン、ブタン、またはプロパンとブタンの混合物などの石油ガスとすることもできる。 The first fluid 4 has a boiling point lower than that of the second fluid 8 and these two temperatures are measured at the same pressure. The first fluid 4 is for example natural gas such as methane and has a boiling point of about -160°C, ie the first fluid 4 is liquid at temperatures below -160°C at atmospheric pressure. The second fluid 8 is, for example, petroleum gas such as propane, butane, or a mixture of propane and butane, and has a boiling point between 0°C and -51°C at atmospheric pressure. However, the first fluid 4 can also be a petroleum gas such as propane, butane, or a mixture of propane and butane, so long as the first fluid 4 has a boiling point lower than that of the second fluid 8 .

本明細書で示される例によれば、第1流体4および第2流体8は石油ガスであり、第1流体4は例えば約92%のプロパンと約8%のブタンから成り、大気圧で-47℃の沸点を有する混合物であり、第2流体8は例えば約100%のブタンから成り、大気圧で0℃の沸点を有する。 According to the example shown herein, the first fluid 4 and the second fluid 8 are petroleum gas, the first fluid 4 comprising, for example, about 92% propane and about 8% butane, at atmospheric pressure - A mixture having a boiling point of 47° C., the second fluid 8 consists, for example, of about 100% butane and has a boiling point of 0° C. at atmospheric pressure.

本発明の第1の代替例によれば、第1流体4はエタンであって-89℃の沸点を有し、第2流体8はプロパンとブタンの混合物を含む液化石油ガスであって-47℃の沸点を有する。 According to a first alternative of the invention, the first fluid 4 is ethane and has a boiling point of -89°C and the second fluid 8 is a liquefied petroleum gas comprising a mixture of propane and butane and is -47°C. It has a boiling point of °C.

本発明の第2の代替例によれば、第1流体4はエタンであって-89℃の蒸発温度を有し、第2流体8はアンモニアであって-33℃の沸点を有する。 According to a second alternative of the invention, the first fluid 4 is ethane and has an evaporation temperature of -89°C and the second fluid 8 is ammonia and has a boiling point of -33°C.

本発明の第3の代替例によれば、第1流体4はプロパンであって-42℃の沸点を有し、第2流体8はアンモニアであって-33℃の沸点を有する。 According to a third alternative of the invention, the first fluid 4 is propane and has a boiling point of -42°C and the second fluid 8 is ammonia and has a boiling point of -33°C.

第1タンク2および第2タンク6は、第1流体4および第2流体8を、大気圧でのそれぞれの沸点以下の温度で液状で貯蔵するよう設計されている。この目的に向けて、タンク2および6はそれぞれ、少なくとも、これら流体のどちらか一方と接触する封止膜と、封止膜を取り囲んでこれら流体のどちらか一方をその沸点より下の温度に保つのを助ける断熱バリアから構成される。有利には、タンク2、6のそれぞれは、これら流体のどちらか一方と接触する一次封止膜と一次封止膜を取り囲む一次断熱バリアとから構成されている一次層と、一次層を取り囲み、一次断熱バリアと接触する二次封止膜と二次封止膜を取り囲む二次断熱バリアとから構成されている二次層を有する。 The first tank 2 and the second tank 6 are designed to store the first fluid 4 and the second fluid 8 in liquid form at temperatures below their respective boiling points at atmospheric pressure. To this end, the tanks 2 and 6 each have at least a sealing membrane in contact with one or the other of these fluids and a sealing membrane surrounding the sealing membrane to keep one or the other of the fluids at a temperature below its boiling point. consists of an insulating barrier that helps Advantageously, each of the tanks 2, 6 surrounds a primary layer consisting of a primary sealing membrane in contact with one of these fluids and a primary insulating barrier surrounding the primary sealing membrane, and It has a secondary layer comprised of a secondary sealing membrane in contact with the primary insulating barrier and a secondary insulating barrier surrounding the secondary sealing membrane.

本発明の代替案によれば、第2タンク6は一次層のみを含み、一次断熱バリアは第2タンク6の外部環境と直接接触する。この代替案では第2タンク6は二次層を持たず、断熱は一次層の一次断熱バリアのみによって提供されることに留意されたい。 According to an alternative of the invention, the second tank 6 contains only a primary layer and the primary insulation barrier is in direct contact with the environment outside the second tank 6 . Note that in this alternative the second tank 6 has no secondary layer and insulation is provided only by the primary insulation barrier of the primary layer.

第1流体4は、大気圧下では主に液状で第1タンク2に貯蔵される。ただし、第1流体4の一部は蒸発して第1タンク2の最上部10において覆いを形成し、したがって、最上部10において第1流体4はガス状で存在する。 The first fluid 4 is mainly liquid under atmospheric pressure and stored in the first tank 2 . However, part of the first fluid 4 evaporates and forms a cover at the top 10 of the first tank 2, where the first fluid 4 is therefore present in gaseous form.

同様に、第2流体8は大気圧下では主に液状で第2タンク6に貯蔵される。ただし、第2流体8の一部は蒸発して第2タンク6の最上部11において覆いを形成し、したがって、最上部11において第2流体8はガス状で存在する。 Similarly, the second fluid 8 is mainly liquid under atmospheric pressure and stored in the second tank 6 . However, part of the second fluid 8 evaporates and forms a cover at the top 11 of the second tank 6, where the second fluid 8 is therefore present in gaseous form.

管理システム1は、一方では第1タンク2の最上部10に存在するガス状の第1流体4の少なくとも一部を再液化するよう構成され、他方では第1流体4を燃料として用いる消費機械に第1流体4を供給するよう構成される。この目的に向けて、管理システム1は、一方では第1流体4が第1タンク2から複数の圧縮要素14へ流れる際に通る第1配管12と、第1流体4が液体状態、および/または二相状態でその中を第1配管12から第1タンク2まで流れる第2配管16とを少なくとも含み、他方では第2配管16と消費機械の間に延びるパイプライン45を含む。さらに、管理システム1は、第1流体4が第2配管16から第1配管12へ流れる際に通る冷却管18を含む。 The management system 1 is arranged to re-liquefy at least part of the gaseous first fluid 4 present in the uppermost part 10 of the first tank 2 on the one hand and to a consuming machine using the first fluid 4 as fuel on the other hand. It is arranged to supply a first fluid 4 . Towards this end, the management system 1 includes on the one hand a first pipework 12 through which the first fluid 4 flows from the first tank 2 to the plurality of compression elements 14 and the first fluid 4 in a liquid state and/or a second pipe 16 flowing therein in two-phase condition from the first pipe 12 to the first tank 2, and on the other hand a pipeline 45 extending between the second pipe 16 and the consuming machine. Furthermore, the management system 1 includes a cooling pipe 18 through which the first fluid 4 flows from the second pipe 16 to the first pipe 12 .

管理システム1は第2流体の状態を管理するための少なくとも1つの管理配管20をさらに含み、この管理配管20を通って、第2流体8の少なくとも一部は第2タンク6から第2タンク6の第2流体8用の液体排出口22へ流れる。具体的には、液体排出口22は、具体的には第2タンク6の最上部11に存在する第2流体8を冷却するために、冷却された第2流体8を第2タンク6に噴霧することを可能とする。第2タンク6の最上部11に存在する第2流体8の温度を下げることで、第2タンク6の前記最上部11に存在する蒸発した第2流体8により加えられる圧力を下げることができる。本明細書で図1に示される実施形態によれば、液体排出口22は、最上部11に噴霧された第2流体8の分配を促進するスプレー棒の形を取っている。 The management system 1 further comprises at least one management line 20 for managing the condition of the second fluid, through which at least a portion of the second fluid 8 flows from the second tank 6 to the second tank 6 . flow to the liquid outlet 22 for the second fluid 8 of . Specifically, the liquid outlet 22 sprays the cooled second fluid 8 into the second tank 6 , specifically to cool the second fluid 8 present at the top 11 of the second tank 6 . make it possible to By reducing the temperature of the second fluid 8 present at the top 11 of the second tank 6 , the pressure exerted by the vaporized second fluid 8 present at said top 11 of the second tank 6 can be reduced. According to the embodiment shown herein in FIG. 1, liquid outlet 22 is in the form of a spray bar that facilitates distribution of second fluid 8 sprayed onto top 11 .

本発明によれば、管理システム1は管理配管20を流れる液体状態の第2流体8を冷却する冷却ユニット24を含み、冷却ユニット24により生成される冷気は冷却管18を流れる第1流体4の蒸発の結果である。ここで、第1流体4が冷却管18および冷却ユニット24を通って流れて管理配管20を流れる第2流体8を冷却する場合、第1流体4は充分に低い温度であることに留意されたい。この場合、第2流体8は熱エネルギーを第1流体4へ渡す。 According to the invention, the management system 1 comprises a cooling unit 24 for cooling the liquid state second fluid 8 flowing in the management pipe 20 , the cold air generated by the cooling unit 24 cooling the first fluid 4 flowing in the cooling pipe 18 . It is the result of evaporation. Note that the first fluid 4 is at a sufficiently low temperature if the first fluid 4 flows through the cooling pipe 18 and the cooling unit 24 to cool the second fluid 8 flowing through the management pipe 20. . In this case the second fluid 8 transfers thermal energy to the first fluid 4 .

第1配管12は第1タンク2の内部から延びて、より詳細には、第1タンク2の最上部10にある、気相の第1流体4が存在する第1タンク2の最上部10へ開口するガス注入口26を含む。したがって、第1タンク2の最上部10に存在する気体状態の第1流体4は、第1配管12のガス注入口26と直接接触し、その結果、気体状態の第1流体4を複数の圧縮要素14により吸入することができる。 The first pipe 12 extends from the interior of the first tank 2, more specifically to the top 10 of the first tank 2, where the first fluid 4 in gaseous phase is present. It includes an open gas inlet 26 . Thus, the gaseous first fluid 4 present at the top 10 of the first tank 2 is in direct contact with the gas inlet 26 of the first pipe 12, resulting in a plurality of compressions of the gaseous first fluid 4. It can be inhaled by element 14 .

気体状態の第1流体4は、複数の圧縮要素14により生じた吸引の影響下で第1タンク2の最上部10から第1配管12を通って複数の圧縮要素14へと移動する。より詳細には、複数の圧縮要素14は、気体状態の第1流体4が消費機械へ送られる前に気体状態の第1流体4の圧力を上昇させるよう構成される。 The first fluid 4 in gaseous state moves from the top 10 of the first tank 2 through the first pipe 12 to the plurality of compression elements 14 under the influence of suction created by the plurality of compression elements 14 . More particularly, the plurality of compression elements 14 are configured to increase the pressure of the first gaseous fluid 4 before the first gaseous fluid 4 is delivered to the consuming machine.

図1に示されるように、複数の圧縮要素14は第1圧縮要素14a、第2圧縮要素14b、および第3圧縮要素14cを含み、第1配管12上に、前記第1配管内での第1流体4の循環の方向にこの順番で配置されている。複数の圧縮要素14は、ガス注入口26と第1圧縮要素14aの間に延びる第1配管12の第1部分28と、第1圧縮要素14aと第2圧縮要素14bの間に延びる第1配管12の第2部分30と、第2圧縮要素14bと第3圧縮要素14cの間に延びる第1配管12の第3部分32と、第3圧縮要素14cと第2配管16の間に延びる第1配管12の第4部分34を規定するのに役立つ。 As shown in FIG. 1, the plurality of compression elements 14 includes a first compression element 14a, a second compression element 14b, and a third compression element 14c, on the first pipe 12 and within said first pipe. They are arranged in this order in the direction of circulation of one fluid 4 . The plurality of compression elements 14 includes a first portion 28 of the first pipe 12 extending between the gas inlet 26 and the first compression element 14a and a first pipe extending between the first compression element 14a and the second compression element 14b. 12, a third portion 32 of the first pipe 12 extending between the second compression element 14b and the third compression element 14c, and a first pipe 16 extending between the third compression element 14c and the second pipe 16. It helps define the fourth portion 34 of the tubing 12 .

気体状態の第1流体4の圧力は、複数の圧縮要素14を通って第1配管12を流れるにつれて上昇し、第1流体4は第1部分28では大気圧であり、第4部分34では約24バールの圧力に達する。 The pressure of the gaseous first fluid 4 increases as it flows through the plurality of compression elements 14 and through the first pipe 12, the first fluid 4 being at atmospheric pressure in the first portion 28 and about A pressure of 24 bar is reached.

図1に示されるように、冷却液循環システム36は、循環システム36を流れる冷却液と第1配管12を流れる気体状態の第1流体4の間の熱交換のために少なくとも1つの熱交換要素38を含む。この熱交換要素38は第1配管12を第2配管16から分離する。より詳細には、熱交換要素38は第1配管12の第4部分34の下流に配置される。 As shown in FIG. 1 , the coolant circulation system 36 includes at least one heat exchange element for heat exchange between the coolant flowing through the circulation system 36 and the gaseous first fluid 4 flowing through the first pipe 12 . 38. This heat exchange element 38 separates the first pipe 12 from the second pipe 16 . More specifically, the heat exchange element 38 is arranged downstream of the fourth section 34 of the first pipe 12 .

熱交換要素38は、冷却液と第1流体4の間で熱エネルギーを交換する。冷却液は熱伝導流体、および/またはグリコールを含む水とすることができて、循環システム36は、例えば船舶に設置することができて、船舶が航行している水域に直接接続される。 A heat exchange element 38 exchanges thermal energy between the coolant and the first fluid 4 . The coolant may be a heat transfer fluid and/or water containing glycol, and the circulation system 36 may be installed, for example, on a vessel and directly connected to the body of water in which the vessel is navigating.

有利には、循環システム36は、第1配管12の第2部分30に取り付けられる第1熱交換要素40と、第1配管12の第3部分32に取り付けられる第2熱交換要素42と、第1配管12の第4部分34に取り付けられる第3熱交換要素38とを含み、熱交換要素38、40、42のそれぞれは、第1配管12を流れる気体状態の第1流体4と冷却液の間で熱エネルギーを交換する。第1配管12に沿って配置される圧縮要素14と熱交換要素38、40、42を交互にすることで、圧縮要素により行われる圧縮の各段階の後に第1流体4の温度を下げることができることに留意されたい。 Advantageously, the circulation system 36 comprises a first heat exchange element 40 attached to the second portion 30 of the first pipe 12, a second heat exchange element 42 attached to the third portion 32 of the first pipe 12, and a and a third heat exchange element 38 attached to a fourth portion 34 of the first pipe 12 , each of the heat exchange elements 38 , 40 , 42 , each of which separates the first fluid 4 in gaseous state and the cooling liquid flowing through the first pipe 12 . exchange heat energy between Alternating compression elements 14 and heat exchange elements 38, 40, 42 arranged along the first pipe 12 reduce the temperature of the first fluid 4 after each stage of compression performed by the compression elements. Note that you can.

本明細書で図1で示される例では、第1流体4が複数の圧縮要素14を通過する場合、流体の圧力および温度は上昇する。この温度が高くなり過ぎるのを防ぐため、第1流体4は、第1、第2、および第3の熱交換要素40、42、38を用いて冷却液と熱エネルギーを交換する。例えば、第1熱交換要素40の下流の第2部分30を流れる第1流体4の温度は約7℃であり、第2熱交換要素42の下流の第3部分32を流れる第1流体4の温度は約40℃であり、第3熱交換要素38の下流の第4部分34を流れる第1流体4の温度は43℃より上である。 In the example shown herein in FIG. 1, when the first fluid 4 passes through multiple compression elements 14, the pressure and temperature of the fluid increases. To prevent this temperature from becoming too high, the first fluid 4 exchanges thermal energy with the coolant using first, second and third heat exchange elements 40,42,38. For example, the temperature of the first fluid 4 flowing through the second portion 30 downstream of the first heat exchange element 40 is about 7° C., and the temperature of the first fluid 4 flowing through the third portion 32 downstream of the second heat exchange element 42 is about 7° C. The temperature is about 40°C and the temperature of the first fluid 4 flowing through the fourth portion 34 downstream of the third heat exchange element 38 is above 43°C.

さらに、流体の沸点も流体が受ける圧力に応じて変化する。例えば約92%のプロパンと約8%のブタンから成る混合物とすることができる第1流体4は、約24バールの圧力を受けた場合に約43℃の沸点を有する。したがって、第1流体4は第3熱交換要素38の上流の第4部分34では気体状態であり、冷却液と熱エネルギーを交換することで第3熱交換要素38を通過しながら液相状態または二相状態へ移行し、液体状態または二相状態で第3熱交換要素38の下流の第2配管16を流れることになる。したがって、第1流体4は、第2配管16において第3熱交換要素38の下流を液体状態または二相状態で流れる。 Furthermore, the boiling point of the fluid also changes according to the pressure to which the fluid is subjected. The first fluid 4, which can be, for example, a mixture of about 92% propane and about 8% butane, has a boiling point of about 43°C when subjected to a pressure of about 24 bar. Thus, the first fluid 4 is in a gaseous state in the fourth portion 34 upstream of the third heat exchange element 38 and is in a liquid state or liquid state while passing through the third heat exchange element 38 by exchanging thermal energy with the coolant. It will transition to a two-phase state and flow through the second pipe 16 downstream of the third heat exchange element 38 in a liquid or two-phase state. Therefore, the first fluid 4 flows downstream of the third heat exchange element 38 in the second pipe 16 in a liquid state or a two-phase state.

さらに、「二相状態」は、第1流体4の一部が液体状態であり、第1流体4の別の部分が気体状態である状態を意味する。 Furthermore, "two-phase state" means a state in which a portion of the first fluid 4 is in a liquid state and another portion of the first fluid 4 is in a gaseous state.

第1流体4は、第1配管12から第2配管16を、より詳細には第3熱交換要素38から、第1タンク2へと流れる。 The first fluid 4 flows from the first pipe 12 through the second pipe 16 and more particularly from the third heat exchange element 38 to the first tank 2 .

図1に示されるように、管理システム1は、第2配管16上に配置される第1流体4用の相分離装置44を含む。相分離装置44は、第2配管16を流れる第1流体4に存在する複数の相を分離するよう構成される。つまり、相分離装置44は、液体状態の第1流体4が気体状態の第1流体4から分離されるように構成される。そして、相分離装置44内で分離された液体状態の第1流体4は第2配管16へ、および/またはパイプライン45を通って消費機械へ流れる。管理システム1は、第1流体4が気体状態で相分離装置44から第2配管16へ流れる際に通るガス管46を含む。 As shown in FIG. 1, the management system 1 includes a phase separation device 44 for the first fluid 4 arranged on the second pipe 16 . The phase separator 44 is configured to separate multiple phases present in the first fluid 4 flowing through the second conduit 16 . That is, the phase separation device 44 is configured such that the first fluid 4 in liquid state is separated from the first fluid 4 in gaseous state. The liquid state first fluid 4 separated in the phase separator 44 then flows to the second pipe 16 and/or through the pipeline 45 to the consuming machine. The management system 1 comprises a gas pipe 46 through which the first fluid 4 flows in gaseous form from the phase separator 44 to the second pipe 16 .

図1に示されるように、管理システム1は第1配管12を第2配管16と接続し、第1流体4が第2配管16から第1配管12へ流れる際に通る少なくとも1つのパイプ48を含む。管理システム1は第2配管16を流れる第1流体4を冷却する少なくとも1つの冷却装置50を含み、冷却装置50により生成される冷気はパイプ48を流れる第1流体4の蒸発により生じる。 As shown in FIG. 1 , the management system 1 connects the first pipe 12 with the second pipe 16 and provides at least one pipe 48 through which the first fluid 4 flows from the second pipe 16 to the first pipe 12 . include. The management system 1 includes at least one cooling device 50 for cooling the first fluid 4 flowing through the second pipe 16 , the cold produced by the cooling device 50 resulting from evaporation of the first fluid 4 flowing through the pipe 48 .

パイプ48と第2配管16の間に交差部52が形成され、第1流体4はこの交差部において、第2配管16を通って第1タンク2、またはパイプ48を通って第1配管12のいずれかへ流れることができて、冷却装置50は、パイプ48を流れる第1流体4の蒸発によって第2配管16を流れる第1流体4の温度が低下するように構成される。 An intersection 52 is formed between the pipe 48 and the second pipe 16 , and the first fluid 4 flows through the second pipe 16 to the first tank 2 or through the pipe 48 to the first pipe 12 at this intersection. Able to flow either way, the cooling device 50 is configured such that evaporation of the first fluid 4 flowing through the pipe 48 reduces the temperature of the first fluid 4 flowing through the second line 16 .

さらに、図1に示されるように、ガス管46が第2配管16とパイプ48の交差部52の下流の第2配管16に接続される。ガス管46を流れる気体状態の第1流体4が交差部52の下流の第2配管16を流れる液体状態の第1流体4と混合するので、第1流体4は、第2配管16において交差部52と冷却装置50の間で二相状態である。 Further, as shown in FIG. 1, gas pipe 46 is connected to second pipe 16 downstream of intersection 52 of second pipe 16 and pipe 48 . As the first fluid 4 in gaseous state flowing in the gas pipe 46 mixes with the first fluid 4 in liquid state flowing in the second pipe 16 downstream of the intersection 52 , the first fluid 4 flows in the second pipe 16 at the intersection 52 and the cooling device 50 in two phases.

より詳細には、冷却装置50は熱交換器54と膨張装置56を少なくとも含み、熱交換器54は第2配管16を構成する第1通路58とパイプ48を構成する第2通路60を含み、膨張装置56は第2通路60の上流のパイプ48上に配置される。熱交換器54は、第2配管16を流れる第1流体4とパイプ48を流れる第1流体4の間で熱を交換するよう構成される。 More specifically, the cooling device 50 includes at least a heat exchanger 54 and an expansion device 56, the heat exchanger 54 includes a first passage 58 forming the second pipe 16 and a second passage 60 forming the pipe 48, The expansion device 56 is positioned on the pipe 48 upstream of the second passageway 60 . The heat exchanger 54 is configured to exchange heat between the first fluid 4 flowing through the second conduit 16 and the first fluid 4 flowing through the pipe 48 .

このように構成されて、熱交換器54は第2配管16を流れる第1流体4とパイプ48を流れる第1流体4の間で熱エネルギーを交換し、第2配管16を流れる第1流体4とパイプ48を流れる第1流体4の間の熱エネルギーの交換は、具体的には熱交換器54の第1通路58および第2通路60において行われる。第2配管16を流れる第1流体4とパイプ48を流れる第1流体4の間で交換された熱エネルギーにより、第2配管16を流れる第1流体4の温度が低下し、第2配管16を流れる第1流体4はパイプ48を流れる第1流体4へ熱エネルギーを渡す。 With this configuration, the heat exchanger 54 exchanges thermal energy between the first fluid 4 flowing through the second pipe 16 and the first fluid 4 flowing through the pipe 48 , and the first fluid 4 flowing through the second pipe 16 . and the first fluid 4 flowing through the pipe 48 specifically takes place in the first passage 58 and the second passage 60 of the heat exchanger 54 . Due to the thermal energy exchanged between the first fluid 4 flowing through the second pipe 16 and the first fluid 4 flowing through the pipe 48, the temperature of the first fluid 4 flowing through the second pipe 16 decreases, causing the second pipe 16 to The flowing first fluid 4 transfers thermal energy to the first fluid 4 flowing through pipe 48 .

この熱エネルギーの移動は、パイプ48を流れる第1流体4の圧力を下げてその状態の変化を促進する膨張装置56が存在するおかげで達成される。 This transfer of thermal energy is achieved thanks to the presence of the expansion device 56 which lowers the pressure of the first fluid 4 flowing through the pipe 48 and facilitates its change of state.

第2配管16の第1通路58の上流を流れる第1流体4と第2配管16の第1通路58の下流を流れる第1流体4の間の温度の低下は、少なくとも20℃である。有利には、この温度差は25℃~35℃である。 The temperature drop between the first fluid 4 flowing upstream of the first passage 58 of the second pipe 16 and the first fluid 4 flowing downstream of the first passage 58 of the second pipe 16 is at least 20°C. Advantageously, this temperature difference is between 25°C and 35°C.

第2配管16を流れる第1流体4の温度の低下により、第1流体4は二相状態から液体状態へと変わる。したがって、第2配管16において熱交換器54の第1通路58の下流を流れる第1流体4は液体状態であり、例えば、約14℃の温度と約24バールの圧力を有することになる。 Due to the decrease in temperature of the first fluid 4 flowing through the second pipe 16, the first fluid 4 changes from a two-phase state to a liquid state. Accordingly, the first fluid 4 flowing in the second line 16 downstream of the first passage 58 of the heat exchanger 54 is in a liquid state, for example having a temperature of about 14° C. and a pressure of about 24 bar.

図1に示されるように、冷却装置50の膨張要素56は第2通路60の上流のパイプ48に取り付けられる。換言すれば、第2通路60へ供給される液体状態の第1流体4は第2通路60に到達する前に膨張する、つまり、圧力が低下して第1流体4の状態が変化し、その結果、第2通路60内で二相状態から気体状態へ移行することに留意されたい。例えば、第1流体4は約3バールの圧力へ膨張させられて、第1流体4が膨張要素56の上流での約24バールの圧力から膨張要素56と第1配管12の間での3バールの圧力へと変化しうる。 As shown in FIG. 1, the expansion element 56 of the cooling device 50 is attached to the pipe 48 upstream of the second passageway 60 . In other words, the first fluid 4 in the liquid state supplied to the second passage 60 expands before reaching the second passage 60, that is, the pressure decreases and the state of the first fluid 4 changes, Note the resulting transition from a two-phase state to a gaseous state within the second passageway 60 . For example, the first fluid 4 may be expanded to a pressure of about 3 bar so that the first fluid 4 expands from a pressure of about 24 bar upstream of the expansion element 56 to a pressure of 3 bar between the expansion element 56 and the first pipe 12 . can change to a pressure of

第2通路60を流れる気体状態の第1流体4と第1通路58を流れる液体状態または二相状態の第1流体4の間の圧力差、およびそれによる温度差により、第1通路58を流れる液体状態または二相状態の第1流体4が冷却されて、第2通路60へ入る二相状態の第1流体4が蒸発する。 The pressure difference between the gaseous first fluid 4 flowing through the second passageway 60 and the liquid or two-phase first fluid 4 flowing through the first passageway 58 , and the resulting temperature difference, causes the first fluid 4 to flow through the first passageway 58 . The liquid or two-phase first fluid 4 is cooled and the two-phase first fluid 4 entering the second passageway 60 evaporates.

図1に示されるように、第2通路60の下流を流れる、膨張した気体状態の第1流体4は、その後第1配管12に到達する。有利には、パイプ48は第1配管12にその第2部分30で、より詳細には、第1熱交換要素40と第2圧縮要素14bの間で接続される。したがって、膨張した気体状態の第1流体4は第1熱交換要素40からの第1流体4と混合されて、この混合物は第2圧縮要素14bにより第1配管12の第3部分32へ吸入される。 As shown in FIG. 1 , the expanded gaseous first fluid 4 flowing downstream of the second passage 60 then reaches the first pipe 12 . Advantageously, the pipe 48 is connected to the first pipe 12 at its second portion 30, more particularly between the first heat exchange element 40 and the second compression element 14b. Accordingly, the expanded gaseous first fluid 4 is mixed with the first fluid 4 from the first heat exchange element 40 and this mixture is sucked into the third portion 32 of the first pipe 12 by the second compression element 14b. be.

図1に示されるように、管理システム1は冷却装置50の下流の第2配管16に取り付けられた第1流体4用の相分離装置62を含み、管理システム1は相分離装置62と第1配管12の間に延びる返送管64を含み、気体状態の第1流体4がこの返送管を通って流れる。 As shown in FIG. 1, the management system 1 includes a phase separator 62 for the first fluid 4 attached to the second pipe 16 downstream of the cooling device 50, the management system 1 comprising the phase separator 62 and the first It includes a return line 64 extending between the lines 12 through which the gaseous first fluid 4 flows.

相分離装置62は、相分離装置主部66と、相分離装置主部66の上流の第2配管16上に配置される膨張要素68とを含む。膨張要素68により、相分離装置主部66へ流れる第1流体4を第1タンク2に収容される第1流体4の圧力とほぼ同じ圧力、すなわち大気圧とすることが可能となる。 The phase separator 62 includes a phase separator main section 66 and an expansion element 68 positioned on the second pipe 16 upstream of the phase separator main section 66 . The expansion element 68 allows the first fluid 4 flowing to the phase separator main section 66 to be at substantially the same pressure as the first fluid 4 contained in the first tank 2, i.e. atmospheric pressure.

より詳細には、第2配管16を第1タンク2まで流れる液体状態の第1流体4は、第1流体4の圧力を第1タンク2に収容される第1流体4の圧力と合わせるために第1タンク2に到達する前に膨張する、つまり、その圧力が低下することに留意されたい。膨張要素68による第1流体4の膨張によって第1流体4の状態が変化し、その結果、液体状態から、第1流体4の一部が液体状態で別の部分が気体状態である二相状態へ移行する。また、この圧力の低下により、第1流体4の温度も低下する。例えば、第1流体4はほぼ1.2バールの圧力へ膨張させられて、第1流体4が膨張要素68の上流での約24バールの圧力から膨張要素68の下流での約1.2バールの圧力へと変化することがあり、第1流体4は約-50℃の温度を有する。 More specifically, the first fluid 4 in liquid state flowing through the second pipe 16 to the first tank 2 is supplied to the first tank 2 in order to match the pressure of the first fluid 4 with the pressure of the first fluid 4 contained in the first tank 2 . Note that before reaching the first tank 2 it expands, ie its pressure drops. Expansion of the first fluid 4 by the expansion element 68 changes the state of the first fluid 4 so that it changes from a liquid state to a two-phase state in which part of the first fluid 4 is in a liquid state and another part is in a gaseous state. Move to Moreover, the temperature of the first fluid 4 also decreases due to this decrease in pressure. For example, the first fluid 4 may be expanded to a pressure of approximately 1.2 bar so that the first fluid 4 expands from a pressure of approximately 24 bar upstream of the expansion element 68 to a pressure of approximately 1.2 bar downstream of the expansion element 68 . and the first fluid 4 has a temperature of about -50°C.

そして、第1流体4は相分離装置主部66へと流れ、第1流体4はその正確な温度に応じて液体状態、および/または二相状態となっている。相分離装置主部66は、膨張要素68から第1タンク2へと流れる第1流体4に存在する複数の相を分離するよう構成される。つまり、相分離装置主部66は、液体状態の第1流体4が気体状態の第1流体4から分離されるように構成される。そして、相分離装置主部66で分離された液体状態の第1流体4は第1タンク2へと流れ、気体状態の第1流体4は返送管64を通って第1配管12の第1部分28へ移動する。 The first fluid 4 then flows to the phase separator main part 66, where the first fluid 4 is in a liquid state and/or a two-phase state depending on its exact temperature. The phase separator main section 66 is configured to separate multiple phases present in the first fluid 4 flowing from the expansion element 68 to the first tank 2 . That is, the phase separator main part 66 is configured to separate the first fluid 4 in the liquid state from the first fluid 4 in the gaseous state. Then, the first fluid 4 in the liquid state separated by the main part 66 of the phase separator flows into the first tank 2, and the first fluid 4 in the gaseous state passes through the return pipe 64 to the first portion of the first pipe 12. Go to 28.

有利には、第2配管16は第1タンク2内、具体的には第1タンク2の底部にある流体排出口65へ開口し、その結果、液体状態の第1流体4は相分離装置主部66から第2配管16を通って第1タンク2の底部へと流れる。代替案によれば、第2配管16は第1タンク2の最上部10で開口し、液体状態の第1流体4は例えば第1タンク2の最上部10で噴霧されて、その結果、第1タンク2の最上部10に存在する気体状態の第1流体4を冷却する。 Advantageously, the second pipe 16 opens into the first tank 2, in particular to a fluid outlet 65 at the bottom of the first tank 2, so that the first fluid 4 in its liquid state reaches the main phase separator. It flows from the part 66 through the second pipe 16 to the bottom of the first tank 2 . According to an alternative, the second pipe 16 opens at the top 10 of the first tank 2 and the first fluid 4 in liquid state is for example sprayed at the top 10 of the first tank 2 so that the first The gaseous first fluid 4 present at the top 10 of the tank 2 is cooled.

本明細書で図1に示される例では、管理システム1は、返送管64上に配置されて、例えば気体状態の第1流体4を返送管64を通って流れさせて1.2バールの圧力から大気圧へ変化させるよう構成されている、第1流体4を膨張させるための膨張ブロック70を含む。 In the example shown here in FIG. 1, the management system 1 is arranged on the return pipe 64 to cause the first fluid 4, for example in gaseous state, to flow through the return pipe 64 to a pressure of 1.2 bar. an expansion block 70 for expanding the first fluid 4 configured to change from pressure to atmospheric pressure.

管理システム1は、膨張ブロック70の下流の返送管64に接続され、管理システム1の外部環境へと開口する、排出管72をさらに含む。 The management system 1 further includes an exhaust pipe 72 connected to the return pipe 64 downstream of the expansion block 70 and opening to the environment outside the management system 1 .

管理システム1は、管理システム1の外部環境へ排出される第1流体4の流量を制御するために、排出管72上に配置される、気体状態の第1流体4の流量を制御するための制御弁74を含む。 The management system 1 includes a flow control device for controlling the flow rate of the first fluid 4 in a gaseous state, which is arranged on the discharge pipe 72 to control the flow rate of the first fluid 4 discharged to the external environment of the management system 1. A control valve 74 is included.

図1に示されるように、冷却管18は、第2配管16と第1配管12の間に延びる。したがって、第1流体4は、冷却管18を通って第2配管16から第1配管12へ流れることになる。 As shown in FIG. 1, cooling pipe 18 extends between second pipe 16 and first pipe 12 . Therefore, the first fluid 4 flows from the second pipe 16 to the first pipe 12 through the cooling pipe 18 .

本発明の一つの特徴によれば、冷却管18は冷却装置50の下流のパイプ48に接続される。冷却管18を通って第2配管16から第1配管12へ流れる第1流体4は、パイプ48の少なくとも一部を通過して、冷却装置50の下流のパイプ48を流れる第1流体4と混合される。したがって、冷却管18からの第1流体4は、第1熱交換要素40と第2圧縮要素14bの間へ注入されることで、第1配管12の第2部分30を流れる第1流体4と混合されることになる。 According to one aspect of the invention, cooling tube 18 is connected to pipe 48 downstream of cooling device 50 . The first fluid 4 flowing through the cooling pipe 18 from the second pipe 16 to the first pipe 12 passes through at least a portion of the pipe 48 and mixes with the first fluid 4 flowing in the pipe 48 downstream of the cooling device 50 . be done. Therefore, the first fluid 4 from the cooling pipe 18 is injected between the first heat exchange element 40 and the second compression element 14b, and the first fluid 4 flowing through the second portion 30 of the first pipe 12 and will be mixed.

本発明によれば、図1に示されるように、管理システム1は第2流体8の状態、具体的にはその圧力、および/または温度を管理するための管理配管20を含み、液体状態で第2タンク6から取り込まれた第2流体8はこの管理配管20を通って流れることが意図されている。この目的に向けて、管理配管20は、例えば第2タンク6に収容される液体状態の第2流体8と接触している、第2タンク6の底部に位置する液体注入口76を含む。 According to the present invention, as shown in FIG. 1, the management system 1 comprises management piping 20 for managing the condition of the second fluid 8, specifically its pressure and/or temperature, which in liquid state A second fluid 8 taken from the second tank 6 is intended to flow through this management line 20 . Towards this end, the management line 20 includes a liquid inlet 76 located at the bottom of the second tank 6 , for example in contact with the second fluid 8 contained in the second tank 6 in liquid state.

本発明の一実施形態によれば、管理システム1は、冷却ユニット24の上流の管理配管20上に配置される少なくとも1つのポンプ要素78を含む。ポンプ要素78は、液体状態の第2流体8に管理配管20を通って流れさせるよう構成される。この目的に向けて、ポンプ要素78は液体注入口76に取り付けられる。換言すれば、ポンプ要素78は、第2タンク6に収容される液体状態の第2流体8に浸漬される。ただし、ポンプ要素78は、液体状態の第2流体8を管理配管20を通して送り出している限り、管理配管20上のどこにでも取り付けることができる。 According to one embodiment of the invention, the management system 1 includes at least one pump element 78 arranged on the management piping 20 upstream of the cooling unit 24 . The pumping element 78 is configured to cause the second fluid 8 in liquid state to flow through the management line 20 . To this end, a pump element 78 is attached to the liquid inlet 76 . In other words, the pump element 78 is immersed in the second fluid 8 in liquid state contained in the second tank 6 . However, the pumping element 78 can be mounted anywhere on the control line 20 as long as it pumps the second fluid 8 in its liquid state through the control line 20 .

ポンプ要素78は、管理配管20を流れる液体状態の第2流体8の圧力を上昇させる。例えば、ポンプ要素78の下流を流れる液体状態の第2流体8は約4バールの圧力を有し、この結果、ポンプ要素78は液体状態の第2流体8の圧力をポンプ要素78の上流の大気圧からポンプ要素78の下流の約4バールの圧力へ変化させる。 The pumping element 78 increases the pressure of the liquid state second fluid 8 flowing through the management line 20 . For example, the second fluid 8 in liquid state flowing downstream of the pump element 78 has a pressure of about 4 bar, so that the pump element 78 reduces the pressure of the second fluid 8 in liquid state to a large pressure upstream of the pump element 78 . Change from atmospheric pressure to a pressure of about 4 bar downstream of the pump element 78 .

図1に示されるように、管理配管20は液体排出口22を含み、液体状態の第2流体8は管理配管20を通ってこの液体排出口22へ流れる。一実施形態によれば、液体排出口22は、液体状態の第2流体8を第2タンク6の最上部11にある管理配管20から噴霧することができるスプレー要素を含みうる。 As shown in FIG. 1 , the management line 20 includes a liquid outlet 22 through which the second fluid 8 in liquid state flows through the management line 20 to the liquid outlet 22 . According to one embodiment, the liquid outlet 22 may comprise a spray element capable of spraying the second fluid 8 in liquid form from the management pipe 20 at the top 11 of the second tank 6 .

本発明によれば、管理システム1は管理配管20を流れる第2流体8を冷却する冷却ユニット24を含み、冷却装置24により生成される冷気は、冷却管18を流れる第1流体4の蒸発により生じる。したがって、管理配管20は、冷却ユニット24の上流にある第1部分80と、冷却ユニット24の下流にある第2部分82とを含む。したがって、管理配管20の第2部分82を通って流れる液体状態の第2流体8は、管理配管20の第1部分80を流れる液体状態の第2流体8の温度より下の温度を有する。 According to the invention, the management system 1 comprises a cooling unit 24 for cooling the second fluid 8 flowing through the management pipe 20 , the cold produced by the cooling device 24 being generated by evaporation of the first fluid 4 flowing through the cooling pipe 18 . occur. Thus, the management line 20 includes a first portion 80 upstream of the cooling unit 24 and a second portion 82 downstream of the cooling unit 24 . Accordingly, the liquid state second fluid 8 flowing through the second portion 82 of the management pipe 20 has a temperature below the temperature of the liquid state second fluid 8 flowing through the first portion 80 of the management pipe 20 .

より詳細には、図1に示されるように、冷却ユニット24は、熱交換器84と、熱交換器84の上流の冷却管18に取り付けられた膨張要素86とを少なくとも含み、熱交換器84は冷却管18を流れる第1流体4と管理配管20を流れる第2流体8の間で熱を交換するよう構成される。熱交換器84は、第1流体4および第2流体8が熱交換器84を通過するように、冷却管18と管理配管20のいずれにも取り付けられることに留意されたい。 More specifically, as shown in FIG. 1 , the cooling unit 24 includes at least a heat exchanger 84 and an expansion element 86 attached to the cooling tubes 18 upstream of the heat exchanger 84 . are configured to exchange heat between the first fluid 4 flowing through the cooling pipe 18 and the second fluid 8 flowing through the management pipe 20 . Note that the heat exchangers 84 are attached to both the cooling pipes 18 and the management pipes 20 such that the first fluid 4 and the second fluid 8 pass through the heat exchangers 84 .

この目的に向けて、熱交換器84は、冷却管18を構成する第1通路88と、管理配管20を構成する第2通路90とを少なくとも含み、膨張要素86が第1通路88の上流に配置される。冷却管18を流れる第1流体4は第1通路88を通って熱交換器84を通過し、管理配管20を流れる第2流体8は第2通路90を通って熱交換器84を通過する。このように構成されて、熱交換器84は冷却管18を流れる第1流体4と管理配管20を流れる第2流体8の間で熱エネルギーを交換し、冷却管18を流れる第1流体4と管理配管20を流れる第2流体8の間の熱エネルギーの交換は、具体的には熱交換器84の第1通路88および第2通路90において行われる。第1流体4と第2流体8の間で交換された熱エネルギーにより、第2流体8の温度が低下し、第2流体8は第1流体4へ熱エネルギーを渡す。 Towards this end, the heat exchanger 84 includes at least a first passageway 88 forming the cooling pipe 18 and a second passageway 90 forming the management pipe 20, with an expansion element 86 upstream of the first passageway 88. placed. The first fluid 4 flowing through the cooling pipe 18 passes through the heat exchanger 84 through the first passageway 88 and the second fluid 8 flowing through the management pipe 20 passes through the heat exchanger 84 through the second passageway 90 . Constructed in this way, the heat exchanger 84 exchanges thermal energy between the first fluid 4 flowing through the cooling pipe 18 and the second fluid 8 flowing through the management pipe 20 , and heats the first fluid 4 flowing through the cooling pipe 18 . The exchange of thermal energy between the second fluid 8 flowing through the management pipe 20 specifically takes place in the first passage 88 and the second passage 90 of the heat exchanger 84 . The thermal energy exchanged between the first fluid 4 and the second fluid 8 reduces the temperature of the second fluid 8 and the second fluid 8 transfers thermal energy to the first fluid 4 .

さらに、この熱エネルギーの移動は、冷却管18を流れる第1流体4の圧力を下げてその状態の変化を促進する膨張要素86が存在するおかげで達成される。 Furthermore, this thermal energy transfer is achieved thanks to the presence of the expansion element 86 which lowers the pressure of the first fluid 4 flowing through the cooling tube 18 and facilitates its change of state.

図1に示されるように、冷却ユニット24の膨張要素86は第1通路88の上流の冷却管18に取り付けられる。換言すれば、第1通路88へ供給される液体状態の第1流体4は第1通路88に到達する前に膨張する、つまり、圧力が低下して第1通路88で蒸発することに留意されたい。この膨張によって第1流体4の状態が変化し、第2通路90において二相状態から気体状態へ移行する。それゆえ、第1流体4は約3バールの圧力へ膨張させられて、第1流体4が膨張要素86の上流での約24バールの圧力から膨張要素86の下流での3バールの圧力へと変化しうることに留意されたい。 As shown in FIG. 1, expansion element 86 of cooling unit 24 is attached to cooling tube 18 upstream of first passage 88 . In other words, it should be noted that the liquid state first fluid 4 supplied to the first passageway 88 expands before reaching the first passageway 88; sea bream. This expansion causes the state of the first fluid 4 to change, transitioning from a two-phase state to a gaseous state in the second passage 90 . Therefore, the first fluid 4 is expanded to a pressure of about 3 bar, causing the first fluid 4 to go from a pressure of about 24 bar upstream of the expansion element 86 to a pressure of 3 bar downstream of the expansion element 86. Note that it can change.

膨張要素86を通る第1流体4の圧力の低下により第1流体4の状態が変化し、並行してその温度が低下する。例えば、第1流体4は膨張要素86の上流で約14℃の温度を有し、膨張要素86と熱交換器84の第1通路88の間で約-30℃の温度を有する。 A decrease in the pressure of the first fluid 4 through the expansion element 86 changes the state of the first fluid 4 and concurrently decreases its temperature. For example, first fluid 4 has a temperature of approximately 14° C. upstream of expansion element 86 and a temperature of approximately −30° C. between expansion element 86 and first passage 88 of heat exchanger 84 .

有利には、第1通路88を流れる第1流体4と第2通路90を流れる液体状態の第2流体8との間の温度差により、第2通路90を流れる液体状態の第2流体8が冷却されて、第1通路88へ入る二相状態の第1流体4が蒸発する。ここで、第2通路90を流れる第2流体8は第1通路88を流れる第1流体4へ熱エネルギーを渡し、第1流体4が第1通路88を通過する際に第1流体4の温度が上昇し、その結果、その状態が二相状態から気体状態へと変わる。 Advantageously, the temperature difference between the first fluid 4 flowing through the first passageway 88 and the second fluid 8 in liquid state flowing through the second passageway 90 causes the second fluid 8 in liquid state flowing through the second passageway 90 to Cooled, the two-phase first fluid 4 entering the first passageway 88 evaporates. Here, the second fluid 8 flowing through the second passageway 90 transfers thermal energy to the first fluid 4 flowing through the first passageway 88 , increasing the temperature of the first fluid 4 as it passes through the first passageway 88 . rises, thereby changing its state from a two-phase state to a gaseous state.

例えば、液体状態の第2流体8の温度は管理配管20の第1部分80、すなわち熱交換器84の第2通路90の上流で約0℃であり、管理配管20の第2部分82、すなわち第2通路90の下流で約-10℃である。 For example, the temperature of the second fluid 8 in liquid state is about 0° C. in the first portion 80 of the management pipe 20, i.e. upstream of the second passage 90 of the heat exchanger 84, and in the second portion 82 of the management pipe 20, i.e. Downstream of the second passage 90 is about -10°C.

さらに、膨張要素86の上流の冷却管18を流れる第1流体4は液体状態であり、膨張要素86と熱交換器84の間の冷却管18を流れる第1流体4は二相状態であり、冷却管18を流れる第1流体4は熱交換器84内およびその下流で気体状態である。例えば、膨張要素86の上流の冷却管18を流れる第1流体4の温度は約14℃であり、膨張要素86と熱交換器84の間の冷却管18を流れる第1流体4の温度は約-30℃であり、熱交換器84の下流を流れる第1流体4の温度は約-3℃である。 Furthermore, the first fluid 4 flowing through the cooling tube 18 upstream of the expansion element 86 is in a liquid state and the first fluid 4 flowing through the cooling tube 18 between the expansion element 86 and the heat exchanger 84 is in a two-phase state, The first fluid 4 flowing through the cooling tube 18 is in a gaseous state within and downstream of the heat exchanger 84 . For example, the temperature of the first fluid 4 flowing through the cooling tube 18 upstream of the expansion element 86 is approximately 14° C., and the temperature of the first fluid 4 flowing through the cooling tube 18 between the expansion element 86 and the heat exchanger 84 is approximately It is -30°C, and the temperature of the first fluid 4 flowing downstream of the heat exchanger 84 is about -3°C.

図1に示される第1実施形態によれば、熱交換器84の下流の冷却管18を流れる気体状態の第1流体4は、冷却装置50の下流のパイプ48を流れる気体状態の第1流体4と混合されて、この混合物はその後、第1熱交換要素40と第2圧縮要素14bの間の第1配管12の第2部分30を流れる気体状態の第1流体4に取り込まれる。 According to the first embodiment shown in FIG. 1 , the first gaseous fluid 4 flowing through the cooling pipe 18 downstream of the heat exchanger 84 is the first gaseous fluid flowing through the pipe 48 downstream of the cooling device 50 . 4, this mixture is then entrained in the gaseous first fluid 4 flowing through the second portion 30 of the first pipe 12 between the first heat exchange element 40 and the second compression element 14b.

有利には、膨張要素86、膨張装置56、および第1圧縮要素14aは、第1流体4を同じ圧力とするよう構成される。したがって、第1圧縮要素14aは第1配管12を流れる第1流体4の圧力を例えば3バールの圧力へ上昇させることになる。膨張要素86および膨張装置56は、冷却管18を流れる第1流体4およびパイプ48を流れる第1流体4の圧力を第1配管12の第2部分30を流れる第1流体4の圧力と同じような圧力、すなわち、例えば3バールの圧力へ下げる。したがって、冷却装置50の下流のパイプ48を流れる気体状態の第1流体4は例えば3バールの圧力であり、熱交換器84の下流の冷却管18を流れる気体状態の第1流体4も3バールの圧力である。 Advantageously, expansion element 86, expansion device 56 and first compression element 14a are configured to bring first fluid 4 to the same pressure. The first compression element 14a will thus increase the pressure of the first fluid 4 flowing through the first pipe 12 to a pressure of, for example, 3 bar. The expansion element 86 and the expansion device 56 cause the pressure of the first fluid 4 flowing through the cooling pipe 18 and the first fluid 4 flowing through the pipe 48 to be the same as the pressure of the first fluid 4 flowing through the second portion 30 of the first pipe 12 . pressure, ie to a pressure of, for example, 3 bar. Thus, the gaseous first fluid 4 flowing through the pipe 48 downstream of the cooling device 50 is at a pressure of, for example, 3 bar, and the gaseous first fluid 4 flowing through the cooling pipe 18 downstream of the heat exchanger 84 is also at 3 bar. is the pressure of

これより、本発明の第2実施形態について、特に図2を参照して説明する。第2実施形態を第1実施形態と差別化する要素について以下で説明する。同一の要素については第1実施形態の詳細な説明を参照すること。 A second embodiment of the invention will now be described with particular reference to FIG. The elements that differentiate the second embodiment from the first embodiment are described below. Refer to the detailed description of the first embodiment for identical elements.

第2実施形態では、パイプ48は第1配管12に第3部分32で、すなわち、第2熱交換要素42と第3圧縮要素14cの間で接続される。気体状態の第1流体4は、第1配管12の第3部分32まで冷却装置50の下流のパイプ48を流れることに留意されたい。冷却装置50の下流のパイプ48を流れる気体状態の第1流体4は、第2熱交換要素42と第3圧縮要素14cの間にある位置で第1配管12の第3部分32を流れる気体状態の第1流体4と混合される。 In the second embodiment, the pipe 48 is connected to the first pipe 12 at the third portion 32, ie between the second heat exchange element 42 and the third compression element 14c. Note that the gaseous first fluid 4 flows through the pipe 48 downstream of the cooling device 50 to the third portion 32 of the first pipe 12 . The first fluid 4 in gaseous state flowing through the pipe 48 downstream of the cooling device 50 is in gaseous state flowing through the third portion 32 of the first pipe 12 at a location between the second heat exchange element 42 and the third compression element 14c. is mixed with the first fluid 4 of

膨張装置56は、この場合、パイプ48を流れる第1流体4の圧力を第2熱交換要素42と第3圧縮要素14cの間の第1配管12の第3部分32を流れる気体状態の第1流体4の圧力とほぼ同じ圧力へ下げるよう構成される。例えば、冷却装置50の下流を流れる第1流体4の圧力は約10.5バールであり、膨張装置56がパイプ48を流れる第1流体4の圧力を膨張装置56の上流での約24バールの圧力から膨張装置56の下流での約10.5バールの圧力へ変化させる。 The expansion device 56, in this case, converts the pressure of the first fluid 4 flowing through the pipe 48 into a first gaseous state flowing through the third section 32 of the first pipe 12 between the second heat exchange element 42 and the third compression element 14c. It is arranged to reduce the pressure to approximately the same as the pressure of the fluid 4 . For example, the pressure of the first fluid 4 flowing downstream of the cooling device 50 is about 10.5 bar and the expansion device 56 reduces the pressure of the first fluid 4 flowing through the pipe 48 to about 24 bar upstream of the expansion device 56. The pressure is changed to about 10.5 bar downstream of the expansion device 56 .

図2に示されるように、冷却管18は第2配管16と第1配管12の第2部分30の間に延びる。冷却管18は第2部分30で第1配管12に直接接続される。冷却ユニット24の下流の冷却管18を流れる気体状態の第1流体4は、第1熱交換要素40と第2圧縮要素14bの間にある位置で第1配管12の第2部分30を流れる気体状態の第1流体4と混合される。 As shown in FIG. 2, cooling pipe 18 extends between second pipe 16 and second portion 30 of first pipe 12 . The cooling pipe 18 is directly connected to the first pipe 12 at the second portion 30 . The gaseous first fluid 4 flowing through the cooling pipe 18 downstream of the cooling unit 24 is gaseous flowing through the second portion 30 of the first pipe 12 at a location between the first heat exchange element 40 and the second compression element 14b. mixed with the first fluid 4 in the state.

膨張要素86は、この場合、冷却管18を流れる第1流体4の圧力を第1配管12の第2部分30を流れる気体状態の第1流体4の圧力とほぼ同じ圧力へ下げるよう構成される。例えば、冷却ユニット24の下流の冷却管18を流れる第1流体4の圧力は約3バールであり、膨張要素86が冷却管18を流れる第1流体4の圧力を膨張要素86の上流での約24バールの圧力から膨張要素86の下流での約3バールの圧力へ変化させる。 The expansion element 86 is in this case configured to reduce the pressure of the first fluid 4 flowing through the cooling tube 18 to approximately the same pressure as the pressure of the gaseous first fluid 4 flowing through the second portion 30 of the first piping 12 . . For example, the pressure of the first fluid 4 flowing through the cooling tube 18 downstream of the cooling unit 24 is approximately 3 bar, and the expansion element 86 reduces the pressure of the first fluid 4 flowing through the cooling tube 18 to approximately A pressure of 24 bar is changed to a pressure of about 3 bar downstream of the expansion element 86 .

これより、本発明の第3実施形態について、特に図3を参照して説明する。第3実施形態を第1実施形態および第2実施形態と差別化する要素について以下で説明する。同一の要素についてはそれらの実施形態の詳細な説明を参照すること。 A third embodiment of the invention will now be described with particular reference to FIG. The elements that differentiate the third embodiment from the first and second embodiments are described below. Refer to the detailed description of those embodiments for identical elements.

図3に示されるように、管理システム1は第1パイプ92および第2パイプ94を含み、それぞれが独立して第2配管16と第1配管12の間に延びる。 As shown in FIG. 3, the management system 1 includes a first pipe 92 and a second pipe 94 each independently extending between the second pipe 16 and the first pipe 12 .

第1パイプ92は、一方では第2配管16に接続され、他方では第2熱交換要素42と第3圧縮要素14cの間で第1配管12の第3部分32に接続される。第1パイプ92を流れる第1流体4は、第2熱交換要素42と第3圧縮要素14cの間にある位置で第1配管12の第3部分32を流れる第1流体4と混合することに留意されたい。 The first pipe 92 is connected on the one hand to the second pipe 16 and on the other hand to the third section 32 of the first pipe 12 between the second heat exchange element 42 and the third compression element 14c. The first fluid 4 flowing through the first pipe 92 mixes with the first fluid 4 flowing through the third portion 32 of the first pipe 12 at a location between the second heat exchange element 42 and the third compression element 14c. Please note.

管理システム1は第2配管16および第1パイプ92に取り付けられた第1冷却装置96を含み、第1冷却装置96は、第1熱交換器98と第1熱交換器98の上流の第1パイプ92上に配置される第1膨張装置100とを含む。第1熱交換器98は、第1パイプ92を流れる第1流体4と第2配管16を流れる第1流体4の間で熱エネルギーの交換を行うよう構成される。この目的に向けて、第1熱交換器98は、第2配管16を構成する第1導管102と、第1パイプ92を構成する第2導管104とを含む。第2配管16を流れる第1流体4は第1導管102を通って第1熱交換器98を通過し、第1パイプ92を流れる第1流体4は第2導管104を通って第1熱交換器98を通過することに留意されたい。 The management system 1 includes a first cooling device 96 attached to the second pipe 16 and the first pipe 92 , the first cooling device 96 comprising a first heat exchanger 98 and a first heat exchanger upstream of the first heat exchanger 98 . and a first expansion device 100 disposed on the pipe 92 . The first heat exchanger 98 is configured to exchange thermal energy between the first fluid 4 flowing through the first pipe 92 and the first fluid 4 flowing through the second pipe 16 . To this end, the first heat exchanger 98 includes a first conduit 102 forming the second pipe 16 and a second conduit 104 forming the first pipe 92 . The first fluid 4 flowing through the second pipe 16 passes through the first conduit 102 through the first heat exchanger 98 and the first fluid 4 flowing through the first pipe 92 passes through the second conduit 104 to the first heat exchanger 98 . Note that it passes through vessel 98 .

さらに、第1パイプ92と第2配管16の第1交差部521は、相分離装置44と第1冷却装置96の間に配置されることに留意されたい。したがって、第1交差部521を流れる第1流体4は、第1冷却装置96まで第2配管16を流れ続ける、および/または第1配管12まで第1パイプ92を流れ続けることができる。 Furthermore, it should be noted that the first intersection 521 of the first pipe 92 and the second pipe 16 is located between the phase separator 44 and the first cooling device 96 . Thus, the first fluid 4 flowing through the first intersection 521 can continue to flow through the second pipe 16 to the first cooling device 96 and/or continue to flow through the first pipe 92 to the first pipe 12 .

第1膨張装置100は、この場合、第1パイプ92を流れる液体状態の第1流体4の圧力を第1配管12の第3部分32を流れる気体状態の第1流体4の圧力とほぼ同じ圧力へ下げるよう構成される。例えば、第1冷却装置96の下流を流れる第1流体4の圧力は約10.5バールであり、第1膨張装置100が第1パイプ92を流れる第1流体4の圧力を第1膨張装置100の上流での約24バールの圧力から第1膨張装置100の下流での約10.5バールの圧力へ変化させる。 The first expansion device 100 in this case causes the pressure of the first fluid 4 in a liquid state flowing through the first pipe 92 to be approximately the same as the pressure of the first fluid 4 in a gaseous state flowing through the third portion 32 of the first pipe 12 . configured to lower to For example, the pressure of the first fluid 4 flowing downstream of the first cooling device 96 is approximately 10.5 bar and the first expansion device 100 reduces the pressure of the first fluid 4 flowing through the first pipe 92 to from a pressure of about 24 bar upstream of the first expansion device 100 to a pressure of about 10.5 bar downstream of the first expansion device 100 .

第2配管16を流れる第1流体4と第1パイプ92を流れる第1流体4の間の熱交換は、具体的には第1熱交換器98において、より詳細には第1導管102および第2導管104において行われる。第1導管102を流れる第1流体4は、第2導管104を流れる膨張した第1流体4へ熱エネルギーを渡す。換言すれば、第2導管104を流れる第1流体4は第1導管102を流れる第1流体4を冷却し、第1導管102を流れる第1流体4の温度は低下する一方、第2導管104を流れる第1流体4の温度は上昇する。第2導管104を流れる第1流体4の温度の上昇により、前記第1流体4は二相状態から気体状態へ移行する。 Heat exchange between the first fluid 4 flowing through the second pipe 16 and the first fluid 4 flowing through the first pipe 92 is specifically in the first heat exchanger 98, more specifically in the first conduit 102 and the first pipe 92. 2 conduit 104 . The first fluid 4 flowing through the first conduit 102 transfers thermal energy to the expanded first fluid 4 flowing through the second conduit 104 . In other words, the first fluid 4 flowing through the second conduit 104 cools the first fluid 4 flowing through the first conduit 102 and the temperature of the first fluid 4 flowing through the first conduit 102 decreases while the second conduit 104 cools. The temperature of the first fluid 4 flowing through increases. The increase in temperature of the first fluid 4 flowing through the second conduit 104 causes said first fluid 4 to transition from a two-phase state to a gaseous state.

図3に示されるように、第2パイプ94は、一方では第2配管16に接続され、他方では第1熱交換要素40と第2圧縮要素14bの間で第1配管12の第2部分30に接続される。第2パイプ94を流れる第1流体4は、第1熱交換要素40と第2圧縮要素14bの間にある位置で第1配管12の第2部分30を流れる第1流体4と混合することに留意されたい。 As shown in FIG. 3, the second pipe 94 is connected to the second pipe 16 on the one hand and the second section 30 of the first pipe 12 between the first heat exchange element 40 and the second compression element 14b on the other hand. connected to The first fluid 4 flowing through the second pipe 94 mixes with the first fluid 4 flowing through the second portion 30 of the first pipe 12 at a location between the first heat exchange element 40 and the second compression element 14b. Please note.

さらに、第2パイプ94は第1冷却装置96の下流の第2配管16に接続される。第2パイプ94と第2配管16の第2交差部522は、第1冷却装置96と相分離装置62の間に配置されることに留意されたい。第2パイプ94を流れる第1流体4は、第1冷却装置96により冷却されて第2配管16を流れる第1流体4に由来する。 Furthermore, the second pipe 94 is connected to the second pipe 16 downstream of the first cooling device 96 . Note that the second intersection 522 of the second pipe 94 and the second pipe 16 is located between the first cooling device 96 and the phase separation device 62 . The first fluid 4 flowing through the second pipe 94 originates from the first fluid 4 cooled by the first cooling device 96 and flowing through the second pipe 16 .

管理システム1は第2配管16および第2パイプ94に取り付けられた第2冷却装置106を含み、第2冷却装置106は第2熱交換器108と、第2熱交換器108の上流の第2パイプ94上に配置される第2膨張装置110とを含む。第2熱交換器108は、第2パイプ94を流れる第1流体4と第1冷却装置96の下流の第2配管16を流れる第1流体4の間で熱エネルギーの交換を行うよう構成される。この目的に向けて、第2熱交換器108は、第2配管16を構成する第1導管112と、第2パイプ94を構成する第2導管114とを含む。第2配管16を流れる第1流体4は第1導管112を通って第2熱交換器108を通過し、第2パイプ94を流れる第1流体4は第2導管114を通って第2熱交換器108を通過することに留意されたい。 The management system 1 includes a second cooling device 106 attached to the second pipe 16 and the second pipe 94 , the second cooling device 106 including a second heat exchanger 108 and a second heat exchanger 108 upstream of the second heat exchanger 108 . and a second expansion device 110 disposed on the pipe 94 . The second heat exchanger 108 is configured to exchange thermal energy between the first fluid 4 flowing through the second pipe 94 and the first fluid 4 flowing through the second pipe 16 downstream of the first cooling device 96 . . Towards this end, the second heat exchanger 108 includes a first conduit 112 forming the second pipe 16 and a second conduit 114 forming the second pipe 94 . The first fluid 4 flowing through the second pipe 16 passes through the second heat exchanger 108 through the first conduit 112 and the first fluid 4 flowing through the second pipe 94 passes through the second conduit 114 to the second heat exchanger 108 . Note that it passes through vessel 108 .

第2膨張装置110は、この場合、第2パイプ94を流れる液体状態の第1流体4の圧力を第1配管12の第2部分30を流れる気体状態の第1流体4の圧力とほぼ同じ圧力へ下げるよう構成される。例えば、第2冷却装置106の下流を流れる第1流体4の圧力は約3バールであり、第2膨張装置110が第2パイプ94を流れる第1流体4の圧力を第2膨張装置110の上流での約24バールの圧力から第2膨張装置110の下流での約3バールの圧力へ変化させる。 The second expansion device 110 in this case causes the pressure of the first fluid 4 in a liquid state flowing through the second pipe 94 to be approximately the same as the pressure of the first fluid 4 in a gaseous state flowing through the second portion 30 of the first pipe 12 . configured to lower to For example, the pressure of the first fluid 4 flowing downstream of the second cooling device 106 is approximately 3 bar and the second expansion device 110 reduces the pressure of the first fluid 4 flowing through the second pipe 94 to from a pressure of about 24 bar at , to a pressure of about 3 bar downstream of the second expansion device 110 .

第2パイプ94を流れる第1流体4の約24バールの圧力から約3バールの圧力への膨張により、第2導管114を流れる第1流体4の温度が低下する。第2膨張装置110と第2導管114の間を流れる第1流体4は二相状態であり、第1流体4は第2導管114を通過する際に蒸発する。 The expansion of the first fluid 4 flowing through the second pipe 94 from a pressure of approximately 24 bar to a pressure of approximately 3 bar reduces the temperature of the first fluid 4 flowing through the second conduit 114 . The first fluid 4 flowing between the second expansion device 110 and the second conduit 114 is in a two-phase state and the first fluid 4 evaporates as it passes through the second conduit 114 .

第2配管16を流れる第1流体4と第2パイプ94を流れる第1流体4の間の熱交換は、具体的には第2熱交換器108において、より詳細には第1導管112および第2導管114において行われる。第1導管112を流れる第1流体4は、第2導管114を流れる膨張した第1流体4へ熱エネルギーを渡す。換言すれば、第2導管114を流れる第1流体4は第1導管112を流れる第1流体4を冷却し、第1導管112を流れる第1流体4の温度は低下する一方、第2導管114を流れる第1流体4の温度は上昇する。第2導管114を流れる第1流体4の温度の上昇により、前記第1流体4は二相状態から気体状態へ移行する。 Heat exchange between the first fluid 4 flowing through the second pipe 16 and the first fluid 4 flowing through the second pipe 94 occurs specifically in the second heat exchanger 108, more specifically in the first conduit 112 and the second pipe 94. 2 conduit 114 . The first fluid 4 flowing through the first conduit 112 transfers thermal energy to the expanded first fluid 4 flowing through the second conduit 114 . In other words, the first fluid 4 flowing through the second conduit 114 cools the first fluid 4 flowing through the first conduit 112 and the temperature of the first fluid 4 flowing through the first conduit 112 decreases while the second conduit 114 cools. The temperature of the first fluid 4 flowing through increases. The increase in temperature of the first fluid 4 flowing through the second conduit 114 causes said first fluid 4 to transition from a two-phase state to a gaseous state.

本発明によれば、冷却管18と第2配管16の分岐116は、第1冷却装置96と第2冷却装置106の間に配置される。第1冷却装置96の下流の第2配管16を流れる第1流体4は、冷却管18を通って冷却ユニット24へ、もしくは第2パイプ94を通って第1配管12へ、または第2配管16を通って第1タンク2まで流れることができることに留意されたい。有利には、冷却管18と第2配管16の分岐116は、第2配管16と第2パイプ94の第2交差部522と第1冷却装置96との間に取り付けられる。 According to the invention, the branch 116 of the cooling pipe 18 and the second pipe 16 is arranged between the first cooling device 96 and the second cooling device 106 . The first fluid 4 flowing in the second pipe 16 downstream of the first cooling device 96 flows through the cooling pipe 18 to the cooling unit 24 or through the second pipe 94 to the first pipe 12 or the second pipe 16 Note that it can flow to the first tank 2 through the . Advantageously, the branch 116 of the cooling pipe 18 and the second pipe 16 is attached between the second intersection 522 of the second pipe 16 and the second pipe 94 and the first cooling device 96 .

この構成では、冷却管18は第2配管16と第2パイプ94の間に延びて、冷却管18は第2冷却装置106の下流の第2パイプ94に接続される。ここで、冷却ユニット24の下流の冷却管18を流れる気体状態の第1流体4は、第1配管12の第2部分30を流れる気体状態の第1流体4に取り込まれる前に、第2冷却装置106の下流の第2パイプ94を流れる気体状態の第1流体4と混合することに留意されたい。 In this configuration, the cooling pipe 18 extends between the second pipe 16 and the second pipe 94 and the cooling pipe 18 is connected to the second pipe 94 downstream of the second cooling device 106 . Here, the first gaseous fluid 4 flowing through the cooling pipe 18 downstream of the cooling unit 24 is subjected to a second cooling before being incorporated into the first gaseous fluid 4 flowing through the second portion 30 of the first pipe 12 . Note that it mixes with the gaseous first fluid 4 flowing through the second pipe 94 downstream of the device 106 .

したがって、上記のことから、第1流体4の一部は管理システム1により再循環されて、この第1流体4の一部は、主に第1流体4、および/または第2流体8を冷却するのを助けることになる。 Therefore, from the above it follows that part of the first fluid 4 is recycled by the management system 1 and this part of the first fluid 4 mainly cools the first fluid 4 and/or the second fluid 8. will help you to

図4に示される本発明の第4実施形態によれば、冷却管18と第2配管16の分岐116は、第2冷却装置106と相分離装置62の間に取り付けられる。ここで、第2冷却装置106の下流を流れる液体状態の第1流体4は、第2配管16を通って相分離装置62へ、または冷却管18を通って冷却ユニット24へ流れることに留意されたい。 According to a fourth embodiment of the invention shown in FIG. 4, the cooling pipe 18 and the branch 116 of the second pipe 16 are mounted between the second cooling device 106 and the phase separator 62 . It is noted here that the liquid state first fluid 4 flowing downstream of the second cooling device 106 flows through the second line 16 to the phase separator 62 or through the cooling line 18 to the cooling unit 24 . sea bream.

したがって、上記のことから、この構成により、第1流体4が第1実施形態、第2実施形態、および第3実施形態で前述した構成と比べて低い温度で膨張要素86へ到達することが可能となる。膨張要素86を通過した後に、第1流体4は膨張させられて、いっそう温度が低下し、その結果、熱交換器84で行われる第2流体8の冷却が最適化される。換言すれば、ここで示される例では、膨張要素86と熱交換器84の間を流れる第1流体4は、第1実施形態、第2実施形態、および第3実施形態で記載された構成において流れる第1流体4と比べてずっと低い温度を有し、これにより、熱交換器84内での第2流体8の温度をより効率的に下げることが可能となる。 Thus, from the above, this configuration allows the first fluid 4 to reach the expansion element 86 at a lower temperature than the configurations previously described in the first, second and third embodiments. becomes. After passing through expansion element 86 , first fluid 4 is expanded to further reduce its temperature, thereby optimizing the cooling of second fluid 8 occurring in heat exchanger 84 . In other words, in the example shown here, the first fluid 4 flowing between the expansion element 86 and the heat exchanger 84 is It has a much lower temperature than the flowing first fluid 4, which allows the temperature of the second fluid 8 in the heat exchanger 84 to be reduced more efficiently.

図5に示される本発明の第5実施形態によれば、冷却管18と第2配管16の分岐116は相分離装置44と第1冷却装置96の間に取り付けられる。ここで、相分離装置44の下流を流れる液体状態の第1流体4は、第2配管16もしくは第1パイプ92を通って第1冷却装置96へ、または冷却管18を通って冷却ユニット24へ流れることに留意されたい。より詳細には、第2配管16と冷却管18の分岐116は、第2配管16と第1パイプ92の第1交差部521に取り付けられる。ただし、第2配管16と冷却管18の分岐116が、第2配管16と第1パイプ92の交差部521と相分離装置44との間、または第2配管16と第1パイプ92の交差部521と第1冷却装置96との間に取り付けられた管理システム1は、本発明の範囲から逸脱しないであろう。 According to a fifth embodiment of the invention shown in FIG. 5, the cooling pipe 18 and the branch 116 of the second pipe 16 are mounted between the phase separator 44 and the first cooling device 96 . Here, the first fluid 4 in a liquid state flowing downstream of the phase separator 44 passes through the second pipe 16 or the first pipe 92 to the first cooling device 96, or through the cooling pipe 18 to the cooling unit 24. Note that it flows. More specifically, the branch 116 of the second pipe 16 and the cooling pipe 18 is attached to the first intersection 521 of the second pipe 16 and the first pipe 92 . However, the branch 116 of the second pipe 16 and the cooling pipe 18 is located between the intersection 521 of the second pipe 16 and the first pipe 92 and the phase separator 44, or the intersection of the second pipe 16 and the first pipe 92. A management system 1 mounted between 521 and the first cooling device 96 would not depart from the scope of the invention.

ただし、本発明は、本明細書で記載され示された手段および構成には限定されず、また、すべての同等の手段および構成、ならびにそのような手段の技術的に機能する任意の組み合わせにまで及ぶ。具体的には、第1流体4の圧力、温度、および/もしくは状態、ならびに/または第2流体8の圧力、温度、および/もしくは状態を変化させる要素のすべては、それらの要素が本明細書に記載される機能を提供するのであれば、本発明に不利益をもたらすことなく変更することが可能である。 However, the invention is not limited to the means and arrangements described and shown herein, but also to all equivalent means and arrangements and to any technically working combination of such means. reach. Specifically, all of the elements that change the pressure, temperature, and/or state of the first fluid 4 and/or the pressure, temperature, and/or state of the second fluid 8 are those elements herein Modifications are possible without detrimental to the invention, provided that they provide the functionality described in .

Claims (15)

第1タンク(2)に収容される第1流体(4)の状態と第2タンク(6)に収容される第2流体(8)の状態を管理するための管理システム(1)であって、前記第1流体(4)は同じ圧力で前記第2流体(8)の沸点より低い沸点を有し、前記管理システム(1)は気体状態で前記第1タンク(2)から取り込まれた前記第1流体(4)が流れるように意図された第1配管(12)であって前記第1タンク(2)へ開口するよう構成されているガス注入口(26)から前記第1流体(4)を凝縮するよう構成されている熱交換要素(38、40、42)まで延びる第1配管(12)を少なくとも含み、前記第1配管(12)は第1圧縮要素(14a)と第2圧縮要素(14b)とを少なくとも含み、前記管理システム(1)は液体状態、および/または二相状態の前記第1流体(4)が流れるように意図された第2配管(16)であって前記熱交換要素(38、40、42)から前記第1タンク(2)へ開口するよう構成されている第2ポート(65)まで延びる第2配管(16)を含み、前記管理システム(1)は前記第2配管(16)から前記第1配管(12)まで延び前記第1流体(4)が流れるように意図された少なくとも1つの冷却管(18)であって前記第1圧縮要素(14a)と前記第2圧縮要素(14b)の間で前記第1配管(12)に接続される冷却管(18)を含み、前記管理システム(1)は前記第2流体(8)が流れるように意図された、前記第2流体(8)の状態を管理するための少なくとも1つの管理配管(20)を含み、前記管理システム(1)は前記管理配管(20)を流れる前記第2流体(8)を冷却する少なくとも1つの冷却ユニット(24)を含み、冷気は前記冷却ユニット(24)により生成されて前記冷却管(18)を流れる前記第1流体(4)の蒸発により生じることを特徴とする、管理システム(1)。 A management system (1) for managing the condition of a first fluid (4) contained in a first tank (2) and the condition of a second fluid (8) contained in a second tank (6), , said first fluid (4) has a boiling point lower than that of said second fluid (8) at the same pressure, and said management system (1) controls said liquid taken from said first tank (2) in gaseous state. A first conduit (12) through which a first fluid (4) is intended to flow from a gas inlet (26) configured to open into said first tank (2) to said first fluid (4). ), said first piping (12) extending to a heat exchange element (38, 40, 42) configured to condense a first compression element (14a) and a second compression element (14a). said management system (1) comprising at least an element (14b) and a second pipe (16) intended for the flow of said first fluid (4) in liquid and/or two-phase state, said comprising a second pipe (16) extending from a heat exchange element (38, 40, 42) to a second port (65) configured to open into said first tank (2), said management system (1) comprising at least one cooling pipe (18) extending from said second pipe (16) to said first pipe (12) and intended for said first fluid (4) to flow through said first compression element (14a); and a cooling pipe (18) connected to said first pipe (12) between said second compression element (14b) and said management system (1) is intended to allow said second fluid (8) to flow at least one management line (20) for managing the condition of said second fluid (8), wherein said management system (1) controls said second fluid (8) flowing through said management line (20). wherein cold air is produced by said cooling unit (24) and is caused by evaporation of said first fluid (4) flowing through said cooling pipes (18) , a management system (1). 前記冷却ユニット(24)は、熱交換器(84)と、前記第2配管(16)と前記熱交換器(84)の間の前記冷却管(18)に取り付けられた膨張要素(86)とを少なくとも含み、前記熱交換器(84)は、前記冷却管(18)を流れる前記第1流体(4)と前記管理配管(20)を流れる前記第2流体(8)の間で熱を交換するよう構成される、請求項1に記載の管理システム(1)。 The cooling unit (24) comprises a heat exchanger (84) and an expansion element (86) attached to the cooling pipe (18) between the second pipe (16) and the heat exchanger (84). wherein said heat exchanger (84) exchanges heat between said first fluid (4) flowing through said cooling pipe (18) and said second fluid (8) flowing through said management pipe (20) 2. Management system (1) according to claim 1, adapted to. 前記熱交換器(84)は、前記冷却管(18)を構成する第1通路(88)と、前記管理配管(20)を構成する第2通路(90)とを少なくとも含み、前記膨張要素(86)は前記第2配管(16)と前記第1通路(88)の間に配置される、請求項2に記載の管理システム(1)。 The heat exchanger (84) includes at least a first passage (88) forming the cooling pipe (18) and a second passage (90) forming the management pipe (20), and the expansion element ( 3. Management system (1) according to claim 2, wherein 86) is arranged between said second pipe (16) and said first passageway (88). 前記冷却ユニット(24)の上流の前記管理配管(20)上に配置される少なくとも1つのポンプ要素(78)を含む、請求項1~3のいずれか一項に記載の管理システム(1)。 A management system (1) according to any one of the preceding claims, comprising at least one pump element (78) arranged on said management piping (20) upstream of said cooling unit (24). 前記第2配管(16)と前記第1配管(12)の間に延びる少なくとも1つのパイプ(48)を含み、前記パイプ(48)は前記第1圧縮要素(14a)と前記第2圧縮要素(14b)の間で前記第1配管(12)に接続され、前記管理システム(1)は、前記第2配管(16)を流れる前記第1流体(4)を冷却する少なくとも1つの冷却装置(50)を含み、前記冷却装置(50)により生成される冷気は前記パイプ(48)を流れる前記第1流体(4)の蒸発により生じる、請求項1~4のいずれか一項に記載の管理システム(1)。 At least one pipe (48) extending between said second pipe (16) and said first pipe (12), wherein said pipe (48) comprises said first compression element (14a) and said second compression element ( 14b) connected to said first pipe (12), said management system (1) comprises at least one cooling device (50) for cooling said first fluid (4) flowing through said second pipe (16). ), wherein the cold produced by the cooling device (50) results from evaporation of the first fluid (4) flowing through the pipe (48). (1). 前記冷却装置(50)は熱交換器(54)および膨張装置(56)を少なくとも含み、前記熱交換器(54)は前記第2配管(16)を構成する第1通路(58)と前記パイプ(48)を構成する第2通路(60)とを含み、前記膨張装置(56)は前記第2配管(16)と前記第2通路(60)の間の前記パイプ(48)上に配置され、前記熱交換器(54)は前記第2配管(16)を流れる前記第1流体(4)と前記パイプ(48)を流れる前記第1流体(4)の間で熱を交換するよう構成される、請求項5に記載の管理システム(1)。 The cooling device (50) includes at least a heat exchanger (54) and an expansion device (56), and the heat exchanger (54) comprises a first passage (58) forming the second pipe (16) and the pipe. (48), said expansion device (56) being disposed on said pipe (48) between said second pipe (16) and said second passageway (60). , said heat exchanger (54) is configured to exchange heat between said first fluid (4) flowing through said second pipe (16) and said first fluid (4) flowing through said pipe (48); 6. Management system (1) according to claim 5, wherein the management system (1) 前記第1流体(4)と冷却液の間の熱交換のための第1熱交換要素(38、40、42)と、前記第1流体(4)と前記冷却液の間の熱交換のための第2熱交換要素(38、40、42)を少なくとも含み、前記第1熱交換要素(38、40、42)は前記第1圧縮要素(14a)と前記第2圧縮要素(14b)の間に取り付けられ、前記パイプ(48)は前記第1熱交換要素(40)と前記第2圧縮要素(14b)の間で前記第1配管(12)に接続される、請求項5または6に記載の管理システム(1)。 a first heat exchange element (38, 40, 42) for heat exchange between said first fluid (4) and cooling liquid; and for heat exchange between said first fluid (4) and said cooling liquid. a second heat exchange element (38, 40, 42), said first heat exchange element (38, 40, 42) being between said first compression element (14a) and said second compression element (14b) and said pipe (48) is connected to said first pipe (12) between said first heat exchange element (40) and said second compression element (14b). management system (1). 前記冷却管(18)は、前記第1配管(12)と前記冷却装置(50)の間で前記パイプ(48)に接続される、請求項5~7のいずれか一項に記載の管理システム(1)。 Management system according to any one of claims 5 to 7, wherein the cooling pipe (18) is connected to the pipe (48) between the first pipe (12) and the cooling device (50). (1). 前記第1タンク(2)内に配置される前記第2ポート(65)と前記冷却装置(50)の間に取り付けられた、前記第2配管(16)と前記冷却管(18)との間の分岐(116)を含む、請求項5~8のいずれか一項に記載の管理システム(1)。 between said second pipe (16) and said cooling pipe (18) mounted between said second port (65) located in said first tank (2) and said cooling device (50); Management system (1) according to any one of claims 5 to 8, comprising a branch (116) of . 前記第2圧縮要素(14b)と前記冷却装置(50)の間に取り付けられた、前記第2配管(16)と前記冷却管(18)との間の分岐(116)を含む、請求項5~8のいずれか一項に記載の管理システム(1)。 Claim 5, comprising a branch (116) between said second pipe (16) and said cooling pipe (18) mounted between said second compression element (14b) and said cooling device (50). 9. A management system (1) according to any one of claims 1-8. 前記管理システム(1)は、前記第2圧縮要素(14b)と前記パイプ(48)及び前記第2配管(16)の間の交差部(52)との間で前記第2配管(16)に取り付けられた、前記第1流体(4)用の少なくとも1つの相分離装置(44)を含み、前記管理システム(1)は、前記相分離装置(44)と前記第2配管(16)の間に延びるガス管(46)を含み、前記ガス管(46)は前記冷却装置(50)と前記パイプ(48)及び前記第2配管(16)の間の前記交差部(52)との間で前記第2配管(16)に接続され、液体状態の前記第1流体(4)は前記相分離装置(44)から前記第2配管(16)を通って前記パイプ(48)及び前記第2配管(16)の間の前記交差部(52)へ流れることができて、気体状態の前記第1流体(4)は前記相分離装置(44)から前記ガス管(46)を通って前記第2配管(16)へ流れることができる、請求項5~10のいずれか一項に記載の管理システム(1)。 Said management system (1) is provided in said second pipe (16) between said second compression element (14b) and an intersection (52) between said pipe (48) and said second pipe (16). comprising at least one phase separator (44) for said first fluid (4) installed, said management system (1) being between said phase separator (44) and said second pipe (16); between said cooling device (50) and said intersection (52) between said pipe (48) and said second pipe (16). Connected to the second pipe (16), the first fluid (4) in liquid state passes from the phase separator (44) through the second pipe (16) to the pipe (48) and the second pipe. Able to flow to said intersection (52) between (16), said first fluid (4) in gaseous state passes from said phase separator (44) through said gas pipe (46) to said second A management system (1) according to any one of claims 5 to 10, capable of flowing into a pipe (16). 前記管理システム(1)は、前記冷却装置(50)の下流の前記第2配管(16)に取り付けられた、前記第1流体(4)用の分離装置(62)を含み、前記管理システム(1)は、前記分離装置(62)と前記第1配管(12)の間に延びて気体状態の前記第1流体(4)が通って流れる返送管(64)を含む、請求項5~11のいずれか一項に記載の管理システム(1)。 Said management system (1) comprises a separation device (62) for said first fluid (4) mounted in said second pipe (16) downstream of said cooling device (50), said management system ( 1) comprises a return line (64) extending between said separation device (62) and said first line (12) through which said first fluid (4) in gaseous state flows. A management system (1) according to any one of the preceding claims. 前記管理システム(1)は、前記第1配管(12)と前記第2配管(16)の間に延びる第1パイプ(92)と、前記第1配管(12)と前記第2配管(16)の間に延びる第2パイプ(94)とを含み、前記管理システム(1)は前記第1配管(12)に取り付けられた第3圧縮要素(14c)を含み、前記第2圧縮要素(14b)は前記第1圧縮要素(14a)と前記第3圧縮要素(14c)の横に配置され、前記第1パイプ(92)は前記第2圧縮要素(14b)と前記第3圧縮要素(14c)の間で前記第1配管(12)へ開口し、前記第2パイプ(94)は前記第1圧縮要素(14a)と前記第2圧縮要素(14b)の間で前記第1配管(12)へ開口し、前記管理システム(1)は前記第2配管(16)を流れる前記第1流体(4)を冷却するための第1冷却装置(96)と、前記第2配管(16)を流れる前記第1流体(4)を冷却するための第2冷却装置(106)とを含み、前記第1冷却装置(96)により生成される冷気は前記第1パイプ(92)を流れる前記第1流体(4)の蒸発により生じ、前記第2冷却装置(106)により生成される冷気は前記第2パイプ(94)を流れる前記第1流体(4)の蒸発により生じ、前記第1冷却装置(96)は前記第2冷却装置(106)の上流の前記第2配管(16)に取り付けられる、請求項1~12のいずれか一項に記載の管理システム(1)。 Said management system (1) comprises a first pipe (92) extending between said first pipe (12) and said second pipe (16), said first pipe (12) and said second pipe (16) a second pipe (94) extending between said management system (1) including a third compression element (14c) attached to said first pipe (12), said second compression element (14b) is arranged beside said first compression element (14a) and said third compression element (14c), said first pipe (92) is between said second compression element (14b) and said third compression element (14c) and said second pipe (94) opens into said first pipe (12) between said first compression element (14a) and said second compression element (14b). and said management system (1) includes a first cooling device (96) for cooling said first fluid (4) flowing through said second pipe (16) and said first fluid flowing through said second pipe (16). and a second cooling device (106) for cooling a fluid (4), wherein cold air generated by said first cooling device (96) flows through said first pipe (92) to said first fluid (4). ) and the cold produced by said second cooling device (106) is caused by evaporation of said first fluid (4) flowing through said second pipe (94), said first cooling device (96) being A management system (1) according to any preceding claim, mounted in said second pipe (16) upstream of said second cooling device (106). 前記冷却管(18)は、前記第1冷却装置(96)と前記第2冷却装置(106)の間で前記第2配管(16)に接続される、請求項13に記載の管理システム(1)。 14. Management system (1) according to claim 13, wherein said cooling pipe (18) is connected to said second pipe (16) between said first cooling device (96) and said second cooling device (106). ). 前記冷却管(18)は、前記第2冷却装置(106)の下流の前記第2パイプ(94)に接続される、請求項13または14に記載の管理システム(1)。 Management system (1) according to claim 13 or 14, wherein said cooling pipe (18) is connected to said second pipe (94) downstream of said second cooling device (106).
JP2022090711A 2021-06-04 2022-06-03 Management system for managing state of fluid Pending JP2022186666A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2105884A FR3123716B1 (en) 2021-06-04 2021-06-04 Fluid condition management system
FR2105884 2021-06-04

Publications (1)

Publication Number Publication Date
JP2022186666A true JP2022186666A (en) 2022-12-15

Family

ID=77519226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022090711A Pending JP2022186666A (en) 2021-06-04 2022-06-03 Management system for managing state of fluid

Country Status (4)

Country Link
JP (1) JP2022186666A (en)
KR (1) KR20220165200A (en)
CN (1) CN115435241A (en)
FR (1) FR3123716B1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3077867B1 (en) * 2018-02-09 2020-01-31 Gaztransport Et Technigaz METHOD AND SYSTEM FOR GAS TREATMENT OF A GAS STORAGE FACILITY FOR A GAS TRANSPORT VESSEL
US20220196209A1 (en) * 2019-04-15 2022-06-23 Agility Gas Technologies Subcooled cyrogenic storage and transport of volatile gases

Also Published As

Publication number Publication date
FR3123716A1 (en) 2022-12-09
FR3123716B1 (en) 2023-04-28
CN115435241A (en) 2022-12-06
KR20220165200A (en) 2022-12-14

Similar Documents

Publication Publication Date Title
KR101489737B1 (en) System for supplying fuel gas in ships
JP5662313B2 (en) Conversion of liquefied natural gas
KR102082362B1 (en) Apparatus, system and method for the capture, utilization and sendout of latent heat in boil off gas onboard a cryogenic storage vessel
JP7301853B2 (en) Method and system for processing gas in gas storage facilities for gas tankers
KR102068388B1 (en) Method and arrangement for transferring heat in a gaseous fuel system
WO2011059344A1 (en) A plant for regasification of lng
KR20170128416A (en) Liquefied gas cooling method
EP2682666B1 (en) Liquefied gas regasificaion device and method for manufacturing regasified gas
JP7490787B2 (en) Liquefied gas revaporization system and liquefied gas revaporization method for ship
JP2022186666A (en) Management system for managing state of fluid
JP2007247797A (en) Lng vaporizer
US20080295527A1 (en) Lng tank ship with nitrogen generator and method of operating the same
JP2022186667A (en) Circuit for re-liquefying fluid and supplying re-liquefied fluid to consumption unit
KR20230166112A (en) How to cool the heat exchanger of the gas supply system for gas consumers on board the ship
JP2024503496A (en) Gas supply systems for high-pressure and low-pressure gas consumers
JP2023502422A (en) System for supplying gas to at least one gas consuming device on board a ship
KR102098875B1 (en) Open Type Liquefied Gas Regasification System and Method
KR101657482B1 (en) Lng fuel supplying system able to reliquefy bog and ship with the system
KR101788752B1 (en) BOG Re-liquefaction Apparatus and Method for Vessel
RU2772630C2 (en) Method and system for processing gas in installation for gas storage of gas transportation tanker
RU2786300C2 (en) Device for production of gas in gaseous form from liquefied gas
EP3945239B1 (en) System and process for recovering the cold of liquefied natural gas in regasification plants
US20230408035A1 (en) Gas supply system for high- and low-pressure gas consuming appliances
KR20220074933A (en) Systems for processing gas contained in tanks for storage and/or transport of gases in liquid and gaseous phases
KR20190081397A (en) Closed Type Liquefied Gas Regasification System and Method