JP2022184163A - Carburized component - Google Patents

Carburized component Download PDF

Info

Publication number
JP2022184163A
JP2022184163A JP2021091852A JP2021091852A JP2022184163A JP 2022184163 A JP2022184163 A JP 2022184163A JP 2021091852 A JP2021091852 A JP 2021091852A JP 2021091852 A JP2021091852 A JP 2021091852A JP 2022184163 A JP2022184163 A JP 2022184163A
Authority
JP
Japan
Prior art keywords
less
carburized
carburizing
depth
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021091852A
Other languages
Japanese (ja)
Inventor
真也 大西
Shinya Onishi
典正 常陰
Norimasa Tokokage
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2021091852A priority Critical patent/JP2022184163A/en
Publication of JP2022184163A publication Critical patent/JP2022184163A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

To provide a carburized component in which a stable carburized layer is obtained even with high Cr.SOLUTION: Provided is a carburized component that contains, in mass%, C: 0.10 to 0.40%, Si: 0.20 to 0.80%, Mn: 0.20 to 0.60%, P: ≤0.030%, S: ≤0.030%, Cr: 1.60 to 5.00%, Al: 0.003 to 0.050%, N: 0.005 to 0.020%, and the balance being Fe and unavoidable impurities, and is in a carburized state, and in which, when assuming the region near the surface in which O amount is contained by 5% or more to be the scale thickness from the surface, the Mn amount contained in the scale is less than 10% at any depth of the scale thickness, the surface hardness is 700Hv or more, and the carbon amount from the surface to a depth of 500 μm is 0.50 to 1.00%.SELECTED DRAWING: Figure 2

Description

本発明は、浸炭部品に関する。とりわけ、特に高Cr鋼材を用いながら浸炭阻害の発生が抑制可能な浸炭部品に関する。 The present invention relates to carburized parts. In particular, the present invention relates to a carburized part capable of suppressing the occurrence of carburization inhibition while using a high Cr steel material.

浸炭焼入れは代表的な鋼材の表面硬化処理の1つであり、歯車や軸受などの高い疲労強度・耐摩耗性が必要とされる浸炭部品に用いられている。このような部品の鋼材としては、日本産業規格(JIS)に規定されるSCM420やSCR420といった鋼が一般的には用いられている。もっとも、昨今の部品の使用環境はより過酷化しつつあるので、さらなる浸炭部品の長寿命化や高強度化が求められている。 Carburizing and quenching is one of the typical surface hardening treatments for steel materials, and is used for carburized parts such as gears and bearings that require high fatigue strength and wear resistance. Steels such as SCM420 and SCR420 defined by Japanese Industrial Standards (JIS) are generally used as steel materials for such parts. However, since the environment in which parts are used these days is becoming more severe, there is a demand for further extension of the service life and higher strength of carburized parts.

そこで、これまでにも、質量%で、C:0.10~0.35%、Si:0.40~0.80%、Mn:0.15~1.50%、P:0.030%以下、S:0.030%以下、Cr:1.20~2.50%、Ni:0.20%以下、Mo:0.10%以下を含有し、残部がFeおよび不可避不純物からなる鋼であり、該鋼はガス浸炭した時に最大粒界酸化の深さD1が10μm以下、合金欠乏層である不完全焼入層の最大深さD2が8~20μm、かつD2-D1が2~15μmであり、浸炭異常層の残った状態の浸炭肌を有することを特徴とする耐ピッチング特性に優れた機械構造用肌焼鋼が提案されている(特許文献1参照。)。
この提案は、ピッチングの起点となりうる粒界酸化の深さまでマルテンサイトよりも軟質な不完全焼き入れ層が覆うことで、粒界酸化を不完全焼き入れ層と一緒に摩耗させ、長寿命化する方策である。
Therefore, in mass%, C: 0.10 to 0.35%, Si: 0.40 to 0.80%, Mn: 0.15 to 1.50%, P: 0.030% Steel containing S: 0.030% or less, Cr: 1.20 to 2.50%, Ni: 0.20% or less, Mo: 0.10% or less, and the balance being Fe and inevitable impurities When the steel is gas carburized, the maximum grain boundary oxidation depth D 1 is 10 μm or less, the maximum depth D 2 of the incompletely hardened layer, which is an alloy deficient layer, is 8 to 20 μm, and D 2 −D 1 is There has been proposed a case-hardening steel for machine structures having excellent pitting resistance, characterized by having a carburized surface with a thickness of 2 to 15 μm and an abnormal carburized layer remaining (see Patent Document 1).
In this proposal, the incompletely quenched layer, which is softer than martensite, is covered to the depth of the grain boundary oxidation, which can be the starting point of pitting. It is a policy.

また、質量%で、C:0.10~0.35%、Si:0.25~0.80%、Mn:0.30~1.80%、P:0.030%以下、S:0.035%以下、Cr:2.00~3.50%、Mo:0.04~0.50%、Al:0.003~0.100%、N:0.002~0.050%を含有し、Si+0.5Cr≧1.5かつSi、Cr、Moの合計量が3.0%以上を満たし、残部がFeおよび不可避不純物からなるものとし、浸炭処理または浸炭窒化処理ならびに焼入焼戻し処理を行った際の、表面から20μmにおけるC濃度を、0.7~1.0%とし、同じくMs≦215℃以下とし、残留γ量が体積%で20≦γ≦50%である、特に歯車の水素浸入環境化での使用の際に耐ピッチング特性に優れた歯車用はだ焼鋼が提案されている(特許文献2参照。)。
これは、脆化の原因となる水素の拡散速度を抑制させる残留γを安定化させ、歯車の耐ピッチング特性を向上させる方策である。
Also, in mass%, C: 0.10 to 0.35%, Si: 0.25 to 0.80%, Mn: 0.30 to 1.80%, P: 0.030% or less, S: 0 .035% or less, Cr: 2.00-3.50%, Mo: 0.04-0.50%, Al: 0.003-0.100%, N: 0.002-0.050% and Si + 0.5 Cr ≥ 1.5 and the total amount of Si, Cr and Mo is 3.0% or more, the balance being Fe and inevitable impurities, carburizing treatment or carbonitriding treatment and quenching and tempering treatment The C concentration at 20 μm from the surface is 0.7 to 1.0%, Ms ≤ 215 ° C. or less, and the amount of residual γ is 20 ≤ γ ≤ 50% by volume%. A case hardening steel for gears has been proposed that has excellent pitting resistance when used in a hydrogen infiltration environment (see Patent Document 2).
This is a measure for stabilizing the residual γ that suppresses the diffusion rate of hydrogen, which causes embrittlement, and improving the pitting resistance of the gear.

また、質量%で、C:0.13~0.35%、Si:0.20~0.65%、Mn:0.50~1.80%、P:0.030%以下、S:0.030%以下、Cr:2.30~3.50%を含有し、さらに、Ni:0.10~0.50%、Mo:0.03~0.50%から選択した1種または2種を含有し、残部がFeおよび不可避不純物からなる鋼であり、図2に示す浸炭焼入パターンおよび焼戻し後の該鋼の最表面から100~300μmの母相成分中に固溶したSi、Mn、Cr、Ni、Moの合計は3.0%以上であり、さらに残留γ量は20~50vol%であって、その他残部はマルテンサイト組織である、耐白色組織変化はく離寿命に優れる軸受用鋼が提案されている(特許文献3参照。)。
これは、水素環境下において、水素を起因とする白色組織変化を抑制することで軸受の剥離寿命を向上させる技術である。
Also, in mass%, C: 0.13 to 0.35%, Si: 0.20 to 0.65%, Mn: 0.50 to 1.80%, P: 0.030% or less, S: 0 .030% or less, Cr: 2.30 to 3.50%, and one or two selected from Ni: 0.10 to 0.50% and Mo: 0.03 to 0.50% and the balance being Fe and unavoidable impurities, the carburizing and quenching pattern shown in FIG. The total content of Cr, Ni, and Mo is 3.0% or more, the amount of residual γ is 20 to 50 vol%, and the remainder is a martensitic structure. It has been proposed (see Patent Document 3).
This is a technique for improving the spalling life of bearings by suppressing the change in white structure caused by hydrogen in a hydrogen environment.

また、質量%で、C:0.10~0.30%、Si:0.20~0.50%、Mn:0.20~1.20%、P:0.020%以下、S:0.020%以下、Cr:2.60~4.50%、Mo:0.10~0.40%、Ni:0.20%以下、Cu:0.20%以下を含有し、残部が鉄(Fe)および不可避不純物である合金鋼からなり、任意の切断面で面積320mm2当たりに存在する直径10μm以上の酸化物系介在物が10個以下である素材を、所定形状に加工した後、浸炭または浸炭窒化と焼入れ焼戻しを行って得られる風力発電設備用転がり軸受が提案されている(特許文献4参照。)。
これは高Crとすることで水素によるマルテンサイトからフェライトへの組織変化を抑制し、高強度化を達成する技術である。
Also, in terms of mass %, C: 0.10 to 0.30%, Si: 0.20 to 0.50%, Mn: 0.20 to 1.20%, P: 0.020% or less, S: 0 .020% or less, Cr: 2.60 to 4.50%, Mo: 0.10 to 0.40%, Ni: 0.20% or less, Cu: 0.20% or less, and the balance is iron ( Fe) and an alloy steel that is an inevitable impurity, and has 10 or less oxide-based inclusions with a diameter of 10 μm or more per 320 mm 2 of an arbitrary cut surface, is processed into a predetermined shape, and then carburized or A rolling bearing for wind power generation equipment obtained by carbonitriding and quenching and tempering has been proposed (see Patent Document 4).
This is a technique for suppressing structural change from martensite to ferrite due to hydrogen by increasing Cr to achieve high strength.

いずれの提案においても、Crは1.20%を上回る量で添加させる必要がある。このように部品の長寿命化や高強度化を図る方策として、CrをJISに規定する鋼以上に含有させることを念頭に置くものである。 Both proposals require Cr to be added in an amount greater than 1.20%. As a measure for extending the service life and increasing the strength of parts in this way, it is intended to make the Cr content more than the steel specified in JIS.

特開2016-98426号公報JP 2016-98426 A 特許6347926号公報Japanese Patent No. 6347926 特許6639839号公報Japanese Patent No. 6639839 特許5982782号公報Japanese Patent No. 5982782 特許6308382号公報Japanese Patent No. 6308382 特許4327812号公報Japanese Patent No. 4327812

もっとも、これら提案の技術はいずれも高Crであることから、浸炭した際に鋼材の表面にCr酸化物が形成されやすく、浸炭時に炭素の侵入が阻害されてしまうリスクが顕在化してしまう問題がある。 However, since both of these proposed technologies use high Cr, Cr oxides are likely to be formed on the surface of the steel material during carburization, and the risk of impeding the penetration of carbon during carburization becomes apparent. be.

そこで、Cr酸化物層を所定の厚さ以下にすることで無害化しようとする方策が提案されている(特許文献5参照。)。また、浸炭前にCr酸化物形成の原因となる、Crの濃化が生じる加工変質層を除去する方策も提案されている(特許文献6参照。)。 Therefore, a measure has been proposed to make the Cr oxide layer harmless by making it less than a predetermined thickness (see Patent Document 5). Further, there is also proposed a method of removing a work-affected layer in which Cr is concentrated, which is the cause of Cr oxide formation before carburizing (see Patent Document 6).

しかしながら、こうした提案では、いずれにしても浸炭条件に左右されることから、完全に阻害を避けることができるとはいい難く、未だに十分な改善方法が確立されていないのが現状である。 However, in any case, these proposals depend on the carburizing conditions, so it is difficult to say that the inhibition can be completely avoided, and the current situation is that a sufficient improvement method has not yet been established.

そこで、本発明が解決する課題は、浸炭条件に左右されず、高Cr材でありつつも浸炭阻害を抑制した浸炭部品を提供することである。 Therefore, the problem to be solved by the present invention is to provide a carburized part that is not influenced by carburizing conditions and that is made of a high-Cr material and that suppresses carburization inhibition.

上記の課題を解決するため、本発明者らは鋭意検討の結果、Crと同時にMnの酸化物も浸炭特性に悪影響を与え、さらにその浸炭特性への作用はCr酸化物による影響よりも大きいことが判明した。
そして、鋼の成分を本発明成分の範囲とし、低Мnとすると、浸炭中に浸炭特性にとって特に有害なMn酸化物ができにくくなるので、浸炭条件に大きく左右されることなく、部品を長寿命化するための浸炭後の表面硬さと表面炭素量が安定に規定を満たした浸炭部品を提供することができることを見出した。
In order to solve the above problems, the inventors of the present invention conducted intensive studies and found that, together with Cr, oxides of Mn have an adverse effect on the carburization characteristics, and that the effect on the carburization characteristics is greater than that of Cr oxides. There was found.
When the composition of the steel is within the range of the composition of the present invention and low Мn, Mn oxide, which is particularly harmful to the carburizing characteristics, is less likely to form during carburizing. It has been found that it is possible to provide a carburized part stably meeting the requirements for surface hardness and surface carbon content after carburizing for hardening.

そこで、本発明の課題を解決するための第1の手段は、
質量%で、C:0.10~0.40%、Si:0.20~0.80%、Mn:0.20~0.60%、P:≦0.030%、S:≦0.030%、Cr:1.60~5.00%、Al:0.003~0.050%、N:0.005~0.020%、残部がFeおよび不可避不純物からなり、浸炭された状態であって、
O量が5%以上含まれる表面近傍の領域を表面からのスケール厚みとした場合に、スケール厚みのいずれの深さにおいてもスケール内に含有されるMn量が10%未満であって、
その表面の硬さが700Hv以上であって、
表面から500μm深さまでの炭素量が0.50~1.00%である浸炭部品である。
Therefore, the first means for solving the problems of the present invention is
% by mass, C: 0.10 to 0.40%, Si: 0.20 to 0.80%, Mn: 0.20 to 0.60%, P: ≤0.030%, S: ≤0. 030%, Cr: 1.60 to 5.00%, Al: 0.003 to 0.050%, N: 0.005 to 0.020%, the balance being Fe and unavoidable impurities, in a carburized state There is
When a region near the surface containing 5% or more of O is defined as the scale thickness from the surface, the amount of Mn contained in the scale is less than 10% at any depth of the scale thickness,
The hardness of the surface is 700Hv or more,
It is a carburized part with a carbon content of 0.50 to 1.00% from the surface to a depth of 500 μm.

その第2の手段は、
質量%で、C:0.10~0.40%、Si:0.20~0.80%、Mn:0.20~0.60%、P:≦0.030%、S:≦0.030%、Cr:1.60~5.00%、Al:0.003~0.050%、N:0.005~0.020%を主成分とし、
さらに、選択的付加的成分として Nb:0.02~0.10%、Ni:5.00%以下,Mo:1.00%以下,Ti:0.20%以下,B:0.010~0.050%のうち、少なくとも1種類を含有し、
残部がFeおよび不可避不純物からなり、
浸炭された状態であって、
O量が5%以上含まれる表面近傍の領域を表面からのスケール厚みとした場合に、スケール厚みのいずれの深さにおいてもスケール内に含有されるMn量が10%未満であって、
その表面の硬さが700Hv以上であって、
表面から500μm深さまでの炭素量が0.50~1.00%である浸炭部品である。
50~1.00%であること、を特徴とする浸炭部品である。
The second means is
% by mass, C: 0.10 to 0.40%, Si: 0.20 to 0.80%, Mn: 0.20 to 0.60%, P: ≤0.030%, S: ≤0. 030%, Cr: 1.60 to 5.00%, Al: 0.003 to 0.050%, N: 0.005 to 0.020% as main components,
Furthermore, as selective additional components, Nb: 0.02 to 0.10%, Ni: 5.00% or less, Mo: 1.00% or less, Ti: 0.20% or less, B: 0.010 to 0 .050%, containing at least one
The remainder consists of Fe and unavoidable impurities,
in a carburized state,
When a region near the surface containing 5% or more of O is defined as the scale thickness from the surface, the amount of Mn contained in the scale is less than 10% at any depth of the scale thickness,
The hardness of the surface is 700Hv or more,
It is a carburized part with a carbon content of 0.50 to 1.00% from the surface to a depth of 500 μm.
50 to 1.00%.

本発明によると、高Cr鋼材でありながらも、Mn酸化物の生成を抑制することで、浸炭条件に左右されにくく、浸炭条件に特段の工夫をせずとも、一般的な浸炭条件であれば、浸炭阻害が抑制された浸炭部品を得ることができる。
そこで、本発明によると、浸炭後に700Hv以上の優れた表面硬さであって、表面から500μm深さまでの炭素量が0.50~1.00%である適正な炭素濃度分布の浸炭部品を得ることができる。
According to the present invention, even though it is a high Cr steel material, by suppressing the formation of Mn oxide, it is not easily affected by carburizing conditions, and even if the carburizing conditions are not specially devised, under general carburizing conditions, , a carburized part in which inhibition of carburization is suppressed can be obtained.
Therefore, according to the present invention, it is possible to obtain a carburized part having an excellent surface hardness of 700 Hv or more after carburization and an appropriate carbon concentration distribution in which the carbon content is 0.50 to 1.00% from the surface to a depth of 500 μm. be able to.

浸炭性の評価に用いる試験片の説明図である。図1(a)に正面図を、図1(b)に側面図を示す。It is explanatory drawing of the test piece used for carburizing evaluation. A front view is shown in FIG. 1(a), and a side view is shown in FIG. 1(b). 浸炭処理条件の一例を示す温度-時間の工程図である。上から順に、実施例に用いた浸炭条件1、2、3における熱処理手順を示す。FIG. 2 is a temperature-time process chart showing an example of carburizing conditions. The heat treatment procedures under the carburizing conditions 1, 2 and 3 used in the examples are shown in order from the top.

本発明の実施の形態の説明に先だって、まず、本発明の浸炭部品に用いる鋼材の化学組成を規定した理由を以下に説明する。以下の%は質量%である。 Prior to describing the embodiments of the present invention, the reasons for specifying the chemical composition of the steel material used for the carburized parts of the present invention will be described below. The following percentages are percentages by mass.

C:0.10~0.40%
Cは、機械構造用部品として浸炭処理後の浸炭層ならびに芯部強度を確保するために必要な元素である。0.10%未満ではその効果が十分に得られず、反対に0.40%を超えると芯部の靭性を低下させる。そのためCの含有量を0.10~0.40%とする。より望ましくはCは0.15~0.30%とする。
C: 0.10-0.40%
C is an element necessary for securing the strength of the carburized layer and the core after the carburizing treatment as a mechanical structural part. If it is less than 0.10%, the effect is not sufficiently obtained, and on the contrary, if it exceeds 0.40%, the toughness of the core is lowered. Therefore, the C content is set to 0.10 to 0.40%. More preferably, C is 0.15-0.30%.

Si:0.20~0.80%
Siは、鋼の溶製時の脱酸に必要な元素であり、焼き入れ性を向上させる効果を持つ元素である。0.20%未満では脱酸効果が十分でなく、0.80%を超えると加工性を低下させる。そのためSiの含有量を0.20~0.80%とする。より望ましくはSiは0.35~0.65%とする。
Si: 0.20-0.80%
Si is an element necessary for deoxidation during steel smelting, and is an element that has the effect of improving hardenability. If it is less than 0.20%, the deoxidizing effect is not sufficient, and if it exceeds 0.80%, workability is lowered. Therefore, the Si content is set to 0.20 to 0.80%. More preferably, Si is 0.35 to 0.65%.

Mn:0.20~0.60%
Mnは、本発明において最も重要な元素成分である。鋼の溶製時の脱酸に必要な元素であるとともに、焼入性を向上させる元素である。Mnは0.20%未満では脱酸効果が十分でなく、0.60%を超えると浸炭阻害が生じうるスケールが生成してしまう。そのためMnの含有量を0.20~0.60%とする。より好ましくはMnは0.20~0.40%とする。
Mn: 0.20-0.60%
Mn is the most important elemental component in the present invention. It is an element necessary for deoxidation during steel smelting and an element that improves hardenability. If the Mn content is less than 0.20%, the deoxidizing effect is not sufficient, and if it exceeds 0.60%, scale that may inhibit carburization is generated. Therefore, the content of Mn is set to 0.20 to 0.60%. More preferably, Mn is 0.20 to 0.40%.

P:≦0.030%
Pは不可避的不純物であり、0.030%を超えると、粒界偏析によって靱性が低下することとなる。そこで、Pは0.030%以下とする。
P: ≤ 0.030%
P is an unavoidable impurity, and if it exceeds 0.030%, grain boundary segregation will lower the toughness. Therefore, P is set to 0.030% or less.

S:≦0.030%
Sは不可避的不純物であり、0.030%を超えると、MnSの形成によって靱性が低下し、疲労強度も低下する。そこで、Sは0.030%以下とする。
S: ≤ 0.030%
S is an unavoidable impurity, and if it exceeds 0.030%, the formation of MnS reduces toughness and fatigue strength. Therefore, S is set to 0.030% or less.

Cr:1.60~5.00%
Crは焼き入れ性向上を向上させる元素である。鋼の焼き入れ性を確保するためにCrは1.60%以上の添加が必要である。しかし、Crを5.00%を超えて添加すると、鋼材表面にCr系主体の酸化被膜が形成し、浸炭条件によらず、浸炭を阻害することとなる。そこで、Crは1.60~5.00%とし、より望ましくはCrは1.70~3.00%とする。
Cr: 1.60-5.00%
Cr is an element that improves hardenability. 1.60% or more of Cr must be added to ensure the hardenability of the steel. However, when Cr is added in excess of 5.00%, a Cr-based oxide film is formed on the surface of the steel material, impeding carburization regardless of the carburization conditions. Therefore, Cr should be 1.60 to 5.00%, more preferably 1.70 to 3.00%.

Al:0.003~0.050%
Alは、脱酸のために必要な元素である。しかし、Alは0.003%未満ではその効果が十分に得られず、Alの添加量を増やすと、鋼中に生成されるアルミナ系介在物が増加することにより、疲労強度が低下する。そのためAlの含有量を0.003~0.050%とする。より望ましくはAlを0.010~0.030%とする。
Al: 0.003-0.050%
Al is an element necessary for deoxidation. However, if the amount of Al is less than 0.003%, the effect is not sufficiently obtained, and if the amount of Al added is increased, the amount of alumina-based inclusions formed in the steel increases, thereby lowering the fatigue strength. Therefore, the Al content is set to 0.003 to 0.050%. More preferably, Al is 0.010 to 0.030%.

N:0.005~0.200%
NはAl、Nb、Ti等と結合して窒化物を形成しやすく、結晶粒微細化に有効で、疲労強度を高める効果がある。これらの効果を得るためにはNは、0.005%以上の添加が必要である。しかし、Nは0.200%を超えて添加すると窒化物が析出しすぎてしまい疲労強度が低下する。そこでNの含有量は、0.005~0.200%とする。より望ましくはNを0.050~0.150%とする。
N: 0.005-0.200%
N easily combines with Al, Nb, Ti, etc. to form nitrides, is effective in refining crystal grains, and has the effect of increasing fatigue strength. In order to obtain these effects, N must be added in an amount of 0.005% or more. However, if N is added in excess of 0.200%, nitrides are precipitated excessively and the fatigue strength is lowered. Therefore, the content of N is set to 0.005 to 0.200%. More preferably, N is 0.050 to 0.150%.

以下、選択的付加的成分について説明する。 Optional additional ingredients are described below.

Nb:0.02~0.10%
Nbは選択的付加的成分の1つである。C、Nと炭窒化物を形成し、ピンニング効果により結晶粒が微細化することで疲労強度が向上する元素である。もっとも、Nb含有量が高すぎれば、鋼の靭性が低下する。そこで、Nbを添加する場合は、0.02~0.10%とする。
Nb: 0.02-0.10%
Nb is one of the optional additional components. It is an element that forms carbonitrides with C and N and improves fatigue strength by refining crystal grains due to the pinning effect. However, if the Nb content is too high, the toughness of the steel will decrease. Therefore, when Nb is added, it should be 0.02 to 0.10%.

Ni:5.00%以下
Niは選択的付加的成分の1つである。Niは鋼の焼入れ性を高めるのに有効な元素であるが、高価であるため、工業上その含有量の最小化が求められている。そのため、Niの添加は5.00%以下とする。
Ni: 5.00% or less Ni is one of the optional additional components. Although Ni is an effective element for enhancing the hardenability of steel, it is expensive, so minimization of its content is required industrially. Therefore, the addition of Ni is made 5.00% or less.

Mo:1.00%以下
Moは選択的付加的成分の1つである。Moは焼き入れ性の向上および靭性の向上に有効な元素である。もっとも、Moが過多になると加工性の低下および素材コストの上昇につながってしまう。そのためMoの添加は1.00%以下とする。
Mo: 1.00% or less Mo is one of the optional additional components. Mo is an element effective in improving hardenability and toughness. However, an excessive amount of Mo leads to a decrease in workability and an increase in material cost. Therefore, the amount of Mo added is 1.00% or less.

Ti:0.20%以下
Tiは選択的付加的成分の1つである。TiはC、Nと炭窒化物を形成し、ピンニング効果により結晶粒が微細化することで疲労強度が向上する。もっとも、Ti含有量が高すぎれば、鋼の靭性が低下する。そのため、Tiの添加は0.20%以下とする。
Ti: 0.20% or less Ti is one of optional additional components. Ti forms carbonitrides with C and N, and the pinning effect refines crystal grains, thereby improving the fatigue strength. However, if the Ti content is too high, the toughness of the steel will decrease. Therefore, the addition of Ti is made 0.20% or less.

B:0.010~0.050%
Bは選択的付加的成分の1つである。Bは焼き入れ性を向上させるとともにPの粒界析出を阻害することで靭性を向上させる働きを有する元素である。この効果を得るためにはBを0.010%以上添加することが望ましい。もっとも、Bが0.050%を超えるとその効果は飽和する。そこで添加するBの添加は0.010~0.050%とする。
B: 0.010-0.050%
B is one of the optional additional components. B is an element that has the function of improving hardenability and improving toughness by inhibiting grain boundary precipitation of P. In order to obtain this effect, it is desirable to add 0.010% or more of B. However, when B exceeds 0.050%, the effect saturates. Therefore, the amount of B to be added is 0.010 to 0.050%.

次に、本発明に規定する鋼材を浸炭した浸炭部品の浸炭後の表面の性状について規定した理由を述べる。 Next, the reasons for specifying the properties of the surface after carburizing of the carburized parts obtained by carburizing the steel material specified in the present invention will be described.

O量が5%以上含まれる表面近傍の領域を表面からのスケール厚みとした場合に、スケール厚みのいずれの深さにおいてもスケール内に含有されるMn量が10%未満であること:
スケール内に含有されるMn量は、浸炭時の浸炭阻害抑制のための指標である。この指標のMn量が10%を上回ると、部品を浸炭する際、炭素の侵入がMn酸化物に阻害され、浸炭後に硬さが得られにくくなる。スケール内部のいずれの深さでもMn量が10%以下であることを満足していると、浸炭した際に、浸炭条件に左右されることなく、特有の浸炭条件を用いずとも、浸炭阻害の発生を抑制することができる。
The amount of Mn contained in the scale is less than 10% at any depth of the scale thickness, where the area near the surface containing 5% or more of O is defined as the scale thickness from the surface:
The amount of Mn contained in the scale is an index for inhibiting inhibition of carburization during carburization. If the Mn content of this index exceeds 10%, the penetration of carbon is inhibited by the Mn oxide when the part is carburized, making it difficult to obtain hardness after carburizing. If it is satisfied that the Mn content is 10% or less at any depth inside the scale, carburization inhibition can be achieved without being affected by the carburizing conditions and without using specific carburizing conditions. The occurrence can be suppressed.

浸炭後の最表面の硬さが700Hv以上:
浸炭部品の表面硬さが700Hv未満であると、浸炭部品、例えば歯車や軸受などにおいて、所定の強度特性が得られず、部品の寿命が短くなる。そこで、浸炭された最表面硬さは700Hv以上と規定する。
The hardness of the outermost surface after carburizing is 700Hv or more:
If the surface hardness of the carburized parts is less than 700 Hv, the carburized parts, such as gears and bearings, cannot obtain the desired strength characteristics, resulting in a shortened service life of the parts. Therefore, the hardness of the carburized outermost surface is defined as 700 Hv or more.

浸炭後の表面から500μm深さまでの炭素量は0.50%~1.00%とすること:
浸炭後の表面から500μm深さまでの炭素量が0.50%未満であると、浸炭が正常に行えておらず、疲労強度が低くなる。また、表面から500μm深さまでの炭素量が1.00%を超えると炭化物が析出しすぎてしまい、効果が飽和する。したがって、浸炭後の表面から500μm深さまでの炭素量は0.50%~1.00%とする
After carburizing, the carbon content from the surface to a depth of 500 μm should be 0.50% to 1.00%:
If the carbon content from the surface to a depth of 500 μm after carburization is less than 0.50%, carburization cannot be performed normally, resulting in low fatigue strength. Also, if the carbon content exceeds 1.00% from the surface to a depth of 500 μm, too much carbide precipitates and the effect is saturated. Therefore, the carbon content from the surface to a depth of 500 μm after carburizing is 0.50% to 1.00%.

(実施例)
表1に示された化学組成からなる鋼種名A~Mの100kg鋼塊を、それぞれ真空溶解炉にて溶製した。その後、これらA~Mの各鋼を1250℃で12時間以上ソーキングを行い、熱間鍛造して直径32mmの棒鋼に製造し、900℃で4時間保持した後空冷して焼きならし処理を行うことで供試材を得た。
(Example)
100 kg steel ingots of steel type names A to M having chemical compositions shown in Table 1 were each melted in a vacuum melting furnace. After that, each of these steels A to M is soaked at 1250°C for 12 hours or more, hot forged to produce a steel bar with a diameter of 32 mm, held at 900°C for 4 hours, and then air-cooled to perform normalizing treatment. Thus, the test material was obtained.

Figure 2022184163000002
Figure 2022184163000002

これらの供試材を、図1に示す寸法に加工し、図2に示す浸炭条件が異なる3条件でそれぞれガス浸炭することで試験片を得た。ここで、浸炭条件1は通常用いられる浸炭条件であり、浸炭条件2は浸炭温度が低めであり、浸炭条件3は浸炭時間を短めに設定している。 These specimens were machined to the dimensions shown in FIG. 1 and gas carburized under three different carburizing conditions shown in FIG. 2 to obtain test pieces. Here, the carburizing condition 1 is the carburizing condition that is normally used, the carburizing condition 2 is set to a lower carburizing temperature, and the carburizing condition 3 is set to a shorter carburizing time.

<評価項目>
浸炭後の試験片の特性については、(1)表面~O量が5%以上含まれる範囲までをスケール厚みとしたときに、スケール内部のMn量(グロー放電発光分光分析装置を用いて測定)、(2)浸炭後の表面硬さ(Hv硬さ試験機を用いて測定)、(3)浸炭後の表面炭素濃度(浸炭後に試験片を切り出し、電子線マイクロアナライザ(EPMA)を用いて測定)をそれぞれ評価した。以下に、詳細な測定方法について説明する。
<Evaluation items>
Regarding the characteristics of the test piece after carburization, (1) the amount of Mn inside the scale (measured using a glow discharge emission spectrometer) when the thickness of the scale is from the surface to the range where the amount of O is 5% or more. , (2) surface hardness after carburization (measured using an Hv hardness tester), (3) surface carbon concentration after carburization (a test piece is cut out after carburization and measured using an electron probe microanalyzer (EPMA) ) were evaluated respectively. A detailed measurement method will be described below.

(1)スケール内部のMn量の測定に用いた「グロー放電発光分光分析装置」とは、高電圧に印加したArイオンを試料表面に衝突(スパッタ)させ、はじき出した原子をプラズマ状態に励起させることで生じる光の波長と強度を検出することで、試料深さ方向の元素の定量・定性分析が実施可能な装置である。
今回の実施例では、浸炭ままの試験片をグロー放電発光分光分析装置にセットし、スパッタ条件に関して、φ2mmの銅電極、Arガス圧を600Pa、高周波印加電圧を25Wで実施し、スケールに含まれるMnの量を測定した。
(1) The "glow discharge optical emission spectrometer" used to measure the amount of Mn inside the scale is to cause Ar ions applied to a high voltage to collide (sputter) the sample surface and excite the sputtered atoms into a plasma state. By detecting the wavelength and intensity of the light generated by this, it is possible to perform quantitative and qualitative analysis of elements in the depth direction of the sample.
In this example, the as-carburized test piece was set in a glow discharge emission spectrometer, and the sputtering conditions were a copper electrode of φ2 mm, an Ar gas pressure of 600 Pa, and a high-frequency applied voltage of 25 W. The amount of Mn was measured.

(2)また、各試験片に対して、Hv硬さ試験機を用いて浸炭面の任意の箇所を5回、荷重300kgfで測定し、その測定結果の平均値を当該試験片の浸炭後の表面硬さ(ビッカース硬さ)とした。 (2) In addition, for each test piece, an arbitrary location on the carburized surface was measured five times with a load of 300 kgf using an Hv hardness tester, and the average value of the measurement results was calculated after carburizing the test piece. The surface hardness (Vickers hardness) was used.

(3)浸炭後の試験片を半割し、切断面が表面に現れるように導電性樹脂に埋め込み、研磨をした。その後、EPMAを用いて、浸炭された表面から深さ方向に500μm深さまでの炭素量を10μm間隔で測定し、その平均値を表面炭素濃度とした。この値が0.50~1.00%を満たすかを評価する。 (3) The test piece after carburization was cut in half, embedded in a conductive resin so that the cut surface appeared on the surface, and polished. After that, using EPMA, the amount of carbon was measured at intervals of 10 μm from the carburized surface to a depth of 500 μm in the depth direction, and the average value was taken as the surface carbon concentration. Evaluate whether this value satisfies 0.50 to 1.00%.

鋼種A~Mの化学成分の鋼からなる試験片に対して浸炭条件1~3にて浸炭し、各浸炭後の試験片に対して、上記(1)、(2)、(3)の評価を行った。各試験片の評価結果を表2に示す。 Test pieces made of steel with chemical compositions of steel types A to M were carburized under carburizing conditions 1 to 3, and the test pieces after each carburization were evaluated in the above (1), (2), and (3). did Table 2 shows the evaluation results of each test piece.

Figure 2022184163000003
Figure 2022184163000003

本発明鋼の化学成分からなる鋼種A~Jは、浸炭条件1~3のいずれの試験片についても、スケール内のMn量がいずれの深さでも10%を超えることはなかったので、浸炭阻害が生じることはなく、また、浸炭後の表面硬さは700Hv以上であり、表面炭素濃度も0.50~1.00%であった。したがって、特段な浸炭条件を見出さずとも、一般的な浸炭によって、十分な強度が得られるので、疲労寿命が確保されることとなる。 Steel types A to J, which have the chemical components of the steel of the present invention, did not exceed 10% in the amount of Mn in the scale at any depth for any of the test pieces under carburizing conditions 1 to 3, so carburization was inhibited. In addition, the surface hardness after carburizing was 700 Hv or more, and the surface carbon concentration was 0.50 to 1.00%. Therefore, even if no special carburizing conditions are found, general carburizing can provide sufficient strength, ensuring the fatigue life.

他方、比較鋼の化学成分からなる鋼種K~Mでは、そのほとんどがスケール内の最大Mn量が10%を超えており、10%を超えた試験片はいずれも表面硬さが得られておらず、表面炭素濃度も不足しているなど、浸炭が阻害されるものとなった。 On the other hand, most of the steel grades K to M, which have the chemical compositions of the comparative steels, have a maximum Mn amount in the scale of more than 10%, and any test specimen exceeding 10% has no surface hardness. In addition, the surface carbon concentration was insufficient, which hindered carburization.

鋼種Kは、Mnの含有量が0.60%、Crの含有量が5.00%を超えており、CrおよびMnのスケールが十分に生成してしまい、浸炭阻害が生じやすくなっているためと思われる。また、鋼種LはCrの含有量が5%を超えており、浸炭した際に鋼材の表面にCr酸化物が形成するため、炭素の侵入が阻害されてしまい、硬さが得られなかったものと思われる。鋼種Mは、Mnの量が0.60%を超えており、鋼材表面にMn系主体の酸化被膜が形成し、浸炭条件によらず、浸炭を阻害したため、硬さが得られず、表面炭素濃度も低かったと思われる。 Steel type K has a Mn content of 0.60% and a Cr content of more than 5.00%, so that Cr and Mn scales are sufficiently formed, and carburization is easily inhibited. I think that the. In addition, steel type L has a Cr content of more than 5%, and when carburized, Cr oxides are formed on the surface of the steel material, which hinders the penetration of carbon, and hardness cannot be obtained. I think that the. In steel type M, the amount of Mn exceeded 0.60%, and an oxide film mainly composed of Mn was formed on the surface of the steel material. The concentration was probably too low.

1 試験片 1 test piece

Claims (2)

質量%で、C:0.10~0.40%、Si:0.20~0.80%、Mn:0.20~0.60%、P:≦0.030%、S:≦0.030%、Cr:1.60~5.00%、Al:0.003~0.050%、N:0.005~0.020%、残部がFeおよび不可避不純物からなり、浸炭された状態であって、
O量が5%以上含まれる表面近傍の領域を表面からのスケール厚みとした場合に、スケール厚みのいずれの深さにおいてもスケール内に含有されるMn量が10%未満であって、
その表面の硬さが700Hv以上であって、
その表面から500μm深さまでの炭素量が0.50~1.00%である
浸炭部品。
% by mass, C: 0.10 to 0.40%, Si: 0.20 to 0.80%, Mn: 0.20 to 0.60%, P: ≤0.030%, S: ≤0. 030%, Cr: 1.60 to 5.00%, Al: 0.003 to 0.050%, N: 0.005 to 0.020%, the balance being Fe and unavoidable impurities, in a carburized state There is
When a region near the surface containing 5% or more of O is defined as the scale thickness from the surface, the amount of Mn contained in the scale is less than 10% at any depth of the scale thickness,
The hardness of the surface is 700Hv or more,
A carburized part having a carbon content of 0.50 to 1.00% from its surface to a depth of 500 μm.
質量%で、C:0.10~0.40%、Si:0.20~0.80%、Mn:0.20~0.60%、P:≦0.030%、S:≦0.030%、Cr:1.60~5.00%、Al:0.003~0.050%、N:0.005~0.020%を主成分とし、
さらに、選択的付加的成分として Nb:0.02~0.10%、Ni:5.00%以下,Mo:1.00%以下,Ti:0.20%以下,B:0.010~0.050%のうち、少なくとも1種類を含有し、
残部がFeおよび不可避不純物からなり、浸炭された状態であって、
O量が5%以上含まれる表面近傍の領域を表面からのスケール厚みとした場合に、スケール厚みのいずれの深さにおいてもスケール内に含有されるMn量が10%未満であって、
その表面の硬さが700Hv以上であって、
表面から500μm深さまでの炭素量が0.50~1.00%である浸炭部品。
% by mass, C: 0.10 to 0.40%, Si: 0.20 to 0.80%, Mn: 0.20 to 0.60%, P: ≤0.030%, S: ≤0. 030%, Cr: 1.60 to 5.00%, Al: 0.003 to 0.050%, N: 0.005 to 0.020% as main components,
Furthermore, as selective additional components, Nb: 0.02 to 0.10%, Ni: 5.00% or less, Mo: 1.00% or less, Ti: 0.20% or less, B: 0.010 to 0 .050%, containing at least one
The remainder is composed of Fe and unavoidable impurities, and is in a carburized state,
When a region near the surface containing 5% or more of O is defined as the scale thickness from the surface, the amount of Mn contained in the scale is less than 10% at any depth of the scale thickness,
The hardness of the surface is 700Hv or more,
A carburized part with a carbon content of 0.50 to 1.00% from the surface to a depth of 500 μm.
JP2021091852A 2021-05-31 2021-05-31 Carburized component Pending JP2022184163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021091852A JP2022184163A (en) 2021-05-31 2021-05-31 Carburized component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021091852A JP2022184163A (en) 2021-05-31 2021-05-31 Carburized component

Publications (1)

Publication Number Publication Date
JP2022184163A true JP2022184163A (en) 2022-12-13

Family

ID=84437989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021091852A Pending JP2022184163A (en) 2021-05-31 2021-05-31 Carburized component

Country Status (1)

Country Link
JP (1) JP2022184163A (en)

Similar Documents

Publication Publication Date Title
JP5432105B2 (en) Case-hardened steel and method for producing the same
EP3088550B1 (en) Production method of carburized steel component and carburized steel component
JP5335502B2 (en) Martensitic stainless steel with excellent corrosion resistance
EP2692890A1 (en) Abrasion-resistant steel sheet exhibiting excellent resistance to stress corrosion cracking, and method for producing same
KR20170118879A (en) A bolt wire rod excellent in pickling resistance and resistance to delamination after tempering tempering,
JP2008163452A (en) Martensitic stainless steel excellent in corrosion resistance
US20180347025A1 (en) Steel, carburized steel component, and method for manufacturing carburized steel component
WO2017150738A1 (en) Stainless steel member and method for manufacturing same, and stainless steel component and method for manufacturing same
RU2381295C2 (en) Steel for machine components, manufacturing method of machine components from this steel and produced machine components
JP4502929B2 (en) Case hardening steel with excellent rolling fatigue characteristics and grain coarsening prevention characteristics
CN109790602B (en) Steel
EP3115477B1 (en) Age hardening non-heat treated bainitic steel
JP4847681B2 (en) Ti-containing case-hardened steel
JP2010215961A (en) Steel sheet of boron steel superior in hardenability, and manufacturing method therefor
JP2009191322A (en) Case-hardened steel superior in grain-coarsening resistance for use in carburized parts
JP2022184163A (en) Carburized component
KR970009523B1 (en) High strength &amp; high corrosion resistance of martensite stainless steel
JP3233674B2 (en) Bearing steel
JP2023070558A (en) Steel for mechanical structures having excellent carburizing properties and carburized part
JP2022080598A (en) Carburized component
JP2023110174A (en) Steel for machine structure use excellent in carburization under high temperature gas carburization
JP7378889B2 (en) Carburized steel parts made of mechanical structural steel with excellent pitting resistance on grinding surfaces
KR970001413B1 (en) High carbon chromium bearing steel
JP3383345B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
JP2024077551A (en) Vacuum carburizing steel and vacuum carburizing steel parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240411