JP2022183507A - Dialysis waste liquid treatment method - Google Patents

Dialysis waste liquid treatment method Download PDF

Info

Publication number
JP2022183507A
JP2022183507A JP2021090860A JP2021090860A JP2022183507A JP 2022183507 A JP2022183507 A JP 2022183507A JP 2021090860 A JP2021090860 A JP 2021090860A JP 2021090860 A JP2021090860 A JP 2021090860A JP 2022183507 A JP2022183507 A JP 2022183507A
Authority
JP
Japan
Prior art keywords
separation membrane
membrane module
liquid
separation
urea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021090860A
Other languages
Japanese (ja)
Inventor
泉 永野
Izumi Nagano
慎一郎 吉冨
Shinichiro Yoshitomi
竜馬 宮本
Ryoma MIYAMOTO
宜記 岡本
Yoshiki Okamoto
茂久 花田
Shigehisa Hanada
晴季 志村
Harutoki Shimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2021090860A priority Critical patent/JP2022183507A/en
Publication of JP2022183507A publication Critical patent/JP2022183507A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

To provide a dialysis waste liquid treatment method that removes unnecessary potassium ion and urea removed from a body, while collecting necessary electrolyte components from dialysis wastewater.SOLUTION: In a dialysis waste liquid treatment method, in which an undiluted solution is treated using a separation membrane module 1 having a separation membrane 1 and a separation membrane module 2 having a separation membrane 2 to be separated into purified liquid having water and electrolytes collected therefrom and waste liquid containing neutral low molecules such as urea, the undiluted solution is dialysis waste liquid containing at least electrolytes and neutral low molecules. A pore diameter of the separation membrane 1 which is measured using a positron annihilation lifetime measurement technique is 7Å or more and a pore diameter of the separation membrane 2 which is measured using the positron annihilation lifetime measurement technique is 7Å or less, and permeated liquid of the separation membrane module 1 is supplied to the separation membrane module 2 to perform the separation treatment.SELECTED DRAWING: Figure 1

Description

本発明は透析廃液処理方法に関する。 The present invention relates to a method for treating dialysis waste fluid.

様々な選択分離技術のニーズの中で、近年、生活水準の向上に伴って世界的に人工透析治療の患者が増えており、治療により排出される透析廃液から不純物を除去し透析液として再生する技術が着目されつつある。一般的な人工透析治療では、一回の処置において90Lから150Lの大量の透析液を使用する必要がある。人工透析治療に使用された透析液には血液から移動した尿素などの老廃物が含まれるため、基本的に一度の使用によって透析液は廃棄される。そのため大量の透析廃液が発生してしまうことが問題となっている。
透析液の作成方法としては、水道水を逆浸透膜などで処理した純水に、必要な塩分、グルコースなどを添加し透析液とする方法が一般的である。しかしながら、水道水の供給が断続的な水不足地域においては、必要な量の水道水の確保が困難な場合もあり、水使用量の低減が求められている。さらに、水供給量が十分な地域においても、災害時において断水が続くと透析液を水道水から作ることができなくなる。そのため、透析廃液から尿素などの老廃物を取り除き、透析液として再利用する透析廃液再利用の要望はますます高まってきており、透析廃液再利用技術の提案がいくつかなされている。
例えば、透析廃液から、吸着材によって不純物、老廃物、及び電解質を取り除くことが提案されているが、実施される透析治療に応じて透析廃液の再生には数キログラムの吸着材が必要とされ、重量やコストをできるだけ抑えるシステムが望まれている。
特許文献1には吸着材や電気透析により塩分をある程度除去した後に、逆浸透膜を用いて不純物を除去するシステムが提案されている。
Among the needs for various selective separation technologies, in recent years, the number of patients undergoing artificial dialysis treatment has been increasing worldwide as living standards have improved. Technology is gaining attention. In general artificial dialysis treatment, it is necessary to use a large amount of dialysate of 90L to 150L in one treatment. Since the dialysate used for artificial dialysis treatment contains waste products such as urea that have migrated from the blood, the dialysate is basically discarded after one use. As a result, there is a problem that a large amount of dialysis waste liquid is generated.
As a method for preparing a dialysate, a dialysate is generally prepared by adding necessary salt, glucose, etc. to pure water obtained by treating tap water with a reverse osmosis membrane or the like. However, in water shortage areas where the supply of tap water is intermittent, it may be difficult to secure the necessary amount of tap water, and there is a demand for reducing the amount of water used. Furthermore, even in areas with a sufficient water supply, if the water supply continues to be cut off during a disaster, dialysate cannot be made from tap water. Therefore, there is an increasing demand for reuse of dialysis waste fluid by removing waste products such as urea from dialysis waste fluid and reusing it as dialysis fluid, and several proposals have been made for dialysis waste fluid recycling technology.
For example, it has been proposed to remove impurities, waste products, and electrolytes from dialysis effluent by means of sorbents, but regeneration of dialysis effluent requires several kilograms of sorbent, depending on the dialysis treatment being performed. A system that minimizes weight and cost is desired.
Patent Literature 1 proposes a system in which impurities are removed using a reverse osmosis membrane after salt is removed to some extent by an adsorbent or electrodialysis.

国際公開第2020/218571号WO2020/218571

特許文献1に記載の技術は、孔径が7.0Å以下の逆浸透膜を用いて尿素などの老廃物を分離し透析廃液を再生する技術である。本技術では、再生液に塩を足す必要があり、コストがかかる。
そこで透析廃液から必要な塩を回収し再利用するようなシステムが必要となるが、その際老廃物であるカリウムイオンまで回収・再利用することになる。カリウムイオンが透析患者の体内に蓄積することにより高カリウム血症を引き起こす恐れがあるため、血中カリウムイオン濃度のコントロールも透析における重要な役割である。
そこで、本発明の目的は、透析廃液から必要な電解質成分を回収しながら、体内から除去された不要なカリウムイオンと尿素を除去する透析廃液処理方法を提供することにある。
The technique described in Patent Document 1 is a technique for separating waste products such as urea using a reverse osmosis membrane having a pore size of 7.0 Å or less to regenerate dialysis waste fluid. In this technique, it is necessary to add salt to the regeneration solution, which is costly.
Therefore, a system for recovering and reusing the required salt from the dialysis waste fluid is required, but in this case, potassium ions, which are waste products, are also recovered and reused. Controlling the blood potassium ion concentration also plays an important role in dialysis, since accumulation of potassium ions in the body of dialysis patients may cause hyperkalemia.
Accordingly, an object of the present invention is to provide a dialysis waste liquid treatment method for removing unnecessary potassium ions and urea removed from the body while recovering necessary electrolyte components from the dialysis waste liquid.

上記目的を達成するために、本発明の透析廃液処理方法は、以下の(1)~(12)のいずれかの構成を構える。
(1)原液を、分離膜1を有する分離膜モジュール1と分離膜2を有する分離膜モジュール2で処理し、水および電解質を回収した精製液と、尿素などの中性低分子を含んだ廃液に分離する透析廃液処理方法であって、前記原液は少なくとも電解質、中性低分子を含む透析廃液であり、前記分離膜1は陽電子消滅寿命測定法を用いて測定される孔径が7Å以上であり、前記分離膜2は陽電子消滅寿命測定法を用いて測定される孔径が7Å以下であり、前記分離膜モジュール1の透過液は前記分離膜モジュール2に供給し分離処理され、
少なくとも以下の(i)(ii)のいずれかの要件を満たすことを特徴とする透析廃液処理方法。
(i)前記分離膜モジュール2の透過液の一部を前記原液と混合後前記分離膜モジュール1に供給し、前記分離膜モジュール2の透過液の残りの全量または一部を前記分離膜モジュール1の濃縮液と混合し精製液を得る。
(ii)前記分離膜モジュール2の透過液の全量を前記原液と混合後前記分離膜モジュール1の供給側に供給し、前記分離膜モジュール1の濃縮液を精製液として得る。
(2)前記分離膜1に対して、10000mg/Lの塩化ナトリウム(NaCl)と250mg/Lの尿素を混合した溶液1を36℃、圧力1.2Mpaで供給した場合において、供給液に対する透過液中の成分濃度の減少率で定義する除去率について、前記分離膜1の塩化ナトリウム除去率が90%以上であり、かつ、前記分離膜1の尿素除去率が25%以下である、(1)に記載の透析廃液処理方法。
(3)前記分離膜2に対して、1000mg/Lの塩化ナトリウム(NaCl)と700mg/Lの尿素を混合した溶液2を36℃、圧力1.8Mpaで供給した場合において、供給液に対する透過液中の成分濃度の減少率で定義する除去率について、
前記分離膜2の尿素除去率が85%以上である、(1)または(2)に記載の透析廃液処理方法。
(4)前記(i)の要件において、前記分離膜モジュール2の透過液量に対する、原液に混合する前記分離膜モジュール2の透過液の一部の量の比が0.6以上である、(1)~(3)のいずれかに記載の透析廃液処理方法。
(5)前記原液に対する前記精製液の量の割合が75%以上である、(1)~(4)のいずれかに記載の透析廃液処理方法。
(6)前記分離膜が、支持層と、ポリアミドおよび酢酸セルロースのうちの少なくとも一方を含有する分離機能層膜を含む(1)~(5)のいずれかに記載の透析廃液処理方法。
(7)前記分離膜が、支持層と、ポリアミドを含有する分離機能層膜を含む(1)~(6)のいずれかに記載の透析廃液処理方法。
(8)原液を分離膜モジュール1と分離膜モジュール2で分離処理する透析廃液処理装置であって、前記分離膜モジュールは分離膜を有し、
前記分離膜1は陽電子消滅寿命測定法を用いて測定される孔径が7Å以上であり、前記分離膜2は陽電子消滅寿命測定法を用いて測定される孔径が7Å以下であり、前記分離膜モジュール1の透過側から得られる透過液を含む透過側溶液のラインは前記分離膜モジュール2の供給側に接続され、
少なくとも以下の(i)(ii)のいずれかの要件を満たすことを特徴とする透析廃液処理装置。
(i)前記分離膜モジュール2の透過液ラインを2つに分岐させ、一方を前記原液ラインに接続し、前記分離膜モジュール2の透過液ラインのもう一方を前記分離膜モジュール1の濃縮液ラインに接続し精製液ラインとする。
(ii)前記分離膜モジュール2の透過液ラインを前記原液ラインに接続し、前記分離膜モジュール1の濃縮液ラインを精製液ラインとする。
(9)前記分離膜1に対して、10000mg/Lの塩化ナトリウム(NaCl)と250mg/Lの尿素を混合した溶液1を36℃、圧力1.2Mpaで供給した場合において、供給液に対する透過液中の成分濃度の減少率で定義する除去率について、前記分離膜1の塩化ナトリウム除去率が90%以上であり、かつ、前記分離膜1の尿素除去率が25%以下である、(8)に記載の透析廃液処理装置。
(10)前記分離膜2に対して、1000mg/Lの塩化ナトリウム(NaCl)と700mg/Lの尿素を混合した溶液2を36℃、圧力1.8Mpaで供給した場合において、供給液に対する透過液中の成分濃度の減少率で定義する除去率について、
前記分離膜2の尿素除去率が85%以上である、(8)または(9)に記載の透析廃液処理方法。
(11)前記分離膜が、支持層と、ポリアミドおよび酢酸セルロースのうちの少なくとも一方を含有する分離機能層膜を含む(8)~(10)のいずれかに記載の透析廃液処理装置。
(12)前記分離膜が、支持層と、ポリアミドを含有する分離機能層膜を含む(8)~(11)のいずれかに記載の透析廃液処理装置。
In order to achieve the above objects, the dialysis waste fluid treatment method of the present invention has any one of the following configurations (1) to (12).
(1) The undiluted solution is treated with the separation membrane module 1 having the separation membrane 1 and the separation membrane module 2 having the separation membrane 2, and the purified liquid obtained by recovering water and electrolytes, and the waste liquid containing neutral low molecules such as urea. wherein the undiluted solution is a dialysis waste liquid containing at least an electrolyte and a neutral low-molecular weight molecule, and the separation membrane 1 has a pore size of 7 Å or more as measured by a positron annihilation lifetime measurement method. , the separation membrane 2 has a pore size of 7 Å or less as measured by a positron annihilation lifetime measurement method, and the permeate of the separation membrane module 1 is supplied to the separation membrane module 2 for separation treatment,
A dialysis waste liquid treatment method characterized by satisfying at least one of the following requirements (i) and (ii).
(i) A part of the permeated liquid of the separation membrane module 2 is mixed with the raw liquid and then supplied to the separation membrane module 1, and all or part of the remaining permeated liquid of the separation membrane module 2 is mixed with the raw liquid. to obtain a purified solution.
(ii) After mixing the whole amount of the permeated liquid of the separation membrane module 2 with the raw liquid, it is supplied to the feed side of the separation membrane module 1 to obtain the concentrated liquid of the separation membrane module 1 as a purified liquid.
(2) When a solution 1 in which 10000 mg / L sodium chloride (NaCl) and 250 mg / L urea are mixed is supplied to the separation membrane 1 at 36 ° C. and a pressure of 1.2 MPa, the permeate to the feed liquid (1) that the sodium chloride removal rate of the separation membrane 1 is 90% or more and the urea removal rate of the separation membrane 1 is 25% or less, with respect to the removal rate defined by the reduction rate of the component concentration in the 4. The method for treating dialysis waste fluid according to .
(3) When a solution 2 in which 1000 mg/L sodium chloride (NaCl) and 700 mg/L urea are mixed is supplied to the separation membrane 2 at 36 ° C. and a pressure of 1.8 MPa, the permeate to the feed liquid For the removal rate defined by the reduction rate of the component concentration in
The dialysis waste liquid treatment method according to (1) or (2), wherein the separation membrane 2 has a urea removal rate of 85% or more.
(4) In the requirement (i) above, the ratio of the amount of a part of the permeated liquid of the separation membrane module 2 mixed with the raw liquid to the amount of the permeated liquid of the separation membrane module 2 is 0.6 or more ( 1) A method for treating dialysis waste fluid according to any one of (3).
(5) The dialysis waste liquid treatment method according to any one of (1) to (4), wherein the ratio of the purified liquid to the stock liquid is 75% or more.
(6) The dialysis waste liquid treatment method according to any one of (1) to (5), wherein the separation membrane includes a support layer and a separation functional layer membrane containing at least one of polyamide and cellulose acetate.
(7) The dialysis waste liquid treatment method according to any one of (1) to (6), wherein the separation membrane includes a support layer and a separation functional layer membrane containing polyamide.
(8) A dialysis waste liquid treatment apparatus that separates and treats a stock solution with a separation membrane module 1 and a separation membrane module 2, wherein the separation membrane module has a separation membrane,
The separation membrane 1 has a pore size of 7 Å or more measured by a positron annihilation lifetime measurement method, the separation membrane 2 has a pore size of 7 Å or less measured by a positron annihilation lifetime measurement method, and the separation membrane module. A permeate solution line containing a permeate obtained from the permeate side of 1 is connected to the feed side of the separation membrane module 2,
A dialysis waste liquid treatment apparatus characterized by satisfying at least one of the following requirements (i) and (ii).
(i) The permeated liquid line of the separation membrane module 2 is branched into two, one of which is connected to the raw liquid line, and the other of the permeated liquid line of the separation membrane module 2 is connected to the concentrated liquid line of the separation membrane module 1. and use it as a purified liquid line.
(ii) The permeated liquid line of the separation membrane module 2 is connected to the raw liquid line, and the concentrated liquid line of the separation membrane module 1 is used as the purified liquid line.
(9) When a solution 1 of a mixture of 10000 mg/L sodium chloride (NaCl) and 250 mg/L urea is supplied to the separation membrane 1 at 36 ° C. and a pressure of 1.2 MPa, the permeate to the feed liquid Regarding the removal rate defined by the reduction rate of the component concentration in the separation membrane 1, the sodium chloride removal rate of the separation membrane 1 is 90% or more and the urea removal rate of the separation membrane 1 is 25% or less, (8) 4. The dialysis waste liquid treatment device according to .
(10) When a solution 2 in which 1000 mg/L sodium chloride (NaCl) and 700 mg/L urea are mixed is supplied to the separation membrane 2 at 36 ° C. and a pressure of 1.8 Mpa, the permeate to the feed liquid For the removal rate defined by the reduction rate of the component concentration in
The dialysis waste liquid treatment method according to (8) or (9), wherein the separation membrane 2 has a urea removal rate of 85% or more.
(11) The dialysis waste liquid treatment apparatus according to any one of (8) to (10), wherein the separation membrane includes a support layer and a separation functional layer membrane containing at least one of polyamide and cellulose acetate.
(12) The dialysis waste liquid treatment apparatus according to any one of (8) to (11), wherein the separation membrane includes a support layer and a separation functional layer membrane containing polyamide.

本発明の透析廃液処理方法によって、低圧運転下でも必要な電解質成分を残しつつ体内から除去された不要なカリウムイオンと尿素を除去した精製液を透析廃液から高い回収率で回収することができる。 According to the dialysis waste liquid treatment method of the present invention, a purified liquid obtained by removing unnecessary potassium ions and urea removed from the body while leaving the necessary electrolyte components even under low-pressure operation can be recovered from the dialysis waste liquid at a high recovery rate.

本発明に記載の透析廃液処理装置の模式図の一例である。BRIEF DESCRIPTION OF THE DRAWINGS It is an example of the schematic diagram of the dialysis waste fluid processing apparatus of this invention. 本発明に記載の透析廃液処理装置の模式図の一例である。BRIEF DESCRIPTION OF THE DRAWINGS It is an example of the schematic diagram of the dialysis waste fluid processing apparatus of this invention. 従来の透析廃液処理装置の模式図の一例である。It is an example of a schematic diagram of a conventional dialysis waste liquid treatment apparatus. 従来の透析廃液処理装置の模式図の一例である。It is an example of a schematic diagram of a conventional dialysis waste liquid treatment apparatus.

以下に、本発明の実施形態について図面を参照しながら詳細に説明するが、本発明はこれらによって何ら限定されるものではない。
<透析および透析廃液について>
透析には公知の方法が適用される。透析装置は、尿素等の毒素を透過し、かつ血漿成分を透過しない透析膜を有する。透析膜の一方の面に透析液を供給しながら他方の面に血液を供給する。透析液の組成は公知であり、ナトリウムイオン、カリウムイオン、カルシウムイオン、マグネシウムイオン、ブドウ糖等が含まれる。血液中の尿素が透析膜を介して透析液に拡散することで、血液中から尿素が除かれる。また、尿素以外に透析により除去する必要がある物質のひとつに、カリウムイオンがある。カリウムイオンは約90%が腎臓から排出されるため、透析患者は蓄積しやすい。高カリウム血症は心停止を引き起こす可能性があり、血中カリウムイオン濃度のコントロールも透析における重要な役割である。透析システムとして、毎回の透析で血中カリウムイオンを26%~35%の範囲で除去し、血中カリウムイオン濃度をコントロールする必要がある。
透析装置を通過した透析廃液として電解質が10000mg/L、そのうちカリウムイオンが100mg/L、中性分子である尿素が600mg/L程度含まれているものを想定する。透析廃液から尿素を70%程度除去、カリウムイオンを2~12%の範囲で除去すると再生液として好ましく、電解質を80%以上回収するとコスト削減の観点からより好ましい。
<プロセス概要>
図1、図2に本発明に示す透析廃液処理方法の1つの形態を示す。図1、図2に示す透析廃液処理装置では、分離膜モジュール1および分離膜モジュール2ともに透過側の供給がない形の通常の分離膜モジュールが使用されている。通常の分離膜モジュールではモジュールの供給側に加圧された供給液を導入し、濃縮液と透過液を得る。
分離膜モジュール1は尿素の透過性が高く電解質の除去率は高い。分離膜モジュール2は尿素や電解質といった分離膜モジュール1の透過水に含まれるすべての成分を高除去する。分離膜モジュール1(1)の濃縮液(105)は尿素より電解質の濃縮率が高いため、電解質がより優先的に含まれるようになる。一方、分離膜モジュール1の透過液(106)は尿素が多く含まれており、電解質はあまり含まれない。分離膜1の透過液(106)を分離膜モジュール2(2)で処理し、分離膜モジュール2の濃縮液(108)と透過液(109)を得る。分離膜モジュール2はすべての成分を高除去するため、分離膜モジュール2の透過液にはカリウムイオンを含む電解質と尿素ともにごく微量しか含まれない。また、尿素を多く含む分離モジュール2の濃縮液(108)は系外に排出される。図1に示す透析廃液処理方法では分離膜モジュール2の透過液(109)の一部を、図2では分離膜モジュール2の透過液(109)の全てを、分離膜モジュール1(1)に供給される原液(101)と混合し循環している。残りの分離膜モジュール2の透過液(109)と分離膜モジュール1の濃縮液(105)を混合し、尿素をあまり含まないが電解質を多く含む精製液(102)を得る。
本発明における透析廃液処理方法に用いられる透析廃液には、総成分濃度として1000mg/L以上含まれていることが想定される。分離膜モジュール2の透過液の循環がない透析廃液処理方法では、分離膜モジュール1の濃縮液(105)が高濃度になる問題があった。しかし上記の循環によって分離膜モジュール1の供給液(104)の濃度が低くなり、分離膜モジュール2の透過液(109)の循環を行わない透析廃液処理方法に対して、より低圧で処理することが可能となる。低圧で処理することができれば、高圧ポンプや高圧対応の流路、圧力容器を使用する必要がなくなるため、装置コストの低減や騒音の低減が期待される。分離膜モジュール2の透過液(109)の量に対する循環(110)量の比は0.6以上が好ましく、システム全体として尿素除去率を70%以上にするには0.8以上がより好ましい。
ここでシステム全体の尿素の除去率は以下の式から求めた。
尿素の除去率=[(原液(101)の尿素濃度)×(原液(101)の流量)-(精製液(102)の尿素濃度)×(精製液(102)の流量)]/[(原液(101)の尿素濃度)×(原液(101)の流量)]×100[%]
供給される原液に対する精製液の割合、つまりシステム全体の水の回収率は75%以上が好ましく、水道インフラが発達していない地域で本透析廃液処理法使用をする際には、必要な補液量をより少なくするため、システム全体の水の回収率が90%以上であることが好ましい。
また、精製液の濃度調整などのため、分離膜モジュール2の透過液の一部を取り出したり、精製液に純水や溶液を追加したりしても良い。
本発明の透析廃液処理方法を具現化するために、前記の流れでラインを組み、適切な位置にバルブやポンプを配置させ、透析廃液処理装置を組み立てることができる。
<プロセスを成立させるために必要な膜の条件>
分離膜モジュール1では分離膜1を、分離膜モジュール2では分離膜2をそれぞれ用いる。分離膜1は、陽電子消滅寿命測定法を用いて測定される孔径が7Å以上である。透析廃液処理システムを在宅で使用する観点から、分離膜1は孔径が7Å以上であると実用性のある透水性を有することができ、システムが短時間で透析液を再生することができる。また必要な電解質除去率を確保するため、分離膜1の孔径は10Å以下であるとより好ましい。
分離膜2は陽電子消滅寿命測定法を用いて測定される孔径が7Å以下である。分離膜の孔径が7Å以下であることで、分離膜モジュール2は尿素や電解質といった分離膜モジュール1の透過水に含まれるすべての成分を高除去することができる。
孔径は陽電子消滅寿命測定法を用いて測定される。陽電子消滅寿命測定法とは、陽電子が試料に入射してから消滅するまでの時(数百ピコ秒から数十ナノ秒のオーダー)を測定し、その消滅寿命に基づいて、0.1~10nmの空孔の大きさ、その数密度、およびその大きさの分布などの情報を非破壊的に評価する手法である。この測定方法については、「第4版実験化学講座」第14巻、485頁、日本化学会編,丸善株式会社(1992)に記載されている。
本発明による分離膜の分離機能層における平均孔半径Rは、上記の陽電子消滅寿命τに基づいて、以下の式(1)から求めている。式(1)は、厚さΔRの電子層にある半径Rの空孔にo-Psが存在すると仮定した場合の関係を示しており、ΔRは経験的に0.166nmと求められている(Nakanishi他,Journal of Polymer Science,Part B:Polymer Physics,Vol.27,p.1419,John Wiley & Sons,Inc.(1989)にその詳細が記載されている)。
EMBODIMENT OF THE INVENTION Below, although embodiment of this invention is described in detail, referring drawings, this invention is not limited at all by these.
<Regarding dialysis and dialysis wastewater>
A known method is applied for dialysis. A dialyzer has a dialysis membrane that is permeable to toxins such as urea and impermeable to plasma components. One side of the dialysis membrane is supplied with dialysate while the other side is supplied with blood. The composition of dialysate is known and includes sodium ions, potassium ions, calcium ions, magnesium ions, glucose and the like. Urea in the blood is removed from the blood by diffusing into the dialysate through the dialysis membrane. Potassium ions are one of the substances that need to be removed by dialysis other than urea. Since about 90% of potassium ions are excreted by the kidneys, dialysis patients tend to accumulate potassium ions. Hyperkalemia can cause cardiac arrest, and control of blood potassium ion concentration also plays an important role in dialysis. As a dialysis system, it is necessary to remove 26% to 35% of blood potassium ions in each dialysis to control the blood potassium ion concentration.
It is assumed that the dialysis waste fluid that has passed through the dialysis machine contains 10000 mg/L of electrolyte, of which 100 mg/L of potassium ions and 600 mg/L of urea, which is a neutral molecule, is contained. Removal of about 70% of urea and removal of potassium ions in the range of 2 to 12% from the dialysis waste solution is preferable as a regeneration solution, and recovery of 80% or more of electrolytes is more preferable from the viewpoint of cost reduction.
<Process overview>
1 and 2 show one embodiment of the dialysis waste fluid treatment method according to the present invention. In the dialysis waste liquid treatment apparatus shown in FIGS. 1 and 2, both the separation membrane module 1 and the separation membrane module 2 are normal separation membrane modules with no feed on the permeate side. In a typical separation membrane module, a pressurized feed is introduced to the feed side of the module to obtain a concentrate and a permeate.
The separation membrane module 1 has a high urea permeability and a high electrolyte removal rate. The separation membrane module 2 highly removes all components contained in the permeated water of the separation membrane module 1 such as urea and electrolytes. Since the concentrate (105) of the separation membrane module 1(1) has a higher electrolyte concentration rate than urea, the electrolyte is contained more preferentially. On the other hand, the permeated liquid (106) of the separation membrane module 1 contains a large amount of urea and a small amount of electrolyte. The permeate (106) of separation membrane 1 is treated in separation membrane module 2 (2) to obtain concentrate (108) and permeate (109) of separation membrane module 2. Since the separation membrane module 2 removes all components to a high degree, the liquid permeated through the separation membrane module 2 contains both electrolytes containing potassium ions and urea in very small amounts. Also, the concentrated liquid (108) of the separation module 2 containing a large amount of urea is discharged outside the system. In the dialysis waste liquid treatment method shown in FIG. 1, part of the permeated liquid (109) of the separation membrane module 2, and in FIG. It is mixed with the stock solution (101) to be circulated. The remaining permeate (109) of the separation membrane module 2 and the concentrate (105) of the separation membrane module 1 are mixed to obtain a purified liquid (102) containing little urea but much electrolyte.
It is assumed that the dialysis waste liquid used in the dialysis waste liquid treatment method of the present invention contains 1000 mg/L or more as a total component concentration. In the dialysis waste liquid treatment method without circulation of the permeated liquid of the separation membrane module 2, there is a problem that the concentrate (105) of the separation membrane module 1 becomes highly concentrated. However, the concentration of the feed liquid (104) of the separation membrane module 1 is lowered by the above circulation, and the permeated liquid (109) of the separation membrane module 2 is treated at a lower pressure than the dialysis waste liquid treatment method that does not circulate. becomes possible. If it can be processed at low pressure, there is no need to use a high-pressure pump, a high-pressure flow path, or a pressure vessel, which is expected to reduce equipment costs and noise. The ratio of the amount of circulating (110) to the amount of permeating liquid (109) in the separation membrane module 2 is preferably 0.6 or more, and more preferably 0.8 or more to achieve a urea removal rate of 70% or more for the entire system.
Here, the urea removal rate of the entire system was obtained from the following formula.
Urea removal rate = [(urea concentration of stock solution (101)) x (flow rate of stock solution (101)) - (urea concentration of purified solution (102)) x (flow rate of purified solution (102))]/[(stock solution Urea concentration of (101)) × (flow rate of undiluted solution (101))] × 100 [%]
The ratio of the purified liquid to the supplied raw liquid, that is, the water recovery rate of the entire system, is preferably 75% or more. is preferably 90% or higher for the entire system.
Also, for concentration adjustment of the purified liquid, a part of the permeated liquid of the separation membrane module 2 may be taken out, or pure water or a solution may be added to the purified liquid.
In order to embody the dialysis waste liquid treatment method of the present invention, a dialysis waste liquid treatment apparatus can be assembled by constructing lines according to the flow described above and arranging valves and pumps at appropriate positions.
<Membrane Conditions Necessary for Establishing the Process>
The separation membrane module 1 uses the separation membrane 1, and the separation membrane module 2 uses the separation membrane 2, respectively. Separation membrane 1 has a pore diameter of 7 Å or more as measured by a positron annihilation lifetime measurement method. From the viewpoint of using the dialysis waste fluid treatment system at home, separation membrane 1 with a pore size of 7 Å or more can have practical water permeability, and the system can regenerate dialysate in a short period of time. Moreover, in order to ensure the required electrolyte removal rate, the pore size of the separation membrane 1 is more preferably 10 Å or less.
Separation membrane 2 has a pore size of 7 Å or less as measured by a positron annihilation lifetime measurement method. Since the pore diameter of the separation membrane is 7 Å or less, the separation membrane module 2 can highly remove all components contained in the permeated water of the separation membrane module 1 such as urea and electrolytes.
Pore size is measured using positron annihilation lifetime measurements. The positron annihilation lifetime measurement method measures the time from when the positron enters the sample until it annihilates (on the order of several hundred picoseconds to several tens of nanoseconds), and based on the annihilation lifetime, 0.1 to 10 nm This is a non-destructive method for evaluating information such as the size of vacancies, their number density, and their size distribution. This measuring method is described in "Experimental Chemistry Course, 4th Edition", Vol. 14, p. 485, edited by The Chemical Society of Japan, Maruzen Co., Ltd. (1992).
The average pore radius R in the separation functional layer of the separation membrane according to the present invention is obtained from the following formula (1) based on the positron annihilation lifetime τ. Formula (1) shows the relationship when it is assumed that o-Ps exists in holes of radius R in an electron layer of thickness ΔR, and ΔR is empirically determined to be 0.166 nm ( Nakanishi et al., Journal of Polymer Science, Part B: Polymer Physics, Vol.27, p.1419, John Wiley & Sons, Inc. (1989).

Figure 2022183507000002
Figure 2022183507000002

以下、分離膜1の塩除去率と尿素除去率は、pH7、10000mg/Lの塩化ナトリウム(NaCl)と250mg/Lの尿素を混合した溶液1に対して、圧力1.2MPaとなる場合の供給溶液中の成分濃度に対して、透過した溶液中の成分濃度の減少率で定義する。
また分離膜2の塩除去率と尿素除去率は、pH7、1000mg/Lの塩化ナトリウム(NaCl)と700mg/Lの尿素を混合した溶液2に対して、圧力1.8MPaとなる場合の供給溶液中の成分濃度に対して、透過した溶液中の成分濃度の減少率と定義する。
尿素の濃度はウレアーゼGLDH法を用いて測定される。ウレアーゼGLDH法とは、以下の第一反応および第二反応を行い、補酵素(NADPH)の変化量を測定することによりBUNを測定する方法である。
(第一反応)
反応式(II)において反応式(I)で生じた内因性アンモニアをαケトグルタル酸、還元型ニコチンアミドアデニンジヌクレオチドリン酸(NADPH)、グルタミン酸脱水素酵素(GLDH)の作用により消去し、このとき生じた酸化型ニコチンアミドアデニンジヌクレオチドリン酸(NADP)は反応式(III)においてL-イソクエン酸脱水素酵素(ICDH)の作用によって還元されNADPHへと変化する。
(第二反応)
第一反応により内因性アンモニアを消去した後、尿素はウレアーゼの作用によりアンモニアと二酸化炭素に分解される。このアンモニアとα‐ケトグルタル酸(α‐KG)は、GLDHの作用によりグルタミン酸に変化し、同時にNADPHはNADPに変わる。NADPHは340nmに吸収極大をもち、この吸光度の減少速度を測定して尿素窒素値を求める。尚、このとき第一反応の反応式(III)は第二試薬に添加されているキレート剤の作用により停止している。
尿素+HO(+ウレアーゼ)→2NH+CO・・・(I)
α‐ケトグルタル酸+NH+NADPH+H+(+GLDH)→グルタミン酸+NADP++HO・・・(II)
NADP++L-イソクエン酸(+ICDH)→NADPH++α-ケトグルタル酸+CO・・・(III)
システム全体の電解質回収率を80%以上にするためには分離膜1の塩化ナトリウム除去率が90%以上であることが好ましい。また、システム全体として尿素のみ優先的に70%程度除去するためには、分離膜1の尿素除去率は25%以下であることが好ましく、分離膜2の尿素除去率は85%以上であることが好ましい。
前記システムにおいてカリウムイオンは他の電解質と共に回収され、再生透析液内に蓄積するが、本発明者らが分離膜モジュール1の塩除去率と4時間の透析後血中カリウムイオン除去率との関係を精査したところ、分離膜モジュール1の塩除去率が93%~99%の範囲であればシステム全体としてカリウムイオンは2~12%の範囲で除去され、血中カリウムイオン除去率を26%~35%の範囲にコントロールすることができることが分かった。
ここでシステム全体の電解質回収率およびカリウムイオン除去率は以下の式から求めた。
電解質回収率=(精製液(102)の電解質濃度)×(精製液(102)の流量)/[(原液(101)の電解質濃度)×(原液(101)の流量)]×100[%]
カリウムイオンの除去率=[(原液(101)のカリウムイオン濃度)×(原液(101)の流量)-(精製液(102)のカリウムイオン濃度)×(精製液(102)の流量)]/[(原液(101)のカリウムイオン濃度)×(原液(101)の流量)]×100[%]
本発明における透析廃液処理方法に使用される分離膜としては、溶液中の残したい電解質成分と、除去したいカリウムイオンと尿素に応じた分離性能を有する分離膜が用いられる。分離膜は、単一層であってもよいし、分離機能層と基材とを備える複合膜であってもよい。また、複合膜においては、分離機能層と基材との間に、さらに多孔性支持層があってもよい。
分離機能層は、分離機能および支持機能の両方を有する層であってもよいし、分離機能のみを備えていてもよい。なお、「分離機能層」とは、少なくとも分離機能を備える層を指す。
分離機能層が分離機能および支持機能の両方を有する場合、支持機能層としては、セルロース、ポリフッ化ビニリデン、ポリエーテルスルホンおよびポリスルホンからなる群から選ばれるポリマーを主成分として含有する層が好ましく適用される。
一方、分離機能層としては、孔径の制御が容易であり、かつ耐久性に優れるという点で、架橋高分子が好ましく使用される。特に、供給液中の成分の分離性能に優れるという点で、酢酸セルロースおよびポリアミドのうちの少なくとも一方を含んだ分離機能層を備えた複合膜が好ましく、特により高除去性能を有するポリアミドを含んだ分離機能層を備えた複合膜が好ましい。操作圧力に対する耐久性と、高い透水性、阻止性能を維持できるためには、ポリアミドを分離機能層とし、それを多孔質膜や不織布からなる支持体で保持する構造のものが適している。
多孔性支持層は、分離機能層を支持する層であり、樹脂が素材の場合多孔性樹脂層とも言い換えることができる。
多孔性支持層に使用される材料や、その形状は特に限定されないが、例えば、多孔性樹脂によって基板上に形成されてもよい。多孔性支持層の組成は特に限定されないが、熱可塑性樹脂によって形成されていることが好ましい。ここで、熱可塑性樹脂とは、鎖状高分子物質からできており、加熱すると外力によって変形または流動する性質が表れる樹脂のことをいう。熱可塑性樹脂の例としては、ポリスルホン、ポリエーテルスルホン、ポリアミド、ポリエステル、セルロース系ポリマー、ビニルポリマー、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン、ポリフェニレンスルホン、ポリフェニレンオキシドなどのホモポリマーあるいはコポリマーを単独であるいはブレンドして使用することができる。ここでセルロース系ポリマーとしては酢酸セルロース、硝酸セルロースなど、ビニルポリマーとしてはポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリアクリロニトリル、アクリロニトリル・スチレン共重合体などが使用できる。これらの中から化学的、機械的、熱的に安定性が高く、孔径が制御しやすいポリスルホンを使用することが好ましい。
多孔性支持層は、例えば、上記ポリスルホンのN,N-ジメチルホルムアミド溶液を、後述する基材(例えば密に織ったポリエステル不織布)の上に一定の厚みに注型し、それを水中で湿式凝固させることによって、製造することができる。
分離膜の強度、寸法安定性などの観点から、分離膜は基材を有してもよい。基材としては、強度、流体透過性の点で繊維状の基材を用いることが好ましい。
基材としては、長繊維不織布および短繊維不織布それぞれを好ましく用いることができる。
<エレメント>
本発明における分離膜1や分離膜2は、平膜状の膜を集水管の周囲に巻囲したスパイラル型エレメントや、プレート型支持板の両面に平膜を張ったものを、スペーサーを介して一定の間隔で積層したプレート・アンド・フレーム型エレメント、さらには、管状膜を用いたチューブラー型エレメント、中空糸膜を束ねてケースに収納した中空糸膜エレメントとして構成することができる。さらに、これらのエレメントを耐圧容器に単数もしくは複数個を直列に接続して収容し分離膜モジュールとする。エレメントの形態としては、いずれの形態であっても良いが、操作性や互換性の観点からはスパイラル型エレメントを使用するのが好ましい。スパイラル型分離膜エレメントは、分離膜、透過側流路材、供給側流路材の積層物を、透過液を集める有孔集水管の周りに巻囲したものである。
なお、供給側流路材の素材は特に限定されず、分離膜と同素材であっても異素材であっても構わない。
ここで、分離膜には透過側の面と濃縮側の面があり、供給側の面が互いに向かい合うように形成された状態の分離膜のことを分離膜対と呼ぶ。
分離膜は、供給側流路材、透過側流路材と分離膜対を形成する。分離膜は、供給側流路材を挟んで供給側の面が対向するように配置される。また、透過側の面の間には透過側流路材が配置される。透過側流路は、透過流体が有孔中心管に流れるように、透過側の面の間が、巻回方向内側の一辺のみにおいて開放され、他の三辺においては封止される。
Hereinafter, the salt removal rate and urea removal rate of the separation membrane 1 are for a solution 1 in which 10000 mg/L sodium chloride (NaCl) and 250 mg/L urea are mixed at pH 7, and the pressure is 1.2 MPa. It is defined as the reduction rate of the concentration of the component in the permeated solution relative to the concentration of the component in the solution.
In addition, the salt removal rate and urea removal rate of the separation membrane 2 are the supply solution when the pressure is 1.8 MPa with respect to the solution 2, which is a mixture of 1000 mg / L sodium chloride (NaCl) and 700 mg / L urea at pH 7. Defined as the rate of decrease in component concentration in the permeated solution relative to the component concentration in the medium.
The concentration of urea is measured using the urease GLDH method. The urease GLDH method is a method for measuring BUN by performing the following first reaction and second reaction and measuring the amount of change in coenzyme (NADPH).
(first reaction)
In reaction formula (II), endogenous ammonia generated in reaction formula (I) is eliminated by the action of α-ketoglutaric acid, reduced nicotinamide adenine dinucleotide phosphate (NADPH), and glutamate dehydrogenase (GLDH). The resulting oxidized nicotinamide adenine dinucleotide phosphate (NADP) is reduced to NADPH by the action of L-isocitrate dehydrogenase (ICDH) in reaction formula (III).
(Second reaction)
After scavenging endogenous ammonia by the first reaction, urea is decomposed into ammonia and carbon dioxide by the action of urease. This ammonia and α-ketoglutarate (α-KG) are converted into glutamic acid by the action of GLDH, and at the same time NADPH is converted into NADP. NADPH has an absorption maximum at 340 nm, and the rate of decrease in absorbance is measured to determine the urea nitrogen value. At this time, the reaction formula (III) of the first reaction is terminated by the action of the chelating agent added to the second reagent.
Urea + H 2 O (+ urease) → 2NH 3 + CO 2 (I)
α-ketoglutarate+NH 3 +NADPH+H + (+GLDH)→glutamic acid +NADP + +H 2 O (II)
NADP + + L-isocitric acid (+ICDH) → NADPH + + α-ketoglutarate + CO 2 (III)
In order to make the electrolyte recovery rate of the whole system 80% or more, it is preferable that the sodium chloride removal rate of the separation membrane 1 is 90% or more. In addition, in order to preferentially remove only urea by about 70% in the entire system, the urea removal rate of the separation membrane 1 is preferably 25% or less, and the urea removal rate of the separation membrane 2 is 85% or more. is preferred.
In the system, potassium ions are recovered together with other electrolytes and accumulated in the regenerated dialysate. As a result of close examination, if the salt removal rate of the separation membrane module 1 is in the range of 93% to 99%, potassium ions are removed in the range of 2 to 12% as a whole system, and the blood potassium ion removal rate is 26% to 26%. It was found that it could be controlled within a range of 35%.
Here, the electrolyte recovery rate and potassium ion removal rate of the entire system were obtained from the following equations.
Electrolyte recovery rate = (electrolyte concentration of purified solution (102)) x (flow rate of purified solution (102)) / [(electrolyte concentration of undiluted solution (101)) x (flow rate of undiluted solution (101))] x 100 [%]
Potassium ion removal rate = [(potassium ion concentration of stock solution (101)) x (flow rate of stock solution (101)) - (potassium ion concentration of purified solution (102)) x (flow rate of purified solution (102))]/ [(potassium ion concentration of stock solution (101)) x (flow rate of stock solution (101))] x 100 [%]
As the separation membrane used in the dialysis waste liquid treatment method of the present invention, a separation membrane having separation performance corresponding to the electrolyte components desired to remain in the solution and the potassium ions and urea desired to be removed is used. The separation membrane may be a single layer or a composite membrane comprising a separation functional layer and a substrate. In addition, the composite membrane may further have a porous support layer between the separation function layer and the substrate.
The separation function layer may be a layer having both a separation function and a support function, or may have only a separation function. In addition, the “separation function layer” refers to a layer having at least a separation function.
When the separation function layer has both a separation function and a support function, a layer containing as a main component a polymer selected from the group consisting of cellulose, polyvinylidene fluoride, polyethersulfone and polysulfone is preferably applied as the support function layer. be.
On the other hand, as the separation functional layer, a crosslinked polymer is preferably used because the pore size can be easily controlled and the durability is excellent. In particular, a composite membrane having a separation function layer containing at least one of cellulose acetate and polyamide is preferable in terms of excellent separation performance of components in the feed liquid, and in particular polyamide having higher removal performance is preferable. A composite membrane with a separating functional layer is preferred. In order to maintain durability against operating pressure and high water permeability and blocking performance, a structure in which polyamide is used as a separation functional layer and supported by a support made of a porous membrane or nonwoven fabric is suitable.
The porous support layer is a layer that supports the separation functional layer, and can also be called a porous resin layer when the material is a resin.
The material used for the porous support layer and its shape are not particularly limited. For example, the porous support layer may be formed on the substrate with a porous resin. Although the composition of the porous support layer is not particularly limited, it is preferably made of a thermoplastic resin. Here, the thermoplastic resin is made of a chain polymer substance, and is a resin that exhibits the property of being deformed or fluidized by an external force when heated. Examples of thermoplastic resins include homopolymers or copolymers of polysulfone, polyethersulfone, polyamide, polyester, cellulosic polymer, vinyl polymer, polyphenylene sulfide, polyphenylene sulfide sulfone, polyphenylene sulfone, and polyphenylene oxide, either alone or in blends. can be used. Cellulose polymers such as cellulose acetate and cellulose nitrate, and vinyl polymers such as polyethylene, polypropylene, polyvinyl chloride, polyacrylonitrile, and acrylonitrile-styrene copolymers can be used. Among these, it is preferable to use polysulfone, which has high chemical, mechanical and thermal stability and whose pore size is easy to control.
The porous support layer is formed, for example, by casting the above N,N-dimethylformamide solution of polysulfone to a certain thickness on a base material (for example, tightly woven polyester nonwoven fabric) described later, and wet-coagulating it in water. It can be manufactured by
The separation membrane may have a substrate from the viewpoint of the strength and dimensional stability of the separation membrane. As the base material, it is preferable to use a fibrous base material in terms of strength and fluid permeability.
As the substrate, a long-fiber nonwoven fabric and a short-fiber nonwoven fabric can be preferably used.
<Element>
The separation membrane 1 and the separation membrane 2 in the present invention are a spiral element in which a flat membrane is wrapped around a water collection tube, or a flat membrane on both sides of a plate-type support plate. It can be configured as a plate-and-frame type element laminated at regular intervals, a tubular type element using tubular membranes, or a hollow fiber membrane element in which hollow fiber membranes are bundled and housed in a case. Furthermore, one or a plurality of these elements are connected in series and housed in a pressure vessel to form a separation membrane module. The form of the element may be any form, but from the viewpoint of operability and interchangeability, it is preferable to use a spiral type element. A spiral-type separation membrane element is obtained by winding a laminate of a separation membrane, a permeate-side channel material, and a feed-side channel material around a perforated water collection tube for collecting the permeated liquid.
The material of the channel material on the supply side is not particularly limited, and it may be the same material as the separation membrane or a different material.
Here, the separation membrane has a permeate side and a concentration side, and the separation membranes formed so that the feed side faces each other are called a separation membrane pair.
The separation membrane forms a separation membrane pair with the feed side channel material and the permeate side channel material. The separation membranes are arranged so that the supply-side surfaces face each other with the supply-side channel material interposed therebetween. Further, a permeation-side channel material is arranged between the surfaces on the permeation side. In the permeate-side channel, only one inner side in the winding direction is open between the permeate-side surfaces so that the permeated fluid flows into the perforated central tube, and the other three sides are sealed.

以下に実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。
(分離膜性能の測定)
PA膜A、PA膜B、PA膜C、PA膜F、CA膜についてはpH7、10000mg/Lの塩化ナトリウム(NaCl)と250mg/Lの尿素を混合した溶液1に対して、圧力1.2MPaで膜透過フラックスが0.35m/dとなる場合のNaClの除去率と尿素除去率を分離膜性能と定義する。
PA膜D、PA膜E、PA膜GについてはpH7、1000mg/Lの塩化ナトリウム(NaCl)と700mg/Lの尿素を混合した溶液2に対して、圧力1.8MPaで膜透過フラックスが0.35m/dとなる場合のNaClの除去率と尿素除去率を分離膜性能と定義する。
(陽電子ビーム法による陽電子消滅寿命測定法)
各例における分離機能層の陽電子消滅寿命測定は、以下のように陽電子ビーム法を用いて行った。すなわち、減圧下室温で分離機能層を乾燥させ、1.5cm×1.5cm角に切断して検査試料とした。陽電子ビーム発生装置を装備した薄膜対応陽電子消滅寿命測定装置(この装置は、例えば、Radiation Physics and Chemistry,58,603,Pergamon(2000)で詳細に説明されている)にて、ビーム強度1keV、室温、真空下で、光電子増倍管を使用して二フッ化バリウム製シンチレーションカウンターにより総カウント数500万で検査試料を測定し、POSI TRONFITにより解析を行った。解析により得られた第4成分の平均陽電子消滅寿命τから、平均孔径を算出した。
(微多孔性支持膜の作製)
ポリエステル不織布(通気量2.0cc/cm/sec)上にポリスルホン(PSf)の16.0重量%DMF(dimethylformamide)溶液を室温(25℃)にて200μmの厚みでキャストし、ただちに純水中に浸漬して5分間放置することによって支持膜を作製した。
(PA膜Aの作製)
m-フェニレンジアミンの1.5重量%水溶液を作製した。上述の操作で得られた支持膜を上記水溶液中に2分間浸漬し、該支持膜を垂直方向にゆっくりと引き上げ、エアーノズルから窒素を吹き付け支持膜表面から余分な水溶液を取り除いた後、25℃に保たれたブース内でトリメシン酸クロリド(TMC)0.065重量%を含む25℃のデカン溶液を表面が完全に濡れるように塗布して60秒間静置し膜を得た。得た膜の分離膜性能はNaClの除去率97%、尿素除去率18%であった。陽電子消滅寿命測定法を用いて測定される孔径は7.2Åであった。
(PA膜Bの作製)
m-フェニレンジアミンの1.8重量%水溶液を作製した。上述の操作で得られた支持膜を上記水溶液中に2分間浸漬し、該支持膜を垂直方向にゆっくりと引き上げ、エアーノズルから窒素を吹き付け支持膜表面から余分な水溶液を取り除いた後、25℃に保たれたブース内でトリメシン酸クロリド(TMC)0.06重量%を含む25℃のデカン溶液を表面が完全に濡れるように塗布して60秒間静置し膜を得た。得た膜の分離膜性能はNaClの除去率98%、尿素除去率25%であった。陽電子消滅寿命測定法を用いて測定される孔径は7.0Åであった。
(PA膜Cの作製)
ピペラジンンの0.2重量%水溶液を作製した。上述の操作で得られた支持膜を上記水溶液中に2分間浸漬し、該支持膜を垂直方向にゆっくりと引き上げ、エアーノズルから窒素を吹き付け支持膜表面から余分な水溶液を取り除いた後、45℃に保たれたブース内でトリメシン酸クロリド(TMC)0.17重量%を含む45℃のデカン溶液を表面が完全に濡れるように塗布して1分間静置した。次に膜から余分な溶液を除去するために、膜を1分間垂直に把持して液切りを行って、送風機を使い25℃の気体を吹き付けて乾燥させた。乾燥後、直ちに水で洗い、室温にて保存しナノろ過膜を得た。得た膜の分離膜性能はNaClの除去率93.7%、尿素除去率16%であった。陽電子消滅寿命測定法を用いて測定される孔径は9.0Åであった。
(PA膜Dの作製)
m-フェニレンジアミンの重量6.0%水溶液を作製した。上述の操作で得られた支持膜を上記水溶液中に2分間浸漬し、該支持膜を垂直方向にゆっくりと引き上げ、エアーノズルから窒素を吹き付け支持膜表面から余分な水溶液を取り除いた後、45℃に保たれたブース内でトリメシン酸クロリド(TMC)0.17重量%を含む45℃のデカン溶液を表面が完全に濡れるように塗布して10秒間静置した。140℃のオーブンに入れ、膜の裏面側に設けたノズルから100℃の水蒸気を供給しつつ、30秒間加熱して膜を得た。得た膜の分離膜性能はNaClの除去率99.6%、尿素除去率90%であった。陽電子消滅寿命測定法を用いて測定される孔径は5.1Åであった。
(PA膜Eの作製)
m-フェニレンジアミンの5.5重量%水溶液を作製した。上述の操作で得られた支持膜を上記水溶液中に2分間浸漬し、該支持膜を垂直方向にゆっくりと引き上げ、エアーノズルから窒素を吹き付け支持膜表面から余分な水溶液を取り除いた後、45℃に保たれたブース内でトリメシン酸クロリド(TMC)0.15重量%を含む45℃のデカン溶液を表面が完全に濡れるように塗布して10秒間静置した。140℃のオーブンに入れ、膜の裏面側に設けたノズルから100℃の水蒸気を供給しつつ、30秒間加熱して膜を得た。得た膜の分離膜性能はNaClの除去率99.6%、尿素除去率90%であった。陽電子消滅寿命測定法を用いて測定される孔径は6.0Åであった。
(PA膜Fの作製)
m-フェニレンジアミンの2.0重量%水溶液を作製した。上述の操作で得られた支持膜を上記水溶液中に2分間浸漬し、該支持膜を垂直方向にゆっくりと引き上げ、エアーノズルから窒素を吹き付け支持膜表面から余分な水溶液を取り除いた後、25℃に保たれたブース内でトリメシン酸クロリド(TMC)0.12重量%を含む25℃のデカン溶液を表面が完全に濡れるように塗布して40秒間静置した。140℃のオーブンに入れ、膜の裏面側に設けたノズルから100℃の水蒸気を供給しつつ、30秒間加熱して膜を得た。得た膜の分離膜性能はNaClの除去率99.0%、尿素除去率50%であった。陽電子消滅寿命測定法を用いて測定される孔径は6.8Åであった。
(PA膜Gの作製)
m-フェニレンジアミンの1.8重量%、ε-カプロラクタム4.5重量%水溶液を作製した。上述の操作で得られた支持膜に塗布し、エアーノズルから窒素を吹き付け支持膜表面から余分な水溶液を取り除いた後、トリメシン酸クロリド0.06重量%を含む25℃のn-デカン溶液を表面が完全に濡れるように塗布した。その後、膜から余分な溶液をエアブローで除去し、80℃の熱水で洗浄して、エアブローで液切りして膜を得た。得た膜の分離膜性能はNaClの除去率97.0%、尿素除去率80%であった。陽電子消滅寿命測定法を用いて測定される孔径は7.2Åであった。
(CA膜の作製)
酢酸セルロース25重量%、アセトン45重量%、ホルムアミド30重量%の割合で混合したキャスト溶液を、上述の操作で得られた支持膜上に流延して2分間キャスト溶液を蒸発させた後、氷水中に浸漬した。次に、90℃の温水中に浸漬し膜を得た。得た膜の逆浸透膜性能はNaClの除去率93.0%、尿素除去率15%であった。陽電子消滅寿命測定法を用いて測定される孔径は10Åであった。
(I型分離膜エレメントの作製)
海水淡水化用RO膜および低圧RO膜を6枚裁断し、内周端部が折り目となるように供給側を内側にして折りたたみ、ネット(厚み:0.8mm、ピッチ:5mm×5mm、繊維径:380μm、投影面積比:0.15)を供給側流路材として、ネット構成糸の傾斜角度が巻回方向に対して45°となるように配置した。このようにして、長さ850mm、幅:930mmまたは465mmの分離膜対を6枚作製した。透過側流路材として、厚みが均一であるトリコット(厚み:280μm、溝幅:200μm、畦幅:300μm、溝深さ:105μm)を用意し6枚分裁断した。透過側流路材を分離膜の透過側の面に配置して、内周端部が開口するように透過側流路に接着剤を塗布し、ABS(アクリロニトリル-ブタジエン-スチレン)製の有孔中心管(長さ:1020mm、径:30mm、孔数40個×直線状1列)にスパイラル状に巻囲した。巻囲後、外周にフィルムを巻き付け、テープで固定した後に、エッジカット、端板の取り付け、フィラメントワインディングを行うことで、海水淡水化用RO膜および低圧RO膜を用いたI型分離膜エレメントを作製した。
(原液)
原液を人工透析廃液とした。原液中の成分は塩類(10000mg/Lうちカリウムイオン100mg/L)、尿素(630mg/L)である。
(実施例1)
作成した分離膜エレメントに端板およびブラインシールを取り付け、圧力容器に入れ分離膜モジュール1および分離膜モジュール2を1本ずつ得た。図2のようにポンプおよびバルブを用意し、配管接続を行った。システム全体の水の回収率が97%、尿素除去率が70%前後になるようにバルブを調整し、表1に示す条件で評価を行ったところ、結果は表1に示すようであった。
(実施例2)
モジュール1と2に使用する分離膜対の幅が465mmであること以外は実施例1と同様の分離膜モジュールを用意した。作成した分離膜エレメントに端板およびブラインシールを取り付け、圧力容器に入れ分離膜モジュール1および分離膜モジュール2を1本ずつ得た。図1のようにポンプおよびバルブを用意し、配管接続を行った。システム全体の水の回収率が97%、尿素除去率が70%前後になるようにバルブを調整し、表1に示す条件で評価を行ったところ、結果は表1に示すようであった。なお、分離膜モジュール2の透過液の循環比は0.85であった。分離膜モジュール2の透過液が一部精製液に行くことでモジュール1と2への水量が減り、実施例1の半分の膜面積でシステムを成立することができる。
(実施例3)
逆浸透膜モジュール1に使用する逆浸透膜をCA膜とした以外は実施例1と同様の逆浸透膜モジュールを用意した。作成した逆浸透膜エレメントに端板およびブラインシールを取り付け、圧力容器に入れ逆浸透膜モジュール1および逆浸透膜モジュール2を1本ずつ得た。図1のようにポンプおよびバルブを用意し、配管接続を行った。システム全体の水の回収率が97%、尿素除去率が70%前後になるようにバルブを調整し、表1に示す条件で評価を行ったところ、結果は表1に示すようであった。なお、逆浸透膜モジュール2の透過液の循環比は0.95であった。
(実施例4)
分離膜モジュール2に使用する分離膜をPA膜Eとした以外は実施例1と同様の分離膜モジュールを用意した。作成した分離膜エレメントに端板およびブラインシールを取り付け、圧力容器に入れ分離膜モジュール1および分離膜モジュール2を1本ずつ得た。図1のようにポンプおよびバルブを用意し、配管接続を行った。システム全体の水の回収率が97%、尿素除去率が70%前後になるようにバルブを調整し、表1に示す条件で評価を行ったところ、結果は表1に示すようであった。なお、分離膜モジュール2の透過液の循環比は0.95であった。
(実施例5)
分離膜モジュール1に使用する分離膜をPA膜Bとした以外は実施例1と同様の分離膜モジュールを用意した。作成した分離膜エレメントに端板およびブラインシールを取り付け、圧力容器に入れ分離膜モジュール1および分離膜モジュール2を1本ずつ得た。図1のようにポンプおよびバルブを用意し、配管接続を行った。システム全体の水の回収率が97%、尿素除去率が70%前後になるようにバルブを調整し、表1に示す条件で評価を行ったところ、結果は表1に示すようであった。なお、分離膜モジュール2の透過液の循環比は0.85であった。
(実施例6)
分離膜モジュール1に使用する分離膜をPA膜Cとした以外は実施例1と同様の分離膜モジュールを用意した。作成した分離膜エレメントに端板およびブラインシールを取り付け、圧力容器に入れ分離膜モジュール1および分離膜モジュール2を1本ずつ得た。図1のようにポンプおよびバルブを用意し、配管接続を行った。システム全体の水の回収率が90%、尿素除去率が70%前後になるようにバルブを調整し、表1に示す条件で評価を行ったところ、結果は表1に示すようであった。なお、分離膜モジュール2の透過液の循環比は0.90であった。
(実施例7)
実施例1と同様の分離膜モジュールを用意した。作成した分離膜エレメントに端板およびブラインシールを取り付け、圧力容器に入れ分離膜モジュール1および分離膜モジュール2を1本ずつ得た。図1のようにポンプおよびバルブを用意し、配管接続を行った。システム全体の水の回収率が75%、尿素除去率が60%前後になるようにバルブを調整し、表1に示す条件で評価を行ったところ、結果は表1に示すようであった。なお、分離膜モジュール2の透過液の循環比は0.60であった。
EXAMPLES The present invention will be described in more detail below with reference to Examples, but the present invention is not limited to these Examples.
(Measurement of separation membrane performance)
For PA membrane A, PA membrane B, PA membrane C, PA membrane F, and CA membrane, pH 7, 10000 mg / L sodium chloride (NaCl) and 250 mg / L urea mixed solution 1, pressure 1.2 MPa The separation membrane performance is defined as the NaCl removal rate and the urea removal rate when the membrane permeation flux is 0.35 m/d.
For PA membrane D, PA membrane E, and PA membrane G, the membrane permeation flux was 0.8 MPa with respect to solution 2, which was a mixture of 1000 mg/L sodium chloride (NaCl) and 700 mg/L urea at pH 7. The separation membrane performance is defined as the NaCl removal rate and the urea removal rate at 35 m/d.
(Positron annihilation lifetime measurement method by positron beam method)
The positron annihilation lifetime measurement of the separation functional layer in each example was performed using the positron beam method as follows. That is, the separation functional layer was dried at room temperature under reduced pressure and cut into 1.5 cm×1.5 cm squares to obtain test samples. A thin-film positron annihilation lifetime measurement device equipped with a positron beam generator (this device is described in detail in, for example, Radiation Physics and Chemistry, 58, 603, Pergamon (2000)), beam intensity 1 keV, room temperature , under vacuum, the test samples were measured with a barium difluoride scintillation counter using a photomultiplier tube with a total count of 5 million and analyzed with the POSI TRONFIT. The average pore diameter was calculated from the average positron annihilation lifetime τ of the fourth component obtained by the analysis.
(Preparation of microporous support membrane)
A 16.0% by weight DMF (dimethylformamide) solution of polysulfone (PSf) was cast at room temperature (25° C.) to a thickness of 200 μm on a polyester nonwoven fabric (airflow rate of 2.0 cc/cm 2 /sec), and immediately immersed in pure water. A support film was prepared by immersing in and leaving for 5 minutes.
(Preparation of PA membrane A)
A 1.5% by weight aqueous solution of m-phenylenediamine was prepared. The support film obtained by the above operation was immersed in the above aqueous solution for 2 minutes, the support film was slowly lifted vertically, nitrogen was blown from an air nozzle to remove excess aqueous solution from the surface of the support film, and the temperature was maintained at 25°C. A 25° C. decane solution containing 0.065% by weight of trimesic acid chloride (TMC) was applied in a booth kept at 25° C. so that the surface was completely wetted, and left to stand for 60 seconds to obtain a film. The separation membrane performance of the obtained membrane was 97% NaCl removal rate and 18% urea removal rate. The pore size measured using positron annihilation lifetime spectroscopy was 7.2 Å.
(Preparation of PA film B)
A 1.8% by weight aqueous solution of m-phenylenediamine was prepared. The support film obtained by the above operation was immersed in the above aqueous solution for 2 minutes, the support film was slowly lifted vertically, nitrogen was blown from an air nozzle to remove excess aqueous solution from the surface of the support film, and the temperature was maintained at 25°C. A decane solution containing 0.06% by weight of trimesic acid chloride (TMC) at 25° C. was applied in a booth kept at 25° C. so that the surface was completely wetted, and allowed to stand for 60 seconds to obtain a film. The separation membrane performance of the obtained membrane was 98% NaCl removal rate and 25% urea removal rate. The pore size measured using positron annihilation lifetime spectroscopy was 7.0 Å.
(Preparation of PA film C)
A 0.2 wt% aqueous solution of piperazine was made. The support film obtained by the above operation was immersed in the above aqueous solution for 2 minutes, the support film was slowly lifted vertically, nitrogen was blown from an air nozzle to remove excess aqueous solution from the surface of the support film, and the temperature was maintained at 45°C. A 45° C. decane solution containing 0.17% by weight of trimesic acid chloride (TMC) was applied in a booth kept at 20° C. so that the surface was completely wetted, and left to stand for 1 minute. Next, in order to remove excess solution from the membrane, the membrane was held vertically for 1 minute to drain, and dried by blowing air at 25° C. using an air blower. After drying, it was immediately washed with water and stored at room temperature to obtain a nanofiltration membrane. The separation membrane performance of the obtained membrane was 93.7% NaCl removal rate and 16% urea removal rate. The pore size measured using positron annihilation lifetime spectroscopy was 9.0 Å.
(Preparation of PA film D)
A 6.0% by weight aqueous solution of m-phenylenediamine was prepared. The support film obtained by the above operation was immersed in the above aqueous solution for 2 minutes, the support film was slowly lifted vertically, nitrogen was blown from an air nozzle to remove excess aqueous solution from the surface of the support film, and the temperature was maintained at 45°C. A 45° C. decane solution containing 0.17% by weight of trimesic acid chloride (TMC) was applied in a booth maintained at 45° C. so that the surface was completely wetted and allowed to stand for 10 seconds. The film was placed in an oven at 140° C. and heated for 30 seconds while supplying steam at 100° C. from a nozzle provided on the back side of the film to obtain a film. The separation membrane performance of the obtained membrane was 99.6% NaCl removal rate and 90% urea removal rate. The pore size measured using positron annihilation lifetime spectroscopy was 5.1 Å.
(Preparation of PA film E)
A 5.5% by weight aqueous solution of m-phenylenediamine was prepared. The support film obtained by the above operation was immersed in the above aqueous solution for 2 minutes, the support film was slowly lifted vertically, nitrogen was blown from an air nozzle to remove excess aqueous solution from the surface of the support film, and the temperature was maintained at 45°C. A 45° C. decane solution containing 0.15% by weight of trimesic acid chloride (TMC) was applied in a booth kept at 20° C. so that the surface was completely wetted, and left to stand for 10 seconds. The film was placed in an oven at 140° C. and heated for 30 seconds while supplying steam at 100° C. from a nozzle provided on the back side of the film to obtain a film. The separation membrane performance of the obtained membrane was 99.6% NaCl removal rate and 90% urea removal rate. The pore size measured using positron annihilation lifetime spectroscopy was 6.0 Å.
(Preparation of PA film F)
A 2.0% by weight aqueous solution of m-phenylenediamine was prepared. The support film obtained by the above operation was immersed in the above aqueous solution for 2 minutes, the support film was slowly lifted vertically, nitrogen was blown from an air nozzle to remove excess aqueous solution from the surface of the support film, and the temperature was maintained at 25°C. A 25° C. decane solution containing 0.12% by weight of trimesic acid chloride (TMC) was applied in a booth maintained at 25° C. so that the surface was completely wetted, and left to stand for 40 seconds. The film was placed in an oven at 140° C. and heated for 30 seconds while supplying steam at 100° C. from a nozzle provided on the back side of the film to obtain a film. The separation membrane performance of the obtained membrane was 99.0% NaCl removal rate and 50% urea removal rate. The pore size measured using positron annihilation lifetime spectroscopy was 6.8 Å.
(Preparation of PA film G)
An aqueous solution of 1.8% by weight of m-phenylenediamine and 4.5% by weight of ε-caprolactam was prepared. After applying to the support film obtained by the above operation and removing excess aqueous solution from the support film surface by blowing nitrogen from an air nozzle, a 25 ° C. n-decane solution containing 0.06% by weight of trimesic acid chloride was applied to the surface. was applied so that it was completely wetted. After that, excess solution was removed from the membrane by air blow, washed with hot water at 80° C., and drained by air blow to obtain a membrane. The separation membrane performance of the obtained membrane was 97.0% NaCl removal rate and 80% urea removal rate. The pore size measured using positron annihilation lifetime spectroscopy was 7.2 Å.
(Preparation of CA film)
A casting solution prepared by mixing 25% by weight of cellulose acetate, 45% by weight of acetone, and 30% by weight of formamide was cast on the support film obtained by the above operation, and the casting solution was evaporated for 2 minutes. immersed in. Next, it was immersed in warm water of 90° C. to obtain a film. The reverse osmosis membrane performance of the obtained membrane was 93.0% NaCl removal rate and 15% urea removal rate. The pore size measured using positron annihilation lifetime spectroscopy was 10 Å.
(Preparation of type I separation membrane element)
Six seawater desalination RO membranes and low-pressure RO membranes were cut and folded with the supply side inward so that the inner peripheral edge formed a crease. : 380 μm, projected area ratio: 0.15) as a channel material on the supply side, and arranged so that the inclination angle of the net-constituting yarn is 45° with respect to the winding direction. In this manner, six pairs of separation membranes having a length of 850 mm and a width of 930 mm or 465 mm were produced. Tricot having a uniform thickness (thickness: 280 μm, groove width: 200 μm, ridge width: 300 μm, groove depth: 105 μm) was prepared as the channel material on the permeate side and cut into six pieces. A permeate-side channel material is placed on the permeate-side surface of the separation membrane, an adhesive is applied to the permeate-side channel so that the inner peripheral end is open, and an ABS (acrylonitrile-butadiene-styrene) perforated material is applied. A central tube (length: 1020 mm, diameter: 30 mm, 40 holes x 1 linear row) was spirally wound. After wrapping, a film is wrapped around the outer periphery and fixed with tape, followed by edge cutting, attachment of end plates, and filament winding. made.
(Undiluted solution)
The undiluted solution was used as artificial dialysis waste. Components in the undiluted solution are salts (100 mg/L of potassium ions out of 10000 mg/L) and urea (630 mg/L).
(Example 1)
An end plate and a brine seal were attached to the prepared separation membrane element, and the element was placed in a pressure vessel to obtain one separation membrane module 1 and one separation membrane module 2. A pump and a valve were prepared as shown in FIG. 2, and pipe connections were made. The valves were adjusted so that the water recovery rate of the entire system was about 97% and the urea removal rate was about 70%.
(Example 2)
A separation membrane module similar to that of Example 1 was prepared except that the width of the separation membrane pair used in modules 1 and 2 was 465 mm. An end plate and a brine seal were attached to the prepared separation membrane element, and the element was placed in a pressure vessel to obtain one separation membrane module 1 and one separation membrane module 2. A pump and a valve were prepared as shown in FIG. 1, and pipe connections were made. The valves were adjusted so that the water recovery rate of the entire system was about 97% and the urea removal rate was about 70%. The permeate circulation ratio of the separation membrane module 2 was 0.85. A part of the permeated liquid of the separation membrane module 2 goes to the purified liquid, so that the amount of water to the modules 1 and 2 is reduced, and the system can be established with half the membrane area of the first embodiment.
(Example 3)
A reverse osmosis membrane module similar to that of Example 1 was prepared except that the reverse osmosis membrane used in the reverse osmosis membrane module 1 was a CA membrane. An end plate and a brine seal were attached to the prepared reverse osmosis membrane element, and the element was placed in a pressure vessel to obtain one reverse osmosis membrane module 1 and one reverse osmosis membrane module 2 . A pump and a valve were prepared as shown in FIG. 1, and pipe connections were made. The valves were adjusted so that the water recovery rate of the entire system was about 97% and the urea removal rate was about 70%. The permeate circulation ratio of the reverse osmosis membrane module 2 was 0.95.
(Example 4)
A separation membrane module was prepared in the same manner as in Example 1 except that PA membrane E was used as the separation membrane for separation membrane module 2 . An end plate and a brine seal were attached to the prepared separation membrane element, and the element was placed in a pressure vessel to obtain one separation membrane module 1 and one separation membrane module 2. A pump and a valve were prepared as shown in FIG. 1, and pipe connections were made. The valves were adjusted so that the water recovery rate of the entire system was about 97% and the urea removal rate was about 70%. The permeate circulation ratio of the separation membrane module 2 was 0.95.
(Example 5)
A separation membrane module was prepared in the same manner as in Example 1 except that PA membrane B was used as the separation membrane for separation membrane module 1 . An end plate and a brine seal were attached to the prepared separation membrane element, and the element was placed in a pressure vessel to obtain one separation membrane module 1 and one separation membrane module 2. A pump and a valve were prepared as shown in FIG. 1, and pipe connections were made. The valves were adjusted so that the water recovery rate of the entire system was about 97% and the urea removal rate was about 70%. The permeate circulation ratio of the separation membrane module 2 was 0.85.
(Example 6)
A separation membrane module was prepared in the same manner as in Example 1 except that PA membrane C was used as the separation membrane for separation membrane module 1 . An end plate and a brine seal were attached to the prepared separation membrane element, and the element was placed in a pressure vessel to obtain one separation membrane module 1 and one separation membrane module 2. A pump and a valve were prepared as shown in FIG. 1, and pipe connections were made. The valves were adjusted so that the water recovery rate of the entire system was about 90%, and the urea removal rate was about 70%. The permeate circulation ratio of the separation membrane module 2 was 0.90.
(Example 7)
A separation membrane module similar to that of Example 1 was prepared. An end plate and a brine seal were attached to the prepared separation membrane element, and the element was placed in a pressure vessel to obtain one separation membrane module 1 and one separation membrane module 2. A pump and a valve were prepared as shown in FIG. 1, and pipe connections were made. The valves were adjusted so that the water recovery rate of the entire system was about 75%, and the urea removal rate was about 60%. The permeate circulation ratio of the separation membrane module 2 was 0.60.

Figure 2022183507000003
Figure 2022183507000003

(比較例1)
実施例1と同様の分離膜モジュールを用意した。図1のようにポンプおよびバルブを用意し、配管接続を行った。分離膜モジュール2の透過液のすべてを分離膜モジュール1の濃縮液と混合し(すなわち分離膜モジュール2の透過液の分離膜モジュール1の原液への循環を行わない)、精製液とするように透過液循環バルブを調整した。装置の最大運転圧力は5.5MPaなので、最大運転圧力が5.5MPaになるようにバルブを調整し、表2に示す条件で評価を行ったところ、結果は表2に示すようであった。システム全体の尿素除去率をあげるためには、分離膜モジュール1における尿素透過率を上げるために分離膜モジュール1の回収率を上げる必要があるが、図1の透析廃液処理方法において循環を行わない場合は分離膜モジュール1の浸透圧差が高くなり5.5MPaでも十分な有効圧が得られず、尿素の除去率が得られない。
(Comparative example 1)
A separation membrane module similar to that of Example 1 was prepared. A pump and a valve were prepared as shown in FIG. 1, and pipe connections were made. All of the permeated liquid of the separation membrane module 2 is mixed with the concentrated liquid of the separation membrane module 1 (that is, the permeated liquid of the separation membrane module 2 is not circulated to the raw liquid of the separation membrane module 1) to obtain a purified liquid. The permeate circulation valve was adjusted. Since the maximum operating pressure of the apparatus is 5.5 MPa, the valve was adjusted so that the maximum operating pressure was 5.5 MPa, and evaluation was performed under the conditions shown in Table 2. The results were as shown in Table 2. In order to increase the urea removal rate of the entire system, it is necessary to increase the recovery rate of the separation membrane module 1 in order to increase the urea permeability in the separation membrane module 1, but circulation is not performed in the dialysis waste liquid treatment method of FIG. In this case, the osmotic pressure difference in the separation membrane module 1 becomes high, and even 5.5 MPa cannot obtain a sufficient effective pressure, and a urea removal rate cannot be obtained.

Figure 2022183507000004
Figure 2022183507000004

(比較例2)
分離膜モジュール1に使用する分離膜をPA膜Fとした以外は実施例1と同様の分離膜モジュールを用意した。図1のようにポンプおよびバルブを用意し、配管接続を行った。システム全体の水の回収率が90%、装置の最大運転圧力は5.5MPaなので、最大運転圧力が5.5MPaになるようにバルブを調整し、表2に示す条件で評価を行ったところ、結果は表2に示すようであった。分離膜モジュール1における尿素透過率が低いので、システム全体の尿素除去率をあげるためには分離膜モジュール1の回収率を上げる必要があるが、分離膜モジュール1の浸透圧差が高くなり、5.5MPaでも十分な有効圧が得られず、尿素の除去率が得られない。
(比較例3)
分離膜モジュール2に使用する分離膜をPA膜Gとした以外は実施例1と同様の分離膜モジュールを用意した。図1のようにポンプおよびバルブを用意し、配管接続を行った。システム全体の水の回収率が90%、装置の最大運転圧力は5.5MPaなので、最大運転圧力が5.5MPaになるようにバルブを調整し、表2に示す条件で評価を行ったところ、結果は表2に示すようであった。水の回収率を90%以上にしようとすると分離膜2の孔径が大きいため尿素除去率が低く、分離膜モジュール1の回収率を上げる必要があるが、5.5MPaでも尿素の除去率が得られない。
(比較例4)
分離膜モジュール1に使用する分離膜をPA膜Dとした以外は実施例1と同様の分離膜モジュールを用意した。図3のようにポンプおよびバルブを用意し、配管接続を行った。システム全体の水の回収率が90%になるようにバルブを調整し、表2に示す条件で評価を行ったところ、結果は表2に示すようであった。分離膜モジュール1の濃縮液をすべて排出してしまうため、電解質回収率が1%以下となる。
(比較例5)
分離膜モジュール1に使用する分離膜をPA膜Dとした以外は実施例1と同様の分離膜モジュールを用意した。図4のようにポンプおよびバルブを用意し、配管接続を行った。システム全体の水の回収率が90%になるようにバルブを調整し、表2に示す条件で評価を行ったところ、結果は表2に示すようであった。分離膜モジュール1の濃縮液をすべて排出してしまうため、電解質回収率が1%以下となる。
(Comparative example 2)
A separation membrane module similar to that of Example 1 was prepared, except that PA membrane F was used as the separation membrane used in separation membrane module 1 . A pump and a valve were prepared as shown in FIG. 1, and pipe connections were made. Since the water recovery rate of the entire system is 90% and the maximum operating pressure of the device is 5.5 MPa, the valve was adjusted so that the maximum operating pressure was 5.5 MPa, and evaluation was performed under the conditions shown in Table 2. The results were as shown in Table 2. Since the urea permeability in the separation membrane module 1 is low, it is necessary to increase the recovery rate of the separation membrane module 1 in order to increase the urea removal rate of the entire system. Even at 5 MPa, a sufficient effective pressure cannot be obtained, and a urea removal rate cannot be obtained.
(Comparative Example 3)
A separation membrane module was prepared in the same manner as in Example 1 except that PA membrane G was used as the separation membrane for separation membrane module 2 . A pump and a valve were prepared as shown in FIG. 1, and pipe connections were made. Since the water recovery rate of the entire system is 90% and the maximum operating pressure of the device is 5.5 MPa, the valve was adjusted so that the maximum operating pressure was 5.5 MPa, and evaluation was performed under the conditions shown in Table 2. The results were as shown in Table 2. When trying to increase the water recovery rate to 90% or more, the urea removal rate is low because the pore size of the separation membrane 2 is large, and it is necessary to increase the recovery rate of the separation membrane module 1, but the urea removal rate is obtained even at 5.5 MPa. can't
(Comparative Example 4)
A separation membrane module was prepared in the same manner as in Example 1, except that PA membrane D was used as the separation membrane used in separation membrane module 1 . A pump and valves were prepared as shown in FIG. 3, and pipe connections were made. The valves were adjusted so that the water recovery rate of the entire system was 90%, and evaluation was performed under the conditions shown in Table 2. The results were as shown in Table 2. Since all of the concentrate in the separation membrane module 1 is discharged, the electrolyte recovery rate becomes 1% or less.
(Comparative Example 5)
A separation membrane module was prepared in the same manner as in Example 1, except that PA membrane D was used as the separation membrane used in separation membrane module 1 . A pump and valves were prepared as shown in FIG. 4, and pipe connections were made. The valves were adjusted so that the water recovery rate of the entire system was 90%, and evaluation was performed under the conditions shown in Table 2. The results were as shown in Table 2. Since all of the concentrate in the separation membrane module 1 is discharged, the electrolyte recovery rate becomes 1% or less.

本発明は、透析液の再生に好適である。 The present invention is suitable for regeneration of dialysate.

1 分離膜モジュール1
2 分離膜モジュール2
3 分離膜モジュール1供給ポンプ
4 分離膜モジュール1濃縮液バルブ
5 分離膜モジュール2供給ポンプ
6 分離膜モジュール2濃縮液バルブ
7 分離膜モジュール2透過液または精製液流量分配バルブ
8 分離膜モジュール2透過液逆止弁
101 原液
102 精製液
103 排出液
104 分離膜モジュール1供給液
105 分離膜モジュール1濃縮液
106 分離膜モジュール1透過液または透過側排出液
107 分離膜モジュール2供給液
108 分離膜モジュール2濃縮液
109 分離膜モジュール2透過液
110 分離膜モジュール2透過液循環
1 separation membrane module 1
2 separation membrane module 2
3 Separation membrane module 1 supply pump 4 Separation membrane module 1 concentrate valve 5 Separation membrane module 2 supply pump 6 Separation membrane module 2 concentrate valve 7 Separation membrane module 2 permeate or purified liquid flow distribution valve 8 Separation membrane module 2 permeate Check valve 101 Undiluted liquid 102 Purified liquid 103 Effluent 104 Separation membrane module 1 feed liquid 105 Separation membrane module 1 concentrated liquid 106 Separation membrane module 1 permeate or permeate side effluent 107 Separation membrane module 2 feed liquid 108 Separation membrane module 2 concentrate Liquid 109 Separation membrane module 2 permeate liquid 110 Separation membrane module 2 permeate liquid circulation

Claims (12)

原液を、分離膜1を有する分離膜モジュール1と分離膜2を有する分離膜モジュール2で処理し、水および電解質を回収した精製液と、尿素などの中性低分子を含んだ廃液に分離する透析廃液処理方法であって、
前記原液は少なくとも電解質、中性低分子を含む透析廃液であり、前記分離膜1は陽電子消滅寿命測定法を用いて測定される孔径が7Å以上であり、前記分離膜2は陽電子消滅寿命測定法を用いて測定される孔径が7Å以下であり、前記分離膜モジュール1の透過液は前記分離膜モジュール2に供給し分離処理され、
少なくとも以下の(i)(ii)のいずれかの要件を満たすことを特徴とする透析廃液処理方法。
(i)前記分離膜モジュール2の透過液の一部を前記原液と混合後前記分離膜モジュール1に供給し、前記分離膜モジュール2の透過液の残りの全量または一部を前記分離膜モジュール1の濃縮液と混合し精製液を得る。
(ii)前記分離膜モジュール2の透過液の全量を前記原液と混合後前記分離膜モジュール1の供給側に供給し、前記分離膜モジュール1の濃縮液を精製液として得る。
A raw liquid is treated by a separation membrane module 1 having a separation membrane 1 and a separation membrane module 2 having a separation membrane 2, and separated into a purified liquid obtained by recovering water and electrolytes, and a waste liquid containing neutral low-molecular weight compounds such as urea. A dialysis waste fluid treatment method comprising:
The undiluted solution is a dialysis waste solution containing at least an electrolyte and a neutral low molecule, the separation membrane 1 has a pore size of 7 Å or more as measured by a positron annihilation lifetime measurement method, and the separation membrane 2 is a positron annihilation lifetime measurement method. The permeate of the separation membrane module 1 is supplied to the separation membrane module 2 and subjected to separation treatment,
A dialysis waste liquid treatment method characterized by satisfying at least one of the following requirements (i) and (ii).
(i) A part of the permeated liquid of the separation membrane module 2 is mixed with the raw liquid and then supplied to the separation membrane module 1, and all or part of the remaining permeated liquid of the separation membrane module 2 is mixed with the raw liquid. to obtain a purified solution.
(ii) After mixing the whole amount of the permeated liquid of the separation membrane module 2 with the raw liquid, it is supplied to the feed side of the separation membrane module 1 to obtain the concentrated liquid of the separation membrane module 1 as a purified liquid.
前記分離膜1に対して、10000mg/Lの塩化ナトリウム(NaCl)と250mg/Lの尿素を混合した溶液1を36℃、圧力1.2Mpaで供給した場合において、供給液に対する透過液中の成分濃度の減少率で定義する除去率について、前記分離膜1の塩化ナトリウム除去率が90%以上であり、かつ、前記分離膜1の尿素除去率が25%以下である、請求項1に記載の透析廃液処理方法。 When a solution 1 in which 10000 mg / L sodium chloride (NaCl) and 250 mg / L urea are mixed is supplied to the separation membrane 1 at 36 ° C. and a pressure of 1.2 MPa, the component in the permeate for the feed liquid 2. The method according to claim 1, wherein the separation membrane 1 has a sodium chloride removal rate of 90% or more and a urea removal rate of 25% or less with respect to the removal rate defined by the concentration reduction rate. Dialysis waste liquid treatment method. 前記分離膜2に対して、1000mg/Lの塩化ナトリウム(NaCl)と700mg/Lの尿素を混合した溶液2を36℃、圧力1.8Mpaで供給した場合において、供給液に対する透過液中の成分濃度の減少率で定義する除去率について、
前記分離膜2の尿素除去率が85%以上である、請求項1または2に記載の透析廃液処理方法。
When a solution 2 in which 1000 mg / L sodium chloride (NaCl) and 700 mg / L urea are mixed is supplied to the separation membrane 2 at 36 ° C. and a pressure of 1.8 Mpa, the component in the permeate for the feed liquid For the removal rate defined by the concentration reduction rate,
The dialysis waste liquid treatment method according to claim 1 or 2, wherein the separation membrane (2) has a urea removal rate of 85% or more.
前記(i)の要件において、前記分離膜モジュール2の透過液量に対する、原液に混合する前記分離膜モジュール2の透過液の一部の量の比が0.6以上である、請求項1~3のいずれかに記載の透析廃液処理方法。 Claims 1 to 1, wherein in the requirement (i), the ratio of the amount of a part of the permeated liquid of the separation membrane module 2 mixed with the raw liquid to the amount of the permeated liquid of the separation membrane module 2 is 0.6 or more. 4. The method for treating dialysis waste fluid according to any one of 3. 前記原液に対する前記精製液の量の割合が75%以上である、請求項1~4のいずれかに記載の透析廃液処理方法。 The dialysis waste liquid treatment method according to any one of claims 1 to 4, wherein the ratio of the purified liquid to the raw liquid is 75% or more. 前記分離膜が、支持層と、ポリアミドおよび酢酸セルロースのうちの少なくとも一方を含有する分離機能層膜を含む請求項1~5のいずれかに記載の透析廃液処理方法。 The dialysis waste liquid treatment method according to any one of claims 1 to 5, wherein the separation membrane comprises a support layer and a separation functional layer membrane containing at least one of polyamide and cellulose acetate. 前記分離膜が、支持層と、ポリアミドを含有する分離機能層膜を含む請求項1~6のいずれかに記載の透析廃液処理方法。 The dialysis waste liquid treatment method according to any one of claims 1 to 6, wherein the separation membrane comprises a support layer and a separation functional layer membrane containing polyamide. 原液を分離膜モジュール1と分離膜モジュール2で分離処理する透析廃液処理装置であって、前記分離膜モジュールは分離膜を有し、
前記分離膜1は陽電子消滅寿命測定法を用いて測定される孔径が7Å以上であり、前記分離膜2は陽電子消滅寿命測定法を用いて測定される孔径が7Å以下であり、前記分離膜モジュール1の透過側から得られる透過液を含む透過側溶液のラインは前記分離膜モジュール2の供給側に接続され、
少なくとも以下の(i)(ii)のいずれかの要件を満たすことを特徴とする透析廃液処理装置。
(i)前記分離膜モジュール2の透過液ラインを2つに分岐させ、一方を前記原液ラインに接続し、前記分離膜モジュール2の透過液ラインのもう一方を前記分離膜モジュール1の濃縮液ラインに接続し精製液ラインとする。
(ii)前記分離膜モジュール2の透過液ラインを前記原液ラインに接続し、前記分離膜モジュール1の濃縮液ラインを精製液ラインとする。
A dialysis waste liquid treatment apparatus that separates and treats a raw liquid with a separation membrane module 1 and a separation membrane module 2, wherein the separation membrane module has a separation membrane,
The separation membrane 1 has a pore size of 7 Å or more measured by a positron annihilation lifetime measurement method, the separation membrane 2 has a pore size of 7 Å or less measured by a positron annihilation lifetime measurement method, and the separation membrane module. A permeate solution line containing a permeate obtained from the permeate side of 1 is connected to the feed side of the separation membrane module 2,
A dialysis waste liquid treatment apparatus characterized by satisfying at least one of the following requirements (i) and (ii).
(i) The permeated liquid line of the separation membrane module 2 is branched into two, one of which is connected to the raw liquid line, and the other of the permeated liquid line of the separation membrane module 2 is connected to the concentrated liquid line of the separation membrane module 1. and use it as a purified liquid line.
(ii) The permeated liquid line of the separation membrane module 2 is connected to the raw liquid line, and the concentrated liquid line of the separation membrane module 1 is used as the purified liquid line.
前記分離膜1に対して、10000mg/Lの塩化ナトリウム(NaCl)と250mg/Lの尿素を混合した溶液1を36℃、圧力1.2Mpaで供給した場合において、供給液に対する透過液中の成分濃度の減少率で定義する除去率について、前記分離膜1の塩化ナトリウム除去率が90%以上であり、かつ、前記分離膜1の尿素除去率が25%以下である、請求項8に記載の透析廃液処理装置。 When a solution 1 in which 10000 mg / L sodium chloride (NaCl) and 250 mg / L urea are mixed is supplied to the separation membrane 1 at 36 ° C. and a pressure of 1.2 MPa, the component in the permeate for the feed liquid 9. The method according to claim 8, wherein the separation membrane 1 has a sodium chloride removal rate of 90% or more and a urea removal rate of 25% or less, with respect to the removal rate defined by the concentration reduction rate. Dialysis waste liquid treatment equipment. 前記分離膜2に対して、1000mg/Lの塩化ナトリウム(NaCl)と700mg/Lの尿素を混合した溶液2を36℃、圧力1.8Mpaで供給した場合において、供給液に対する透過液中の成分濃度の減少率で定義する除去率について、
前記分離膜2の尿素除去率が85%以上である、請求項8または9に記載の透析廃液処理方法。
When a solution 2 in which 1000 mg / L sodium chloride (NaCl) and 700 mg / L urea are mixed is supplied to the separation membrane 2 at 36 ° C. and a pressure of 1.8 Mpa, the component in the permeate for the feed liquid For the removal rate defined by the concentration reduction rate,
The dialysis waste liquid treatment method according to claim 8 or 9, wherein the separation membrane (2) has a urea removal rate of 85% or more.
前記分離膜が、支持層と、ポリアミドおよび酢酸セルロースのうちの少なくとも一方を含有する分離機能層膜を含む請求項8~10のいずれかに記載の透析廃液処理装置。 The dialysis waste liquid treatment apparatus according to any one of claims 8 to 10, wherein the separation membrane includes a support layer and a separation functional layer membrane containing at least one of polyamide and cellulose acetate. 前記分離膜が、支持層と、ポリアミドを含有する分離機能層膜を含む請求項8~11のいずれかに記載の透析廃液処理装置。 The dialysis waste liquid treatment apparatus according to any one of claims 8 to 11, wherein the separation membrane includes a support layer and a separation functional layer membrane containing polyamide.
JP2021090860A 2021-05-31 2021-05-31 Dialysis waste liquid treatment method Pending JP2022183507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021090860A JP2022183507A (en) 2021-05-31 2021-05-31 Dialysis waste liquid treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021090860A JP2022183507A (en) 2021-05-31 2021-05-31 Dialysis waste liquid treatment method

Publications (1)

Publication Number Publication Date
JP2022183507A true JP2022183507A (en) 2022-12-13

Family

ID=84437762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021090860A Pending JP2022183507A (en) 2021-05-31 2021-05-31 Dialysis waste liquid treatment method

Country Status (1)

Country Link
JP (1) JP2022183507A (en)

Similar Documents

Publication Publication Date Title
CA2335886C (en) Antimicrobial semi-permeable membranes
US11439953B2 (en) Brine concentration
JP4059543B2 (en) Medical device for extracorporeal treatment of blood or plasma and method for manufacturing the device
US20230054094A1 (en) Method and system for preparing dialysis fluid from raw water
JP6795126B1 (en) Dialysate regeneration method
JP2022183507A (en) Dialysis waste liquid treatment method
WO2023100216A1 (en) Solution processing method and solution processing apparatus
JP3934340B2 (en) Blood purifier
JP3780734B2 (en) Composite semipermeable membrane
JP4400123B2 (en) Liquid separation membrane and liquid processing method
JP4470472B2 (en) Composite semipermeable membrane and method for producing water using the same
JP2022103007A (en) Solution treatment method and solution treatment device
US10752533B2 (en) Membrane treatment of ammonia-containing waste water
JP2005144211A (en) Composite semi-permeable membrane, its production method and treatment method for fluid separation element
JP2021528241A (en) Alkaline-stable nano-filtration composite membranes and their manufacturing methods
JP2001239136A (en) Treating system and operating method therefor
JPH1176776A (en) Semipermeable composite membrane and its production
JP2022101945A (en) Film separation process, organic matter density reduction method and film separation device
JP2003200027A (en) Method for manufacturing composite semipermeable membrane
Husain et al. Directly Related Patents
JP2020175385A (en) Separation membrane element
JP2002085944A (en) Ion selective separator, fluid treatment equipment including the same and fluid separation process
JP2005152818A (en) Liquid separation membrane and its manufacturing method
Jersey et al. Filtration and venting systems with gas permeable membrane
JP2005028220A (en) Manufacturing method and treatment method of composite semipermeable membrane