JP2022103007A - Solution treatment method and solution treatment device - Google Patents

Solution treatment method and solution treatment device Download PDF

Info

Publication number
JP2022103007A
JP2022103007A JP2021059746A JP2021059746A JP2022103007A JP 2022103007 A JP2022103007 A JP 2022103007A JP 2021059746 A JP2021059746 A JP 2021059746A JP 2021059746 A JP2021059746 A JP 2021059746A JP 2022103007 A JP2022103007 A JP 2022103007A
Authority
JP
Japan
Prior art keywords
separation membrane
membrane module
solution
component
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021059746A
Other languages
Japanese (ja)
Inventor
慎一郎 吉冨
Shinichiro Yoshitomi
宜記 岡本
Yoshiki Okamoto
茂久 花田
Shigehisa Hanada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JP2022103007A publication Critical patent/JP2022103007A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

To provide a membrane-separation solution treatment method for separating separation-objective substances while collecting components which should be left and water.SOLUTION: In a solution treatment method which uses a separation membrane module 1 and a separation membrane module 2 having separation membrane performance equal to or higher than that of the separation membrane module 1, and in which a raw solution 101 includes at least a component A and a component B, a removal rate of the component A of the separation membrane module 1 is equal to or higher than 90% with respect to a removal rate which is defined at a reduction rate of a component concentration in a permeated solution with respect to a component concentration of the raw solution, a removal rate of the component B is lower by 60%-point or more compared with the removal rate of the component A, and the removal rate of the component B of the separation membrane module 2 is equal to or higher than 85%, and which satisfies at least the following (i) and (ii), (i) a part of the permeated solution 109 of the separation membrane module 2 is returned to the raw solution 101, and a residual of the permeated solution 109 is mixed with a concentrated solution 105 of the separation membrane module 1, and (ii) a refined solution 102 is obtained by mixing the permeated solution of the separation membrane module 2 with the concentrated solution of the separation membrane module 1, and a part of the refined solution is returned to the raw solution.SELECTED DRAWING: Figure 1

Description

本発明は、中性分子などの分離対象物質が含まれる溶液に対して、精製液として残したい成分および水を回収しながら分離対象物質を分離する、膜分離を利用した溶液処理方法に関する。 The present invention relates to a solution treatment method using membrane separation, which separates a substance to be separated while recovering a component to be left as a purified liquid and water from a solution containing a substance to be separated such as a neutral molecule.

近年、複数の成分が溶けている溶液から有用な物質を取り出したり、不純物を分離したりするような選択分離技術のニーズが高まっている。例えば、様々な元素が解けている塩湖水などから有価物を取り出したり、不純物の入っている溶液から不純物を取り出したりなどが挙げられる。例えば特許文献1では、海水淡水化で得られる淡水や水道に利用される原水などに溶存しているホウ素を逆浸透膜とルースRO膜を用いて除去する方法について記載されている。また、特許文献2には、逆浸透膜とナノろ過(NF)膜を用いて、海水あるいは海洋深層水からミネラル成分を残し塩分を除去する方法について記載されている。 In recent years, there has been an increasing need for selective separation techniques such as extracting useful substances from a solution in which a plurality of components are dissolved and separating impurities. For example, valuable resources may be taken out from salt lake water in which various elements are dissolved, or impurities may be taken out from a solution containing impurities. For example, Patent Document 1 describes a method of removing boron dissolved in fresh water obtained by desalination of seawater or raw water used for water services by using a reverse osmosis membrane and a loose RO membrane. Further, Patent Document 2 describes a method of removing salt by leaving a mineral component from seawater or deep sea water by using a reverse osmosis membrane and a nanofiltration (NF) membrane.

様々な選択分離技術のニーズの中で、近年、生活水準の向上に伴って世界的に人口透析治療の患者が増えており、治療により排出される透析廃液から不純物を除去し透析液として再生する技術が着目されつつある。一般的な人工透析治療では、一回の処置において90Lから150Lの大量の透析液を使用する必要がある。人工透析治療に使用された透析液には血液から移動した尿素などの老廃物が含まれるため、基本的に一度の使用によって透析液は廃棄される。そのため大量の透析廃液が発生してしまうことが問題となっている。
透析液の作成方法としては、水道水を逆浸透(RO)膜などで処理した純水に、必要な塩分、グルコースなどを添加し透析液とする方法が一般的である。しかしながら、水道水の供給が断続的な水不足地域においては、必要な量の水道水の確保が困難な場合もあり、水使用量の低減が求められている。さらに、水供給量が十分な地域においても、災害時において断水が続くと透析液を水道水から作ることができなくなる。そのため、透析廃液から尿素などの老廃物を取り除き、透析液として再利用する透析廃液再利用の要望はますます高まってきており、透析廃液再利用技術の提案がいくつかなされている。
例えば、使用済みの透析廃液から、吸着材によって不純物、老廃物、及び電解質を取り除くことが提案されているが、実施される透析治療に応じて透析廃液の再生には数キログラムの吸着材が必要とされ、重量やコストをできるだけ抑えるシステムが望まれている。
Among the needs of various selective separation techniques, the number of patients undergoing artificial dialysis treatment is increasing worldwide in recent years due to the improvement of living standards, and impurities are removed from the dialysis waste liquid discharged by the treatment and regenerated as a dialysate. Technology is attracting attention. In general renal dialysis treatment, it is necessary to use a large amount of 90 L to 150 L of dialysate in one treatment. Since the dialysate used for the dialysis treatment contains waste products such as urea transferred from the blood, the dialysate is basically discarded after one use. Therefore, there is a problem that a large amount of dialysis waste liquid is generated.
As a method for preparing a dialysate, a method of adding necessary salts, glucose and the like to pure water obtained by treating tap water with a reverse osmosis (RO) membrane or the like to prepare a dialysate is common. However, in areas where there is an intermittent water shortage, it may be difficult to secure the required amount of tap water, and there is a need to reduce the amount of water used. Furthermore, even in areas where the amount of water supply is sufficient, if water outage continues in the event of a disaster, dialysate cannot be made from tap water. Therefore, there is an increasing demand for reuse of dialysis waste liquid by removing waste products such as urea from dialysis waste liquid and reusing it as dialysate, and some proposals have been made for dialysis waste liquid reuse technology.
For example, it has been proposed to remove impurities, waste products, and electrolytes from used dialysis effluent with an adsorbent, but depending on the dialysis treatment to be performed, several kilograms of adsorbent is required to regenerate the dialysis effluent. Therefore, a system that suppresses weight and cost as much as possible is desired.

吸着材量を低減する手法として、特許文献3には二段階で吸着剤カートリッジを用いるシステムが提案されている。 As a method for reducing the amount of the adsorbent, Patent Document 3 proposes a system using an adsorbent cartridge in two steps.

特許文献4にはウレアーゼおよびイオン交換樹脂または無機吸着材による尿素除去システムが提案されている。 Patent Document 4 proposes a urea removal system using urease and an ion exchange resin or an inorganic adsorbent.

特許文献5には吸着剤や電気透析により塩分をある程度除去した後に、逆浸透膜を用いて不純物を除去するシステムが提案されている。 Patent Document 5 proposes a system in which impurities are removed by using a reverse osmosis membrane after removing salt to some extent by an adsorbent or electrodialysis.

日本国特開平9-29027号公報Japanese Patent Application Laid-Open No. 9-29027 日本国特開2003-88863号公報Japanese Patent Application Laid-Open No. 2003-88863 日本国特開2014-204958号公報Japanese Patent Application Laid-Open No. 2014-204598 日本国特表2014-530643号公報Japan Special Table 2014-530643 Gazette 国際公開2020-218571号公報International Publication No. 2020-218571

特許文献3および4に記載の技術は、ウレアーゼで尿素をアンモニアに分解し、アンモニアをさらに捕捉することで、使用済み透析液から尿素を分離する技術である。したがって、尿素及び分解物であるアンモニアを完全に捕捉するためには複数の吸着材が必要となる。吸着材量が少ないと捕捉されなかったアンモニアが残存する懸念があるため、吸着材量が多く必要であり、それによりコストが高くなったり透析廃液再利用装置の重量が大きくなったりするため問題があった。 The techniques described in Patent Documents 3 and 4 are techniques for separating urea from used dialysate by decomposing urea into ammonia with urease and further capturing ammonia. Therefore, a plurality of adsorbents are required to completely capture urea and ammonia as a decomposition product. If the amount of adsorbent is small, there is a concern that uncaptured ammonia will remain, so a large amount of adsorbent is required, which increases the cost and the weight of the dialysis waste liquid recycling device, which causes a problem. there were.

特許文献5に記載の技術は、孔径が7.0Å以下の逆浸透膜を用いて尿素などの老廃物を分離し透析廃液を再生する技術である。本技術では、特に水を高回収で処理する場合、逆浸透膜に通水する前処理として浸透圧差低減のため透析廃液中の塩を除去する必要があるため、イオン交換樹脂や電気透析装置を前処理として使用する。イオン交換樹脂を使用する場合、一回の透析治療で使用済みのイオン交換樹脂の廃棄物が排出されてしまう問題がある。また、電気透析装置を使用した場合、脱塩に高電圧が必要であり、かつ塩素ガス発生の懸念もあるため安全上好ましくない。 The technique described in Patent Document 5 is a technique for separating waste products such as urea using a reverse osmosis membrane having a pore size of 7.0 Å or less and regenerating the dialysis waste liquid. In this technology, especially when treating water with high recovery, it is necessary to remove the salt in the dialysis waste liquid in order to reduce the osmotic pressure difference as a pretreatment for passing water through the reverse osmosis membrane. Used as pretreatment. When an ion exchange resin is used, there is a problem that the waste of the used ion exchange resin is discharged in one dialysis treatment. Further, when an electrodialysis device is used, a high voltage is required for desalting, and there is a concern that chlorine gas may be generated, which is not preferable in terms of safety.

そこで、本発明の目的は、中性分子などの分離対象物質が含まれる溶液に対して、複数の膜を組み合わせ精製液として残したい成分および水をなるべく回収しながら分離対象物質を分離する、溶液処理方法を提供することにある。なお、本技術は透析廃液再利用を例として説明するが、透析廃液再利用以外の用途、例えば溶液から有用なイオンを回収する有価物回収などにも本技術は問題なく使用することができる。 Therefore, an object of the present invention is a solution for separating a substance to be separated while recovering as much as possible the components and water to be left as a purified liquid by combining a plurality of films with respect to a solution containing a substance to be separated such as a neutral molecule. The purpose is to provide a processing method. Although the present technique will be described by taking the reuse of dialysis waste liquid as an example, the present technique can be used without any problem for applications other than the reuse of dialysis waste liquid, for example, recovery of valuable resources for recovering useful ions from a solution.

上記目的を達成するために、本発明によれば、(1)原液を、分離膜1と、上記分離膜1の分離膜性能と同等あるいはそれよりも高い分離膜性能を有する分離膜2で分離処理する溶液処理方法であって、上記分離膜1を使用した分離膜モジュール1および上記分離膜2を使用した分離膜モジュール2には透過側と供給側が存在し、上記原液は、少なくとも成分A、成分Bを含むものであり、上記分離膜1および上記分離膜2を標準評価条件で運転した場合において、供給液中の成分濃度に対して、透過した溶液中の成分濃度の減少率で定義する除去率について、上記分離膜1の上記成分Aの除去率が90%以上であり、かつ、上記分離膜1の上記成分Bの除去率が、上記分離膜1の上記成分Aの除去率よりも60%ポイント以上低いものであり、上記分離膜2の上記成分Bの除去率が85%以上であり、上記分離膜モジュール1の透過側から得られる透過液を含む透過側溶液は、上記分離膜モジュール2の供給側に供給し分離処理され、少なくとも以下の(i)(ii)のいずれかの要件を満たすことを特徴とする溶液処理方法が提供される。
(i)上記分離膜モジュール2の透過液の少なくとも一部を上記原液と混合後上記分離膜モジュール1の供給側に供給し、上記分離膜モジュール2の透過液の残りの全量または一部を上記分離膜モジュール1の濃縮液と混合し精製液を得る。
(ii)上記分離膜モジュール2の透過液を分離膜モジュール1の濃縮液と混合し精製液を得、かつ、当該精製液の一部を上記原液と混合後、分離膜モジュール1の供給側に供給する。
また、本発明の好ましい形態によれば、(2)上記分離膜モジュール1または2に使われる分離膜エレメントが、有孔中心管を備えたスパイラル型の分離膜エレメントであることを特徴とする、(1)に記載の溶液処理方法が提供される。
また、本発明の好ましい形態によれば、(3)上記分離膜エレメントの有孔中心管の長手方向に対し垂直方向における外周端部に、供給液供給部又は濃縮液排出部を有していることを特徴とする、(2)に記載の溶液処理方法が提供される。
また、本発明の好ましい形態によれば、(4)上記分離膜モジュール1が膜の透過側と供給側の両側に供給口と排出口とを有する構造であり、上記分離膜モジュール1の透過側に、上記分離膜モジュール2の濃縮液、または原液、またはその両方が供給されることを特徴とする、(1)に記載の溶液処理方法が提供される。
In order to achieve the above object, according to the present invention, (1) the stock solution is separated by the separation membrane 1 and the separation membrane 2 having the separation membrane performance equal to or higher than that of the separation membrane 1. In the solution treatment method for treating, the separation membrane module 1 using the separation membrane 1 and the separation membrane module 2 using the separation membrane 2 have a transmission side and a supply side, and the stock solution contains at least component A. It contains component B, and is defined by the rate of decrease in the component concentration in the permeated solution with respect to the component concentration in the feed solution when the separation membrane 1 and the separation membrane 2 are operated under standard evaluation conditions. Regarding the removal rate, the removal rate of the component A of the separation membrane 1 is 90% or more, and the removal rate of the component B of the separation membrane 1 is higher than the removal rate of the component A of the separation membrane 1. The permeation side solution containing the permeate obtained from the permeation side of the separation membrane module 1 has a removal rate of the component B of the separation membrane 2 of 85% or more, which is 60 percentage points or more lower, is the separation membrane. Provided is a solution treatment method characterized in that it is supplied to the supply side of the module 2 and separated, and at least one of the following requirements (i) and (ii) is satisfied.
(I) At least a part of the permeate of the separation membrane module 2 is mixed with the stock solution and then supplied to the supply side of the separation membrane module 1, and all or a part of the remaining amount of the permeate of the separation membrane module 2 is described above. A purified liquid is obtained by mixing with the concentrated liquid of the separation membrane module 1.
(Ii) The permeated liquid of the separation membrane module 2 is mixed with the concentrated liquid of the separation membrane module 1 to obtain a purified liquid, and a part of the purified liquid is mixed with the undiluted solution, and then to the supply side of the separation membrane module 1. Supply.
Further, according to a preferred embodiment of the present invention, (2) the separation membrane element used in the separation membrane module 1 or 2 is a spiral type separation membrane element provided with a perforated central canal. The solution treatment method according to (1) is provided.
Further, according to a preferred embodiment of the present invention, (3) a supply liquid supply unit or a concentrated liquid discharge unit is provided at the outer peripheral end portion in the direction perpendicular to the longitudinal direction of the perforated central tube of the separation membrane element. The solution treatment method according to (2), which is characterized by the above, is provided.
Further, according to a preferred embodiment of the present invention, (4) the separation membrane module 1 has a structure having supply ports and discharge ports on both the permeation side and the supply side of the membrane, and the permeation side of the separation membrane module 1 The solution treatment method according to (1) is provided, wherein the concentrated solution of the separation membrane module 2, the undiluted solution, or both of them is supplied.

また、本発明の好ましい形態によれば、(5)上記分離膜モジュール2が膜の透過側と供給側の両側に供給口と排出口とを有する構造であり、上記分離膜モジュール2の透過側に上記分離膜モジュール1の濃縮液が供給されることを特徴とする、(1)、(4)のいずれかに記載の溶液処理方法が提供される。 Further, according to a preferred embodiment of the present invention, (5) the separation membrane module 2 has a structure having supply ports and discharge ports on both the permeation side and the supply side of the membrane, and the permeation side of the separation membrane module 2 The solution treatment method according to any one of (1) and (4) is provided, wherein the concentrated solution of the separation membrane module 1 is supplied to the above.

また、本発明の好ましい形態によれば、(6)膜の透過側と供給側の両側に供給口と排出口とを有する構造となっている上記分離膜モジュール1または上記分離膜モジュール2について、透過側と供給側に供給される溶液の流れがそれぞれ向流となっていることを特徴とする、(4)または(5)に記載の溶液処理方法が提供される。 Further, according to a preferred embodiment of the present invention, (6) the separation membrane module 1 or the separation membrane module 2 having a structure having supply ports and discharge ports on both the permeation side and the supply side of the membrane. The solution treatment method according to (4) or (5), characterized in that the flows of the solutions supplied to the permeation side and the supply side are countercurrents, respectively, is provided.

また、本発明の好ましい形態によれば、(7)上記分離膜モジュール1が透過液方向に多段となっていることを特徴とする、(1)~(6)のいずれかに記載の溶液処理方法が提供される。 Further, according to a preferred embodiment of the present invention, (7) the solution treatment according to any one of (1) to (6), wherein the separation membrane module 1 has multiple stages in the permeate direction. The method is provided.

また、本発明の好ましい形態によれば、(8)最後段に設置される上記分離膜モジュール1の濃縮液を循環し、上記分離膜モジュール1の供給側に戻すことを特徴とする、(7)に記載の溶液処理方法が提供される。 Further, according to a preferred embodiment of the present invention, (8) the concentrated solution of the separation membrane module 1 installed at the last stage is circulated and returned to the supply side of the separation membrane module 1 (7). ) Is provided.

また、本発明の好ましい形態によれば、(9)上記分離膜モジュール2が透過液方向に多段となっていることを特徴とする、(1)~(8)のいずれかに記載の溶液処理方法が提供される。 Further, according to a preferred embodiment of the present invention, (9) the solution treatment according to any one of (1) to (8), wherein the separation membrane module 2 has multiple stages in the permeate direction. The method is provided.

また、本発明の好ましい形態によれば、(10)上記分離膜モジュール1または上記分離膜モジュール2が濃縮液方向に多段となっていることを特徴とする、(1)~(9)のいずれかに記載の溶液処理方法が提供される。
また、本発明の好ましい形態によれば、(11)上記原液の成分濃度の合計が1000mg/L以上であることを特徴とする、(1)~(10)のいずれかに記載の溶液処理方法が提供される。
また、本発明の好ましい形態によれば、(12)上記成分Aがイオンで上記成分Bが中性分子であることを特徴とする、(1)~(11)のいずれかに記載の溶液処理方法が提供される。
また、本発明の好ましい形態によれば、(13)上記原液が医療用人工透析廃液であることを特徴とする、(1)~(12)のいずれかに記載の溶液処理方法が提供される。
また、本発明の好ましい形態によれば、(14)上記成分Aが多価イオンで上記成分Bが1価イオンであることを特徴とする、(1)~(11)のいずれかに記載の溶液処理方法が提供される。
また、本発明の好ましい形態によれば、(15)上記成分Aが高分子の中性分子で上記成分Bが低分子の中性分子であることを特徴とする、(1)~(11)のいずれかに記載の溶液処理方法が提供される。
また、本発明の好ましい形態によれば、(16)上記分離膜1が逆浸透膜もしくはナノろ過膜であることを特徴とする、(1)~(15)のいずれかに記載の溶液処理方法が提供される。
また、本発明の好ましい形態によれば、(17)上記分離膜2が逆浸透膜であることを特徴とする(1)~(16)のいずれかに記載の溶液処理方法が提供される。
また、本発明によれば、(18)原液を、分離膜1と、上記分離膜1の分離膜性能と同等あるいはそれよりも高い分離膜性能を有する分離膜2で分離処理する溶液処理装置であって、上記分離膜1を使用した分離膜モジュール1および上記分離膜2を使用した分離膜モジュール2には透過側と供給側が存在し、上記分離膜1および上記分離膜2を標準評価条件で運転した場合において、供給液中の成分濃度に対して、透過した溶液中の成分濃度の減少率で定義する除去率について、上記分離膜1の上記成分Aの除去率が90%以上であり、かつ、上記分離膜1の上記成分Bの除去率が、上記分離膜1の上記成分Aの除去率よりも60%ポイント以上低いものであり、上記分離膜2の上記成分Bの除去率が85%以上であり、上記分離膜モジュール1の透過側から得られる透過液を含む透過側溶液のラインは、上記分離膜モジュール2の供給側に接続され、少なくとも以下の(i)(ii)のいずれかの要件を満たすことを特徴とする溶液処理装置が提供される。
(i)上記分離膜モジュール2の透過液ラインを2つに分岐させ、一方を上記原液のラインに接続し、上記原液と上記分離膜モジュール2の透過液の混合液のラインを上記分離膜モジュール1の供給側に接続し、上記分離膜モジュール2の透過液ラインのもう一方を上記分離膜モジュール1の濃縮液ラインに接続し精製液ラインとする。
(ii)上記分離膜モジュール1の濃縮液ラインを上記分離膜モジュール2の透過側の溶液ラインに接続し精製液ラインとし、かつ、精製液ラインを2つに分岐させ、一方を上記原液ラインに接続し、上記原液と上記精製液の混合液のラインを分離膜モジュール1の供給側に接続する。
また、本発明の好ましい形態によれば、(19)上記分離膜モジュール1または上記分離膜モジュール2に使われる分離膜エレメントが、有孔中心管を備えたスパイラル型の分離膜エレメントであることを特徴とする、(18)に記載の溶液処理装置が提供される。
また、本発明の好ましい形態によれば、(20)上記分離膜エレメントの有孔中心管の長手方向に対し垂直方向における外周端部に、供給液供給部又は濃縮液排出部を有していることを特徴とする、(19)に記載の溶液処理装置が提供される。
また、本発明の好ましい形態によれば、(21)上記分離膜モジュール1が膜の透過側と供給側の両側に供給口と排出口とを有する構造であり、上記分離膜モジュール1の透過側に、上記分離膜モジュール2の濃縮液、または原液、またはその両方のラインが接続されることを特徴とする、(18)に記載の溶液処理装置が提供される。
また、本発明の好ましい形態によれば、(22)上記分離膜モジュール2が膜の透過側と供給側の両側に供給口と排出口とを有する構造であり、上記分離膜モジュール2の透過側に上記分離膜モジュール1の濃縮液ラインが接続されることを特徴とする、(18)または(21)のいずれかに記載の溶液処理装置が提供される。
また、本発明の好ましい形態によれば、(23)膜の透過側と供給側の両側に供給口と排出口とを有する構造となっている上記分離膜モジュール1または上記分離膜モジュール2について、透過側と供給側に供給される溶液の流れがそれぞれ向流となるように配管接続されていることを特徴とする、(21)または(22)に記載の溶液処理装置が提供される。
Further, according to a preferred embodiment of the present invention, (10) any of (1) to (9), wherein the separation membrane module 1 or the separation membrane module 2 has multiple stages in the concentration liquid direction. The solution treatment method described in the above is provided.
Further, according to a preferred embodiment of the present invention, (11) the solution treatment method according to any one of (1) to (10), wherein the total concentration of the components of the stock solution is 1000 mg / L or more. Is provided.
Further, according to a preferred embodiment of the present invention, (12) the solution treatment according to any one of (1) to (11), wherein the component A is an ion and the component B is a neutral molecule. The method is provided.
Further, according to a preferred embodiment of the present invention, there is provided the solution treatment method according to any one of (1) to (12), wherein (13) the undiluted solution is a medical artificial dialysis waste solution. ..
Further, according to a preferred embodiment of the present invention, (14) any of (1) to (11), wherein the component A is a polyvalent ion and the component B is a monovalent ion. A solution processing method is provided.
Further, according to a preferred embodiment of the present invention, (15) the component A is a high molecular weight neutral molecule and the component B is a low molecular weight neutral molecule (1) to (11). The solution treatment method according to any one of the above is provided.
Further, according to a preferred embodiment of the present invention, (16) the solution treatment method according to any one of (1) to (15), wherein the separation membrane 1 is a reverse osmosis membrane or a nanofiltration membrane. Is provided.
Further, according to a preferred embodiment of the present invention, (17) the solution treatment method according to any one of (1) to (16), wherein the separation membrane 2 is a reverse osmosis membrane is provided.
Further, according to the present invention, (18) a solution treatment apparatus that separates the undiluted solution between the separation membrane 1 and the separation membrane 2 having the separation membrane performance equal to or higher than that of the separation membrane 1. Therefore, the separation membrane module 1 using the separation membrane 1 and the separation membrane module 2 using the separation membrane 2 have a transmission side and a supply side, and the separation membrane 1 and the separation membrane 2 are under standard evaluation conditions. In the case of operation, the removal rate of the component A of the separation membrane 1 is 90% or more with respect to the removal rate defined by the reduction rate of the component concentration in the permeated solution with respect to the component concentration in the feed solution. Moreover, the removal rate of the component B of the separation membrane 1 is 60 percentage points or more lower than the removal rate of the component A of the separation membrane 1, and the removal rate of the component B of the separation membrane 2 is 85. % Or more, and the line of the permeation side solution containing the permeate obtained from the permeation side of the separation membrane module 1 is connected to the supply side of the separation membrane module 2, and at least any of the following (i) and (ii). A solution processing apparatus characterized by satisfying the above requirements is provided.
(I) The permeation liquid line of the separation membrane module 2 is branched into two, one is connected to the stock solution line, and the mixed liquid line of the stock solution and the permeation liquid of the separation membrane module 2 is connected to the separation membrane module. It is connected to the supply side of No. 1 and the other side of the permeate line of the separation membrane module 2 is connected to the concentrate line of the separation membrane module 1 to form a purification liquid line.
(Ii) The concentrate line of the separation membrane module 1 is connected to the solution line on the permeation side of the separation membrane module 2 to form a purification liquid line, and the purification liquid line is branched into two, one of which is to the stock solution line. The line of the mixed solution of the undiluted solution and the purified solution is connected to the supply side of the separation membrane module 1.
Further, according to a preferred embodiment of the present invention, (19) the separation membrane element used in the separation membrane module 1 or the separation membrane module 2 is a spiral type separation membrane element provided with a perforated central canal. The solution processing apparatus according to (18), which is characterized by the present invention, is provided.
Further, according to a preferred embodiment of the present invention, (20) a supply liquid supply unit or a concentrated liquid discharge unit is provided at the outer peripheral end portion in the direction perpendicular to the longitudinal direction of the perforated central tube of the separation membrane element. (19) The solution processing apparatus according to (19) is provided.
Further, according to a preferred embodiment of the present invention, (21) the separation membrane module 1 has a structure having supply ports and discharge ports on both the permeation side and the supply side of the membrane, and the permeation side of the separation membrane module 1 The solution processing apparatus according to (18), wherein the concentrated solution of the separation membrane module 2, the undiluted solution, or both of them are connected to the above-mentioned solution processing apparatus.
Further, according to a preferred embodiment of the present invention, (22) the separation membrane module 2 has a structure having supply ports and discharge ports on both the permeation side and the supply side of the membrane, and the permeation side of the separation membrane module 2 The solution processing apparatus according to any one of (18) and (21) is provided, wherein the concentrate line of the separation membrane module 1 is connected to the above.
Further, according to a preferred embodiment of the present invention, the separation membrane module 1 or the separation membrane module 2 having a structure having supply ports and discharge ports on both the permeation side and the supply side of the (23) membrane. The solution processing apparatus according to (21) or (22) is provided, characterized in that the flow of the solution supplied to the permeation side and the supply side is connected by a pipe so as to be a countercurrent, respectively.

本発明の溶液処理方法によって、分離対象物質が含まれる溶液に対して、膜分離処理により回収したい成分をなるべく回収しながら分離対象物質を分離することができる。 According to the solution treatment method of the present invention, the substance to be separated can be separated from the solution containing the substance to be separated while recovering as much as possible the components to be recovered by the membrane separation treatment.

本発明に記載の溶液処理方法の模式図の一例である。It is an example of the schematic diagram of the solution treatment method described in this invention. 本発明に記載の溶液処理方法の模式図の一例である。It is an example of the schematic diagram of the solution treatment method described in this invention. 本発明に記載の溶液処理方法の模式図の一例である。It is an example of the schematic diagram of the solution treatment method described in this invention. 本発明に記載の溶液処理方法の模式図の一例である。It is an example of the schematic diagram of the solution treatment method described in this invention. 本発明に記載の溶液処理方法の模式図の一例である。It is an example of the schematic diagram of the solution treatment method described in this invention. 本発明に記載の溶液処理方法の模式図の一例である。It is an example of the schematic diagram of the solution treatment method described in this invention. 本発明に記載の溶液処理方法の模式図の一例である。It is an example of the schematic diagram of the solution treatment method described in this invention. 本発明に記載の溶液処理方法の模式図の一例である。It is an example of the schematic diagram of the solution treatment method described in this invention. 本発明に記載の溶液処理方法の模式図の一例である。It is an example of the schematic diagram of the solution treatment method described in this invention. 本発明に記載の溶液処理方法の模式図の一例である。It is an example of the schematic diagram of the solution treatment method described in this invention. 本発明に記載の溶液処理方法に使用するI型分離膜エレメントの一部展開斜視図である。It is a partially developed perspective view of the type I separation membrane element used in the solution treatment method described in this invention. 本発明に記載の溶液処理方法に使用するOARO分離膜エレメントの構造の一例を示す模式図(OARO分離膜エレメントの展開図)である。It is a schematic diagram (development view of the OARO separation membrane element) which shows an example of the structure of the OARO separation membrane element used in the solution treatment method described in this invention. 本発明に記載のI型の分離膜エレメントを搭載した通常の分離膜モジュールの構造の一例を示す模式図(断面図)である。It is a schematic diagram (cross-sectional view) which shows an example of the structure of the ordinary separation membrane module equipped with the type I separation membrane element described in this invention. 本発明に記載のOARO分離膜モジュールの構造の一例を示す模式図(断面図)である。It is a schematic diagram (cross-sectional view) which shows an example of the structure of the OARO separation membrane module described in this invention. 本発明に記載の溶液処理方法の模式図の一例である。It is an example of the schematic diagram of the solution treatment method described in this invention. 本発明に記載の逆L型の分離膜エレメントの一例を示す模式図(断面図)である。It is a schematic diagram (cross-sectional view) which shows an example of the inverted L-shaped separation membrane element described in this invention. 本発明に記載のL型の分離膜エレメントの一例を示す模式図(断面図)である。It is a schematic diagram (cross-sectional view) which shows an example of the L-shaped separation membrane element described in this invention. 本発明に記載のUターン型(I型-逆L型)の分離膜エレメントの一例を示す模式図(断面図)である。It is a schematic diagram (cross-sectional view) which shows an example of the U-turn type (I type-inverted L type) separation membrane element described in this invention. 本発明に記載のI型の分離膜体の一例を示す模式図(I型分離膜エレメントの展開図)である。It is a schematic diagram (development view of the type I separation membrane element) which shows an example of the type I separation membrane body described in this invention. 本発明に記載の逆L型の分離膜体の一例を示す模式図(逆L型分離膜エレメントの展開図)である。It is a schematic diagram (development view of the inverted L-type separation membrane element) which shows an example of the inverted L-type separation membrane body described in this invention. 本発明に記載のL型の分離膜体の一例を示す模式図(L型分離膜エレメントの展開図)である。It is a schematic diagram (development view of the L-type separation membrane element) which shows an example of the L-type separation membrane body described in this invention. 本発明に記載の逆L型の分離膜エレメントを3本搭載した通常の分離膜モジュールの一例を示す模式図(断面図)である。It is a schematic diagram (cross-sectional view) which shows an example of the ordinary separation membrane module which mounted three inverted L-shaped separation membrane elements described in this invention. 本発明に記載のL型の分離膜エレメントを3本搭載した通常の分離膜モジュールの一例を示す模式図(断面図)である。It is a schematic diagram (cross-sectional view) which shows an example of a normal separation membrane module which mounts three L-shaped separation membrane elements described in this invention. 本発明に記載の逆L型の分離膜エレメントを2本、Uターン型(I型-逆L型)の分離膜エレメントを1本搭載した通常の分離膜モジュールの一例を示す模式図(断面図)である。Schematic diagram (cross-sectional view) showing an example of a normal separation membrane module equipped with two inverted L-shaped separation membrane elements and one U-turn type (I-type-inverted L-type) separation membrane element described in the present invention. ).

以下に、本発明の実施形態について図面を参照しながら詳細に説明するが、本発明はこれらによって何ら限定されるものではない。
(1)本出願における溶液処理方法に使用される分離膜
<概要>
分離膜としては、溶液中の残したい成分Aと除去したい成分Bに応じた分離性能を有する膜が用いられる。分離膜は、単一層であってもよいし、分離機能層と基材とを備える複合膜であってもよい。また、複合膜においては、分離機能層と基材との間に、さらに多孔性支持層があってもよい。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings, but the present invention is not limited thereto.
(1) Separation membrane used in the solution treatment method in this application <Overview>
As the separation membrane, a membrane having separation performance according to the component A to be left in the solution and the component B to be removed is used. The separation membrane may be a single layer or a composite membrane including a separation function layer and a base material. Further, in the composite membrane, a porous support layer may be further provided between the separation functional layer and the base material.

ここで、分離膜には透過側の面と供給側の面があり、透過側流路材を挟み透過側の面が互いに向かい合うように形成された状態の分離膜のことを分離膜リーフと呼び、さらに分離膜リーフの片端面に供給側流路材を置いたものを分離膜体と呼ぶ。
<分離機能層>
分離機能層は、分離機能および支持機能の両方を有する層であってもよいし、分離機能のみを備えていてもよい。なお、「分離機能層」とは、少なくとも分離機能を備える層を指す。
Here, the separation membrane has a permeation side surface and a supply side surface, and a separation membrane formed so that the permeation side surfaces face each other with the transmission side flow path material sandwiched between them is called a separation membrane leaf. Further, a material in which a supply-side flow path material is placed on one end surface of the separation membrane leaf is called a separation membrane body.
<Separation function layer>
The separation function layer may be a layer having both a separation function and a support function, or may have only a separation function. The “separation function layer” refers to a layer having at least a separation function.

分離機能層が分離機能および支持機能の両方を有する場合、分離機能層としては、セルロース、ポリフッ化ビニリデン、ポリエーテルスルホンおよびポリスルホンからなる群から選ばれるポリマーを主成分として含有する層が好ましく適用される。 When the separation functional layer has both a separation function and a support function, a layer containing a polymer selected from the group consisting of cellulose, polyvinylidene fluoride, polyethersulfone and polysulfone as a main component is preferably applied as the separation functional layer. Ru.

一方、分離機能層としては、孔径の制御が容易であり、かつ耐久性に優れるという点で、架橋高分子が好ましく使用される。特に、供給液中の成分の分離性能に優れるという点で、多官能アミンと多官能酸ハロゲン化物とを重縮合させて得られるポリアミド分離機能層や、有機無機ハイブリッド機能層などが好適に用いられる。これらの分離機能層は、多孔性支持層上でモノマーを重縮合することによって形成可能である。 On the other hand, as the separation functional layer, a crosslinked polymer is preferably used because the pore size can be easily controlled and the durability is excellent. In particular, a polyamide separation functional layer obtained by polycondensing a polyfunctional amine and a polyfunctional acid halide, an organic-inorganic hybrid functional layer, or the like is preferably used because the separation performance of the components in the feed solution is excellent. .. These separation functional layers can be formed by polycondensing the monomers on the porous support layer.

例えば、分離機能層は、ポリアミドを主成分として含有することができる。このような膜は、公知の方法により、多官能アミンと多官能酸ハロゲン化物とを界面重縮合することで形成できる。例えば、多孔性支持層上に多官能アミン水溶液を塗布し、余分な多官能アミン水溶液をエアーナイフなどで除去し、その後、多官能酸ハロゲン化物を含有する有機溶媒溶液を塗布することで、重縮合が起きてポリアミド分離機能層が得られる。
<多孔性支持層>
多孔性支持層は、分離機能層を支持する層であり、樹脂が素材の場合多孔性樹脂層とも言い換えることができる。
For example, the separation functional layer can contain polyamide as a main component. Such a film can be formed by interfacial polycondensation of a polyfunctional amine and a polyfunctional acid halide by a known method. For example, a polyfunctional amine aqueous solution is applied onto the porous support layer, an excess polyfunctional amine aqueous solution is removed with an air knife or the like, and then an organic solvent solution containing a polyfunctional acid halide is applied. Condensation occurs to obtain a polyamide separation functional layer.
<Porosity support layer>
The porous support layer is a layer that supports the separation functional layer, and can be paraphrased as a porous resin layer when the resin is a material.

多孔性支持層に使用される材料や、その形状は特に限定されないが、例えば、多孔性樹脂によって基板上に形成されてもよい。多孔性支持層の組成は特に限定されないが、熱可塑性樹脂によって形成されていることが好ましい。ここで、熱可塑性樹脂とは、鎖状高分子物質からできており、加熱すると外力によって変形または流動する性質が表れる樹脂のことをいう。熱可塑性樹脂の例としては、ポリスルホン、ポリエーテルスルホン、ポリアミド、ポリエステル、セルロース系ポリマー、ビニルポリマー、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン、ポリフェニレンスルホン、ポリフェニレンオキシドなどのホモポリマーあるいはコポリマーを単独であるいはブレンドして使用することができる。ここでセルロース系ポリマーとしては酢酸セルロース、硝酸セルロースなど、ビニルポリマーとしてはポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリアクリロニトリル、アクリロニトリル・スチレン共重合体などが使用できる。これらの中から化学的、機械的、熱的に安定性が高く、孔径が制御しやすいポリスルホンを使用することが好ましい。 The material used for the porous support layer and its shape are not particularly limited, but may be formed on the substrate by, for example, a porous resin. The composition of the porous support layer is not particularly limited, but it is preferably formed of a thermoplastic resin. Here, the thermoplastic resin is a resin that is made of a chain polymer substance and exhibits the property of being deformed or fluidized by an external force when heated. Examples of thermoplastic resins are polysulfones, polyethersulfones, polyamides, polyesters, cellulose-based polymers, vinyl polymers, polyphenylene sulfides, polyphenylene sulfide sulfones, polyphenylene sulfones, polyphenylene oxides and other homopolymers or copolymers alone or blended. Can be used. Here, as the cellulosic polymer, cellulose acetate, cellulose nitrate and the like can be used, and as the vinyl polymer, polyethylene, polypropylene, polyvinyl chloride, polyacrylonitrile, acrylonitrile / styrene copolymer and the like can be used. Among these, it is preferable to use polysulfone, which has high chemical, mechanical and thermal stability and whose pore size can be easily controlled.

多孔性支持層は、例えば、上記ポリスルホンのN,N-ジメチルホルムアミド溶液を、後述する基材(例えば密に織ったポリエステル不織布)の上に一定の厚みに注型し、それを水中で湿式凝固させることによって、製造することができる。 For the porous support layer, for example, an N, N-dimethylformamide solution of the above polysulfone is cast on a substrate (for example, a densely woven polyester non-woven fabric) described later to a certain thickness, and the solution is wet-coagulated in water. It can be manufactured by letting it.

なお、後述のOARO(Osmotically Assisted Reverse Osmosis)分離膜エレメントを使用した分離膜モジュールにおいては、分離膜の透過側に供給される流体の浸透圧によって、膜の供給側と透過側の浸透圧差を低減することから、透過側および供給側に供給される流体を分離膜機能層の界面近傍、すなわち、多孔性支持層の表面近傍まで浸透しやすい構造であることが好ましい。
<基材>
分離膜の強度、寸法安定性などの観点から、分離膜は基材を有してもよい。基材としては、強度、流体透過性の点で繊維状の基材を用いることが好ましい。
In the separation membrane module using the OARO (Osmotically Assisted Reverse Osmosis) separation membrane element described later, the osmotic pressure difference between the supply side and the transmission side of the membrane is reduced by the osmotic pressure of the fluid supplied to the osmotic side of the separation membrane. Therefore, it is preferable to have a structure in which the fluid supplied to the permeation side and the supply side can easily permeate to the vicinity of the interface of the separation membrane functional layer, that is, to the vicinity of the surface of the porous support layer.
<Base material>
From the viewpoint of the strength and dimensional stability of the separation membrane, the separation membrane may have a base material. As the base material, it is preferable to use a fibrous base material in terms of strength and fluid permeability.

基材としては、長繊維不織布および短繊維不織布それぞれを好ましく用いることができる。
<分離膜体>
分離膜は、透過側流路材を挟んで透過側の面が対向するように配置され分離膜リーフとなる。分離膜リーフの供給側の面の片端面に供給側流路材を配置したものを分離膜体と呼ぶ。透過側流路は、透過流体が有孔中心管に流れるように、透過側の面の間が、巻回方向内側の一辺のみにおいて開放され、他の三辺においては封止される。供給側流路は、分離膜の供給側の面の間に形成され、供給側流路材の封止方法により、後述のようにI型や逆L型、Uターン型など様々なタイプの分離膜エレメントとなる。
<分離膜1および分離膜2の差異>
分離膜の除去率は、分離膜の標準評価条件で運転した場合において、供給液中の成分濃度に対して、透過した溶液中の成分濃度の減少率で定義する。本出願では分離膜1と分離膜2の2種類の膜を用いており、それぞれの膜について成分Aおよび成分Bの除去率が測定される。
本出願においては、分離膜1の成分A除去率は90%以上であり、かつ、分離膜1の成分Bの除去率が、分離膜1の成分Aの除去率よりも60%ポイント以上低いものであり、分離膜2の成分Bの除去率が85%以上である必要がある。
分離膜1は成分Aと成分Bを選択分離する必要があるため、上記のような除去率の膜を分離膜1として使用する。一方、分離膜2は分離膜1を選択的に透過した成分Bを濃縮液として除去し、系外に排出する役割があるため、上記のような除去率の膜を分離膜2して使用する。これらの除去率を満たすことにより、初めてプロセス全体として、十分な性能を発揮することができる。
標準評価条件について説明する。標準評価条件における膜への供給液は、処理したい原液あるいは原液中の成分Aおよび成分Bを模擬した溶液を使用する。なお、原液の浸透圧が高く評価が難しい場合は、最大3倍まで原液を希釈した溶液を評価に使用しても良い。標準評価条件における膜透過フラックスは、0.3m/dとする。また、標準評価条件では、供給される供給液量に対する透過液量の割合である回収率が0と近似できる、すなわち十分な膜面流速が必要である。
例えば、本発明の溶液処理方法を用いて透析廃液から塩を回収し尿素を分離したい場合、分離膜1の評価については、供給液として透析廃液を模擬した塩10000mg/Lおよび尿素630mg/Lが含まれる模擬溶液を使用し、温度36℃、圧力1.0MPaで膜評価を行う。また、分離膜2の評価については、分離膜1と同様の模擬溶液を使用し、温度36℃、圧力2.2MPaで膜評価を行う。
As the base material, each of the long fiber non-woven fabric and the short fiber non-woven fabric can be preferably used.
<Separation membrane>
The separation membrane is arranged so that the surfaces on the transmission side face each other with the transmission side flow path material interposed therebetween, and becomes a separation membrane leaf. A separation membrane body in which a supply-side flow path material is arranged on one end surface of the supply-side surface of the separation membrane leaf is called a separation membrane body. In the permeation side flow path, the space between the permeation side surfaces is opened only on one side inside the winding direction and sealed on the other three sides so that the permeation fluid flows into the perforated central canal. The supply-side flow path is formed between the supply-side surfaces of the separation membrane, and various types of separation such as I-type, inverted L-type, and U-turn type are separated depending on the sealing method of the supply-side flow path material, as described later. It becomes a membrane element.
<Difference between Separation Membrane 1 and Separation Membrane 2>
The removal rate of the separation membrane is defined by the reduction rate of the component concentration in the permeated solution with respect to the component concentration in the feed solution when operated under the standard evaluation conditions of the separation membrane. In this application, two types of membranes, separation membrane 1 and separation membrane 2, are used, and the removal rates of component A and component B are measured for each membrane.
In the present application, the removal rate of the component A of the separation membrane 1 is 90% or more, and the removal rate of the component B of the separation membrane 1 is 60 percentage points or more lower than the removal rate of the component A of the separation membrane 1. Therefore, the removal rate of the component B of the separation membrane 2 needs to be 85% or more.
Since it is necessary to selectively separate component A and component B from the separation membrane 1, a membrane having a removal rate as described above is used as the separation membrane 1. On the other hand, since the separation membrane 2 has a role of removing the component B that selectively permeates the separation membrane 1 as a concentrated liquid and discharging it to the outside of the system, a membrane having a removal rate as described above is used as the separation membrane 2. .. Only by satisfying these removal rates, sufficient performance can be exhibited as a whole process.
The standard evaluation conditions will be described. As the supply liquid to the membrane under the standard evaluation conditions, a stock solution to be treated or a solution simulating component A and component B in the stock solution is used. If the osmotic pressure of the undiluted solution is high and evaluation is difficult, a solution obtained by diluting the undiluted solution up to 3 times may be used for evaluation. The membrane permeation flux under standard evaluation conditions is 0.3 m / d. Further, under the standard evaluation conditions, the recovery rate, which is the ratio of the permeated liquid amount to the supplied liquid amount, can be approximated to 0, that is, a sufficient membrane surface flow rate is required.
For example, when it is desired to recover salt from the dialysis waste liquid and separate urea by using the solution treatment method of the present invention, for the evaluation of the separation membrane 1, 10000 mg / L of salt and 630 mg / L of urea simulating the dialysis waste liquid are used as the supply liquid. Using the included simulated solution, film evaluation is performed at a temperature of 36 ° C. and a pressure of 1.0 MPa. Further, for the evaluation of the separation membrane 2, the same simulated solution as that of the separation membrane 1 is used, and the membrane is evaluated at a temperature of 36 ° C. and a pressure of 2.2 MPa.

例えば、本発明の溶液処理方法を用いてCaCl10000mg/LとNaCl 5000mg/Lが含まれる溶液を分離し、高純度のNaCl溶液を得たい場合、分離膜1の評価については、供給液としてCaCl10000mg/LおよびNaCl 5000mg/Lが含まれる溶液を使用し、温度25℃、圧力1.1MPaで膜評価を行う。また、分離膜2の評価については、分離膜1と同様の溶液を使用し、温度25℃、圧力2.4MPaで膜評価を行う。 For example, when it is desired to separate a solution containing CaCl 2 10000 mg / L and NaCl 5000 mg / L using the solution treatment method of the present invention to obtain a high-purity NaCl solution, the evaluation of the separation film 1 is carried out as a feed solution. A solution containing CaCl 2 10000 mg / L and NaCl 5000 mg / L is used, and the membrane is evaluated at a temperature of 25 ° C. and a pressure of 1.1 MPa. As for the evaluation of the separation membrane 2, the same solution as that of the separation membrane 1 is used, and the membrane is evaluated at a temperature of 25 ° C. and a pressure of 2.4 MPa.

例えば、本発明の溶液処理方法を用いてビールを分離し、ノンアルコールビールを得たい場合、分離膜1の評価については、供給液として水で2倍に希釈したビールを使用し、温度25℃、圧力2.0MPaで膜評価を行う。また、分離膜2の評価については、分離膜1と同様の溶液を使用し、温度25℃、圧力4.0MPaで膜評価を行う。
分離膜1の種類については上記条件を満たせれば特に限定されないが、成分Aが各種イオン、成分Bが分子量の小さい中性分子の場合は、ナノろ過膜あるいは低圧RO膜が好ましく使用される。
For example, when it is desired to separate beer using the solution treatment method of the present invention to obtain non-alcoholic beer, for the evaluation of the separation film 1, beer diluted twice with water is used as the supply liquid, and the temperature is 25 ° C. , The film is evaluated at a pressure of 2.0 MPa. Further, for the evaluation of the separation membrane 2, the same solution as that of the separation membrane 1 is used, and the membrane is evaluated at a temperature of 25 ° C. and a pressure of 4.0 MPa.
The type of the separation membrane 1 is not particularly limited as long as the above conditions are satisfied, but when the component A is various ions and the component B is a neutral molecule having a small molecular weight, a nanofiltration membrane or a low-pressure RO membrane is preferably used.

分離膜2の種類は上記条件を満たせれば特に限定されないが、成分Aがイオン、成分Bが中性分子の場合は、海水淡水化などに使われる緻密なRO膜が好ましく使用される。 The type of the separation membrane 2 is not particularly limited as long as the above conditions are satisfied, but when the component A is an ion and the component B is a neutral molecule, a dense RO membrane used for seawater desalination or the like is preferably used.

また、本出願における分離膜では分離膜性能が定義される。分離膜性能とは、pH7、1000mg/Lの塩化ナトリウム(NaCl)の原液に対して、膜透過フラックスが0.3m/dとなる場合の除去率を比較し、除去率が高いほど分離膜性能が高いと定義する。一般的に分離膜性能は、ナノろ過膜<低圧RO膜<海水淡水化用RO膜となる。 In addition, the separation membrane performance is defined in the separation membrane in this application. Separation membrane performance is compared with the removal rate when the membrane permeation flux is 0.3 m / d with respect to a stock solution of sodium chloride (NaCl) with a pH of 7 and 1000 mg / L, and the higher the removal rate, the better the separation membrane performance. Is defined as high. Generally, the separation membrane performance is nanofiltration membrane <low pressure RO membrane <RO membrane for seawater desalination.

(2)本出願における溶液分離方法に使用される分離膜モジュール
本発明における分離膜1や分離膜2は、平膜状の膜を有孔中心管の周囲に巻囲したスパイラル型エレメントや、プレート型支持板の両面に平膜を張ったものを、スペーサーを介して一定の間隔で積層したプレート・アンド・フレーム型エレメント、さらには、管状膜を用いたチューブラー型エレメント、中空糸膜を束ねてケースに収納した中空糸膜エレメントとして構成することができる。さらに、これらのエレメントを耐圧容器に単数もしくは複数個を直列に接続して収容し分離膜モジュールとする。エレメントの形態としては、いずれの形態であっても良いが、操作性や互換性の観点からはスパイラル型分離膜エレメントを使用するのが好ましい。スパイラル型分離膜エレメントは、分離膜、透過側流路材、供給側流路材の積層物を、透過液を集める有孔中心管の周りに巻囲したものである。
<通常の分離膜モジュール・I型分離膜エレメント>
I型と呼ばれる分離膜エレメント(201)は、図11に示すように片端面より供給液(206)が流入し、もう片端面から濃縮液(208)が排出される。I型の分離膜エレメント(201)は図11で示したように、分離膜(203)、供給側流路材(204)、透過側流路材(205)、有孔中心管(202)を備える。I型の分離膜エレメント(201)において、分離膜(203)は、供給側流路材(204)、透過側流路材(205)と、図19に示すような分離膜体(227)を形成する。分離膜(203)は、透過側流路材(205)を挟んで透過側の面(212)が対向するように配置される。また、供給側の面(211)の間には供給側流路材(204)が配置される。透過側流路は、透過液(207)が有孔中心管(202)に流れるように、透過側の面(212)の間が、巻回方向内側の一辺のみにおいて開放され、他の三辺においては封止(閉口)される。
(2) Separation membrane module used in the solution separation method in the present application The separation membrane 1 and the separation membrane 2 in the present invention are a spiral element or a plate in which a flat membrane-like membrane is surrounded by a perforated central tube. A plate-and-frame type element in which flat membranes are stretched on both sides of a mold support plate and laminated at regular intervals via spacers, a tubular type element using a tubular membrane, and a hollow fiber membrane are bundled together. It can be configured as a hollow fiber membrane element housed in a case. Further, one or a plurality of these elements are connected in series in a pressure resistant container and accommodated to form a separation membrane module. The element may be in any form, but from the viewpoint of operability and compatibility, it is preferable to use a spiral type separation membrane element. The spiral type separation membrane element is formed by surrounding a laminate of a separation membrane, a permeation side flow path material, and a supply side flow path material around a perforated central tube that collects a permeation liquid.
<Normal Separation Membrane Module / Type I Separation Membrane Element>
As shown in FIG. 11, the supply liquid (206) flows into the separation membrane element (201) called type I from one end surface, and the concentrate liquid (208) is discharged from the other end surface. As shown in FIG. 11, the I-type separation membrane element (201) includes a separation membrane (203), a supply-side flow path material (204), a permeation-side flow path material (205), and a perforated central tube (202). Be prepared. In the I-type separation membrane element (201), the separation membrane (203) includes a supply-side flow path material (204), a transmission-side flow path material (205), and a separation membrane body (227) as shown in FIG. Form. The separation membrane (203) is arranged so that the permeation side surfaces (212) face each other with the permeation side flow path material (205) interposed therebetween. Further, a supply-side flow path material (204) is arranged between the supply-side surfaces (211). In the permeation side flow path, the space between the permeation side surfaces (212) is opened only on one side inside the winding direction so that the permeation liquid (207) flows into the perforated central canal (202), and the other three sides. Is sealed (closed).

供給側流路材は、分離膜の供給側の面に挟まれるように配置され、分離膜に供給液を供給する流路(すなわち供給側流路)を形成する。さらに供給液の濃度分極を抑制するために、供給液の流れを乱すような形状になっていることが好ましい。 The supply-side flow path material is arranged so as to be sandwiched between the supply-side surfaces of the separation membrane, and forms a flow path (that is, a supply-side flow path) for supplying the supply liquid to the separation membrane. Further, in order to suppress the concentration polarization of the supply liquid, it is preferable that the shape is such that the flow of the supply liquid is disturbed.

供給側流路材は、ネット、あるいは空隙を有するシートに凸状物が設けられたような連続形状を有している部材であってもよいし、あるいは分離膜に対して0より大きく1未満である投影面積比を示す不連続形状を有するものであってもよい。また、供給側流路材は分離膜と分離可能であってもよいし、分離膜に固着していてもよい。 The supply-side flow path material may be a net or a member having a continuous shape such that a sheet having voids is provided with a convex object, or is greater than 0 and less than 1 with respect to the separation membrane. It may have a discontinuous shape indicating the projected area ratio. Further, the supply-side flow path material may be separable from the separation membrane or may be adhered to the separation membrane.

なお、供給側流路材の素材は特に限定されず、分離膜と同素材であっても異素材であっても構わない。 The material of the flow path material on the supply side is not particularly limited, and may be the same material as the separation membrane or a different material.

供給側流路材の厚みが大きいと圧力損失が小さくなるが、エレメント化した場合に圧力容器に充填できる膜面積が小さくなる。厚みが小さいと流路の圧力損失が大きくなり、分離性能や透過性能が低下してしまう。各性能のバランスや運転コストを考慮すると、供給側流路材の厚みは、好ましくは200~1000μmであり、より好ましくは300~900μmである。 If the thickness of the flow path material on the supply side is large, the pressure loss becomes small, but when it is made into an element, the film area that can be filled in the pressure vessel becomes small. If the thickness is small, the pressure loss in the flow path becomes large, and the separation performance and the permeation performance deteriorate. Considering the balance of each performance and the operating cost, the thickness of the flow path material on the supply side is preferably 200 to 1000 μm, more preferably 300 to 900 μm.

供給側流路材の厚みは、市販の厚み測定器により直接測定することもできるし、あるいはマイクロスコープを用いて撮影した画像を解析することによって測定することもできる。 The thickness of the flow path material on the supply side can be measured directly with a commercially available thickness measuring device, or can be measured by analyzing an image taken with a microscope.

供給側流路材がネットである場合、ネットは複数の糸により構成されている。複数の糸は、交点において互いに交差し、交点部分が最も厚みが大きくなる。 When the supply side flow path material is a net, the net is composed of a plurality of threads. The plurality of threads intersect each other at the intersection, and the intersection is the thickest.

ネットを構成する糸の径は糸の長さ方向において一定であってもよく、長さ方向に一様に増加または減少してもよく、増加と減少を繰り返すような形態であっても構わない。糸の径が長さ方向において増加と減少を繰り返すような形態である場合、糸径が最も大きくなる箇所で複数の糸が交差するような形態であることが好ましい。糸径が最も大きくなる箇所で複数の糸が交差することによって、供給側流路の圧力損失を低くすることができる。 The diameter of the thread constituting the net may be constant in the length direction of the thread, may be uniformly increased or decreased in the length direction, or may be in a form of repeating increase and decrease. .. When the diameter of the yarn is repeatedly increased and decreased in the length direction, it is preferable that the plurality of yarns intersect at the position where the yarn diameter is the largest. By intersecting a plurality of yarns at the position where the yarn diameter is the largest, the pressure loss in the flow path on the supply side can be reduced.

また、交差する複数の糸の径は同じであっても異なっていても構わない。交差する複数の糸の径が異なっている場合、厚みが一定であれば、径の小さい糸は圧力損失の低減効果が大きく、径の大きい糸は流れを乱す乱流効果が大きくなる。 Further, the diameters of the plurality of intersecting threads may be the same or different. When the diameters of the plurality of intersecting threads are different, if the thickness is constant, the thread having a small diameter has a large effect of reducing the pressure loss, and the thread having a large diameter has a large effect of disturbing the flow.

上述の圧力損失と乱流効果とのバランスから、ネットを構成する糸断面の径は、(最小部の径)/(最大部の径)が0.1以上0.7以下であることが好ましく、より好ましくは0.3以上0.6以下である。 From the balance between the pressure loss and the turbulent flow effect described above, the diameter of the thread cross section constituting the net is preferably 0.1 or more and 0.7 or less in (diameter of the minimum portion) / (diameter of the maximum portion). , More preferably 0.3 or more and 0.6 or less.

ネットを構成する糸の傾斜角は、供給液の流れる方向に対して平行方向であれば、圧力損失を低くすることができるが、濃度分極低減効果は小さくなり、垂直方向であれば、圧力損失は高くなるが、濃度分極低減効果を大きくすることができる。圧力損失と濃度分極低減効果のバランスから、糸の傾斜角度は供給液の平均流れ角度に対して、-60°以上60°以下であることが好ましい。ここで、平均流れ角度とは、1枚の分離膜体の中での流れ角度の平均値である。 The pressure loss can be reduced if the inclination angle of the threads constituting the net is parallel to the flow direction of the supply liquid, but the effect of reducing the concentration polarization is small, and the pressure loss is in the vertical direction. However, the effect of reducing concentration polarization can be increased. From the viewpoint of the balance between the pressure loss and the effect of reducing the concentration polarization, the inclination angle of the yarn is preferably −60 ° or more and 60 ° or less with respect to the average flow angle of the feed liquid. Here, the average flow angle is the average value of the flow angles in one separation membrane body.

複数の糸が交差する交点の間隔は、大きいほど圧力損失は小さくなり、小さいと圧力損失は大きくなる。それらのバランスから、交点間隔は、1.0mm以上10mm以下が好ましく、1.1mm以上8mm以下がより好ましく、1.2mm以上5mm以下がさらに好ましい。 The larger the distance between the intersections where a plurality of threads intersect, the smaller the pressure loss, and the smaller the distance, the larger the pressure loss. From these balances, the intersection interval is preferably 1.0 mm or more and 10 mm or less, more preferably 1.1 mm or more and 8 mm or less, and further preferably 1.2 mm or more and 5 mm or less.

ネットを構成する糸の断面形状は特に限定されず、楕円、円、三角形、四角形、不定形などを用いることができるが、ネットと分離膜表面が接する部分の面積が小さいと分離膜表面とネットとの擦れによる分離膜性能の低下を抑制することができるうえ、流れのデッドゾーンを小さくすることができ、濃度分極を抑制することができるため、好ましい。ネットと分離膜表面が接する部分の分離膜に対する投影面積比は、0.01以上0.25以下であることが好ましく、0.02以上0.2以下がより好ましい。 The cross-sectional shape of the thread constituting the net is not particularly limited, and an ellipse, a circle, a triangle, a quadrangle, an irregular shape, or the like can be used. It is preferable because it is possible to suppress deterioration of the separation membrane performance due to rubbing against the surface, reduce the dead zone of the flow, and suppress concentration polarization. The projected area ratio of the portion where the net and the surface of the separation membrane are in contact with each other is preferably 0.01 or more and 0.25 or less, and more preferably 0.02 or more and 0.2 or less.

ネットを構成する糸の材質は、供給側流路材としての剛性を維持することができ、分離膜表面を傷つけないものであれば特に限定されず、分離膜と同素材であっても異素材であってもよく、ポリエチレン、ポリプロピレン、ポリ乳酸、エチレン酢酸ビニル共重合体、ポリエステル、ポリウレタン、熱硬化性エラストマーなどが好ましく用いられる。 The material of the thread constituting the net is not particularly limited as long as it can maintain the rigidity as the flow path material on the supply side and does not damage the surface of the separation film, and even if it is the same material as the separation film, it is a different material. However, polyethylene, polypropylene, polylactic acid, ethylene-vinyl acetate copolymer, polyester, polyurethane, thermosetting elastomer and the like are preferably used.

透過側流路材は、分離膜の透過側の面に挟まれるように配置され、分離膜を透過した透過液を有孔中心管の孔まで導く透過側流路を形成する役割を担う。 The permeation side flow path material is arranged so as to be sandwiched between the permeation side surfaces of the separation membrane, and plays a role of forming a permeation side flow path that guides the permeation liquid that has permeated the separation membrane to the hole of the perforated central canal.

透過側流路材は、透過側流路の流動抵抗を低減し、かつ加圧ろ過下においても分離膜の透過液流路への落ち込みを抑制し、流路を安定に形成される点では、透過側流路材の横断面積比が0.30~0.75であることが好ましく、0.40~0.60であることがより好ましい。透過側流路材の種類は限定されず、トリコットのような緯編物、不織布のような多孔性シートに突起物を配置したシート、フィルムや不織布を凹凸加工した凹凸加工シートなどを用いることができる。 The permeation side flow path material reduces the flow resistance of the permeation side flow path, suppresses the drop of the separation membrane into the permeation liquid flow path even under pressure filtration, and stably forms the flow path. The cross-sectional area ratio of the permeation side flow path material is preferably 0.30 to 0.75, more preferably 0.40 to 0.60. The type of the permeation side flow path material is not limited, and a weft knitted fabric such as a tricot, a sheet in which protrusions are arranged on a porous sheet such as a non-woven fabric, and a concavo-convex processed sheet in which a film or a non-woven fabric is unevenly processed can be used. ..

特定の横断面積比を有する透過側流路材を本発明に使用する分離膜エレメントに配置することにより、透過側流路の流動抵抗をより低減することができ、それに伴い、流動抵抗が大きい流路材を含む分離膜エレメントと、同じ回収率で運転した際、供給液の流速が速まり濃度分極を小さくでき、特に高回収率運転下における濃度分極の増加やスケールの発生をさらに抑制することができる。 By arranging the permeation side flow path material having a specific cross-sectional area ratio in the separation membrane element used in the present invention, the flow resistance of the permeation side flow path can be further reduced, and the flow resistance is large accordingly. When operated at the same recovery rate as the separation membrane element containing road materials, the flow velocity of the feed solution can be increased and the concentration polarization can be reduced, and the increase in concentration polarization and the generation of scale can be further suppressed, especially under high recovery rate operation. Can be done.

横断面積比は、分離膜エレメントの有孔中心管長手方向と平行な方向に沿って、透過側流路材の凸部を通るように切断し、その断面について、凸部の中心と隣接する凸部の中心の距離と透過側流路材の高さの積に対する、凸部の中心と隣接する凸部の中心との間に占める透過側流路材の断面積との比である。横断面積比の算出には、例えばキーエンス社製高精度形状測定システムKS-1100を用い、任意の30カ所の平均値として算出することができる。 The cross-sectional area ratio is cut along the direction parallel to the longitudinal direction of the perforated center tube of the separation film element so as to pass through the convex portion of the transmission side flow path material, and the cross section thereof is convex adjacent to the center of the convex portion. It is the ratio of the product of the distance of the center of the portion and the height of the permeation side flow path material to the cross-sectional area of the permeation side flow path material occupied between the center of the convex portion and the center of the adjacent convex portion. For the calculation of the cross-sectional area ratio, for example, the high-precision shape measuring system KS-1100 manufactured by KEYENCE Corporation can be used, and the average value can be calculated at any 30 locations.

透過側流路材の厚みは、厚ければ圧力損失を小さくすることができるものの、分離膜エレメントの容器に充填できる膜面積が減少してしまう。薄ければ、分離膜エレメントに充填可能な膜面積は大きくなるものの、圧力損失は大きくなってしまう。それらのバランスから、透過側流路材の厚みは、好ましくは0.1mm~0.5mmであり、より好ましくは0.2mm~0.4mmである。 If the thickness of the permeation side flow path material is thick, the pressure loss can be reduced, but the membrane area that can be filled in the container of the separation membrane element is reduced. If it is thin, the membrane area that can be filled in the separation membrane element is large, but the pressure loss is large. From these balances, the thickness of the transmission side flow path material is preferably 0.1 mm to 0.5 mm, more preferably 0.2 mm to 0.4 mm.

透過側流路材の厚みは、市販の厚み測定器により直接測定することができる。 The thickness of the permeation side flow path material can be directly measured by a commercially available thickness measuring device.

透過側流路材の素材は、有孔中心管に容易に巻回できるものであればよく、透過側流路の圧縮弾性率は、0.1~5GPaであることが好ましい。圧縮弾性率がこの範囲内であれば、透過側流路材を有孔中心管に容易に巻回することができる。具体的には、ポリエステル、ポリエチレン、ポリプロピレンなどが好ましく用いられる。 The material of the permeation side flow path material may be any material that can be easily wound around the perforated central tube, and the compressive elastic modulus of the permeation side flow path is preferably 0.1 to 5 GPa. When the compressive elastic modulus is within this range, the permeation side flow path material can be easily wound around the perforated central tube. Specifically, polyester, polyethylene, polypropylene and the like are preferably used.

透過側流路材の圧縮弾性率は、精密万能試験機を用いて圧縮試験を行い、応力ひずみ線図を作成することにより、測定することができる。
有孔中心管は、その中を透過液が流れるように構成されていればよく、材質、形状は特に限定されない。有孔中心管の径は、大きければ、分離膜エレメントの充填可能な膜面積が減少してしまい、小さければ、有孔中心管の内部を透過液が流れる際の流動抵抗が大きくなってしまう。有孔中心管の径は、透過液の流量に応じて適宜設計されるが、好ましくは10~50mm、さらに好ましくは15~40mmである。有孔中心管としては、例えば、複数の孔が設けられた側面を有する円筒状の部材が用いられる。
The compressive elastic modulus of the permeation side flow path material can be measured by performing a compression test using a precision universal testing machine and creating a stress-strain diagram.
The perforated central canal may be configured so that the permeated liquid flows through it, and the material and shape are not particularly limited. If the diameter of the perforated central canal is large, the membrane area that can be filled with the separation membrane element decreases, and if it is small, the flow resistance when the permeated liquid flows inside the perforated central canal increases. The diameter of the perforated central canal is appropriately designed according to the flow rate of the permeated liquid, but is preferably 10 to 50 mm, more preferably 15 to 40 mm. As the perforated central canal, for example, a cylindrical member having a side surface provided with a plurality of holes is used.

I型分離膜エレメントは図13に示すように供給液(206)と濃縮液(207)が混ざらないようにするためのシール部材であるブラインシール(223)を装着し、圧力容器(222)に封入され、分離膜モジュールとなる。このように、供給液(206)が透過液(208)と濃縮液(207)に分離される分離膜モジュールを、以下通常の分離膜モジュール(216)と呼ぶ。
<通常の分離膜モジュール・L型、逆L型、Uターン型分離膜エレメント>
L型と呼ばれる分離膜エレメント(225)は図17に示すように、エレメント外周部より供給液(206)が流入し、片端面より濃縮液(207)が排出される。L型分離膜エレメント(225)は、図21に示されるL型の分離膜体(229)を有孔中心管(202)の周囲に巻回した構造をしている。逆L型と呼ばれる分離膜エレメント(224)は図16に示すようにL型の流れを逆にした構造の分離膜エレメントで、エレメントの片端面より供給液(206)が流入し、外周面から濃縮液(207)が排出される。逆L型分離膜エレメント(224)は、図20に示される逆L型の分離膜体(228)を有孔中心管(202)の周囲に巻回した構造をしている。
L型や逆L型のエレメントは、分離膜体の有効中心管長手方向の長さWと、有孔中心管長手方向と垂直の方向における長さLの比率L/Wが2.5以上の分離膜エレメントにおいて、供給液に対する透過液の比率である回収率を一定とした運転の場合、分離膜エレメント内の供給側流路材を通る供給液が同じL/Wを持つI型分離膜エレメントに対して高流速化される。従って、本溶液処理方法に使用される分離膜エレメントとして、L/Wが2.5以上のL型および逆L型分離膜エレメントは高回収率運転であっても、膜面の濃度分極を抑制することができ、より安定的に運転することが可能である。L型および逆L型分離膜エレメントに使用される流路材はI型分離膜エレメントに使用される流路材と同様のもので構わない。
As shown in FIG. 13, the I-type separation membrane element is equipped with a brine seal (223), which is a sealing member for preventing the supply liquid (206) and the concentrate (207) from mixing, and is attached to the pressure vessel (222). It is enclosed and becomes a separation membrane module. The separation membrane module in which the supply liquid (206) is separated into the permeate liquid (208) and the concentrate liquid (207) is hereinafter referred to as a normal separation membrane module (216).
<Normal separation membrane module / L-type, inverted L-type, U-turn type separation membrane element>
As shown in FIG. 17, the supply liquid (206) flows into the separation membrane element (225) called the L type from the outer peripheral portion of the element, and the concentrated liquid (207) is discharged from one end surface. The L-shaped separation membrane element (225) has a structure in which the L-shaped separation membrane body (229) shown in FIG. 21 is wound around a perforated central canal (202). As shown in FIG. 16, the separation membrane element (224) called an inverted L type is a separation membrane element having a structure in which the flow of the L type is reversed, and the supply liquid (206) flows in from one end surface of the element and from the outer peripheral surface. The concentrate (207) is discharged. The inverted L-shaped separation membrane element (224) has a structure in which the inverted L-shaped separation membrane body (228) shown in FIG. 20 is wound around a perforated central canal (202).
For L-shaped and inverted L-shaped elements, the ratio L / W of the length W of the separation membrane body in the longitudinal direction of the effective central tube and the length L in the direction perpendicular to the longitudinal direction of the perforated central tube is 2.5 or more. In the case of operation in which the recovery rate, which is the ratio of the permeated liquid to the supply liquid, is constant in the separation membrane element, the supply liquid passing through the supply side flow path material in the separation membrane element has the same L / W as the I-type separation membrane element. The flow velocity is increased. Therefore, as the separation membrane element used in this solution treatment method, the L-type and inverted L-type separation membrane elements with L / W of 2.5 or more suppress the concentration polarization of the membrane surface even in high recovery operation. It is possible to operate more stably. The flow path material used for the L-type and inverted L-type separation membrane elements may be the same as the flow path material used for the I-type separation membrane element.

さらなる供給液の高流速化のため、1本の分離膜エレメント内に2種類の分離膜体を持つ分離膜エレメントであるUターン型分離膜エレメントを使用しても良い。Uターン型分離膜エレメント(226)の一例としては、図18に示すようなI型分離膜体と逆L型分離膜体を組み合わせたI型-逆L型分離膜エレメント(226)が挙げられる。I型-逆L型分離膜エレメント(226)は、図19に示されるような供給液(206)が有孔中心管(202)の長手方向の片端面から流入しもう片方の端面より排出されるI型の分離膜体(227)と、図20に示されるような供給液(206)が有孔中心管(202)の長手方向の片端面から流入し外周面から排出される逆L型の分離膜体(228)を同時に巻囲した構造を有する分離膜エレメントである。I型-逆L型分離膜エレメント(226)の逆L型分離膜体(228)の開口部のある端面に、図18に示すように流れをUターンさせるUターンキャップ(230)を装着することにより、供給液がI型分離膜体(227)を通過した後に逆L型分離膜体(228)に供給されることになるため、供給液(206)を高流速化させる、いわゆるツリー型配置を1本の分離膜エレメントで模擬した構造とすることができる。I型分離膜体(227)と逆L型分離膜体(228)の比率および上述のL/Wを適切に設計することにより、I型-逆L型分離膜エレメント(226)は従来のI型分離膜エレメント(201)に対して5~20倍程度まで濃縮液流速を速めることができ、高回収率であってもさらに安定的に運転することが可能である。I型-逆L型分離膜エレメント(226)に使用される流路材はI型分離膜エレメント(201)に使用される流路材と同様のもので構わない。 A U-turn type separation membrane element, which is a separation membrane element having two types of separation membranes in one separation membrane element, may be used in order to further increase the flow velocity of the supply liquid. As an example of the U-turn type separation membrane element (226), there is an I-type-inverted L-type separation membrane element (226) in which an I-type separation membrane body and an inverted L-type separation membrane body are combined as shown in FIG. .. In the I-type-inverted L-type separation membrane element (226), the supply liquid (206) as shown in FIG. 19 flows in from one end face in the longitudinal direction of the perforated central canal (202) and is discharged from the other end face. I-type separation membrane body (227) and supply liquid (206) as shown in FIG. 20 flow in from one end surface in the longitudinal direction of the perforated central canal (202) and are discharged from the outer peripheral surface. It is a separation membrane element having a structure that simultaneously surrounds the separation membrane body (228). A U-turn cap (230) that makes a U-turn of the flow is attached to the end face of the I-type-inverted L-type separation membrane element (226) with an opening in the inverted L-type separation membrane element (228). As a result, the supply liquid is supplied to the inverted L-type separation membrane body (228) after passing through the I-type separation membrane body (227), so that the supply liquid (206) has a high flow velocity, so-called tree type. The arrangement can be a structure simulated by one separation membrane element. By appropriately designing the ratio of the I-type separation membrane (227) and the inverted L-type separation membrane (228) and the above-mentioned L / W, the I-type-inverted L-type separation membrane element (226) can be a conventional I. The flow rate of the concentrate can be increased to about 5 to 20 times that of the type separation membrane element (201), and even with a high recovery rate, more stable operation is possible. The flow path material used for the I-type-inverted L-type separation membrane element (226) may be the same as the flow path material used for the I-type separation membrane element (201).

L型、逆L型、Uターン型分離膜エレメントを総称して、高流速型分離膜エレメントと呼ぶ。高流速型分離膜モジュールは、I型分離膜エレメントを使用した分離膜モジュールと同様に供給液が濃縮液と透過液に分離されるので、通常の分離膜モジュールである。図22に逆L型分離膜エレメント(224)3本を直列に圧力容器(222)に封入した分離膜モジュール(216)を示し、図23にL型分離膜エレメント(225)3本を直列に圧力容器(222)に封入した分離膜モジュール(216)を示す。L型および逆L型分離膜エレメントは一般的に有孔中心管長手方向の長さが短いため、図22や図23では分離膜エレメントの有孔中心管を直列に接続することにより、I型分離膜エレメントを使用した分離膜モジュールと膜面積を合わせている。図24に逆L型の分離膜エレメント(224)2本とUターン型分離膜エレメント(226)1本を直列に接続し封入した分離膜モジュール(216)を示す。Uターン型分離膜エレメントは増速効果が高いため、図24に示されるように特に流速が遅くなる直列接続の最後のエレメントに使用することが好ましい。
<OARO分離膜モジュール>
一方、本出願における好ましい一形態では、図12に示すような分離膜1や分離膜2の透過液側にも溶液が供給できるような構造の分離膜エレメントが使用される。このような分離膜エレメントをOARO(Osmotically Assisted Reverse Osmosis)分離膜エレメントまたは、PRO(Pressure―Retarded Osmosis)分離膜エレメントと呼ぶ。なお、以下OARO分離膜エレメント(213)と呼称する。OARO分離膜エレメント(213)においても、I型分離膜エレメント(201)同様に、分離膜(203)は、供給側流路材(204)と透過側流路材(205)と分離膜体を形成する。分離膜(203)は、透過側流路材(205)を挟んで透過側の面(212)が対向するように配置される。また、供給側の面(211)の間には供給側流路材(204)が配置される。
The L-type, inverted L-type, and U-turn type separation membrane elements are collectively referred to as high flow velocity type separation membrane elements. The high flow velocity type separation membrane module is a normal separation membrane module because the supply liquid is separated into a concentrated liquid and a permeation liquid in the same manner as the separation membrane module using the type I separation membrane element. FIG. 22 shows a separation membrane module (216) in which three inverted L-type separation membrane elements (224) are sealed in series in a pressure vessel (222), and FIG. 23 shows three L-type separation membrane elements (225) in series. The separation membrane module (216) enclosed in the pressure vessel (222) is shown. Since the L-type and inverted L-type separation membrane elements are generally short in the longitudinal direction of the perforated central tube, in FIGS. 22 and 23, the perforated central tubes of the separation membrane element are connected in series to form an I-type. The membrane area is matched with the separation membrane module using the separation membrane element. FIG. 24 shows a separation membrane module (216) in which two inverted L-shaped separation membrane elements (224) and one U-turn type separation membrane element (226) are connected in series and encapsulated. Since the U-turn type separation membrane element has a high speed-increasing effect, it is preferable to use it for the last element of the series connection in which the flow velocity is particularly slow as shown in FIG. 24.
<OARO Separation Membrane Module>
On the other hand, in a preferred embodiment of the present application, a separation membrane element having a structure such that the solution can be supplied to the separation membrane 1 and the permeate side of the separation membrane 2 as shown in FIG. 12 is used. Such a separation membrane element is referred to as an OARO (Osmoticly Assisted Reverse Osmosis) separation membrane element or a PRO (Pressure-Retarded Osmosis) separation membrane element. Hereinafter, it is referred to as an OARO separation membrane element (213). In the OARO separation membrane element (213), as in the type I separation membrane element (201), the separation membrane (203) has a supply-side flow path material (204), a transmission-side flow path material (205), and a separation membrane body. Form. The separation membrane (203) is arranged so that the permeation side surfaces (212) face each other with the permeation side flow path material (205) interposed therebetween. Further, a supply-side flow path material (204) is arranged between the supply-side surfaces (211).

OARO分離膜エレメント(213)は、図12に示すように分離膜(203)の供給側の面(211)と透過側の面(212)の両方に溶液を供給し、排出することができる構造を有する。 As shown in FIG. 12, the OARO separation membrane element (213) has a structure capable of supplying and discharging a solution to both the supply side surface (211) and the transmission side surface (212) of the separation membrane (203). Have.

OARO分離膜エレメント(213)においては、供給側の流路と透過側の流路は、膜を介して表裏で略同一の膜面を流れることが好ましい。膜を介して表裏で同一の膜面を流れるとは、供給側における供給液(206)の供給部から排出部までに通過する膜面上の経路が、透過側における供給液(214)の供給部から排出部までに通過する膜面上の経路が、膜の表裏で概ね同一または概ね反対の過程をたどるということを意図する。 In the OARO separation membrane element (213), it is preferable that the flow path on the supply side and the flow path on the transmission side flow through the membrane on the front and back sides of substantially the same membrane surface. Flowing on the same membrane surface on the front and back through the membrane means that the path on the membrane surface that passes from the supply part to the discharge part of the supply liquid (206) on the supply side is the supply of the supply liquid (214) on the permeation side. It is intended that the path on the membrane surface that passes from the portion to the discharge portion follows a process that is approximately the same or approximately opposite on the front and back of the membrane.

上述の流路を形成するために、例えば、供給側流路および透過側流路は図12に示されるような流路であることが好ましい。図12は、OARO分離膜エレメント(213)の有孔中心管(202)および1対の分離膜体の展開図を示しており、図12(a)は分離膜体の供給側の面(211)および有孔中心管(202)を、図12(b)は分離膜体の透過側の面(212)および有孔中心管(202)を示している。図12(a)に示した供給側の流路は、分離膜の両端面において、分離膜エレメントの巻回方向の内周部が開口されており、中央部に内側から巻回方向外側にかけて連続的に封止(210)されており、外周部分は封止されておらず、流路が設けられている。すなわち、供給側の面(211)においては、供給液(206)が分離膜の一端面の内周部から流入し、有孔中心管(202)の長手方向中央部において巻回方向外側の流路を通り、もう一方の端面の内周部から濃縮液(207)が排出される。
図12(b)に示した透過側の流路は、分離膜体の巻回方向内側の一辺を除く三辺が全て封止されるとともに、分離膜体の中央部が、供給側の面(211)と同様に巻回方向の内側から外側にかけて連続的に封止(210)されており、外周部分は封止されておらず、流路が設けられている。また、有孔中心管(202)の中央部に仕切り(209)が設けられており、分離膜エレメントの透過側供給液(214)は有孔中心管(202)の端面から供給され、有孔中心管(202)の孔から分離膜上の透過側流路を通り、中央部の封止部(210)が設けられていない巻回方向外側の流路を通って再び有孔中心管(202)の内部(仕切り(209)の反対側)を通り、もう一方の有孔中心管(202)の端面から、透過側排出液(215)として排出される。このような流路であることで膜を介して表裏で概ね反対の流路とすることができるうえ、OARO分離膜エレメント(213)の製作性という点においても好ましい。
In order to form the above-mentioned flow path, for example, the supply side flow path and the transmission side flow path are preferably the flow paths as shown in FIG. FIG. 12 shows a developed view of the perforated central canal (202) of the OARO separation membrane element (213) and a pair of separation membranes, and FIG. 12A shows a supply-side surface (211) of the separation membrane. ) And the perforated central canal (202), and FIG. 12 (b) shows the permeation side surface (212) and the perforated central canal (202) of the separation membrane. In the flow path on the supply side shown in FIG. 12A, the inner peripheral portion of the separation membrane element in the winding direction is opened on both end faces of the separation membrane, and the central portion is continuous from the inside to the outside in the winding direction. It is sealed (210), the outer peripheral portion is not sealed, and a flow path is provided. That is, on the surface (211) on the supply side, the supply liquid (206) flows in from the inner peripheral portion of one end surface of the separation membrane, and flows outside the winding direction at the central portion in the longitudinal direction of the perforated central canal (202). The concentrate (207) is discharged from the inner peripheral portion of the other end face through the road.
In the flow path on the transmission side shown in FIG. 12B, all three sides except one side inside the winding direction of the separation membrane body are sealed, and the central portion of the separation membrane body is the surface on the supply side ( Similar to 211), it is continuously sealed (210) from the inside to the outside in the winding direction, the outer peripheral portion is not sealed, and a flow path is provided. Further, a partition (209) is provided in the central portion of the perforated central tube (202), and the permeation side supply liquid (214) of the separation membrane element is supplied from the end face of the perforated central tube (202) and is perforated. From the hole of the central canal (202), it passes through the permeation side flow path on the separation membrane, and again through the flow path outside the winding direction in which the sealing portion (210) in the central portion is not provided, and again through the perforated central tube (202). ) (On the opposite side of the partition (209)) and discharged from the end face of the other perforated central canal (202) as a permeation side discharge liquid (215). With such a flow path, it is possible to make the flow paths substantially opposite on the front and back through the membrane, and it is also preferable in terms of manufacturability of the OARO separation membrane element (213).

OARO分離膜エレメントにおける供給側流路材は、分離膜の供給側の面に挟まれるように配置され、分離膜に供給液を供給する流路(すなわち供給側流路)を形成する。さらに供給液の濃度分極を抑制するために、供給液の流れを乱すような形状になっていることが好ましい。 The supply-side flow path material in the OARO separation membrane element is arranged so as to be sandwiched between the supply-side surfaces of the separation membrane, and forms a flow path (that is, a supply-side flow path) for supplying the supply liquid to the separation membrane. Further, in order to suppress the concentration polarization of the supply liquid, it is preferable that the shape is such that the flow of the supply liquid is disturbed.

OARO分離膜エレメントにおける供給側流路材は、ネット、あるいは空隙を有するシートに凸状物が設けられたような連続形状を有している部材であってもよいし、あるいは分離膜に対して0より大きく1未満である投影面積比を示す不連続形状を有するものであってもよい。また、供給側流路材は分離膜と分離可能であってもよいし、分離膜に固着していてもよい。 The supply-side flow path material in the OARO separation membrane element may be a net or a member having a continuous shape such that a convex material is provided on a sheet having voids, or with respect to the separation membrane. It may have a discontinuous shape indicating a projected area ratio greater than 0 and less than 1. Further, the supply-side flow path material may be separable from the separation membrane or may be adhered to the separation membrane.

なお、供給側流路材の素材は特に限定されず、分離膜と同素材であっても異素材であっても構わない。 The material of the flow path material on the supply side is not particularly limited, and may be the same material as the separation membrane or a different material.

供給側流路材の厚みが大きいと圧力損失が小さくなるが、エレメント化した場合に圧力容器に充填できる膜面積が小さくなる。厚みが小さいと流路の圧力損失が大きくなり、分離性能や流体透過性能が低下してしまう。各性能のバランスや運転コストを考慮すると、供給側流路材の厚みは、好ましくは200~1000μmであり、より好ましくは300~900μmである。 If the thickness of the flow path material on the supply side is large, the pressure loss becomes small, but when it is made into an element, the film area that can be filled in the pressure vessel becomes small. If the thickness is small, the pressure loss in the flow path becomes large, and the separation performance and the fluid permeation performance deteriorate. Considering the balance of each performance and the operating cost, the thickness of the flow path material on the supply side is preferably 200 to 1000 μm, more preferably 300 to 900 μm.

供給側流路材の厚みは、市販の厚み測定器により直接測定することもできるし、あるいはマイクロスコープを用いて撮影した画像を解析することによって測定することもできる。 The thickness of the flow path material on the supply side can be measured directly with a commercially available thickness measuring device, or can be measured by analyzing an image taken with a microscope.

供給側流路材がネットである場合、ネットは複数の糸により構成されている。複数の糸は、交点において互いに交差し、交点部分が最も厚みが大きくなる。 When the supply side flow path material is a net, the net is composed of a plurality of threads. The plurality of threads intersect each other at the intersection, and the intersection is the thickest.

ネットを構成する糸の径は糸の長さ方向において一定であってもよく、ネットを構成する糸の径は糸の長さ方向において一定であってもよく、長さ方向に一様に増加または減少してもよく、増加と減少を繰り返すような形態であっても構わない。糸の径が長さ方向において増加と減少を繰り返すような形態である場合、糸径が最も大きくなる箇所で複数の糸が交差するような形態であることが好ましい。糸径が最も大きくなる箇所で複数の糸が交差することによって、供給側流路の圧力損失を低くすることができる。 The diameter of the thread constituting the net may be constant in the length direction of the thread, the diameter of the thread constituting the net may be constant in the length direction of the thread, and increases uniformly in the length direction. Alternatively, it may decrease, or it may be in a form of repeating increase and decrease. When the diameter of the yarn is repeatedly increased and decreased in the length direction, it is preferable that the plurality of yarns intersect at the position where the yarn diameter is the largest. By intersecting a plurality of yarns at the position where the yarn diameter is the largest, the pressure loss in the flow path on the supply side can be reduced.

また、交差する複数の糸の径は同じであっても異なっていても構わない。交差する複数の糸の径が異なっている場合、厚みが一定であれば、径の小さい糸は圧力損失の低減効果が大きく、径の大きい糸は流れを乱す乱流効果が大きくなる。 Further, the diameters of the plurality of intersecting threads may be the same or different. When the diameters of the plurality of intersecting threads are different, if the thickness is constant, the thread having a small diameter has a large effect of reducing the pressure loss, and the thread having a large diameter has a large effect of disturbing the flow.

上述の圧力損失と乱流効果とのバランスから、ネットを構成する糸断面の径は、(最小部の径)/(最大部の径)が0.1以上0.7以下であることが好ましく、より好ましくは0.3以上0.6以下である。 From the balance between the pressure loss and the turbulent flow effect described above, the diameter of the thread cross section constituting the net is preferably 0.1 or more and 0.7 or less in (diameter of the minimum portion) / (diameter of the maximum portion). , More preferably 0.3 or more and 0.6 or less.

ネットを構成する糸の傾斜角は、供給液の流れる方向に対して平行方向であれば、圧力損失を低くすることができるが、濃度分極低減効果は小さくなり、垂直方向であれば、圧力損失は高くなるが、濃度分極低減効果を大きくすることができる。圧力損失と濃度分極低減効果のバランスから、糸の傾斜角度は供給液の平均流れ角度に対して、-60°以上60°以下であることが好ましい。ここで、平均流れ角度とは、1枚の分離膜体の中での流れ角度の平均値である。しかし、OARO分離膜エレメント(213)において、供給側流路の流れの方向が図12に示したように流路の途中にて90°変化する。したがって、糸の傾斜角度は、分離膜面上において、流れ方向に応じて、場所によって異なっていることが好ましい。 The pressure loss can be reduced if the inclination angle of the threads constituting the net is parallel to the flow direction of the supply liquid, but the effect of reducing the concentration polarization is small, and the pressure loss is in the vertical direction. However, the effect of reducing concentration polarization can be increased. From the viewpoint of the balance between the pressure loss and the effect of reducing the concentration polarization, the inclination angle of the yarn is preferably −60 ° or more and 60 ° or less with respect to the average flow angle of the feed liquid. Here, the average flow angle is the average value of the flow angles in one separation membrane body. However, in the OARO separation membrane element (213), the flow direction of the supply-side flow path changes by 90 ° in the middle of the flow path as shown in FIG. Therefore, it is preferable that the inclination angle of the yarn differs depending on the place on the separation membrane surface according to the flow direction.

複数の糸が交差する交点の間隔は、大きいほど圧力損失は小さくなり、小さいと圧力損失は大きくなる。それらのバランスから、交点間隔は、1mm以上10mm以下が好ましく、1.5mm以上8mm以下がより好ましく、2mm以上6mm以下がさらに好ましい。 The larger the distance between the intersections where a plurality of threads intersect, the smaller the pressure loss, and the smaller the distance, the larger the pressure loss. From these balances, the intersection interval is preferably 1 mm or more and 10 mm or less, more preferably 1.5 mm or more and 8 mm or less, and further preferably 2 mm or more and 6 mm or less.

ネットを構成する糸の断面形状は特に限定されず、楕円、円、三角形、四角形、不定形などを用いることができるが、ネットと分離膜表面が接する部分の面積が小さいと分離膜表面とネットとの擦れによる分離膜性能の低下を抑制することができるうえ、流れのデッドゾーンを小さくすることができ、濃度分極を抑制することができるため、好ましい。ネットと分離膜表面が接する部分の分離膜に対する投影面積比は、0.01以上0.25以下であることが好ましく、0.02以上0.2以下がより好ましい。 The cross-sectional shape of the thread constituting the net is not particularly limited, and an ellipse, a circle, a triangle, a quadrangle, an irregular shape, or the like can be used. It is preferable because it is possible to suppress deterioration of the separation membrane performance due to rubbing against the surface, reduce the dead zone of the flow, and suppress concentration polarization. The projected area ratio of the portion where the net and the surface of the separation membrane are in contact with each other is preferably 0.01 or more and 0.25 or less, and more preferably 0.02 or more and 0.2 or less.

ネットを構成する糸の材質は、供給側流路材としての剛性を維持することができ、分離膜表面を傷つけないものであれば特に限定されず、分離膜と同素材であっても異素材であってもよく、ポリエチレン、ポリプロピレン、ポリ乳酸、エチレン酢酸ビニル共重合体、ポリエステル、ポリウレタン、熱硬化性エラストマーなどが好ましく用いられる。 The material of the thread constituting the net is not particularly limited as long as it can maintain the rigidity as the flow path material on the supply side and does not damage the surface of the separation film, and even if it is the same material as the separation film, it is a different material. However, polyethylene, polypropylene, polylactic acid, ethylene-vinyl acetate copolymer, polyester, polyurethane, thermosetting elastomer and the like are preferably used.

OARO分離膜エレメント(213)における透過側流路材(205)は、図12に示されるように、分離膜の透過側の面(212)に挟まれるように配置され、透過液(208)の流路を形成する点は通常の分離膜エレメントと同様であるが、OARO分離膜エレメント(213)においては、透過液のみではなく、透過側にも透過側供給液(214)が供給されるため、透過側に供給される透過側供給液(214)が透過液(208)と混合し透過側排出液(215)として排出されるまでの流路を形成する役割を果たす。 As shown in FIG. 12, the permeation side flow path material (205) in the OARO separation film element (213) is arranged so as to be sandwiched between the permeation side surface (212) of the separation film, and is of the permeate liquid (208). The point of forming the flow path is the same as that of the normal separation membrane element, but in the OARO separation membrane element (213), not only the permeate liquid but also the permeation side supply liquid (214) is supplied to the permeation side. , The permeation side supply liquid (214) supplied to the permeation side mixes with the permeation liquid (208) and plays a role of forming a flow path until the permeation side discharge liquid (215) is discharged.

OARO分離膜エレメントにおける透過側流路材は、透過側流路の流動抵抗を低減し、かつ加圧ろ過下においても分離膜の透過流体流路への落ち込みを抑制し、流路を安定に形成される点で、透過側流路材の横断面積比が0.10~0.50であることが好ましく、0.20~0.40であることがより好ましい。透過側流路材の種類は限定されず、トリコットのような緯編物、不織布のような多孔性シートに突起物を配置したシート、フィルムや不織布を凹凸加工した凹凸加工シートなどを用いることができるが、図2に示したように流路の途中で流れの向きが変化することから、断面積比や形態は流れの方向に応じて場所で異なる形態であることがより好ましい。 The permeation side flow path material in the OARO separation membrane element reduces the flow resistance of the permeation side flow path and suppresses the separation membrane from falling into the permeation fluid flow path even under pressure filtration to stably form the flow path. In that respect, the cross-sectional area ratio of the permeation side flow path material is preferably 0.10 to 0.50, and more preferably 0.20 to 0.40. The type of the permeation side flow path material is not limited, and a weft knitted fabric such as a tricot, a sheet in which protrusions are arranged on a porous sheet such as a non-woven fabric, and a concavo-convex processed sheet in which a film or a non-woven fabric is unevenly processed can be used. However, since the direction of the flow changes in the middle of the flow path as shown in FIG. 2, it is more preferable that the cross-sectional area ratio and the form differ depending on the direction of the flow.

透過側流路材の厚みは、厚ければ圧力損失を小さくすることができるものの、同サイズの分離膜エレメントに充填できる膜面積が減少してしまう。薄ければ、同サイズの分離膜エレメントに充填可能な膜面積は大きくなるものの、圧力損失は大きくなってしまう。それらのバランスから、透過側流路材の厚みは、好ましくは0.2mm~1mmであり、より好ましくは0.3mm~0.9mmである。 If the thickness of the permeation side flow path material is thick, the pressure loss can be reduced, but the membrane area that can be filled in the separation membrane element of the same size is reduced. If it is thin, the membrane area that can be filled in the separation membrane element of the same size is large, but the pressure loss is large. From these balances, the thickness of the permeation side flow path material is preferably 0.2 mm to 1 mm, more preferably 0.3 mm to 0.9 mm.

透過側流路材の厚みは、市販の厚み測定器により直接測定することができる。 The thickness of the permeation side flow path material can be directly measured by a commercially available thickness measuring device.

透過側流路材の素材は、有孔中心管(202)に容易に巻回できるものであればよく、透過側流路材の圧縮弾性率は、0.1~5GPaであることが好ましい。圧縮弾性率がこの範囲内であれば、透過側流路材を有孔中心管に容易に巻回することができる。具体的には、ポリエステル、ポリエチレン、ポリプロピレンなどが好ましく用いられる。 The material of the permeation side flow path material may be any material that can be easily wound around the perforated central tube (202), and the compressive elastic modulus of the permeation side flow path material is preferably 0.1 to 5 GPa. When the compressive elastic modulus is within this range, the permeation side flow path material can be easily wound around the perforated central tube. Specifically, polyester, polyethylene, polypropylene and the like are preferably used.

透過側流路材の圧縮弾性率は、精密万能試験機を用いて圧縮試験を行い、応力ひずみ線図を作成することにより、測定することができる。
図12に示したように、有孔中心管(202)は、内部中央部に仕切り(209)が設けられている構造のものを用いることができる。有効中心管(202)の形状は、その中を透過側供給液(214)および透過側排出液(215)が流れるように構成されていればよく、材質、形状は特に限定されない。有孔中心管(202)の径は、大きければ、同サイズの分離膜エレメントに充填可能な膜面積が減少してしまい、小さければ、有孔中心管(202)の内部を透過側供給液(214)および透過側排出液(215)が流れる際の流動抵抗が大きくなってしまう。有孔中心管(202)の径は、透過側供給液(214)および透過側排出液(215)の流量に応じて適宜設計されるが、好ましくは10~50mm、さらに好ましくは15~40mmである。有孔中心管(202)としては、例えば、複数の孔が設けられた側面を有する円筒状の部材が用いられる。
流路の形成に用いられる封止部(210)は、巻回前に外周端部を接着剤やテープで封止する、もしくは端面については、巻回後に、端面を接着剤やテープで封止することによって封止することができる。接着剤等による封止は、接着剤またはホットメルト等による接着、熱またはレーザによる融着等により行うことができる。
接着剤の塗布量は、分離膜(203)が有孔中心管(202)に巻回された後に、接着剤が塗布される部分の幅が2~30mm以下であるような量であることが好ましい。これによって、有効膜面積も比較的大きく確保することができる。OARO分離膜エレメント(213)は分離膜の透過側の面(212)にも透過側供給液(214)が供給されることにより、分離膜の供給側の面(211)の成分濃度が高い場合においても、分離膜の供給側と透過側の浸透圧差を低減することができ、一般的にはより低圧で溶液を処理することが可能となる。低圧で処理することが可能となれば、配管や圧力容器、ポンプなどをより簡素化することができる。また、ポンプの静音化も可能になるため、騒音を低減することができる。
The compressive elastic modulus of the permeation side flow path material can be measured by performing a compression test using a precision universal testing machine and creating a stress-strain diagram.
As shown in FIG. 12, as the perforated central canal (202), one having a structure in which a partition (209) is provided in the inner central portion can be used. The shape of the effective central tube (202) may be configured so that the permeation side supply liquid (214) and the permeation side discharge liquid (215) flow through the effective center tube (202), and the material and shape are not particularly limited. If the diameter of the perforated central canal (202) is large, the membrane area that can be filled in the separation membrane element of the same size decreases, and if it is small, the inside of the perforated central canal (202) is filled with the permeation side supply liquid ( The flow resistance when the 214) and the permeation side discharge liquid (215) flow increases. The diameter of the perforated central tube (202) is appropriately designed according to the flow rates of the permeation side supply liquid (214) and the permeation side discharge liquid (215), but is preferably 10 to 50 mm, more preferably 15 to 40 mm. be. As the perforated central canal (202), for example, a cylindrical member having a side surface provided with a plurality of holes is used.
For the sealing portion (210) used to form the flow path, the outer peripheral end portion is sealed with an adhesive or tape before winding, or the end face is sealed with an adhesive or tape after winding. Can be sealed by Sealing with an adhesive or the like can be performed by adhesion with an adhesive or hot melt, heat or fusion with a laser, or the like.
The amount of the adhesive applied may be such that the width of the portion to which the adhesive is applied is 2 to 30 mm or less after the separation membrane (203) is wound around the perforated central tube (202). preferable. As a result, a relatively large effective film area can be secured. In the OARO separation membrane element (213), the permeation side supply liquid (214) is also supplied to the permeation side surface (212) of the separation membrane, so that the component concentration on the supply side surface (211) of the separation membrane is high. Also, the difference in osmotic pressure between the supply side and the permeation side of the separation membrane can be reduced, and the solution can be treated at a lower pressure in general. If it becomes possible to process at low pressure, piping, pressure vessels, pumps, etc. can be further simplified. In addition, noise can be reduced because the pump can be made quieter.

OARO分離膜エレメント(213)は図14に示すように供給液(206)と濃縮液(207)が混ざらないようにするためのシール部材であるブラインシール(223)を装着し、圧力容器(222)に封入され、OARO分離膜モジュール(217)となる。
(3)本出願における溶液処理方法のプロセス構成
本出願では、循環により得られる分離膜2からの透過液または精製液を原液に混合した溶液を加圧し、成分Aの除去率が90%以上、かつ、成分Bの除去率が成分Aの除去率よりも60%ポイント以上低い分離膜1で処理し、分離膜1の透過液と分離膜1の濃縮液を得る。この時、分離膜1に供給された溶液量と分離膜1を透過した溶液量の比率である回収率は50%以上であることが好ましい。このような回収率とすることにより、分離膜1の選択分離性能をより発揮することができる。分離膜1は上記のような除去率であるため、分離膜1の透過液は成分Bが多く含まれており、成分Aはあまり含まれない。一方、分離膜1の濃縮液は成分A、成分Bともに含まれることになるが、成分Aの除去率が高いため、成分Aがより優先的に含まれるようになる。
さらに、分離膜1の透過液を、成分Bの除去率が85%以上である分離膜2で処理し、分離膜2の濃縮液と分離膜2の透過液を得る。この時、分離膜2に供給された溶液量と分離膜1を透過した溶液量の比率である回収率は、プロセス全体の水回収率に応じて設定されるが、分離膜2の透過液は分離膜1の供給液への循環に利用されるため、回収率は50%以上であることが好ましい。分離膜2は上記のような除去率を持っているため、分離膜2の透過液には成分A、成分Bともに微量しか含まれない。分離膜2の濃縮液には成分Bが多く含まれている。最後に分離膜1の濃縮液と分離膜2の透過液を混合すれば、成分Bのみ選択的に分離された精製液が得られる。
As shown in FIG. 14, the OARO separation membrane element (213) is equipped with a brine seal (223), which is a sealing member for preventing the supply liquid (206) and the concentrate (207) from mixing, and is equipped with a pressure vessel (222). ), Which becomes the OARO separation membrane module (217).
(3) Process configuration of the solution treatment method in the present application In the present application, a solution obtained by mixing a permeate or a purified solution from the separation membrane 2 obtained by circulation with a stock solution is pressurized, and the removal rate of the component A is 90% or more. Further, the treatment is performed with the separation film 1 in which the removal rate of the component B is 60 percentage points or more lower than the removal rate of the component A to obtain a permeate of the separation film 1 and a concentrated solution of the separation film 1. At this time, the recovery rate, which is the ratio of the amount of the solution supplied to the separation membrane 1 and the amount of the solution permeated through the separation membrane 1, is preferably 50% or more. By setting such a recovery rate, the selective separation performance of the separation membrane 1 can be further exhibited. Since the separation membrane 1 has the removal rate as described above, the permeate of the separation membrane 1 contains a large amount of component B and does not contain much component A. On the other hand, the concentrated solution of the separation membrane 1 contains both the component A and the component B, but since the removal rate of the component A is high, the component A is more preferentially contained.
Further, the permeate of the separation membrane 1 is treated with the separation membrane 2 having a removal rate of the component B of 85% or more to obtain a concentrated liquid of the separation membrane 2 and a permeation liquid of the separation membrane 2. At this time, the recovery rate, which is the ratio of the amount of the solution supplied to the separation membrane 2 and the amount of the solution that has permeated the separation membrane 1, is set according to the water recovery rate of the entire process, but the permeate of the separation membrane 2 is Since it is used for circulating the separation membrane 1 to the supply liquid, the recovery rate is preferably 50% or more. Since the separation membrane 2 has the removal rate as described above, the permeate of the separation membrane 2 contains only a trace amount of both component A and component B. The concentrated solution of the separation membrane 2 contains a large amount of component B. Finally, by mixing the concentrated solution of the separation membrane 1 and the permeation solution of the separation membrane 2, a purified solution in which only the component B is selectively separated can be obtained.

図1に本出願に示す溶液処理方法の1つの形態を示す。図1に示す溶液処理方法では、分離膜モジュール1(1)および分離膜モジュール2(2)ともに透過側の供給がない形の通常の分離膜モジュールが使用されている。通常の分離膜モジュールではモジュールの供給側に加圧された供給液を導入し、濃縮液と透過液を得る。本出願の溶液処理方法は、上述のように分離膜モジュール1を透過した成分Bを分離膜モジュール2の濃縮液として除去するため、分離膜モジュール1の透過液の量を多くしなければ、全体としての成分Bの除去率が低くなる。特に、原液における総成分濃度が1000mg/L以上と高い時、分離膜モジュール1の透過液あるいは濃縮液の循環がない場合は、分離膜モジュール1における回収率を高くする必要があり、回収率の上昇に呼応し分離膜モジュール1に印加する圧力も上昇する。例えば、分離膜モジュール1の供給液における成分AとしてNaClを想定し、その濃度が10000mg/Lのとき、分離膜モジュール1を回収率90%で運転した場合、分離膜モジュール1の濃縮液はおよそ10倍の濃度となり、その浸透圧は8.8MPa程度となる。一方、図1に示す溶液処理方法では、分離膜モジュール2の透過液(109)の一部を分離膜モジュール1(1)に供給される原液(101)と混合し循環している。分離膜モジュール2の透過液の循環がない溶液処理方法では、分離膜モジュール1の濃縮液が高濃度になる問題があったが、図1に示すような溶液処理方法をとることによって、分離膜モジュール1の供給液(104)の濃度を低くすることができ、分離膜モジュール1(1)が高回収であっても分離膜モジュール1の濃縮液(105)の濃度を低く抑えることができる。例えば、成分AとしてNaClを想定し、その濃度が10000mg/Lの原液(101)を処理するとき、分離膜モジュール2の透過液(109)を循環し分離膜モジュール1の供給液(104)の成分Aの濃度を2000mg/Lまで低減することができれば、分離膜モジュール1(1)が90%の回収率であっても、分離膜モジュール1の濃縮液(105)の浸透圧は1.7MPa程度となる。このように分離膜モジュール2の透過液(109)の循環を行わない溶液処理方法に対して、より低圧で処理することが可能となる。低圧で処理することができれば、高圧ポンプや高圧対応の流路、圧力容器を使用する必要がなくなるため、装置コストの低減や騒音の低減が期待される。分離膜モジュール2の透過液(109)の量に対する循環(110)量を増していくと、全体の溶液回収率溶液回収率が固定の場合、分離膜モジュール1および分離膜モジュール2の透過液(106)(109)の量も増えることになるため、浸透圧低減効果と透過量の増大のバランスを鑑みて循環量を決定する必要がある。また、分離膜モジュール2の透過液(109)をすべて循環した場合、分離膜モジュール1および分離膜モジュール2の透過液(106)(109)の量は著しく増加するため、好ましくない。上述のバランスを鑑み、分離膜モジュール2の透過液(109)の量に対する循環(110)量は0より大きく1未満まで任意に設定することができる。また、精製液の濃度調整などのため、分離膜モジュール2の透過液の一部を取り出したり、精製液に純水や溶液を追加したりしても良い。 FIG. 1 shows one form of the solution treatment method shown in the present application. In the solution treatment method shown in FIG. 1, a normal separation membrane module having no supply on the permeation side is used for both the separation membrane module 1 (1) and the separation membrane module 2 (2). In a normal separation membrane module, a pressurized supply liquid is introduced on the supply side of the module to obtain a concentrated liquid and a permeated liquid. In the solution treatment method of the present application, the component B that has permeated the separation membrane module 1 is removed as the concentrated liquid of the separation membrane module 2 as described above. Therefore, unless the amount of the permeate liquid of the separation membrane module 1 is increased, the whole The removal rate of the component B is low. In particular, when the total component concentration in the undiluted solution is as high as 1000 mg / L or more and there is no circulation of the permeate or concentrate of the separation membrane module 1, it is necessary to increase the recovery rate in the separation membrane module 1, and the recovery rate is high. In response to the rise, the pressure applied to the separation membrane module 1 also rises. For example, when NaCl is assumed as the component A in the supply liquid of the separation membrane module 1 and the concentration is 10,000 mg / L and the separation membrane module 1 is operated with a recovery rate of 90%, the concentrate of the separation membrane module 1 is approximately. The concentration is 10 times higher, and the osmotic pressure is about 8.8 MPa. On the other hand, in the solution treatment method shown in FIG. 1, a part of the permeated liquid (109) of the separation membrane module 2 is mixed with the stock solution (101) supplied to the separation membrane module 1 (1) and circulated. The solution treatment method in which the permeate of the separation membrane module 2 does not circulate has a problem that the concentrated liquid of the separation membrane module 1 has a high concentration. However, by adopting the solution treatment method as shown in FIG. 1, the separation membrane is used. The concentration of the supply liquid (104) of the module 1 can be lowered, and the concentration of the concentrated liquid (105) of the separation membrane module 1 can be kept low even if the separation membrane module 1 (1) has a high recovery. For example, when NaCl is assumed as the component A and the undiluted solution (101) having a concentration of 10000 mg / L is treated, the permeate solution (109) of the separation membrane module 2 is circulated and the supply solution (104) of the separation membrane module 1 is circulated. If the concentration of component A can be reduced to 2000 mg / L, the osmotic pressure of the concentrate (105) of the separation membrane module 1 is 1.7 MPa even if the separation membrane module 1 (1) has a recovery rate of 90%. It becomes a degree. As compared with the solution treatment method in which the permeate liquid (109) of the separation membrane module 2 is not circulated in this way, the treatment can be performed at a lower pressure. If low-pressure processing is possible, it is not necessary to use a high-pressure pump, a high-pressure-compatible flow path, or a pressure vessel, which is expected to reduce equipment costs and noise. When the amount of circulation (110) with respect to the amount of the permeate (109) of the separation membrane module 2 is increased, the total solution recovery rate is fixed. 106) Since the amount of (109) also increases, it is necessary to determine the circulation amount in consideration of the balance between the effect of reducing the osmotic pressure and the increase of the amount of permeation. Further, when all the permeates (109) of the separation membrane module 2 are circulated, the amounts of the permeate liquids (106) and (109) of the separation membrane module 1 and the separation membrane module 2 are significantly increased, which is not preferable. In view of the above balance, the circulation (110) amount with respect to the amount of the permeated liquid (109) of the separation membrane module 2 can be arbitrarily set to be larger than 0 and less than 1. Further, in order to adjust the concentration of the purified liquid, a part of the permeated liquid of the separation membrane module 2 may be taken out, or pure water or a solution may be added to the purified liquid.

図2に示す溶液処理方法では、分離膜モジュール1の濃縮液(105)と分離膜モジュール2の透過液(109)が混ざった精製液(102)の一部を原液(101)に循環している。精製液(102)を原液(101)に循環する場合、分離膜モジュール2の透過液(109)の一部に加えて、分離膜モジュール1の濃縮液(105)の一部を循環していることと同義である。このとき、上述した浸透圧低減効果に加えて、濃縮液の循環により分離膜モジュール1(1)における成分Bの除去率が低下するため、分離膜モジュール1の透過液(106)の量を低減することができる。分離膜モジュール1(1)の成分Bの除去率が比較的高めであり、分離膜モジュール1(1)の選択分離性能が十分に発揮されないという場合は、図2に示す溶液処理方法を用いることが好ましい。精製液(102)の循環量を増していくと、全体の溶液回収率が固定の場合、分離膜モジュール1および分離膜モジュール2の透過液(106)(109)の量も増えることになるため、浸透圧低減効果と透過量の増大のバランスを鑑みて循環(111)量を決定する必要がある。上述のバランスを鑑み、分離膜モジュール1の濃縮液(105)と分離膜モジュール2の透過液(109)の合計量に対する循環(111)量については0より大きく1未満まで任意に設定することができる。
図3に示す溶液処理方法では、分離膜モジュール1(1)は通常の分離膜モジュールを使用し、分離膜モジュール2(2)は透過液側にも供給口と排出口とを有する形態のOARO分離膜モジュールを使用し、分離膜モジュール2の透過側供給液(115)として分離膜モジュール1の濃縮液(105)の一部を供給している。すなわち、分離膜モジュール2の透過液(109)と分離膜モジュール1の濃縮液(105)を分離膜モジュール2(2)内で混合し精製液(102)としている。また、精製液(102)の一部を原液(101)に混合するため循環(111)している。分離膜モジュール1(1)での総成分除去率が低い場合、分離膜モジュール2の供給液(107)内の総成分濃度が高くなり、さらに全体の溶液回収率が高い場合は、分離膜モジュール2(2)の溶液回収率が高くなるため、分離膜モジュール2の濃縮液(108)と透過液(109)間の浸透圧差が問題となる場合がある。その場合、図3に示す溶液処理方法をとることにより、分離膜モジュール2(2)の透過側排出液(109)の浸透圧が上昇するため、分離膜モジュール2(2)の浸透圧差を低減することができ、より低圧で処理することが可能となる。また、分離膜モジュール2(2)の透液性が低い場合においても、分離膜モジュール2(2)の透過側供給液(115)として分離膜モジュール1の濃縮液(105)を導入することにより、分離膜モジュール2の透過側排出液(109)の浸透圧により分離膜モジュール2の供給液(107)から液を取り出しやすくなるため更なる低圧化が期待される。図3に示す溶液処理方法において、精製液循環(111)量を増していくと、溶液回収率が固定の場合、分離膜モジュール1および分離膜モジュール2の透過液(106)(109)の量も増えることになるため、浸透圧低減効果と透過量の増大のバランスを鑑みて精製液循環(111)量を決定する必要がある。上述のバランスを鑑み、分離膜モジュール1の濃縮液(105)と分離膜モジュール2の透過液(109)の合計量に対する循環(111)量については0より大きく1未満まで任意に設定することができる。
図4に示す溶液処理方法では、分離膜モジュール1(1)はOARO分離膜エレメントを使用し、分離膜モジュール2(2)は通常の分離膜エレメントを使用し、分離膜モジュール1の透過側供給液(114)として分離膜モジュール2の濃縮液(108)の一部または原液(101)の一部を供給している。また、分離膜モジュール2の透過液(109)の一部を原液(101)に混合するため循環(110)している。このような溶液処理方法とすることにより、透過液循環(110)による分離膜モジュール1の供給液(104)の浸透圧差低減効果と、分離膜モジュール1の透過液側への溶液供給(114)による供給液側と透過液側の浸透圧差低減効果により、分離膜モジュール1の供給液(104)と透過側溶液の浸透圧差を著しく軽減することができる。図4に示す溶液処理方法は分離膜モジュール1の濃縮液(105)の浸透圧が特に高い場合に好ましく用いられる。図4に示す溶液処理方法において、分離膜モジュール2の透過液の循環(110)量を増していくと、溶液回収率が固定の場合、分離膜モジュール1および分離膜モジュール2の透過液(106)(109)の量も増えることになるため、浸透圧低減効果と透過量の増大のバランスを鑑みて循環(110)量を決定する必要がある。また、分離膜モジュール2の透過液(109)をすべて循環した場合、分離膜モジュール1および分離膜モジュール2の透過液(106)(109)の量は著しく増加するため、好ましくない。上述のバランスを鑑み、分離膜モジュール2の透過液(109)の量に対する循環(110)量については0より大きく1未満まで任意に設定することができる。また、分離膜モジュール2の濃縮液(108)の量に対する分離膜モジュール1の透過側への循環(113)量および分離膜モジュール1の透過液側への原液供給(112)量について、それぞれ増加させると分離膜モジュール2(2)の供給圧力が増大する。そのため、分離膜モジュール1(1)と分離膜モジュール2(2)の供給圧力のバランスを鑑み、分離膜モジュール2の濃縮液(108)の量に対する分離膜モジュール1の透過液側への循環(113)量および分離膜1の透過液側への原液供給(112)量は、0以上1未満まで任意に設定することができる。また、精製液の濃度調整などのため、分離膜モジュール2の透過液の一部を取り出したり、精製液に純水や溶液を追加したりしても良い。
図5に示す溶液処理方法は、図4に示す溶液処理方法に対して、分離膜モジュール2の透過液(109)と分離膜モジュール1の濃縮液(105)を混合した精製液(102)の一部を循環させる点が異なる。このような溶液処理方法とすることにより、図2に示す溶液処理方法と同様に分離膜モジュール1の選択分離性能が十分に発揮されないという場合においても成分Bの除去率を比較的低めにすることができ、選択分離性能を向上させることができる。図5に示す溶液処理方法において、精製液循環(111)の量を増していくと、全体の溶液回収率が固定の場合、分離膜モジュール1および分離膜モジュール2の透過液(106)(109)の量も増えることになるため、浸透圧低減効果と透過量の増大のバランスを鑑みて循環(111)量を決定する必要がある。上述のバランスを鑑み、分離膜モジュール1の濃縮液(105)と分離膜モジュール2の透過液(109)の合計量に対する循環(111)量については、0より大きく1未満まで任意に設定することができる。また、分離膜モジュール2の濃縮液(108)量に対する分離膜モジュール1の透過側循環(113)量および分離膜モジュール1の透過側への原液供給(112)量について、それぞれ増加させると、溶液回収率が固定の場合、分離膜モジュール2の供給圧力も増大する。そのため、分離膜モジュール1と分離膜モジュール2の供給圧力のバランスを鑑み、分離膜モジュール2の濃縮液(108)量に対する分離膜1の透過側への循環(113)量および分離膜1の透過側への原液供給(112)量は、0~1まで任意に設定することができる。
図6に示す溶液処理方法では分離膜モジュール1(1)と分離膜モジュール2(2)のどちらもOARO分離膜モジュールとなっている。分離膜モジュール1の透過側供給液(114)には分離膜モジュール2の濃縮液(108)の一部または原液(101)の一部、あるいはその両方が供給される。また、分離膜モジュール2の透過側供給液(115)には分離膜モジュール1の濃縮液(105)が供給される。すなわち、分離膜モジュール2の透過液と分離膜モジュール1の濃縮液(105)を分離膜モジュール2(2)のOARO分離膜モジュール内で混合し精製液としている。このような溶液処理方法とすることにより、分離膜モジュール1(1)および分離膜モジュール2(2)のどちらも供給液側と透過液側の浸透圧差を低減することができるため、より低圧で運転することができる。また、精製液(102)の一部を原液に混合するため循環(111)している。図6に示す溶液処理方法において、精製液の循環(111)量を増していくと、溶液回収率が固定の場合、分離膜モジュール1および分離膜モジュール2の透過(106)(109)量も増えることになるため、浸透圧低減効果と透過量の増大のバランスを鑑みて循環(111)量を決定する必要がある。上述のバランスを鑑み、分離膜モジュール1の濃縮液(105)と分離膜モジュール2の透過側排出液(109)の合計量に対する循環(111)量については0より大きく1未満まで任意に設定することができる。また、分離膜モジュール2の濃縮液(108)量に対する分離膜モジュール1の透過側への循環(113)量および分離膜モジュール1の透過側への原液供給(112)量について、それぞれ増加させると、溶液回収率が固定の場合、分離膜モジュール2(2)の供給圧力も増大する。そのため、分離膜モジュール1(1)と分離膜モジュール2(2)の供給圧力のバランスを鑑み、分離膜モジュール2の濃縮液(108)量に対する分離膜モジュール1の透過側への循環(113)量および分離膜モジュール1の透過側への原液供給(112)量は、0~1まで任意に設定することができる。
図7に示す溶液処理方法では、分離膜モジュール1(1)、分離膜モジュール2(2)ともに通常の分離膜モジュールを使用しており、分離膜モジュール1(1)が透過側に2段となっている。また、分離膜モジュール1(1)の2段目の濃縮液(105)を原液(101)へ循環し、分離膜モジュール2の透過液(109)の一部を原液(101)へ循環している。このように、分離膜モジュール1が透過液方向に多段となっている場合、分離膜モジュール1の少なくとも最終段の濃縮液を原液へ循環させることが好ましい。このような溶液処理方法とすることにより、図1の溶液処理方法に対して、分離膜モジュール1(1)の選択分離性能が低い場合においても、全体として高い選択分離性能を発揮することができる。分離膜モジュール2の透過液(109)量に対する循環(110)量を増していくと、全体の溶液回収率が固定の場合、分離膜モジュール1および分離膜モジュール2の透過(106)(109)量も増えることになるため、浸透圧低減効果と透過量の増大のバランスを鑑みて循環(110)量を決定する必要がある。また、分離膜モジュール2の透過液(109)をすべて循環(110)した場合、分離膜モジュール1および分離膜モジュール2の透過液(106)(109)量は著しく増加するため、好ましくない。上述のバランスを鑑み、分離膜モジュール2の透過液(109)量に対する循環量は0より大きく1未満まで任意に設定することができる。また、精製液の濃度調整などのため、分離膜モジュール2の透過液の一部を取り出したり、精製液に純水や溶液を追加したりしても良い。
図8に示す溶液処理方法では、分離膜モジュール1(1)、分離膜モジュール2(2)ともに通常の分離膜モジュールを使用し、分離膜モジュール1(1)が濃縮方向に2段となっており、1段目と2段目の間に昇圧ポンプを配置している。また、分離膜モジュール2の透過液(109)の一部を原液(101)へ循環している。このような溶液処理方法とすることにより、分離膜モジュール1(1)での回収率が高く、分離膜モジュール1(1)の供給側入り口と出口での有効圧力のバランスが悪化し透過液量バランスも悪化する場合においても、分離膜モジュール1(1)の供給圧力を2段階に上げることができるので、分離膜モジュール1(1)でより安定的に溶液を処理することができる。分離膜モジュール2の透過液(109)の量に対する循環(110)量を増していくと、全体の溶液回収率が固定の場合、分離膜モジュール1および分離膜モジュール2の透過液(106)(109)の量も増えることになるため、浸透圧低減効果と透過量の増大のバランスを鑑みて循環量を決定する必要がある。また、分離膜モジュール2の透過液(109)をすべて循環した場合、分離膜モジュール1および分離膜モジュール2の透過液(106)(109)の量は著しく増加するため、好ましくない。上述のバランスを鑑み、分離膜モジュール2の透過液(109)の量に対する循環(110)量は0より大きく1未満まで任意に設定することができる。また、精製液の濃度調整などのため、分離膜モジュール2の透過液の一部を取り出したり、精製液に純水などの溶液を追加したりしても良い。
図9に示す溶液処理方法では、分離膜モジュール1(1)、分離膜モジュール2(2)ともに通常の分離膜モジュールを使用し、分離膜モジュール1(1)が透過方向に2段かつ透過1段目が濃縮方向にも2段となっている。また、分離膜モジュール1(1)の透過1段目の濃縮1段目と濃縮2段目の間に昇圧ポンプを配置している。また、分離膜モジュール1の透過2段目の濃縮液(105)を原液(101)へ循環しており、分離膜モジュール2の透過液(109)の一部を原液(101)へ循環している。このような溶液処理方法とすることにより、図8の溶液処理方法と同様に分離膜モジュール1(1)の透過量バランスを改善し、さらに図7の溶液処理方法と同様に分離膜モジュール1(1)の選択分離性能が低い場合においても全体として高い選択分離性能を発揮することができる。分離膜モジュール2の透過液(109)量に対する循環量(110)を増していくと、全体の溶液回収率が固定の場合、分離膜モジュール1および分離膜モジュール2の透過液(106)(109)量も増えることになるため、浸透圧低減効果と透過量の増大のバランスを鑑みて循環量を決定する必要がある。また、分離膜モジュール2の透過液(109)をすべて循環した場合、分離膜モジュール1および分離膜モジュール2の透過液(106)(109)量は著しく増加するため、好ましくない。上述のバランスを鑑み、分離膜モジュール2の透過液(109)量に対する循環(110)量は0より大きく1未満まで任意に設定することができる。また、精製液の濃度調整などのため、分離膜モジュール2の透過液の一部を取り出したり、精製液に純水や溶液を追加したりしても良い。
図10に示す溶液処理方法では、分離膜モジュール1(1)、分離膜モジュール2(2)ともに通常の分離膜モジュールを使用し、分離膜モジュール2(2)が透過方向に2段となっている。また、分離膜モジュール2(2)の透過2段目の濃縮液(105)を分離膜モジュール2(2)の透過1段目の供給液に循環している。このような溶液処理方法とすることにより、分離膜モジュール2(2)の分離性能が低い場合においても、全体として高い選択分離性能を発揮させることができる。分離膜モジュール2の透過液(109)量に対する循環(110)量を増していくと、全体の溶液回収率が固定の場合、分離膜モジュール1および分離膜モジュール2の透過液(106)(109)量も増えることになるため、浸透圧低減効果と透過量の増大のバランスを鑑みて循環量を決定する必要がある。また、分離膜モジュール2の透過液(109)をすべて循環した場合、分離膜モジュール1および分離膜モジュール2の透過液(106)(109)量は著しく増加するため、好ましくない。上述のバランスを鑑み、分離膜モジュール2の透過液(109)量に対する循環(110)量は0より大きく1未満まで任意に設定することができる。また、精製液の濃度調整などのため、分離膜モジュール2の透過液の一部を取り出したり、精製液に純水などの溶液を追加したりしても良い。
(4)本出願における溶液処理方法に用いられる原液
本出願における溶液処理方法に用いられる原液は、少なくとも成分Aおよび成分Bを含む。成分Aおよび成分Bは単一の物質である必要はなく、混合物であっても構わない。分離膜1は成分Aを高除去、成分Bを低除去し、分離膜2は成分Aおよび成分Bともに高除去である必要があるが、これらの関係を満たせば成分Aおよび成分Bの種類は限定されない。
本出願における溶液処理方法に用いられる原液には、総成分濃度として1000mg/L以上含まれていることが好ましい。本出願の溶液処理方法では、総成分濃度として、1000mg/L以上含まれることにより、上述のように、透過液または精製液を循環することによる圧力低減効果をより強く発揮することができる。
成分Bの分離膜1と分離膜2の除去率の差が大きいほど本出願における溶液処理方法の成分Aと成分Bの選択分離効果が高くなるため、成分Aとしては各種イオン、成分Bとしては低分子の中性分子であることが好ましい。その他の例としては、成分Aとして多価のイオン性物質、成分Bとして1価のイオン性物質、成分Aとして高分子の中性分子、成分Bとして低分子の中性分子などが考えられる。
成分Aとして各種イオン、成分Bとして、低分子の中性分子とした場合、分離膜1は逆浸透膜またはナノろ過膜、分離膜2は逆浸透膜であることが好ましい。成分Aが各種イオン、成分Bが低分子の中性分子となる原液としては、例えば、医療用人工透析廃液が挙げられる。医療用人工透析廃液における成分Aは人口透析治療に用いられる各種イオン、成分Bは人工透析治療で体内から除去される物質として最も除去量の多い尿素である。本出願における溶液処理方法を人工透析廃液の再生に使用した場合、水および各種イオン類を回収し、尿素が除去されるため、膜分離処理により人工透析廃液を再生することができる。
成分Aとして多価のイオン性物質、成分Bとして1価のイオン性物質とした場合、分離膜1はナノろ過膜、分離膜2は逆浸透膜であることが好ましい。成分Aが多価のイオン、成分Bが1価のイオンとなる原液としては、例えば、塩湖水が挙げられる。本出願における溶液処理方法を塩湖水に用いれば、塩湖水を多価と1価のイオンに分離することができ、有用な金属を得るための分離操作が簡略化できる。
また、成分Aとして高分子の中性分子、成分Bとして低分子の中性分子とした場合、分離膜1はナノろ過膜、分離膜2は逆浸透膜であることが好ましい。成分Aが高分子の中性分子、成分Bが低分子の中性分子となる原液としては、例えばアルコール飲料が挙げられる。本出願における溶液処理方法をアルコール飲料に用いれば、アルコール飲料からアルコールを除去し、膜分離処理によりノンアルコール飲料を製造することができる。
(5)本出願における溶液処理方法に用いられる溶液処理装置
本出願の溶液処理方法を具現化するために、(3)で説明したような流れでラインを組み、適切な位置にバルブやポンプを配置させ、溶液処理装置を組み立てることができる。
In the solution treatment method shown in FIG. 2, a part of the purified liquid (102) in which the concentrated liquid (105) of the separation membrane module 1 and the permeate liquid (109) of the separation membrane module 2 are mixed is circulated to the undiluted solution (101). There is. When the purified liquid (102) is circulated to the undiluted solution (101), a part of the concentrated liquid (105) of the separation membrane module 1 is circulated in addition to a part of the permeated liquid (109) of the separation membrane module 2. It is synonymous with that. At this time, in addition to the above-mentioned osmotic pressure reducing effect, the removal rate of the component B in the separation membrane module 1 (1) is lowered by the circulation of the concentrated liquid, so that the amount of the permeate liquid (106) in the separation membrane module 1 is reduced. can do. If the removal rate of component B of the separation membrane module 1 (1) is relatively high and the selective separation performance of the separation membrane module 1 (1) is not sufficiently exhibited, the solution treatment method shown in FIG. 2 should be used. Is preferable. As the circulation amount of the purified liquid (102) is increased, the amount of the permeated liquids (106) and (109) of the separation membrane module 1 and the separation membrane module 2 also increases when the overall solution recovery rate is fixed. It is necessary to determine the circulation (111) amount in consideration of the balance between the osmotic pressure reducing effect and the increase in the permeation amount. In consideration of the above balance, the circulation (111) amount with respect to the total amount of the concentrated liquid (105) of the separation membrane module 1 and the permeate liquid (109) of the separation membrane module 2 can be arbitrarily set to be larger than 0 and less than 1. can.
In the solution treatment method shown in FIG. 3, the separation membrane module 1 (1) uses a normal separation membrane module, and the separation membrane module 2 (2) has a supply port and a discharge port on the permeate side as well. A separation membrane module is used to supply a part of the concentrate (105) of the separation membrane module 1 as the permeation side supply liquid (115) of the separation membrane module 2. That is, the permeate liquid (109) of the separation membrane module 2 and the concentrated liquid (105) of the separation membrane module 1 are mixed in the separation membrane module 2 (2) to obtain a purified liquid (102). Further, a part of the purified liquid (102) is circulated (111) to be mixed with the undiluted liquid (101). When the total component removal rate in the separation membrane module 1 (1) is low, the total component concentration in the supply liquid (107) of the separation membrane module 2 is high, and when the overall solution recovery rate is high, the separation membrane module Since the solution recovery rate of 2 (2) is high, the osmotic pressure difference between the concentrated liquid (108) and the permeated liquid (109) of the separation membrane module 2 may become a problem. In that case, by adopting the solution treatment method shown in FIG. 3, the osmotic pressure of the permeation side discharge liquid (109) of the separation membrane module 2 (2) increases, so that the osmotic pressure difference of the separation membrane module 2 (2) is reduced. It is possible to process at a lower pressure. Further, even when the liquid permeability of the separation membrane module 2 (2) is low, the concentrated liquid (105) of the separation membrane module 1 can be introduced as the permeation side supply liquid (115) of the separation membrane module 2 (2). Since the osmotic pressure of the permeation side discharge liquid (109) of the separation membrane module 2 makes it easier to take out the liquid from the supply liquid (107) of the separation membrane module 2, further reduction in pressure is expected. In the solution treatment method shown in FIG. 3, when the amount of purified liquid circulation (111) is increased and the solution recovery rate is fixed, the amount of osmotic liquid (106) (109) of the separation membrane module 1 and the separation membrane module 2 is increased. Therefore, it is necessary to determine the amount of purified liquid circulation (111) in consideration of the balance between the effect of reducing the osmotic pressure and the increase of the amount of permeation. In consideration of the above balance, the circulation (111) amount with respect to the total amount of the concentrated liquid (105) of the separation membrane module 1 and the permeate liquid (109) of the separation membrane module 2 can be arbitrarily set to be larger than 0 and less than 1. can.
In the solution treatment method shown in FIG. 4, the separation membrane module 1 (1) uses an OARO separation membrane element, and the separation membrane module 2 (2) uses a normal separation membrane element, and the separation membrane module 1 is supplied on the transmission side. A part of the concentrated liquid (108) or a part of the undiluted liquid (101) of the separation membrane module 2 is supplied as the liquid (114). Further, a part of the permeated liquid (109) of the separation membrane module 2 is circulated (110) to be mixed with the undiluted liquid (101). By adopting such a solution treatment method, the effect of reducing the osmotic pressure difference of the supply liquid (104) of the separation membrane module 1 by the permeation liquid circulation (110) and the solution supply to the permeate side of the separation membrane module 1 (114) Due to the effect of reducing the osmotic pressure difference between the supply liquid side and the osmotic liquid side, the osmotic pressure difference between the supply liquid (104) of the separation membrane module 1 and the osmotic liquid side solution can be remarkably reduced. The solution treatment method shown in FIG. 4 is preferably used when the osmotic pressure of the concentrated solution (105) of the separation membrane module 1 is particularly high. In the solution treatment method shown in FIG. 4, when the amount of circulation (110) of the permeate of the separation membrane module 2 is increased and the solution recovery rate is fixed, the permeate of the separation membrane module 1 and the separation membrane module 2 (106). ) (109) will also increase, so it is necessary to determine the amount of circulation (110) in consideration of the balance between the effect of reducing the osmotic pressure and the increase in the amount of permeation. Further, when all the permeates (109) of the separation membrane module 2 are circulated, the amounts of the permeate liquids (106) and (109) of the separation membrane module 1 and the separation membrane module 2 are significantly increased, which is not preferable. In view of the above balance, the circulation (110) amount with respect to the amount of the permeated liquid (109) of the separation membrane module 2 can be arbitrarily set to be larger than 0 and less than 1. Further, the amount of circulation (113) to the permeation side of the separation membrane module 1 and the amount of undiluted solution supply (112) to the permeate side of the separation membrane module 1 with respect to the amount of the concentrate (108) of the separation membrane module 2 are increased. Then, the supply pressure of the separation membrane module 2 (2) increases. Therefore, in consideration of the balance between the supply pressures of the separation membrane module 1 (1) and the separation membrane module 2 (2), the circulation of the separation membrane module 1 to the permeate side with respect to the amount of the concentrate (108) of the separation membrane module 2 ( 113) The amount and the amount of the undiluted solution (112) supplied to the permeate side of the separation membrane 1 can be arbitrarily set from 0 or more and less than 1. Further, in order to adjust the concentration of the purified liquid, a part of the permeated liquid of the separation membrane module 2 may be taken out, or pure water or a solution may be added to the purified liquid.
The solution treatment method shown in FIG. 5 is a purified liquid (102) obtained by mixing the permeate liquid (109) of the separation membrane module 2 and the concentrated liquid (105) of the separation membrane module 1 with respect to the solution treatment method shown in FIG. The difference is that a part is circulated. By adopting such a solution treatment method, the removal rate of the component B can be made relatively low even when the selective separation performance of the separation membrane module 1 is not sufficiently exhibited as in the solution treatment method shown in FIG. And the selective separation performance can be improved. In the solution treatment method shown in FIG. 5, when the amount of the purified liquid circulation (111) is increased and the overall solution recovery rate is fixed, the osmotic liquids (106) (109) of the separation membrane module 1 and the separation membrane module 2 are fixed. ) Will also increase, so it is necessary to determine the amount of circulation (111) in consideration of the balance between the effect of reducing the osmotic pressure and the increase in the amount of permeation. In consideration of the above balance, the amount of circulation (111) with respect to the total amount of the concentrated liquid (105) of the separation membrane module 1 and the permeate liquid (109) of the separation membrane module 2 shall be arbitrarily set to be larger than 0 and less than 1. Can be done. Further, increasing the amount of the permeation side circulation (113) of the separation membrane module 1 and the amount of the undiluted solution supply (112) to the permeation side of the separation membrane module 1 with respect to the amount of the concentrate (108) of the separation membrane module 2 is a solution. When the recovery rate is fixed, the supply pressure of the separation film module 2 also increases. Therefore, in consideration of the balance between the supply pressures of the separation membrane module 1 and the separation membrane module 2, the amount of circulation (113) to the permeation side of the separation membrane 1 and the permeation of the separation membrane 1 with respect to the amount of the concentrate (108) of the separation membrane module 2. The amount of the undiluted solution (112) supplied to the side can be arbitrarily set from 0 to 1.
In the solution treatment method shown in FIG. 6, both the separation membrane module 1 (1) and the separation membrane module 2 (2) are OARO separation membrane modules. A part of the concentrated solution (108) and / or a part of the undiluted solution (101) of the separation membrane module 2 is supplied to the permeation side supply liquid (114) of the separation membrane module 1. Further, the concentrated liquid (105) of the separation membrane module 1 is supplied to the permeation side supply liquid (115) of the separation membrane module 2. That is, the permeate of the separation membrane module 2 and the concentrate (105) of the separation membrane module 1 are mixed in the OARO separation membrane module of the separation membrane module 2 (2) to obtain a purified liquid. By adopting such a solution treatment method, both the separation membrane module 1 (1) and the separation membrane module 2 (2) can reduce the osmotic pressure difference between the supply liquid side and the permeate liquid side, so that the pressure is lower. You can drive. Further, a part of the purified liquid (102) is circulated (111) to be mixed with the undiluted liquid. In the solution treatment method shown in FIG. 6, when the amount of circulation (111) of the purified liquid is increased, the amount of permeation (106) (109) of the separation membrane module 1 and the separation membrane module 2 also increases when the solution recovery rate is fixed. Since the amount will increase, it is necessary to determine the amount of circulation (111) in consideration of the balance between the effect of reducing the osmotic pressure and the increase of the amount of permeation. In consideration of the above balance, the circulation (111) amount with respect to the total amount of the concentrated liquid (105) of the separation membrane module 1 and the permeation side discharge liquid (109) of the separation membrane module 2 is arbitrarily set to be larger than 0 and less than 1. be able to. Further, when the amount of circulation (113) to the permeation side of the separation membrane module 1 and the amount of undiluted solution supply (112) to the permeation side of the separation membrane module 1 are increased with respect to the amount of the concentrate (108) of the separation membrane module 2, respectively. When the solution recovery rate is fixed, the supply pressure of the separation membrane module 2 (2) also increases. Therefore, in consideration of the balance between the supply pressures of the separation membrane module 1 (1) and the separation membrane module 2 (2), the circulation (113) of the separation membrane module 1 to the permeation side with respect to the amount of the concentrate (108) of the separation membrane module 2. The amount and the amount of the undiluted solution (112) supplied to the permeation side of the separation membrane module 1 can be arbitrarily set from 0 to 1.
In the solution treatment method shown in FIG. 7, a normal separation membrane module is used for both the separation membrane module 1 (1) and the separation membrane module 2 (2), and the separation membrane module 1 (1) has two stages on the transmission side. It has become. Further, the concentrated solution (105) in the second stage of the separation membrane module 1 (1) is circulated to the undiluted solution (101), and a part of the permeated solution (109) of the separation membrane module 2 is circulated to the undiluted solution (101). There is. As described above, when the separation membrane module 1 has multiple stages in the permeate direction, it is preferable to circulate the concentrated liquid at least in the final stage of the separation membrane module 1 to the undiluted solution. By adopting such a solution treatment method, even when the selective separation performance of the separation membrane module 1 (1) is low as compared with the solution treatment method of FIG. 1, high selective separation performance can be exhibited as a whole. .. When the amount of circulation (110) with respect to the amount of permeate (109) of the separation membrane module 2 is increased and the overall solution recovery rate is fixed, the permeation (106) (109) of the separation membrane module 1 and the separation membrane module 2 Since the amount will also increase, it is necessary to determine the circulation (110) amount in consideration of the balance between the osmotic pressure reducing effect and the increase in the osmotic amount. Further, when all the permeates (109) of the separation membrane module 2 are circulated (110), the amounts of the permeate liquids (106) and (109) of the separation membrane module 1 and the separation membrane module 2 are significantly increased, which is not preferable. In view of the above balance, the circulation amount of the separation membrane module 2 with respect to the amount of the permeated liquid (109) can be arbitrarily set to be larger than 0 and less than 1. Further, in order to adjust the concentration of the purified liquid, a part of the permeated liquid of the separation membrane module 2 may be taken out, or pure water or a solution may be added to the purified liquid.
In the solution treatment method shown in FIG. 8, a normal separation membrane module is used for both the separation membrane module 1 (1) and the separation membrane module 2 (2), and the separation membrane module 1 (1) has two stages in the concentration direction. A booster pump is placed between the first and second stages. Further, a part of the permeated liquid (109) of the separation membrane module 2 is circulated to the undiluted liquid (101). By adopting such a solution treatment method, the recovery rate in the separation membrane module 1 (1) is high, the balance of the effective pressure at the supply side inlet and the outlet of the separation membrane module 1 (1) is deteriorated, and the amount of permeated liquid is deteriorated. Even when the balance is deteriorated, the supply pressure of the separation membrane module 1 (1) can be increased to two stages, so that the solution can be processed more stably by the separation membrane module 1 (1). When the amount of circulation (110) with respect to the amount of the permeate (109) of the separation membrane module 2 is increased and the total solution recovery rate is fixed, the permeate (106) (106) of the separation membrane module 1 and the separation membrane module 2 Since the amount of 109) also increases, it is necessary to determine the circulation amount in consideration of the balance between the effect of reducing the osmotic pressure and the increase of the amount of permeation. Further, when all the permeates (109) of the separation membrane module 2 are circulated, the amounts of the permeate liquids (106) and (109) of the separation membrane module 1 and the separation membrane module 2 are significantly increased, which is not preferable. In view of the above balance, the circulation (110) amount with respect to the amount of the permeated liquid (109) of the separation membrane module 2 can be arbitrarily set to be larger than 0 and less than 1. Further, in order to adjust the concentration of the purified liquid, a part of the permeated liquid of the separation membrane module 2 may be taken out, or a solution such as pure water may be added to the purified liquid.
In the solution treatment method shown in FIG. 9, a normal separation membrane module is used for both the separation membrane module 1 (1) and the separation membrane module 2 (2), and the separation membrane module 1 (1) has two stages in the permeation direction and permeation 1 There are two stages in the concentration direction as well. Further, a booster pump is arranged between the first stage of concentration and the second stage of concentration of the first stage of transmission of the separation membrane module 1 (1). Further, the concentrated solution (105) in the second stage of permeation of the separation membrane module 1 is circulated to the undiluted solution (101), and a part of the permeated solution (109) of the separation membrane module 2 is circulated to the undiluted solution (101). There is. By adopting such a solution treatment method, the permeation balance of the separation membrane module 1 (1) is improved as in the solution treatment method of FIG. 8, and further, the separation membrane module 1 (similar to the solution treatment method of FIG. 7) Even when the selective separation performance of 1) is low, high selective separation performance can be exhibited as a whole. When the circulation amount (110) with respect to the amount of the osmotic liquid (109) of the separation membrane module 2 is increased and the total solution recovery rate is fixed, the osmotic liquid (106) (109) of the separation membrane module 1 and the separation membrane module 2 ) Since the amount will also increase, it is necessary to determine the circulation amount in consideration of the balance between the effect of reducing the osmotic pressure and the increase in the amount of permeation. Further, when all the permeates (109) of the separation membrane module 2 are circulated, the amounts of the permeate liquids (106) and (109) of the separation membrane module 1 and the separation membrane module 2 are significantly increased, which is not preferable. In view of the above balance, the circulation (110) amount with respect to the permeate liquid (109) amount of the separation membrane module 2 can be arbitrarily set to be larger than 0 and less than 1. Further, in order to adjust the concentration of the purified liquid, a part of the permeated liquid of the separation membrane module 2 may be taken out, or pure water or a solution may be added to the purified liquid.
In the solution treatment method shown in FIG. 10, a normal separation membrane module is used for both the separation membrane module 1 (1) and the separation membrane module 2 (2), and the separation membrane module 2 (2) has two stages in the transmission direction. There is. Further, the concentrated liquid (105) in the second permeation stage of the separation membrane module 2 (2) is circulated to the supply liquid in the first permeation stage of the separation membrane module 2 (2). By adopting such a solution treatment method, even when the separation performance of the separation membrane module 2 (2) is low, high selective separation performance can be exhibited as a whole. When the amount of circulation (110) with respect to the amount of permeate (109) of the separation membrane module 2 is increased and the overall solution recovery rate is fixed, the permeate (106) (109) of the separation membrane module 1 and the separation membrane module 2 is increased. ) Since the amount will also increase, it is necessary to determine the circulation amount in consideration of the balance between the effect of reducing the osmotic pressure and the increase in the amount of permeation. Further, when all the permeates (109) of the separation membrane module 2 are circulated, the amounts of the permeate liquids (106) and (109) of the separation membrane module 1 and the separation membrane module 2 are significantly increased, which is not preferable. In view of the above balance, the circulation (110) amount with respect to the permeate liquid (109) amount of the separation membrane module 2 can be arbitrarily set to be larger than 0 and less than 1. Further, in order to adjust the concentration of the purified liquid, a part of the permeated liquid of the separation membrane module 2 may be taken out, or a solution such as pure water may be added to the purified liquid.
(4) Stock solution used in the solution treatment method in the present application The stock solution used in the solution treatment method in the present application contains at least component A and component B. Ingredient A and B do not have to be a single substance and may be a mixture. The separation membrane 1 needs to have high removal of component A and low removal of component B, and the separation membrane 2 needs to have high removal of both component A and component B. If these relationships are satisfied, the types of component A and component B need to be high. Not limited.
The undiluted solution used in the solution treatment method in the present application preferably contains 1000 mg / L or more as the total component concentration. In the solution treatment method of the present application, when the total component concentration is 1000 mg / L or more, the pressure reducing effect by circulating the permeate or the purified liquid can be more strongly exhibited as described above.
The larger the difference in the removal rate between the separation membrane 1 and the separation membrane 2 of the component B, the higher the selective separation effect between the component A and the component B in the solution treatment method in the present application. It is preferably a small neutral molecule. As other examples, a polyvalent ionic substance as the component A, a monovalent ionic substance as the component B, a high molecular weight neutral molecule as the component A, a small molecule neutral molecule as the component B, and the like can be considered.
When various ions are used as the component A and low-molecular neutral molecules are used as the component B, it is preferable that the separation membrane 1 is a reverse osmosis membrane or a nanofiltration membrane and the separation membrane 2 is a reverse osmosis membrane. Examples of the undiluted solution in which the component A is various ions and the component B is a small molecule neutral molecule include medical artificial dialysis waste liquid. The component A in the medical artificial dialysis waste liquid is various ions used in the artificial dialysis treatment, and the component B is urea, which is the most removed substance to be removed from the body by the artificial dialysis treatment. When the solution treatment method in the present application is used for the regeneration of the artificial dialysis waste liquid, water and various ions are recovered and urea is removed, so that the artificial dialysis waste liquid can be regenerated by the membrane separation treatment.
When the component A is a polyvalent ionic substance and the component B is a monovalent ionic substance, it is preferable that the separation membrane 1 is a nanofiltration membrane and the separation membrane 2 is a reverse osmosis membrane. Examples of the undiluted solution in which the component A is a polyvalent ion and the component B is a monovalent ion include salt lake water. If the solution treatment method in the present application is used for salt lake water, the salt lake water can be separated into polyvalent and monovalent ions, and the separation operation for obtaining a useful metal can be simplified.
When the component A is a high molecular weight neutral molecule and the component B is a low molecular weight neutral molecule, it is preferable that the separation membrane 1 is a nanofiltration membrane and the separation membrane 2 is a reverse osmosis membrane. Examples of the undiluted solution in which the component A is a high molecular weight neutral molecule and the component B is a low molecular weight neutral molecule include alcoholic beverages. If the solution treatment method in the present application is used for an alcoholic beverage, alcohol can be removed from the alcoholic beverage and a non-alcoholic beverage can be produced by a membrane separation treatment.
(5) Solution treatment device used for the solution treatment method in the present application In order to embody the solution treatment method in the present application, a line is assembled in the flow as described in (3), and valves and pumps are installed at appropriate positions. It can be placed and the solution processing device assembled.

以下に実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.

(分離膜性能の測定)
pH7、1000mg/Lの塩化ナトリウム(NaCl)の原液に対して、膜透過フラックスが0.3m/dとなる場合のNaClの除去率を分離膜性能と定義する。
(Measurement of separation membrane performance)
Separation membrane performance is defined as the removal rate of NaCl when the membrane permeation flux is 0.3 m / d with respect to a stock solution of sodium chloride (NaCl) having a pH of 7 and 1000 mg / L.

(微多孔性支持膜の作製)
ポリエステル不織布(通気量2.0cc/cm2/sec)上にポリスルホン(PSf)の16.0重量%DMF(dimethylformamide)溶液を室温(25℃)にて200μmの厚みでキャストし、ただちに純水中に浸漬して5分間放置することによって支持膜を作製した。
(海水淡水化RO膜Aの作製)
m-フェニレンジアミンの6.0重量%水溶液を作製した。上述の操作で得られた支持膜を上記水溶液中に2分間浸漬し、該支持膜を垂直方向にゆっくりと引き上げ、エアーノズルから窒素を吹き付け支持膜表面から余分な水溶液を取り除いた後、45℃に保たれたブース内でトリメシン酸クロリド(TMC)0.17重量%を含む45℃のデカン溶液を表面が完全に濡れるように塗布して10秒間静置した。140℃のオーブンに入れ、膜の裏面側に設けたノズルから100℃の水蒸気を供給しつつ、30秒間加熱して海水淡水化用RO膜を得た。作製した海水淡水化用RO膜Aの分離膜性能は99.3%であった。
(海水淡水化RO膜Bの作製)
m-フェニレンジアミンの5.5重量%水溶液を作製した。上述の操作で得られた支持膜を上記水溶液中に2分間浸漬し、該支持膜を垂直方向にゆっくりと引き上げ、エアーノズルから窒素を吹き付け支持膜表面から余分な水溶液を取り除いた後、45℃に保たれたブース内でトリメシン酸クロリド(TMC)0.15重量%を含む45℃のデカン溶液を表面が完全に濡れるように塗布して10秒間静置した。140℃のオーブンに入れ、膜の裏面側に設けたノズルから100℃の水蒸気を供給しつつ、30秒間加熱して海水淡水化用RO膜Bを得た。作製した海水淡水化用RO膜の分離膜性能は99.0%であった。
(海水淡水化RO膜Cの作製)
m-フェニレンジアミンの4.0重量%水溶液を作製した。上述の操作で得られた支持膜を上記水溶液中に2分間浸漬し、該支持膜を垂直方向にゆっくりと引き上げ、エアーノズルから窒素を吹き付け支持膜表面から余分な水溶液を取り除いた後、45℃に保たれたブース内でトリメシン酸クロリド(TMC)0.14重量%を含む45℃のデカン溶液を表面が完全に濡れるように塗布して10秒間静置した。140℃のオーブンに入れ、膜の裏面側に設けたノズルから100℃の水蒸気を供給しつつ、30秒間加熱して海水淡水化用RO膜を得た。作製した海水淡水化用RO膜Cの分離膜性能は98.8%であった。
(Preparation of microporous support membrane)
A 16.0 wt% DMF (dimethylformamide) solution of polysulfone (PSf) was cast on a polyester non-woven fabric (ventilation volume 2.0 cc / cm2 / sec) at room temperature (25 ° C.) to a thickness of 200 μm and immediately placed in pure water. A support film was prepared by immersing and leaving it for 5 minutes.
(Preparation of seawater desalination RO membrane A)
A 6.0 wt% aqueous solution of m-phenylenediamine was prepared. The support film obtained by the above operation is immersed in the above aqueous solution for 2 minutes, the support film is slowly pulled up in the vertical direction, nitrogen is blown from an air nozzle to remove excess aqueous solution from the support film surface, and then 45 ° C. A decan solution at 45 ° C. containing 0.17% by weight of trimesic acid chloride (TMC) was applied so that the surface was completely wet, and the mixture was allowed to stand for 10 seconds. The RO membrane for seawater desalination was obtained by placing it in an oven at 140 ° C. and heating it for 30 seconds while supplying steam at 100 ° C. from a nozzle provided on the back surface side of the membrane. The separation membrane performance of the prepared RO membrane A for desalination was 99.3%.
(Preparation of seawater desalination RO membrane B)
A 5.5% by weight aqueous solution of m-phenylenediamine was prepared. The support film obtained by the above operation is immersed in the above aqueous solution for 2 minutes, the support film is slowly pulled up in the vertical direction, nitrogen is blown from an air nozzle to remove excess aqueous solution from the support film surface, and then 45 ° C. A decan solution at 45 ° C. containing 0.15% by weight of trimesic acid chloride (TMC) was applied in a booth maintained at 45 ° C. so that the surface was completely wet, and the mixture was allowed to stand for 10 seconds. The RO membrane B for seawater desalination was obtained by placing it in an oven at 140 ° C. and heating it for 30 seconds while supplying steam at 100 ° C. from a nozzle provided on the back surface side of the membrane. The separation membrane performance of the prepared RO membrane for desalination was 99.0%.
(Preparation of seawater desalination RO membrane C)
A 4.0 wt% aqueous solution of m-phenylenediamine was prepared. The support film obtained by the above operation is immersed in the above aqueous solution for 2 minutes, the support film is slowly pulled up in the vertical direction, nitrogen is blown from an air nozzle to remove excess aqueous solution from the support film surface, and then 45 ° C. A decan solution at 45 ° C. containing 0.14% by weight of trimesic acid chloride (TMC) was applied in a booth maintained at 45 ° C. so that the surface was completely wet, and the mixture was allowed to stand for 10 seconds. The RO membrane for seawater desalination was obtained by placing it in an oven at 140 ° C. and heating it for 30 seconds while supplying steam at 100 ° C. from a nozzle provided on the back surface side of the membrane. The separation membrane performance of the prepared RO membrane C for desalination was 98.8%.

(低圧RO膜Aの作製)
上述の操作で得られた支持膜表面に、m-フェニレンジアミンの1.8重量%、ε-カプロラクタム4.5重量%水溶液を塗布し、エアーノズルから窒素を吹き付け支持膜表面から余分な水溶液を取り除いた後、トリメシン酸クロリド0.06重量%を含む25℃のn-デカン溶液を表面が完全に濡れるように塗布した。その後、膜から余分な溶液をエアブローで除去し、80℃の熱水で洗浄して、エアブローで液切りして低圧RO膜を得た。作製した低圧RO膜の分離膜性能は98.0%であった。
(Preparation of low-pressure RO membrane A)
A 1.8% by weight of m-phenylenediamine and a 4.5% by weight aqueous solution of ε-caprolactum are applied to the surface of the support film obtained by the above operation, and nitrogen is sprayed from an air nozzle to remove an excess aqueous solution from the surface of the support film. After removal, a 25 ° C. n-decane solution containing 0.06 wt% trimesic acid chloride was applied so that the surface was completely wet. Then, the excess solution was removed from the membrane with an air blow, washed with hot water at 80 ° C., and drained with an air blow to obtain a low-pressure RO membrane. The separation membrane performance of the prepared low-pressure RO membrane was 98.0%.

(低圧RO膜Bの作製)
上述の操作で得られた支持膜をm-フェニレンジアミンの3.8質量%水溶液中に2分間浸漬した後、垂直方向にゆっくりと引き上げ、エアーノズルから窒素を吹き付けて多孔性支持層表面から余分な水溶液を取り除いた後、トリメシン酸クロリドの0.175質量%n-デカン溶液を表面が完全に濡れるように塗布して1分間静置し、さらに1分間垂直に保持して液切りした。その後、90℃の熱水で2分間洗浄して、分離膜を得た。作製した低圧RO膜Bの分離膜性能は98.2%であった。
(低圧RO膜Cの作製)
m-フェニレンジアミンの2.0重量%水溶液を作製した。上述の操作で得られた支持膜を上記水溶液中に2分間浸漬し、該支持膜を垂直方向にゆっくりと引き上げ、エアーノズルから窒素を吹き付け支持膜表面から余分な水溶液を取り除いた後、25℃に保たれたブース内でトリメシン酸クロリド(TMC)0.1重量%を含む25℃のデカン溶液を表面が完全に濡れるように塗布して10秒間静置した。液切りしたのちに、送風機を使って30秒間風乾し、低圧RO膜Cを得た。作製した低圧RO膜Cの分離膜性能は98.4%であった。
(Preparation of low-pressure RO membrane B)
The support film obtained by the above operation is immersed in a 3.8 mass% aqueous solution of m-phenylenediamine for 2 minutes, then slowly pulled up in the vertical direction, and nitrogen is blown from the air nozzle to remove excess from the surface of the porous support layer. After removing the aqueous solution, a 0.175 mass% n-decane solution of trimesic acid chloride was applied so that the surface was completely wet, allowed to stand for 1 minute, and held vertically for another 1 minute to drain. Then, it was washed with hot water of 90 degreeC for 2 minutes, and the separation membrane was obtained. The separation membrane performance of the prepared low-pressure RO membrane B was 98.2%.
(Preparation of low-pressure RO membrane C)
A 2.0 wt% aqueous solution of m-phenylenediamine was prepared. The support film obtained by the above operation is immersed in the above aqueous solution for 2 minutes, the support film is slowly pulled up in the vertical direction, nitrogen is blown from an air nozzle to remove excess aqueous solution from the support film surface, and then 25 ° C. A decane solution at 25 ° C. containing 0.1% by weight of trimesic acid chloride (TMC) was applied in a booth maintained at 25 ° C. so that the surface was completely wet, and the mixture was allowed to stand for 10 seconds. After draining the liquid, it was air-dried for 30 seconds using a blower to obtain a low-pressure RO membrane C. The separation membrane performance of the prepared low-pressure RO membrane C was 98.4%.

(ナノろ過膜Aの作製)
上述の操作で得られた支持膜を、多官能アミン全体1.5重量%で、メタフェニレンジアミン/1,3,5-トリアミノベンゼン=70/30モル比となるように調製した多官能アミンおよびε-カプロラクタムの3.0重量%を含む水溶液中に2分間浸漬し、該支持膜を垂直方向にゆっくりと引き上げ、エアーノズルから窒素を吹き付け支持膜表面から余分な水溶液を取り除いた後、トリメシン酸クロリド0.05重量%を含むn-デカン溶液を表面が完全に濡れるように塗布して1分間静置した。次に膜から余分な溶液を除去するために、膜を2分間垂直に把持して液切りを行って、送風機を使い20℃の気体を吹き付けて乾燥させた。このようにして得られた分離膜を、0.7重量%の亜硝酸ナトリウム及び0.1重量%の硫酸を含む水溶液により室温で2分間処理した後、直ちに水で洗い、室温にて保存しナノろ過膜Aを得た。ナノろ過膜Aの分離膜性能は94.2%であった。
(Preparation of nanofiltration membrane A)
The support film obtained by the above operation was prepared so that the total amount of the polyfunctional amine was 1.5% by weight and the metaphenylenediline / 1,3,5-triaminobenzene = 70/30 molar ratio. And soak in an aqueous solution containing 3.0% by weight of ε-caprolactum for 2 minutes, slowly pull up the support film vertically, blow nitrogen from an air nozzle to remove excess aqueous solution from the support film surface, and then trimesin. An n-decane solution containing 0.05% by weight of acid chloride was applied so that the surface was completely wet, and the solution was allowed to stand for 1 minute. Next, in order to remove the excess solution from the membrane, the membrane was held vertically for 2 minutes to drain the liquid, and a blower was used to blow a gas at 20 ° C. to dry the membrane. The separation membrane thus obtained is treated with an aqueous solution containing 0.7% by weight of sodium nitrite and 0.1% by weight of sulfuric acid at room temperature for 2 minutes, immediately washed with water and stored at room temperature. A nanofiltration membrane A was obtained. The separation membrane performance of the nanofiltration membrane A was 94.2%.

(ナノろ過膜Bの作製)
上述の操作で得られた支持膜を、ピペラジン0.25重量%を含む水溶液中に2分間浸漬し、該支持膜を垂直方向にゆっくりと引き上げ、エアーノズルから窒素を吹き付け支持膜表面から余分な水溶液を取り除いた後、トリメシン酸クロリド0.17重量%を含むn-デカン溶液を、160cm3/m2の割合で支持膜表面が完全に濡れるように塗布して1分間静置した。次に膜から余分な溶液を除去するために、膜を1分間垂直に把持して液切りを行って、送風機を使い20℃の気体を吹き付けて乾燥させた。乾燥後、直ちに水で洗い、室温にて保存しナノろ過膜Bを得た。ナノろ過膜Bの分離膜性能は40.2%であった。
(Preparation of nanofiltration membrane B)
The support film obtained by the above operation is immersed in an aqueous solution containing 0.25% by weight of piperazine for 2 minutes, the support film is slowly pulled up in the vertical direction, nitrogen is blown from an air nozzle, and excess from the support film surface. After removing the aqueous solution, an n-decane solution containing 0.17% by weight of trimesic acid chloride was applied at a ratio of 160 cm3 / m2 so that the surface of the support membrane was completely wet, and allowed to stand for 1 minute. Next, in order to remove the excess solution from the membrane, the membrane was held vertically for 1 minute to drain the liquid, and a blower was used to blow a gas at 20 ° C. to dry the membrane. Immediately after drying, it was washed with water and stored at room temperature to obtain a nanofiltration membrane B. The separation membrane performance of the nanofiltration membrane B was 40.2%.

(I型分離膜エレメントの作製)
分離膜を6枚裁断し、内周端部が折り目となるように供給側を内側にして折りたたみ、ネット(厚み:0.8mm、ピッチ:5mm×5mm、繊維径:380μm、投影面積比:0.15)を供給側流路材として、ネット構成糸の傾斜角度が巻回方向に対して45°となるように配置した。透過側流路材として、厚みが均一であるトリコット(厚み:280μm)を用意し6枚分裁断した。このようにして、長さ850mm、幅930mmまたは幅465mmの分離膜体を6枚作製した。透過側流路材を分離膜の透過側の面に配置して、内周端部が開口するように透過側流路に接着剤を塗布し、ABS(アクリロニトリル-ブタジエン-スチレン)製の有孔中心管(長さ:1020mmまたは510mm、径:30mm、孔数40個または20個×直線状1列)にスパイラル状に巻囲した。巻囲後、外周にフィルムを巻き付け、テープで固定した後に、エッジカット、端板の取り付け、フィラメントワインディングを行うことで、有効膜面積が8mまたは4mのI型分離膜エレメントを作製した。作成した分離膜エレメントにブラインシールを取り付け、3本直列にして圧力容器に入れ分離膜モジュールを得た。
(L型および逆L型分離膜エレメントの作製)
分離膜を6枚裁断し、内周端部が折り目となるように供給側を内側にして折りたたみ、ネット(厚み:0.8mm、ピッチ:5mm×5mm、繊維径:380μm、投影面積比:0.15)を供給側流路材として、ネット構成糸の傾斜角度が巻回方向に対して45°となるように配置した。透過側流路材として、厚みが均一であるトリコット(厚み:280μm)を用意し6枚分裁断した。このようにして、長さ850mm、幅310mm分離膜体を6枚作製した。なお、分離膜体の有効中心管長手方向の長さWと、有孔中心管長手方向と垂直の方向における長さLの比率L/Wは、2.74である。透過側流路材を分離膜の透過側の面に配置して、内周端部が開口するように透過側流路に接着剤を塗布し、ABS(アクリロニトリル-ブタジエン-スチレン)製の有孔中心管(長さ:340mm、径:30mm、孔数12個×直線状1列)にスパイラル状に巻囲した。巻囲後、外周に孔付きのフィルムを巻き付けテープで固定した後に、エッジカットを行った。その後、有孔中心管の長手方向の片端面に接着剤を塗布し封止を行った。さらに、封止した側と逆の端面は内周部の20%が開口するように接着剤を塗布し、有効膜面積2.67mのL型および逆L型分離膜エレメントを作製した。なお、L型および逆L型分離膜エレメントは、上述のL/Wが2.74であるため、長さLが、有効膜面積が8mのI型分離膜エレメントの1/3となっており、それに伴い有効膜面積も8mのI型分離膜エレメントの1/3となっている。分離膜エレメントの外周部より供給液を供給する場合はL型分離膜エレメント、分離膜エレメントの片端面より供給液を供給する場合は逆L型分離膜エレメントとなる。作成した分離膜エレメントにブラインシールを取り付け、圧力容器に入れ分離膜モジュールを得た。
(Uターン型分離膜エレメントの作製)
分離膜を6枚裁断し、内周端部が折り目となるように供給側を内側にして折りたたみ、ネット(厚み:0.8mm、ピッチ:5mm×5mm、繊維径:380μm、投影面積比:0.15)を供給側流路材として、ネット構成糸の傾斜角度が巻回方向に対して45°となるように配置した。これらの供給側流路材を挟んだ分離膜の内、4枚の分離膜の供給側流路材の外周端部を図19のようにI型分離膜体となるように接着し、さらに2枚は図20のように逆L型分離膜体となるように有孔中心管の長手方向の両端面を接着した。なお、片端面の開口部の分離膜体の長さに対する開口率は20%とした。透過側流路材として、厚みが均一であるトリコット(厚み:280μm)を用意し6枚分裁断した。このようにして、長さ850mm、幅310mmの分離膜体を6枚作製した。なお、分離膜体の有効中心管長手方向の長さWと、有孔中心管長手方向と垂直の方向における長さLの比率L/Wは、2.74である。透過側流路材を分離膜の透過側の面に配置して、内周端部が開口するように透過側流路に接着剤を塗布し、ABS(アクリロニトリル-ブタジエン-スチレン)製の有孔中心管(長さ:340mm、径:30mm、孔数12個×直線状1列)にスパイラル状に巻囲した。巻囲後、外周に孔付きのフィルムを巻き付けテープで固定した後に、エッジカットを行い、有孔中心管の長手方向の両端面の外周付近の接着剤を塗布した。その後、供給液流れをUターンさせるUターンキャップを逆L型分離膜体の開口部のある側の端面に取り付け、有効膜面積2.67mのUターン型分離膜エレメントを作製した。なお、Uターン型分離膜エレメントは、上述のL/Wが2.74であるため、長さLが、有効膜面積が8mのI型分離膜エレメントの1/3となっており、それに伴い有効膜面積も8mのI型分離膜エレメントの1/3となっている。作成した分離膜エレメントにブラインシールを取り付け、圧力容器に入れ分離膜モジュールを得た。
(OARO分離膜エレメントの作製)
分離膜を6枚裁断し、内周端部が折り目となるように供給側を内側にして折りたたみ、ネット(厚み:0.8mm、ピッチ:5mm×5mm、繊維径:380μm、投影面積比:0.15)を供給側流路材として、ネット構成糸の傾斜角度が巻回方向に対して45°となるように配置した。このようにして、長さ850mm、幅930mmの分離膜体を6枚作製した。さらに分離膜の供給側の面に図12(a)に示すような封止部となるように接着剤を塗布した。透過側流路材として、厚みが均一であるトリコット(厚み:600μm)を用意し6枚分裁断した。透過側流路材を分離膜の透過側の面に配置して、図12(b)に示すように透過側流路に接着剤を塗布し、ABS(アクリロニトリル-ブタジエン-スチレン)製の有孔中心管(長さ:1020mm、径:30mm、孔数40個×直線状1列)にスパイラル状に巻囲した。巻囲後、外周にフィルムを巻き付け、テープで固定した後に、エッジカット、端板の取り付け、フィラメントワインディングを行うことで、OARO型分離膜エレメントを作製した。作成した分離膜エレメントにブラインシールを取り付け、圧力容器に入れ分離膜モジュールを得た。
(Manufacturing of type I separation membrane element)
Cut 6 separation films, fold them with the supply side inside so that the inner peripheral end becomes a crease, and net (thickness: 0.8 mm, pitch: 5 mm x 5 mm, fiber diameter: 380 μm, projected area ratio: 0. .15) was used as the flow path material on the supply side, and the net constituent yarns were arranged so that the inclination angle was 45 ° with respect to the winding direction. As a permeation side flow path material, a tricot (thickness: 280 μm) having a uniform thickness was prepared and cut into 6 pieces. In this way, six separation membranes having a length of 850 mm, a width of 930 mm, or a width of 465 mm were produced. The permeation side flow path material is placed on the permeation side surface of the separation film, an adhesive is applied to the permeation side flow path so that the inner peripheral end is opened, and the holes are made of ABS (acrylonitrile-butadiene-styrene). It was spirally surrounded by a central tube (length: 1020 mm or 510 mm, diameter: 30 mm, number of holes 40 or 20 × linear 1 row). After winding, a film was wrapped around the outer circumference, fixed with tape, and then edge cut, end plate attachment, and filament winding were performed to prepare an I-type separation membrane element having an effective membrane area of 8 m 2 or 4 m 2 . A brine seal was attached to the prepared separation membrane element, and three pieces were placed in series in a pressure vessel to obtain a separation membrane module.
(Manufacturing of L-type and inverted L-type separation membrane elements)
Cut 6 separation films, fold them with the supply side inside so that the inner peripheral end becomes a crease, and net (thickness: 0.8 mm, pitch: 5 mm x 5 mm, fiber diameter: 380 μm, projected area ratio: 0. .15) was used as the flow path material on the supply side, and the net constituent yarns were arranged so that the inclination angle was 45 ° with respect to the winding direction. As a permeation side flow path material, a tricot (thickness: 280 μm) having a uniform thickness was prepared and cut into 6 pieces. In this way, six separation membranes having a length of 850 mm and a width of 310 mm were produced. The ratio L / W of the length W of the separation membrane body in the longitudinal direction of the effective central tube and the length L in the direction perpendicular to the longitudinal direction of the perforated central tube is 2.74. The permeation side flow path material is placed on the permeation side surface of the separation film, an adhesive is applied to the permeation side flow path so that the inner peripheral end is opened, and the holes are made of ABS (acrylonitrile-butadiene-styrene). It was spirally surrounded by a central tube (length: 340 mm, diameter: 30 mm, number of holes 12 x one linear row). After winding, a film with holes on the outer circumference was wrapped and fixed with tape, and then edge cutting was performed. Then, an adhesive was applied to one end surface of the perforated central canal in the longitudinal direction to seal it. Further, an adhesive was applied so that 20% of the inner peripheral portion was opened on the end face opposite to the sealed side to prepare L-type and inverted L-type separation membrane elements having an effective film area of 2.67 m 2 . Since the L / W of the L-type and inverted L-type separation membrane elements is 2.74, the length L is 1/3 of that of the I-type separation membrane element having an effective membrane area of 8 m 2 . Along with this, the effective membrane area is also 1/3 of that of the I-type separation membrane element of 8 m 2 . When the supply liquid is supplied from the outer peripheral portion of the separation membrane element, it is an L-type separation membrane element, and when the supply liquid is supplied from one end surface of the separation membrane element, it is an inverted L-type separation membrane element. A brine seal was attached to the prepared separation membrane element and placed in a pressure vessel to obtain a separation membrane module.
(Manufacturing of U-turn type separation membrane element)
Cut 6 separation films, fold them with the supply side inside so that the inner peripheral end becomes a crease, and net (thickness: 0.8 mm, pitch: 5 mm x 5 mm, fiber diameter: 380 μm, projected area ratio: 0. .15) was used as the flow path material on the supply side, and the net constituent yarns were arranged so that the inclination angle was 45 ° with respect to the winding direction. Of the separation membranes sandwiching these supply-side flow path materials, the outer peripheral ends of the supply-side flow path materials of the four separation membranes are adhered so as to form an I-type separation membrane as shown in FIG. As shown in FIG. 20, the sheets were bonded to both end faces in the longitudinal direction of the perforated central tube so as to form an inverted L-shaped separation membrane body. The aperture ratio of the opening on one end surface to the length of the separation membrane was set to 20%. As a permeation side flow path material, a tricot (thickness: 280 μm) having a uniform thickness was prepared and cut into 6 pieces. In this way, six separation membranes having a length of 850 mm and a width of 310 mm were produced. The ratio L / W of the length W of the separation membrane body in the longitudinal direction of the effective central tube and the length L in the direction perpendicular to the longitudinal direction of the perforated central tube is 2.74. The permeation side flow path material is placed on the permeation side surface of the separation film, an adhesive is applied to the permeation side flow path so that the inner peripheral end is opened, and the holes are made of ABS (acrylonitrile-butadiene-styrene). It was spirally surrounded by a central tube (length: 340 mm, diameter: 30 mm, number of holes 12 x one linear row). After winding, a film with holes was wrapped around the outer circumference and fixed with tape, then edge cut was performed, and an adhesive near the outer periphery of both end faces in the longitudinal direction of the perforated central canal was applied. Then, a U-turn cap for making a U-turn of the supply liquid flow was attached to the end face on the side with the opening of the inverted L-shaped separation membrane body to prepare a U-turn type separation membrane element having an effective membrane area of 2.67 m 2 . Since the above-mentioned L / W of the U-turn type separation membrane element is 2.74, the length L is 1/3 of that of the I type separation membrane element having an effective membrane area of 8 m 2 . As a result, the effective membrane area is also 1/3 of the 8m 2 I-type separation membrane element. A brine seal was attached to the prepared separation membrane element and placed in a pressure vessel to obtain a separation membrane module.
(Making OARO Separation Membrane Element)
Cut 6 separation films, fold them with the supply side inside so that the inner peripheral end becomes a crease, and net (thickness: 0.8 mm, pitch: 5 mm x 5 mm, fiber diameter: 380 μm, projected area ratio: 0. .15) was used as the flow path material on the supply side, and the net constituent yarns were arranged so that the inclination angle was 45 ° with respect to the winding direction. In this way, six separation membranes having a length of 850 mm and a width of 930 mm were produced. Further, an adhesive was applied to the surface of the separation film on the supply side so as to form a sealing portion as shown in FIG. 12 (a). As a flow path material on the permeation side, a tricot (thickness: 600 μm) having a uniform thickness was prepared and cut into 6 pieces. A permeation-side flow path material is placed on the permeation-side surface of the separation film, an adhesive is applied to the permeation-side flow path as shown in FIG. 12 (b), and perforations made of ABS (acrylonitrile-butadiene-styrene) are applied. It was spirally surrounded by a central tube (length: 1020 mm, diameter: 30 mm, number of holes 40 x one linear row). After winding, a film was wrapped around the outer circumference, fixed with tape, and then edge cut, end plate attachment, and filament winding were performed to prepare an OARO type separation membrane element. A brine seal was attached to the prepared separation membrane element and placed in a pressure vessel to obtain a separation membrane module.

(実施例1)
原液を人工透析廃液とした。人工透析廃液中の成分Aは塩類(約10000mg/L)、成分Bは尿素(約630mg/L)である。また、分離膜1を上述のような方法で得られた低圧RO膜Aとし、分離膜2を上述のような方法で得られた海水淡水化RO膜Aとした。分離膜1に対して、原液を用いて、標準評価条件で評価したところ、成分Aおよび成分Bの除去率はそれぞれ98.5%および20.0%であった。また、分離膜2に対しても同様に原液を用いて、標準評価条件で評価したところ、成分Aおよび成分Bの除去率はそれぞれ99.5%および94.0%であった。得られた分離膜を用いて、上記のような方法でI型分離膜エレメントを作製した。
(Example 1)
The undiluted solution was used as an artificial dialysis waste solution. The component A in the kidney dialysis waste liquid is salts (about 10,000 mg / L), and the component B is urea (about 630 mg / L). Further, the separation membrane 1 was used as a low-pressure RO membrane A obtained by the above-mentioned method, and the separation membrane 2 was used as a seawater desalinated RO membrane A obtained by the above-mentioned method. When the separation membrane 1 was evaluated using the undiluted solution under standard evaluation conditions, the removal rates of component A and component B were 98.5% and 20.0%, respectively. Further, when the separation membrane 2 was similarly evaluated using the undiluted solution under the standard evaluation conditions, the removal rates of the component A and the component B were 99.5% and 94.0%, respectively. Using the obtained separation membrane, an I-type separation membrane element was produced by the above method.

作成した分離膜エレメントに端板およびブラインシールを取り付け、圧力容器に入れ分離膜モジュール1および分離膜モジュール2を1本ずつ得た。図1のようにポンプおよびバルブを用意し、配管接続を行った。全体の溶液回収率が97%、尿素除去率が70%程度になるようにバルブを調整し、表1に示す条件で評価を行ったところ、結果は表1に示すようであった。なお、分離膜モジュール2の透過液の循環比は0.85であった。 An end plate and a brine seal were attached to the prepared separation membrane element, and the separation membrane module 1 and the separation membrane module 2 were obtained one by one in a pressure vessel. Pumps and valves were prepared as shown in FIG. 1, and piping connections were made. The valve was adjusted so that the overall solution recovery rate was 97% and the urea removal rate was about 70%, and evaluation was performed under the conditions shown in Table 1. The results were as shown in Table 1. The circulation ratio of the permeated liquid of the separation membrane module 2 was 0.85.

Figure 2022103007000002
Figure 2022103007000002

(実施例2)
原液を実施例1で使用した人工透析廃液とし、実施例1と同様の分離膜モジュールを用意した。図2のようにポンプおよびバルブを用意し、配管接続を行った。全体の溶液回収率が97%、尿素除去率が70%程度になるようにバルブを調整し、表1に示す条件で評価を行ったところ、結果は表1に示すようであった。なお、精製液の循環比は0.71であった。
(Example 2)
The undiluted solution was used as the artificial dialysis waste solution used in Example 1, and the same separation membrane module as in Example 1 was prepared. Pumps and valves were prepared as shown in FIG. 2, and piping connections were made. The valve was adjusted so that the overall solution recovery rate was 97% and the urea removal rate was about 70%, and evaluation was performed under the conditions shown in Table 1. The results were as shown in Table 1. The circulation ratio of the purified liquid was 0.71.

(実施例3)
原液を実施例1で使用した人工透析廃液とし、実施例1と同様の分離膜モジュールを用意した。図3のようにポンプおよびバルブを用意し、配管接続を行った。全体の溶液回収率が97%、尿素除去率が70%程度になるようにバルブを調整し、表1に示す条件で評価を行ったところ、結果は表1に示すようであった。なお、精製液の循環比は0.83であった。
(Example 3)
The undiluted solution was used as the artificial dialysis waste solution used in Example 1, and the same separation membrane module as in Example 1 was prepared. Pumps and valves were prepared as shown in FIG. 3, and piping connections were made. The valve was adjusted so that the overall solution recovery rate was 97% and the urea removal rate was about 70%, and evaluation was performed under the conditions shown in Table 1. The results were as shown in Table 1. The circulation ratio of the purified liquid was 0.83.

(実施例4)
原液を実施例1で使用した人工透析廃液とし、実施例1と同様の分離膜モジュールを用意した。図4のようにポンプおよびバルブを用意し、配管接続を行った。全体の溶液回収率が97%、尿素除去率が70%程度になるようにバルブを調整し、表1に示す条件で評価を行ったところ、結果は表1に示すようであった。なお、分離膜モジュール2の透過液の循環比は0.85、分離膜2の濃縮液の循環比は0.67、分離膜1の原液透過側供給比率は0であった。
(Example 4)
The undiluted solution was used as the artificial dialysis waste solution used in Example 1, and the same separation membrane module as in Example 1 was prepared. Pumps and valves were prepared as shown in FIG. 4, and piping connections were made. The valve was adjusted so that the overall solution recovery rate was 97% and the urea removal rate was about 70%, and evaluation was performed under the conditions shown in Table 1. The results were as shown in Table 1. The circulation ratio of the permeated liquid of the separation membrane module 2 was 0.85, the circulation ratio of the concentrated liquid of the separation membrane 2 was 0.67, and the supply ratio of the concentrate on the stock solution permeation side of the separation membrane 1 was 0.

(実施例5)
原液を実施例1で使用した人工透析廃液とし、実施例1と同様の分離膜モジュールを用意した。図5のようにポンプおよびバルブを用意し、配管接続を行った。全体の溶液回収率が97%、尿素除去率が70%程度になるようにバルブを調整し、表1に示す条件で評価を行ったところ、結果は表1に示すようであった。なお、精製液の循環比は0.8、分離膜2の濃縮液の循環比は0.67、分離膜1の原液透過側供給比率は0であった。
(Example 5)
The undiluted solution was used as the artificial dialysis waste solution used in Example 1, and the same separation membrane module as in Example 1 was prepared. Pumps and valves were prepared as shown in FIG. 5, and piping connections were made. The valve was adjusted so that the overall solution recovery rate was 97% and the urea removal rate was about 70%, and evaluation was performed under the conditions shown in Table 1. The results were as shown in Table 1. The circulation ratio of the purified liquid was 0.8, the circulation ratio of the concentrated liquid of the separation membrane 2 was 0.67, and the supply ratio of the separation membrane 1 on the stock solution permeation side was 0.

(実施例6)
原液を実施例1で使用した人工透析廃液とし、実施例1と同様の分離膜モジュールを用意した。図6のようにポンプおよびバルブを用意し、配管接続を行った。全体の溶液回収率が97%、尿素除去率が70%程度になるようにバルブを調整し、表1に示す条件で評価を行ったところ、結果は表1に示すようであった。なお、精製液の循環比は0.78、分離膜2の濃縮液の循環比は0.67、分離膜1の原液透過側供給比率は0であった。
(Example 6)
The undiluted solution was used as the artificial dialysis waste solution used in Example 1, and the same separation membrane module as in Example 1 was prepared. Pumps and valves were prepared as shown in FIG. 6, and piping connections were made. The valve was adjusted so that the overall solution recovery rate was 97% and the urea removal rate was about 70%, and evaluation was performed under the conditions shown in Table 1. The results were as shown in Table 1. The circulation ratio of the purified liquid was 0.78, the circulation ratio of the concentrated liquid of the separation membrane 2 was 0.67, and the supply ratio of the stock solution permeation side of the separation membrane 1 was 0.

(実施例7)
原液を実施例1で使用した人工透析廃液とし、分離膜モジュール1に使用する分離膜をナノろ過膜Aとし、分離膜モジュール1を2本用意した以外は実施例1と同様にして分離膜モジュールを用意した。なお、分離膜1に対して、原液を用いて、標準評価条件で評価したところ、成分Aおよび成分Bの除去率はそれぞれ95.0%および10.0%であった。図7のようにポンプおよびバルブを用意し、配管接続を行った。全体の溶液回収率が97%、尿素除去率が70%程度になるようにバルブを調整し、表2に示す条件で評価を行ったところ、結果は表2に示すようであった。なお、分離膜モジュール2の透過液の循環比は0.86であった。
(Example 7)
The undiluted solution was the artificial dialysis waste liquid used in Example 1, the separation membrane used for the separation membrane module 1 was the nanofiltration membrane A, and the separation membrane module was the same as in Example 1 except that two separation membrane modules 1 were prepared. I prepared. When the separation membrane 1 was evaluated using the undiluted solution under standard evaluation conditions, the removal rates of component A and component B were 95.0% and 10.0%, respectively. Pumps and valves were prepared as shown in FIG. 7, and piping connections were made. The valve was adjusted so that the overall solution recovery rate was 97% and the urea removal rate was about 70%, and evaluation was performed under the conditions shown in Table 2. The results were as shown in Table 2. The circulation ratio of the permeated liquid of the separation membrane module 2 was 0.86.

Figure 2022103007000003
Figure 2022103007000003

(実施例8)
原液を実施例1で使用した人工透析廃液とし、分離膜モジュール1に使用する分離膜を実施例1で使用した低圧RO膜Aとし、さらに分離膜モジュール1の膜面積を実施例1の半分にするために、分離膜1の分離膜体の幅を半分にし、それに伴い各部材のサイズも半分にし、膜面積が実施例1の半分となった分離膜モジュール1を2本用意した。また、実施例1と同様にして分離膜モジュール2を用意した。図8のようにポンプおよびバルブを用意し、配管接続を行い、表2に示す条件で評価を行ったところ、結果は表2に示すようであった。なお、分離膜モジュール2の透過液の循環比は0.85であった。
(Example 8)
The undiluted solution was the artificial dialysis waste liquid used in Example 1, the separation membrane used for the separation membrane module 1 was the low-pressure RO membrane A used in Example 1, and the membrane area of the separation membrane module 1 was reduced to half that of Example 1. Therefore, two separation membrane modules 1 were prepared in which the width of the separation membrane body of the separation membrane 1 was halved, the size of each member was halved accordingly, and the membrane area was halved from that of Example 1. Further, the separation membrane module 2 was prepared in the same manner as in Example 1. When pumps and valves were prepared as shown in FIG. 8, piping was connected, and evaluation was performed under the conditions shown in Table 2, the results were as shown in Table 2. The circulation ratio of the permeated liquid of the separation membrane module 2 was 0.85.

(実施例9)
原液を実施例1で使用した人工透析廃液とし、分離膜モジュール1に使用する分離膜を実施例7で使用したナノろ過膜Aとし、さらに分離膜モジュール1の透過前段に使用する膜面積を実施例1の半分にするために、分離膜1の分離膜体の幅を半分にし、それに伴い各部材のサイズも半分にし、透過前段に使用する分離膜モジュール1を2本用意した。さらに、実施例1と同様のサイズの、分離膜モジュール1を1本用意した。また、実施例1と同様にして分離膜モジュール2を1本用意した。図9のようにポンプおよびバルブを用意し、半分のサイズの分離膜モジュール1を透過1段目に配置するように配管接続を行った。全体の溶液回収率が97%、尿素除去率が70%程度になるようにバルブを調整し、表2に示す条件で評価を行ったところ、結果は表2に示すようであった。なお、分離膜モジュール2の透過液の循環比は0.86であった。
(Example 9)
The undiluted solution was used as the artificial dialysis waste liquid used in Example 1, the separation membrane used for the separation membrane module 1 was used as the nanofiltration membrane A used in Example 7, and the membrane area used in the pre-permeation stage of the separation membrane module 1 was implemented. In order to reduce the size to half of Example 1, the width of the separation membrane body of the separation membrane 1 was halved, the size of each member was halved accordingly, and two separation membrane modules 1 used in the pre-permeation stage were prepared. Further, one separation membrane module 1 having the same size as that of Example 1 was prepared. Further, one separation membrane module 2 was prepared in the same manner as in Example 1. A pump and a valve were prepared as shown in FIG. 9, and piping connection was made so that the separation membrane module 1 of half size was arranged in the first stage of transmission. The valve was adjusted so that the overall solution recovery rate was 97% and the urea removal rate was about 70%, and evaluation was performed under the conditions shown in Table 2. The results were as shown in Table 2. The circulation ratio of the permeated liquid of the separation membrane module 2 was 0.86.

(実施例10)
原液を実施例1で使用した人工透析廃液とし、実施例1と同様にして分離膜モジュール1を1本作製した。また、分離膜モジュール2に使用する分離膜を海水淡水化RO膜Bとした以外は実施例1と同様にして、分離膜モジュール2を2本作製した。なお、分離膜2に対して、原液を用いて、標準評価条件で評価したところ、成分Aおよび成分Bの除去率はそれぞれ99.2%および85.0%であった。図10のようにポンプおよびバルブを用意し、配管接続を行った。全体の溶液回収率が97%、尿素除去率が70%程度になるようにバルブを調整し、表2に示す条件で評価を行ったところ、結果は表2に示すようであった。なお、分離膜モジュール2の透過液の循環比は0.75であった。
(実施例11)
成分Aを塩化カルシウム(CaCl)、成分Bを塩化ナトリウム(NaCl)とした混合溶液を原液とした。それぞれの濃度は、塩化カルシウムが10000mg/L、塩化ナトリウムが5000mg/Lである。分離膜モジュール1に使用する分離膜をナノろ過膜Bとした以外は実施例1と同様にして分離膜モジュール1を2本作製した。また、実施例1と同様にして、分離膜モジュール2を1本作製した。なお、分離膜1に対して、原液を用いて、標準評価条件で評価したところ、成分Aおよび成分Bの除去率はそれぞれ99.0%および35.0%であった。分離膜2に対して、原液を用いて、標準評価条件で評価したところ、成分Aおよび成分Bの除去率はそれぞれ99.9%および99.0%であった。図7のようにポンプおよびバルブを用意し、配管接続を行った。全体の溶液回収率が86.7%、NaCl除去率が50%程度になるようにバルブを調整し、表2に示す条件で評価を行ったところ、結果は表2に示すようであった。なお、分離膜モジュール2の透過液の循環比は0.85であった。このとき、分離膜2の濃縮液におけるNaCl純度は99.6%となり、塩化カルシウムと塩化ナトリウムの混合溶液から高純度の塩化ナトリウムを取り出すことができた。
(実施例12)
原液をビールとした。ビール中の成分Aはタンパク質や糖質などの有機物、成分Bはエタノールである。それぞれの濃度は、成分Aが44585mg/L、成分Bが42410mg/Lである。分離膜モジュール1に使用する分離膜をナノろ過膜Aとした以外は実施例1と同様にして分離膜モジュール1を作製した。また、実施例1と同様にして、分離膜モジュール2を1本作製した。なお、分離膜1に対して、原液を用いて、圧力標準評価条件で評価したところ、成分Aおよび成分Bの除去率はそれぞれ99.0%および5.0%であった。分離膜2に対して、原液を用いて、標準評価条件で評価したところ、成分Aおよび成分Bの除去率はそれぞれ99.9%および96.0%であった。図1のようにポンプおよびバルブを用意し、配管接続を行った。全体の溶液回収率が50%、エタノール除去率が90%程度になるようにバルブを調整し、表2に示す条件で評価を行ったところ、結果は表2に示すようであった。なお、分離膜モジュール2の透過液の循環比は0.90であった。このとき、精製液における成分Aは83811mg/L、成分Bは4240mg/Lとなる。精製液の成分A濃度を原液と合わせ、ノンアルコールビールとするために、精製液の1.88倍の純水を加え希釈した。希釈の結果、成分Aは44580mg/L、成分Bは2256mg/Lとなり、ビールから膜分離操作により簡易的にノンアルコールビールを作製することができた。
(実施例13)
実施例12では精製液を純水で希釈してノンアルコールビールを製造したが、プロセスの低圧化のため純水で原液を希釈してから処理する方法も考えられので、原液を純水で2倍に希釈したビールとした。原液中の成分Aはタンパク質や糖質などの有機物、成分Bはエタノールである。それぞれの濃度は、成分Aが22292mg/L、成分Bが21205mg/Lである。実施例12と同様にして分離膜モジュールを作製し、図15のようにポンプおよびバルブを用意し、配管接続を行った。全体の溶液回収率が50%、エタノール除去率が90%程度になるようにバルブを調整し、表3に示す条件で評価を行ったところ、結果は表3に示すようであった。なお、分離膜モジュール2の透過液の循環比は0.90、分離膜2の透過液の精製液の原液への循環量を除いた残りのうち精製液としたものの割合は0.92であった。このとき、精製液における成分Aは44585mg/L、成分Bは2222mg/Lとなり、実施例12よりも低圧で、ビールから膜分離操作により簡易的にノンアルコールビールを作製することができた。
(Example 10)
The undiluted solution was used as the artificial dialysis waste solution used in Example 1, and one separation membrane module 1 was prepared in the same manner as in Example 1. Further, two separation membrane modules 2 were produced in the same manner as in Example 1 except that the separation membrane used for the separation membrane module 2 was a seawater desalinated RO membrane B. When the separation membrane 2 was evaluated using the undiluted solution under standard evaluation conditions, the removal rates of component A and component B were 99.2% and 85.0%, respectively. A pump and a valve were prepared as shown in FIG. 10, and piping was connected. The valve was adjusted so that the overall solution recovery rate was 97% and the urea removal rate was about 70%, and evaluation was performed under the conditions shown in Table 2. The results were as shown in Table 2. The circulation ratio of the permeated liquid of the separation membrane module 2 was 0.75.
(Example 11)
A mixed solution containing calcium chloride (CaCl 2 ) as component A and sodium chloride (NaCl) as component B was used as a stock solution. The respective concentrations are 10000 mg / L for calcium chloride and 5000 mg / L for sodium chloride. Two separation membrane modules 1 were produced in the same manner as in Example 1 except that the separation membrane used for the separation membrane module 1 was the nanofiltration membrane B. Further, one separation membrane module 2 was produced in the same manner as in Example 1. When the separation membrane 1 was evaluated using a stock solution under standard evaluation conditions, the removal rates of component A and component B were 99.0% and 35.0%, respectively. When the separation membrane 2 was evaluated using the undiluted solution under standard evaluation conditions, the removal rates of component A and component B were 99.9% and 99.0%, respectively. Pumps and valves were prepared as shown in FIG. 7, and piping connections were made. The valve was adjusted so that the overall solution recovery rate was 86.7% and the NaCl removal rate was about 50%, and evaluation was performed under the conditions shown in Table 2. The results were as shown in Table 2. The circulation ratio of the permeated liquid of the separation membrane module 2 was 0.85. At this time, the NaCl purity in the concentrated solution of the separation membrane 2 was 99.6%, and high-purity sodium chloride could be extracted from the mixed solution of calcium chloride and sodium chloride.
(Example 12)
The undiluted solution was beer. The component A in beer is an organic substance such as protein or sugar, and the component B is ethanol. The respective concentrations are 44585 mg / L for component A and 42410 mg / L for component B. The separation membrane module 1 was produced in the same manner as in Example 1 except that the separation membrane used for the separation membrane module 1 was the nanofiltration membrane A. Further, one separation membrane module 2 was produced in the same manner as in Example 1. When the separation membrane 1 was evaluated using a stock solution under standard pressure evaluation conditions, the removal rates of component A and component B were 99.0% and 5.0%, respectively. When the separation membrane 2 was evaluated using the undiluted solution under standard evaluation conditions, the removal rates of component A and component B were 99.9% and 96.0%, respectively. Pumps and valves were prepared as shown in FIG. 1, and piping connections were made. The valve was adjusted so that the overall solution recovery rate was about 50% and the ethanol removal rate was about 90%, and evaluation was performed under the conditions shown in Table 2. The results were as shown in Table 2. The circulation ratio of the permeated liquid of the separation membrane module 2 was 0.90. At this time, the component A in the purified liquid is 83811 mg / L, and the component B is 4240 mg / L. The concentration of component A of the purified solution was combined with the undiluted solution, and 1.88 times as much pure water as the purified solution was added to dilute the beer in order to obtain a non-alcoholic beer. As a result of the dilution, the component A was 44580 mg / L and the component B was 2256 mg / L, and non-alcoholic beer could be easily produced by the membrane separation operation from the beer.
(Example 13)
In Example 12, the purified liquid was diluted with pure water to produce non-alcoholic beer, but a method of diluting the stock solution with pure water before processing is also conceivable in order to reduce the pressure of the process. The beer was diluted twice. The component A in the undiluted solution is an organic substance such as protein or sugar, and the component B is ethanol. The respective concentrations are 22292 mg / L for component A and 21205 mg / L for component B. A separation membrane module was produced in the same manner as in Example 12, a pump and a valve were prepared as shown in FIG. 15, and piping was connected. The valve was adjusted so that the overall solution recovery rate was about 50% and the ethanol removal rate was about 90%, and evaluation was performed under the conditions shown in Table 3. The results were as shown in Table 3. The circulation ratio of the permeate of the separation membrane module 2 was 0.90, and the ratio of the purified liquid of the balance excluding the circulation amount of the permeate of the separation membrane 2 to the undiluted solution was 0.92. rice field. At this time, the component A in the purified liquid was 44585 mg / L and the component B was 2222 mg / L, and a non-alcoholic beer could be easily produced from the beer by a membrane separation operation at a lower pressure than in Example 12.

Figure 2022103007000004
Figure 2022103007000004

(実施例14)
実施例1と同様の分離膜を用意し、分離膜モジュール1および分離膜モジュール2に使われる分離膜エレメントをL型分離膜エレメントとした。実施例1と同様に図1のようにポンプおよびバルブを用意し、配管接続を行った。なお、L型分離膜エレメントは有効膜面積が2.67mであるため、分離膜1および分離膜2ともにL型分離膜エレメントを3本直列に配置した図23に示されるような分離膜モジュールを使用し、分離膜モジュールの有効膜面積を8mとした。実施例1と同様の原液を使用し、全体の溶液回収率が97%、尿素除去率が70%程度になるようにバルブを調整し、表3に示す条件で評価を行ったところ、結果は表3に示すようであった。なお、分離膜モジュール2の透過液の循環比は0.85であった。L型分離膜エレメントを使用することにより、I型分離膜エレメントに対して、高流速で供給液を流すことができるため膜面濃度分極が低減され、同フラックス運転時の圧力が低下し、さらに分離膜モジュールの見かけの除去率も向上する。その結果、プロセスの低圧化や成分A回収率の向上が可能となる。
(実施例15)
実施例1と同様の分離膜を用意し、分離膜モジュール1および分離膜モジュール2に使われる分離膜エレメントを逆L型エレメントとした。実施例1と同様に図1のようにポンプおよびバルブを用意し、配管接続を行った。なお、逆L型分離膜エレメントは有効膜面積が2.67mであるため、分離膜1および分離膜2ともに逆L型分離膜エレメントを3本直列に配置した図22に示されるような分離膜モジュールを使用し、分離膜モジュールの有効膜面積を8mとした。実施例1と同様の原液を使用し、全体の溶液回収率が97%、尿素除去率が70%程度になるようにバルブを調整し、表3に示す条件で評価を行ったところ、結果は表3に示すようであった。なお、分離膜モジュール2の透過液の循環比は0.85であった。逆L型分離膜エレメントを使用することにより、I型分離膜エレメントに対して、高流速で供給液を流すことができるため膜面濃度分極が低減され、同フラックス運転時の圧力が低下し、さらに分離膜モジュールの見かけの除去率も向上する。その結果、プロセスの低圧化や成分A回収率の向上が可能となる。
(Example 14)
The same separation membrane as in Example 1 was prepared, and the separation membrane element used for the separation membrane module 1 and the separation membrane module 2 was an L-type separation membrane element. As in Example 1, a pump and a valve were prepared as shown in FIG. 1, and piping was connected. Since the effective membrane area of the L-type separation membrane element is 2.67 m 2 , the separation membrane module as shown in FIG. 23 in which three L-type separation membrane elements are arranged in series for both the separation membrane 1 and the separation membrane 2. The effective membrane area of the separation membrane module was set to 8 m 2 . Using the same stock solution as in Example 1, the valve was adjusted so that the overall solution recovery rate was 97% and the urea removal rate was about 70%, and evaluation was performed under the conditions shown in Table 3. The results were obtained. It was as shown in Table 3. The circulation ratio of the permeated liquid of the separation membrane module 2 was 0.85. By using the L-type separation membrane element, the supply liquid can flow to the I-type separation membrane element at a high flow rate, so that the membrane surface concentration polarization is reduced, the pressure during the flux operation is reduced, and further. The apparent removal rate of the separation membrane module is also improved. As a result, it is possible to reduce the pressure of the process and improve the recovery rate of component A.
(Example 15)
The same separation membrane as in Example 1 was prepared, and the separation membrane element used for the separation membrane module 1 and the separation membrane module 2 was an inverted L-shaped element. A pump and a valve were prepared as shown in FIG. 1 in the same manner as in the first embodiment, and the pipes were connected. Since the effective membrane area of the inverted L-type separation membrane element is 2.67 m 2 , both the separation membrane 1 and the separation membrane 2 are separated as shown in FIG. 22 in which three inverted L-type separation membrane elements are arranged in series. A membrane module was used, and the effective membrane area of the separation membrane module was set to 8 m 2 . Using the same stock solution as in Example 1, the valve was adjusted so that the overall solution recovery rate was 97% and the urea removal rate was about 70%, and evaluation was performed under the conditions shown in Table 3. The results were obtained. It was as shown in Table 3. The circulation ratio of the permeated liquid of the separation membrane module 2 was 0.85. By using the inverted L-type separation membrane element, the supply liquid can flow to the I-type separation membrane element at a high flow rate, so that the membrane surface concentration polarization is reduced and the pressure during the same flux operation is reduced. Furthermore, the apparent removal rate of the separation membrane module is also improved. As a result, it is possible to reduce the pressure of the process and improve the recovery rate of component A.

(実施例16)
実施例15と同様の分離膜を用意し、図24に示されるような直列配置の最後尾の分離膜エレメントをUターン型分離膜エレメントとした分離膜モジュールを使用する以外は実施例15と同様にして分離膜モジュールを用意し、配管接続を行った。実施例1と同様に図1のようにポンプおよびバルブを用意し、配管接続を行った。実施例1と同様の原液を使用し、全体の溶液回収率が97%、尿素除去率が70%程度になるようにバルブを調整し、表3に示す条件で評価を行ったところ、結果は表3に示すようであった。なお、分離膜モジュール2の透過液の循環比は0.85であった。逆L型分離膜エレメントに加えてUターン型分離膜エレメントを使用することにより、I型分離膜エレメントに対して、さらに高流速で供給液を流すことができるため特に分離膜モジュール内の最後の分離膜エレメントの膜面濃度分極が低減され、同フラックス運転時の圧力が低下し、さらに分離膜モジュールの見かけの除去率も向上する。その結果、プロセスの低圧化や成分A回収率の向上が可能となる。
(Example 16)
Same as Example 15 except that a separation membrane similar to that of Example 15 is prepared and a separation membrane module in which the rearmost separation membrane element arranged in series is a U-turn type separation membrane element as shown in FIG. 24 is used. The separation membrane module was prepared and the piping was connected. A pump and a valve were prepared as shown in FIG. 1 in the same manner as in the first embodiment, and the pipes were connected. Using the same stock solution as in Example 1, the valve was adjusted so that the overall solution recovery rate was 97% and the urea removal rate was about 70%, and evaluation was performed under the conditions shown in Table 3. The results were obtained. It was as shown in Table 3. The circulation ratio of the permeated liquid of the separation membrane module 2 was 0.85. By using the U-turn type separation membrane element in addition to the inverted L-type separation membrane element, the feed solution can flow to the I-type separation membrane element at a higher flow rate, so that the last in the separation membrane module in particular. The membrane surface concentration polarization of the separation membrane element is reduced, the pressure during the flux operation is reduced, and the apparent removal rate of the separation membrane module is also improved. As a result, it is possible to reduce the pressure of the process and improve the recovery rate of component A.

(実施例17)
原液を実施例1で使用した人工透析廃液とし、分離膜1を低圧RO膜Bとした以外は実施例1と同様にして分離膜モジュール1を1本作製した。また、実施例1と同様にして、分離膜モジュール2を1本作製した。なお、分離膜1に対して、原液を用いて、標準評価条件で評価したところ、成分Aおよび成分Bの除去率はそれぞれ98.7%および35.0%であった。図1のようにポンプおよびバルブを用意し、配管接続を行った。全体の溶液回収率が97%、尿素除去率が70%程度になるようにバルブを調整し、表3に示す条件で評価を行ったところ、結果は表3に示すようであった。なお、分離膜モジュール2の透過液の循環比は0.85であった。
(実施例18)
原液を実施例1で使用した人工透析廃液とし、分離膜2を海水淡水化RO膜Bとした以外は実施例1と同様にして分離膜モジュール1を1本作製した。また、実施例1と同様にして、分離膜モジュール2を1本作製した。図1のようにポンプおよびバルブを用意し、配管接続を行った。全体の溶液回収率が97%、尿素除去率が70%程度になるようにバルブを調整し、表3に示す条件で評価を行ったところ、結果は表3に示すようであった。なお、分離膜モジュール2の透過液の循環比は0.85であった。
(実施例19)
原液を実施例1で使用した人工透析廃液とし、分離膜1を低圧RO膜Bとし、分離膜2を海水淡水化RO膜Bとした以外は実施例1と同様にして分離膜モジュール1および分離膜モジュール2を1本ずつ作製した。図1のようにポンプおよびバルブを用意し、配管接続を行った。全体の溶液回収率が97%、尿素除去率が70%程度になるようにバルブを調整し、表4に示す条件で評価を行ったところ、結果は表4に示すようであった。なお、分離膜モジュール2の透過液の循環比は0.9であった。
(Example 17)
One separation membrane module 1 was prepared in the same manner as in Example 1 except that the undiluted solution was the artificial dialysis waste liquid used in Example 1 and the separation membrane 1 was a low-pressure RO membrane B. Further, one separation membrane module 2 was produced in the same manner as in Example 1. When the separation membrane 1 was evaluated using the undiluted solution under standard evaluation conditions, the removal rates of component A and component B were 98.7% and 35.0%, respectively. Pumps and valves were prepared as shown in FIG. 1, and piping connections were made. The valve was adjusted so that the overall solution recovery rate was 97% and the urea removal rate was about 70%, and evaluation was performed under the conditions shown in Table 3. The results were as shown in Table 3. The circulation ratio of the permeated liquid of the separation membrane module 2 was 0.85.
(Example 18)
One separation membrane module 1 was prepared in the same manner as in Example 1 except that the undiluted solution was the artificial dialysis waste liquid used in Example 1 and the separation membrane 2 was a seawater desalinated RO membrane B. Further, one separation membrane module 2 was produced in the same manner as in Example 1. Pumps and valves were prepared as shown in FIG. 1, and piping connections were made. The valve was adjusted so that the overall solution recovery rate was 97% and the urea removal rate was about 70%, and evaluation was performed under the conditions shown in Table 3. The results were as shown in Table 3. The circulation ratio of the permeated liquid of the separation membrane module 2 was 0.85.
(Example 19)
The separation membrane module 1 and separation were the same as in Example 1 except that the undiluted solution was the artificial dialysis waste liquid used in Example 1, the separation membrane 1 was a low-pressure RO membrane B, and the separation membrane 2 was a seawater desalinated RO membrane B. Membrane modules 2 were manufactured one by one. Pumps and valves were prepared as shown in FIG. 1, and piping connections were made. The valve was adjusted so that the overall solution recovery rate was 97% and the urea removal rate was about 70%, and evaluation was performed under the conditions shown in Table 4. The results were as shown in Table 4. The circulation ratio of the permeated liquid of the separation membrane module 2 was 0.9.

Figure 2022103007000005
Figure 2022103007000005

(比較例1)
実施例1と同様の分離膜モジュールを用意した。図1のようにポンプおよびバルブを用意し、配管接続を行った。実施例1と同様の原液を使用し、分離膜モジュール2の透過液のすべてを分離膜モジュール1の濃縮液と混合し、精製液とするように透過液循環バルブを調整した。最大運転圧力が5.5MPa程度になるようにバルブを調整し、表4に示す条件で評価を行ったところ、結果は表4に示すようであった。図1の溶液処理方法において、実施例1と同様の原液を使用し循環を行わない場合は分離膜モジュール1が高圧となってしまうので、成分Bの除去率が得られない。
(比較例2)
実施例1と同様の分離膜モジュールを用意した。図1のようにポンプおよびバルブを用意し、配管接続を行った。実施例1と同様の原液を使用し、分離膜モジュール2の透過液のすべてを循環させるように透過液循環バルブを調整した。このとき、分離膜モジュール1の濃縮液がそのまま精製液となる。全体の溶液回収率が97%、尿素除去率が70%程度になるようにバルブを調整し、表4に示す条件で評価を行ったところ、結果は表4に示すようであった。図1の溶液処理方法において、実施例1と同様の原液を使用し分離膜モジュール2の透過液をすべて循環した場合は、実施例1に対して膜透過量が著しく多くなり、特に緻密な分離膜を使用する分離膜モジュール2の運転圧力が上昇する。また、膜透過量が増えることから実施例1に対してポンプの送液量も増大するため、装置の大型化や騒音が増加し好ましくない。
(Comparative Example 1)
The same separation membrane module as in Example 1 was prepared. Pumps and valves were prepared as shown in FIG. 1, and piping connections were made. Using the same stock solution as in Example 1, all the permeated liquid of the separation membrane module 2 was mixed with the concentrated liquid of the separation membrane module 1, and the permeation liquid circulation valve was adjusted so as to be a purified liquid. When the valve was adjusted so that the maximum operating pressure was about 5.5 MPa and the evaluation was performed under the conditions shown in Table 4, the results were as shown in Table 4. In the solution treatment method of FIG. 1, if the same stock solution as in Example 1 is used and circulation is not performed, the separation membrane module 1 becomes high pressure, so that the removal rate of the component B cannot be obtained.
(Comparative Example 2)
The same separation membrane module as in Example 1 was prepared. Pumps and valves were prepared as shown in FIG. 1, and piping connections were made. The same stock solution as in Example 1 was used, and the permeate circulation valve was adjusted so as to circulate all of the permeate of the separation membrane module 2. At this time, the concentrated solution of the separation membrane module 1 becomes the purified solution as it is. The valve was adjusted so that the overall solution recovery rate was 97% and the urea removal rate was about 70%, and evaluation was performed under the conditions shown in Table 4. The results were as shown in Table 4. In the solution treatment method of FIG. 1, when the same stock solution as in Example 1 is used and all the permeated liquid of the separation membrane module 2 is circulated, the amount of membrane permeation is significantly larger than that of Example 1, and the separation is particularly precise. The operating pressure of the separation membrane module 2 that uses the membrane increases. In addition, since the amount of membrane permeation increases, the amount of liquid sent by the pump also increases as compared with Example 1, which is not preferable because the size of the device increases and noise increases.

(比較例3)
実施例3と同様の分離膜モジュールを用意し、実施例3と同様に図3のようにポンプおよびバルブを用意し、配管接続を行った。実施例3と同様の原液を使用し、実施例3に対して、分離膜モジュール2の透過側排出液を原液に循環しない、すなわち循環比を0とするようにバルブを調整した。最大運転圧力が5.5MPa程度になるようにバルブを調整し、表4に示す条件で評価を行ったところ、結果は表4に示すようであった。図3の溶液処理方法において、実施例3と同様の原液を使用し循環を行わない場合は分離膜モジュール1が高圧となってしまうので、成分Bの除去率が得られない。
(Comparative Example 3)
A separation membrane module similar to that of the third embodiment was prepared, a pump and a valve were prepared as shown in FIG. 3 as in the third embodiment, and piping connection was performed. The same stock solution as in Example 3 was used, and the valve was adjusted so that the permeation side discharge liquid of the separation membrane module 2 was not circulated to the stock solution, that is, the circulation ratio was 0. When the valve was adjusted so that the maximum operating pressure was about 5.5 MPa and the evaluation was performed under the conditions shown in Table 4, the results were as shown in Table 4. In the solution treatment method of FIG. 3, if the same stock solution as in Example 3 is used and circulation is not performed, the separation membrane module 1 becomes high pressure, so that the removal rate of the component B cannot be obtained.

(比較例4)
実施例4と同様の分離膜モジュールを用意し、実施例4と同様に図4のようにポンプおよびバルブを用意し、配管接続を行った。実施例4と同様の原液を使用し、実施例4に対して、分離膜モジュール2の透過液を原液に循環しない、すなわち循環比を0とするようにバルブを調整した。最大運転圧力が5.5MPa程度になるようにバルブを調整し、表4に示す条件で評価を行ったところ、結果は表4に示すようであった。図4の溶液処理方法において、実施例4と同様の原液を使用し循環を行わない場合は分離膜モジュール1が高圧となってしまうので、成分Bの除去率が得られない。
(Comparative Example 4)
A separation membrane module similar to that of the fourth embodiment was prepared, a pump and a valve were prepared as shown in FIG. 4 as in the fourth embodiment, and piping connection was performed. The same stock solution as in Example 4 was used, and the valve was adjusted so that the permeate of the separation membrane module 2 was not circulated to the stock solution, that is, the circulation ratio was 0. When the valve was adjusted so that the maximum operating pressure was about 5.5 MPa and the evaluation was performed under the conditions shown in Table 4, the results were as shown in Table 4. In the solution treatment method of FIG. 4, if the same stock solution as in Example 4 is used and circulation is not performed, the separation membrane module 1 becomes high pressure, so that the removal rate of the component B cannot be obtained.

(比較例5)
実施例4と同様の分離膜モジュールを用意し、実施例4と同様に図4のようにポンプおよびバルブを用意し、配管接続を行った。実施例4と同様の原液を使用し、実施例4に対して、分離膜モジュール2の透過液を全量原液に循環させる、すなわち循環比を1とするようにバルブを調整した。このとき、分離膜モジュール1の濃縮液がそのまま精製液となる。さらに、全体の溶液回収率が97%、尿素除去率が70%程度になるようにバルブを調整し、表4に示す条件で評価を行ったところ、結果は表4に示すようであった。図4の溶液処理方法において、実施例4と同様の原液を使用し分離膜モジュール2の透過液をすべて循環した場合は、実施例4に対して膜透過量が著しく多くなり、特に緻密な分離膜を使用する分離膜モジュール2の運転圧力が上昇する。また、膜透過量が増えることから実施例4に対してポンプの送液量も増大するため、装置の大型化や騒音が増加し好ましくない。
(Comparative Example 5)
A separation membrane module similar to that of the fourth embodiment was prepared, a pump and a valve were prepared as shown in FIG. 4 as in the fourth embodiment, and piping connection was performed. The same stock solution as in Example 4 was used, and the valve was adjusted so that the permeate of the separation membrane module 2 was circulated to the stock solution in its entirety, that is, the circulation ratio was 1. At this time, the concentrated solution of the separation membrane module 1 becomes the purified solution as it is. Furthermore, the valve was adjusted so that the overall solution recovery rate was 97% and the urea removal rate was about 70%, and evaluation was performed under the conditions shown in Table 4, and the results were as shown in Table 4. In the solution treatment method of FIG. 4, when the same stock solution as in Example 4 is used and all the permeated liquid of the separation membrane module 2 is circulated, the amount of membrane permeation is significantly larger than that of Example 4, and the separation is particularly precise. The operating pressure of the separation membrane module 2 that uses the membrane increases. In addition, since the amount of membrane permeation increases, the amount of liquid sent by the pump also increases as compared with Example 4, which is not preferable because the size of the device increases and noise increases.

(比較例6)
実施例6と同様の分離膜モジュールを用意し、実施例6と同様に図6のようにポンプおよびバルブを用意し、配管接続を行った。実施例6と同様の原液を使用し、実施例6に対して、分離膜モジュール2の透過側排出液を原液に循環しない、すなわち循環比を0とするようにバルブを調整した。最大運転圧力が5.5MPa程度になるようにバルブを調整し、表4に示す条件で評価を行ったところ、結果は表4に示すようであった。図6の溶液処理方法において、実施例6と同様の原液を使用し循環を行わない場合は分離膜モジュール1が高圧となってしまうので、成分Bの除去率が得られない。
(Comparative Example 6)
A separation membrane module similar to that of Example 6 was prepared, a pump and a valve were prepared as shown in FIG. 6 as in Example 6, and piping connection was performed. The same stock solution as in Example 6 was used, and the valve was adjusted so that the permeation side discharge liquid of the separation membrane module 2 was not circulated to the stock solution, that is, the circulation ratio was 0. When the valve was adjusted so that the maximum operating pressure was about 5.5 MPa and the evaluation was performed under the conditions shown in Table 4, the results were as shown in Table 4. In the solution treatment method of FIG. 6, if the same stock solution as in Example 6 is used and circulation is not performed, the separation membrane module 1 becomes high pressure, so that the removal rate of the component B cannot be obtained.

Figure 2022103007000006
Figure 2022103007000006

(比較例7)
実施例7と同様の分離膜モジュールを用意し、実施例7と同様に図7のようにポンプおよびバルブを用意し、配管接続を行った。実施例7と同様の原液を使用し、実施例7に対して、分離膜モジュール2の透過液を原液に循環しない、すなわち循環比を0とするようにバルブを調整した。最大運転圧力が5.5MPa程度になるようにバルブを調整し、表5に示す条件で評価を行ったところ、結果は表5に示すようであった。図7の溶液処理方法におい、実施例7と同様の原液を使用して循環を行わない場合は分離膜モジュール1が高圧となってしまうので、成分Bの除去率が得られない。
(Comparative Example 7)
A separation membrane module similar to that of Example 7 was prepared, a pump and a valve were prepared as shown in FIG. 7 as in Example 7, and piping connection was performed. The same stock solution as in Example 7 was used, and the valve was adjusted so that the permeate of the separation membrane module 2 was not circulated to the stock solution, that is, the circulation ratio was 0. When the valve was adjusted so that the maximum operating pressure was about 5.5 MPa and the evaluation was performed under the conditions shown in Table 5, the results were as shown in Table 5. In the solution treatment method of FIG. 7, if the same stock solution as in Example 7 is not used for circulation, the separation membrane module 1 becomes high pressure, so that the removal rate of the component B cannot be obtained.

(比較例8)
実施例7と同様の分離膜モジュールを用意し、実施例7と同様に図7のようにポンプおよびバルブを用意し、配管接続を行った。実施例7と同様の原液を使用し、実施例7に対して、分離膜モジュール2の透過液を全量原液に循環させる、すなわち循環比を1とするようにバルブを調整した。このとき、分離膜モジュール1の濃縮液がそのまま精製液となる。さらに、全体の溶液回収率が97%、尿素除去率が70%程度になるようにバルブを調整し、表5に示す条件で評価を行ったところ、結果は表5に示すようであった。図7の溶液処理方法において、実施例7と同様の原液を使用し分離膜モジュール2の透過液をすべて循環した場合は、実施例7に対して膜透過量が著しく多くなり、特に緻密な分離膜を使用する分離膜モジュール2の運転圧力が上昇する。また、膜透過量が増えることから実施例7に対してポンプの送液量も増大するため、装置の大型化や騒音が増加し好ましくない。
(Comparative Example 8)
A separation membrane module similar to that of Example 7 was prepared, a pump and a valve were prepared as shown in FIG. 7 as in Example 7, and piping connection was performed. The same stock solution as in Example 7 was used, and the valve was adjusted so that the permeate of the separation membrane module 2 was circulated to the stock solution in its entirety, that is, the circulation ratio was 1. At this time, the concentrated solution of the separation membrane module 1 becomes the purified solution as it is. Further, the valve was adjusted so that the overall solution recovery rate was 97% and the urea removal rate was about 70%, and the evaluation was performed under the conditions shown in Table 5, and the results were as shown in Table 5. In the solution treatment method of FIG. 7, when the same stock solution as in Example 7 is used and all the permeated liquid of the separation membrane module 2 is circulated, the amount of membrane permeation is significantly larger than that of Example 7, and the separation is particularly precise. The operating pressure of the separation membrane module 2 that uses the membrane increases. In addition, since the amount of membrane permeation increases, the amount of liquid sent by the pump also increases as compared with Example 7, which is not preferable because the size of the device increases and noise increases.

(比較例9)
実施例8と同様の分離膜モジュールを用意し、実施例8と同様に図8のようにポンプおよびバルブを用意し、配管接続を行った。実施例8と同様の原液を使用し、実施例8に対して、分離膜モジュール2の透過液を原液に循環しない、すなわち循環比を0とするようにバルブを調整した。最大運転圧力が5.5MPa程度となるようにバルブを調整し、表5に示す条件で評価を行ったところ、結果は表5に示すようであった。図8の溶液処理方法において、実施例8と同様の原液を使用し循環を行わない場合は分離膜モジュール1が高圧となってしまうので、成分Bの除去率が得られない。
(Comparative Example 9)
A separation membrane module similar to that of Example 8 was prepared, a pump and a valve were prepared as shown in FIG. 8 as in Example 8, and piping connection was performed. The same stock solution as in Example 8 was used, and the valve was adjusted so that the permeate of the separation membrane module 2 was not circulated to the stock solution, that is, the circulation ratio was 0. When the valve was adjusted so that the maximum operating pressure was about 5.5 MPa and the evaluation was performed under the conditions shown in Table 5, the results were as shown in Table 5. In the solution treatment method of FIG. 8, if the same stock solution as in Example 8 is used and circulation is not performed, the separation membrane module 1 becomes high pressure, so that the removal rate of the component B cannot be obtained.

(比較例10)
実施例8と同様の分離膜モジュールを用意し、実施例8と同様に図8のようにポンプおよびバルブを用意し、配管接続を行った。実施例8と同様の原液を使用し、実施例8に対して、分離膜モジュール2の透過液を全量原液に循環させる、すなわち循環比を1とするようにバルブを調整した。このとき、分離膜モジュール1の濃縮液がそのまま精製液となる。さらに、全体の溶液回収率が97%、尿素除去率が70%程度になるようにバルブを調整し、表5に示す条件で評価を行ったところ、結果は表5に示すようであった。図8の溶液処理方法において、実施例8と同様の原液を使用し分離膜モジュール2の透過液をすべて循環した場合は、実施例8に対して膜透過量が著しく多くなり、特に緻密な分離膜を使用する分離膜モジュール2の運転圧力が上昇する。また、膜透過量が増えることから実施例8に対してポンプの送液量も増大するため、装置の大型化や騒音が増加し好ましくない。
(Comparative Example 10)
A separation membrane module similar to that of Example 8 was prepared, a pump and a valve were prepared as shown in FIG. 8 as in Example 8, and piping connection was performed. The same stock solution as in Example 8 was used, and the valve was adjusted so that the permeate of the separation membrane module 2 was circulated to the stock solution in its entirety, that is, the circulation ratio was 1. At this time, the concentrated solution of the separation membrane module 1 becomes the purified solution as it is. Further, the valve was adjusted so that the overall solution recovery rate was 97% and the urea removal rate was about 70%, and the evaluation was performed under the conditions shown in Table 5, and the results were as shown in Table 5. In the solution treatment method of FIG. 8, when the same stock solution as in Example 8 is used and all the permeated liquid of the separation membrane module 2 is circulated, the amount of membrane permeation is significantly larger than that of Example 8, and the separation is particularly precise. The operating pressure of the separation membrane module 2 that uses the membrane increases. In addition, since the amount of membrane permeation increases, the amount of liquid sent by the pump also increases as compared with Example 8, which is not preferable because the size of the device increases and noise increases.

(比較例11)
実施例9と同様の分離膜モジュールを用意し、実施例9と同様に図9のようにポンプおよびバルブを用意し、配管接続を行った。実施例9と同様の原液を使用し、実施例9に対して、分離膜モジュール2の透過液を原液に循環しない、すなわち循環比を0とするようにバルブを調整した。最大運転圧力が5.5MPa程度となるようにバルブを調整し、表5に示す条件で評価を行ったところ、結果は表5に示すようであった。図9の溶液処理方法において、実施例9と同様の原液を使用し循環を行わない場合は分離膜モジュール1が高圧となってしまうので、成分Bの除去率が得られない。
(Comparative Example 11)
A separation membrane module similar to that of Example 9 was prepared, a pump and a valve were prepared as shown in FIG. 9 as in Example 9, and piping connection was performed. The same stock solution as in Example 9 was used, and the valve was adjusted so that the permeate of the separation membrane module 2 was not circulated to the stock solution, that is, the circulation ratio was 0. When the valve was adjusted so that the maximum operating pressure was about 5.5 MPa and the evaluation was performed under the conditions shown in Table 5, the results were as shown in Table 5. In the solution treatment method of FIG. 9, if the same stock solution as in Example 9 is used and circulation is not performed, the separation membrane module 1 becomes high pressure, so that the removal rate of the component B cannot be obtained.

(比較例12)
実施例9と同様の分離膜モジュールを用意し、実施例9と同様に図9のようにポンプおよびバルブを用意し、配管接続を行った。実施例9と同様の原液を使用し、実施例9に対して、分離膜モジュール2の透過液を全量原液に循環させる、すなわち循環比を1とするようにバルブを調整した。このとき、分離膜モジュール1の濃縮液がそのまま精製液となる。さらに、全体の溶液回収率が97%、尿素除去率が70%程度になるようにバルブを調整し、表6に示す条件で評価を行ったところ、結果は表6に示すようであった。図9の溶液処理方法において、実施例9と同様の原液を使用し分離膜モジュール2の透過液をすべて循環した場合は、実施例9に対して膜透過量が著しく多くなり、特に緻密な分離膜を使用する分離膜モジュール2の運転圧力が上昇する。また、膜透過量が増えることから実施例9に対してポンプの送液量も増大するため、装置の大型化や騒音が増加し好ましくない。
(Comparative Example 12)
A separation membrane module similar to that of Example 9 was prepared, a pump and a valve were prepared as shown in FIG. 9 as in Example 9, and piping connection was performed. The same stock solution as in Example 9 was used, and the valve was adjusted so that the permeate of the separation membrane module 2 was circulated to the stock solution in its entirety, that is, the circulation ratio was 1. At this time, the concentrated solution of the separation membrane module 1 becomes the purified solution as it is. Furthermore, the valve was adjusted so that the overall solution recovery rate was 97% and the urea removal rate was about 70%, and evaluation was performed under the conditions shown in Table 6, and the results were as shown in Table 6. In the solution treatment method of FIG. 9, when the same stock solution as in Example 9 is used and all the permeated liquid of the separation membrane module 2 is circulated, the amount of membrane permeation is significantly larger than that of Example 9, and the separation is particularly precise. The operating pressure of the separation membrane module 2 that uses the membrane increases. In addition, since the amount of membrane permeation increases, the amount of liquid sent by the pump also increases as compared with Example 9, which is not preferable because the size of the device increases and noise increases.

Figure 2022103007000007
Figure 2022103007000007

(比較例13)
実施例10と同様の分離膜モジュールを用意し、実施例10と同様に図10のようにポンプおよびバルブを用意し、配管接続を行った。実施例10と同様の原液を使用し、実施例10に対して、分離膜モジュール2の透過液を原液に循環しない、すなわち循環比を0とするようにバルブを調整した。最大運転圧力が5.5MPa程度となるようにバルブを調整し、表6に示す条件で評価を行ったところ、結果は表6に示すようであった。図10の溶液処理方法において、実施例10と同様の原液を使用し循環を行わない場合は分離膜モジュール1が高圧となってしまうので、成分Bの除去率が得られない。
(Comparative Example 13)
A separation membrane module similar to that of Example 10 was prepared, a pump and a valve were prepared as shown in FIG. 10 as in Example 10, and piping connection was performed. The same stock solution as in Example 10 was used, and the valve was adjusted so that the permeate of the separation membrane module 2 was not circulated to the stock solution, that is, the circulation ratio was 0. When the valve was adjusted so that the maximum operating pressure was about 5.5 MPa and the evaluation was performed under the conditions shown in Table 6, the results were as shown in Table 6. In the solution treatment method of FIG. 10, if the same stock solution as in Example 10 is used and circulation is not performed, the separation membrane module 1 becomes high pressure, so that the removal rate of the component B cannot be obtained.

(比較例14)
実施例10と同様の分離膜モジュールを用意し、実施例10と同様に図10のようにポンプおよびバルブを用意し、配管接続を行った。実施例10と同様の原液を使用し、実施例10に対して、分離膜モジュール2の透過液を全量原液に循環させる、すなわち循環比を1とするようにバルブを調整した。このとき、分離膜モジュール1の濃縮液がそのまま精製液となる。さらに、全体の溶液回収率が97%、尿素除去率が70%程度になるようにバルブを調整し、表6に示す条件で評価を行ったところ、結果は表6に示すようであった。図10の溶液処理方法において、実施例10と同様の原液を使用し分離膜モジュール2の透過液をすべて循環した場合は、実施例10に対して膜透過量が著しく多くなり、特に緻密な分離膜を使用する分離膜モジュール2の運転圧力が上昇する。また、膜透過量が増えることから実施例10に対してポンプの送液量も増大するため、装置の大型化や騒音が増加し好ましくない。
(Comparative Example 14)
A separation membrane module similar to that of Example 10 was prepared, a pump and a valve were prepared as shown in FIG. 10 as in Example 10, and piping connection was performed. The same stock solution as in Example 10 was used, and the valve was adjusted so that the permeate of the separation membrane module 2 was circulated to the stock solution in its entirety, that is, the circulation ratio was 1. At this time, the concentrated solution of the separation membrane module 1 becomes the purified solution as it is. Furthermore, the valve was adjusted so that the overall solution recovery rate was 97% and the urea removal rate was about 70%, and evaluation was performed under the conditions shown in Table 6, and the results were as shown in Table 6. In the solution treatment method of FIG. 10, when the same stock solution as in Example 10 is used and all the permeated liquid of the separation membrane module 2 is circulated, the amount of membrane permeation is significantly larger than that of Example 10, and the separation is particularly precise. The operating pressure of the separation membrane module 2 that uses the membrane increases. In addition, since the amount of membrane permeation increases, the amount of liquid sent by the pump also increases as compared with Example 10, which is not preferable because the size of the device increases and noise increases.

(比較例15)
実施例11と同様の分離膜モジュールを用意し、実施例11と同様に図7のようにポンプおよびバルブを用意し、配管接続を行った。実施例11と同様の原液を使用し、実施例11に対して、分離膜モジュール2の透過液を原液に循環しない、すなわち循環比を0とするようにバルブを調整した。最大運転圧力が5.5MPa程度となるようにバルブを調整し、表6に示す条件で評価を行ったところ、結果は表6に示すようであった。図7の溶液処理方法において、実施例11と同様の原液を使用し循環を行わない場合は分離膜モジュール1が高圧となってしまうので、成分Bの除去率が得られない。
(Comparative Example 15)
A separation membrane module similar to that of the eleventh embodiment was prepared, a pump and a valve were prepared as shown in FIG. 7 as in the eleventh embodiment, and piping connection was performed. The same stock solution as in Example 11 was used, and the valve was adjusted so that the permeate of the separation membrane module 2 was not circulated to the stock solution, that is, the circulation ratio was 0. When the valve was adjusted so that the maximum operating pressure was about 5.5 MPa and the evaluation was performed under the conditions shown in Table 6, the results were as shown in Table 6. In the solution treatment method of FIG. 7, if the same stock solution as in Example 11 is used and circulation is not performed, the separation membrane module 1 becomes high pressure, so that the removal rate of the component B cannot be obtained.

(比較例16)
実施例11と同様の分離膜モジュールを用意し、実施例11と同様に図7のようにポンプおよびバルブを用意し、配管接続を行った。実施例11と同様の原液を使用し、実施例11に対して、分離膜モジュール2の透過液を全量原液に循環させる、すなわち循環比を1とするようにバルブを調整した。このとき、分離膜モジュール1の濃縮液がそのまま精製液となる。さらに、全体の溶液回収率が86.7%、NaCl除去率が50%程度になるようにバルブを調整し、表6に示す条件で評価を行ったところ、結果は表6に示すようであった。図7の溶液処理方法において、実施例11と同様の原液を使用し分離膜モジュール2の透過液をすべて循環した場合は、実施例11に対して膜透過量が著しく多くなり、特に緻密な分離膜を使用する分離膜モジュール2の運転圧力が上昇する。また、膜透過量が増えることから実施例11に対してポンプの送液量も増大するため、装置の大型化や騒音が増加し好ましくない。
(Comparative Example 16)
A separation membrane module similar to that of the eleventh embodiment was prepared, a pump and a valve were prepared as shown in FIG. 7 as in the eleventh embodiment, and piping connection was performed. The same stock solution as in Example 11 was used, and the valve was adjusted so that the permeate of the separation membrane module 2 was circulated to the stock solution in its entirety, that is, the circulation ratio was 1. At this time, the concentrated solution of the separation membrane module 1 becomes the purified solution as it is. Furthermore, the valve was adjusted so that the overall solution recovery rate was 86.7% and the NaCl removal rate was about 50%, and evaluation was performed under the conditions shown in Table 6, and the results are as shown in Table 6. rice field. In the solution treatment method of FIG. 7, when the same stock solution as in Example 11 is used and all the permeated liquid of the separation membrane module 2 is circulated, the amount of membrane permeation is significantly larger than that of Example 11, and the separation is particularly precise. The operating pressure of the separation membrane module 2 that uses the membrane increases. In addition, since the amount of membrane permeation increases, the amount of liquid sent by the pump also increases as compared with Example 11, which is not preferable because the size of the device increases and noise increases.

(比較例17)
実施例12と同様の分離膜モジュールを用意し、実施例12と同様に図1のようにポンプおよびバルブを用意し、配管接続を行った。実施例12と同様の原液を使用し、実施例12に対して、分離膜モジュール2の透過液を原液に循環しない、すなわち循環比を0とするようにバルブを調整した。最大運転圧力が5.5MPa程度となるようにバルブを調整し、表6に示す条件で評価を行ったところ、結果は表6に示すようであった。図1の溶液処理方法において、実施例12と同様の原液を使用し循環を行わない場合は分離膜モジュール1が高圧となってしまうので、成分Bの除去率が得られない。
(Comparative Example 17)
A separation membrane module similar to that of Example 12 was prepared, a pump and a valve were prepared as shown in FIG. 1 as in Example 12, and piping connection was performed. The same stock solution as in Example 12 was used, and the valve was adjusted so that the permeate of the separation membrane module 2 was not circulated to the stock solution, that is, the circulation ratio was 0. When the valve was adjusted so that the maximum operating pressure was about 5.5 MPa and the evaluation was performed under the conditions shown in Table 6, the results were as shown in Table 6. In the solution treatment method of FIG. 1, if the same stock solution as in Example 12 is used and circulation is not performed, the separation membrane module 1 becomes high pressure, so that the removal rate of the component B cannot be obtained.

(比較例18)
実施例12と同様の分離膜モジュールを用意し、実施例12と同様に図1のようにポンプおよびバルブを用意し、配管接続を行った。実施例12と同様の原液を使用し、実施例12に対して、分離膜モジュール2の透過液を全量原液に循環させる、すなわち循環比を1とするようにバルブを調整した。このとき、分離膜モジュール1の濃縮液がそのまま精製液となる。さらに、全体の溶液回収率が50.0%、エタノール除去率が90%程度になるようにバルブを調整し、表7に示す条件で評価を行ったところ、結果は表7に示すようであった。図1の溶液処理方法において、実施例12と同様の原液を使用し分離膜モジュール2の透過液をすべて循環した場合は、実施例12に対して膜透過量が著しく多くなり、特に緻密な分離膜を使用する分離膜モジュール2の運転圧力が上昇する。また、膜透過量が増えることから実施例12に対してポンプの送液量も増大するため、装置の大型化や騒音が増加し好ましくない。
(Comparative Example 18)
A separation membrane module similar to that of Example 12 was prepared, a pump and a valve were prepared as shown in FIG. 1 as in Example 12, and piping connection was performed. The same stock solution as in Example 12 was used, and the valve was adjusted so that the permeate of the separation membrane module 2 was circulated to the stock solution in its entirety, that is, the circulation ratio was 1. At this time, the concentrated solution of the separation membrane module 1 becomes the purified solution as it is. Furthermore, the valve was adjusted so that the overall solution recovery rate was 50.0% and the ethanol removal rate was about 90%, and evaluation was performed under the conditions shown in Table 7. The results are as shown in Table 7. rice field. In the solution treatment method of FIG. 1, when the same stock solution as in Example 12 is used and all the permeated liquid of the separation membrane module 2 is circulated, the amount of membrane permeation is significantly larger than that of Example 12, and the separation is particularly precise. The operating pressure of the separation membrane module 2 that uses the membrane increases. In addition, since the amount of membrane permeation increases, the amount of liquid sent by the pump also increases as compared with Example 12, which is not preferable because the size of the device increases and noise increases.

(比較例19)
分離膜1を低圧RO膜Cとした以外は実施例19と同様にして分離膜モジュールを用意した。実施例19と同様に図1のようにポンプおよびバルブを用意し、配管接続を行った。なお、分離膜1に対して、原液を用いて、標準評価条件で評価したところ、成分Aおよび成分Bの除去率はそれぞれ98.9%および50.1%であった。実施例19と同様の原液を使用し、全体の溶液回収率が97%、分離膜モジュール1の運転圧力が5.5MPa程度となるようにバルブを調整し、表7に示す条件で評価を行ったところ、結果は表7に示すようであった。なお、分離膜モジュール2の透過液の循環比は0.9であった。このように、分離膜1の成分A除去率と成分B除去率の差が60%ポイント以下のときは、全体の成分B除去率70%以上を達成することができない。
(Comparative Example 19)
A separation membrane module was prepared in the same manner as in Example 19 except that the separation membrane 1 was a low-pressure RO membrane C. As in Example 19, a pump and a valve were prepared as shown in FIG. 1, and piping was connected. When the separation membrane 1 was evaluated using a stock solution under standard evaluation conditions, the removal rates of component A and component B were 98.9% and 50.1%, respectively. Using the same stock solution as in Example 19, adjust the valve so that the overall solution recovery rate is 97% and the operating pressure of the separation membrane module 1 is about 5.5 MPa, and evaluation is performed under the conditions shown in Table 7. As a result, the results are shown in Table 7. The circulation ratio of the permeated liquid of the separation membrane module 2 was 0.9. As described above, when the difference between the component A removal rate and the component B removal rate of the separation membrane 1 is 60 percentage points or less, the total component B removal rate of 70% or more cannot be achieved.

(比較例20)
分離膜2を海水淡水化RO膜Cとした以外は実施例19と同様にして分離膜モジュールを用意した。実施例19と同様に図1のようにポンプおよびバルブを用意し、配管接続を行った。なお、分離膜2に対して、原液を用いて、標準評価条件で評価したところ、成分Aおよび成分Bの除去率はそれぞれ99.1%および80.1%であった。実施例19と同様の原液を使用し、全体の溶液回収率が97%、分離膜モジュール1の運転圧力が5.5MPa程度となるようにバルブを調整し、表7に示す条件で評価を行ったところ、結果は表7に示すようであった。なお、分離膜モジュール2の透過液の循環比は0.9であった。このように、分離膜2の成分B除去率が85%以下のときは、全体の成分B除去率70%以上を達成することができない。
(Comparative Example 20)
A separation membrane module was prepared in the same manner as in Example 19 except that the separation membrane 2 was a seawater desalinated RO membrane C. As in Example 19, a pump and a valve were prepared as shown in FIG. 1, and piping was connected. When the separation membrane 2 was evaluated using the undiluted solution under standard evaluation conditions, the removal rates of component A and component B were 99.1% and 80.1%, respectively. Using the same stock solution as in Example 19, adjust the valve so that the overall solution recovery rate is 97% and the operating pressure of the separation membrane module 1 is about 5.5 MPa, and evaluation is performed under the conditions shown in Table 7. As a result, the results are shown in Table 7. The circulation ratio of the permeated liquid of the separation membrane module 2 was 0.9. As described above, when the component B removal rate of the separation membrane 2 is 85% or less, the overall component B removal rate of 70% or more cannot be achieved.

Figure 2022103007000008
Figure 2022103007000008

1 分離膜モジュール1
2 分離膜モジュール2
3 分離膜モジュール1供給ポンプ
4 分離膜モジュール1濃縮液バルブ
5 分離膜モジュール2供給ポンプ
6 分離膜モジュール2濃縮液バルブ
7 分離膜モジュール2透過液または精製液流量分配バルブ
8 分離膜モジュール2透過液逆止弁
9 分離膜モジュール2濃縮液流量分配バルブ
10 原液流量分配バルブ
11 透過液混合量調整バルブ
101 原液
102 精製液
103 成分B濃縮液
104 分離膜モジュール1供給液
105 分離膜モジュール1濃縮液
106 分離膜モジュール1透過液または透過側排出液
107 分離膜モジュール2供給液
108 分離膜モジュール2濃縮液
109 分離膜モジュール2透過液または透過側排出液
110 分離膜モジュール2透過液循環
111 精製液循環
112 分離膜モジュール1透過側供給原液
113 分離膜モジュール2濃縮液循環
114 分離膜モジュール1透過側供給液
115 分離膜モジュール2透過側供給液
201 I型分離膜エレメント
202 有孔中心管
203 分離膜
204 供給側流路材
205 透過側流路材
206 供給液
207 濃縮液
208 透過液
209 仕切り
210 封止部
211 分離膜の供給側の面
212 分離膜の透過側の面
213 OARO分離膜エレメント
214 透過側供給液
215 透過側排出液
216 通常の分離膜モジュール
217 OARO分離膜モジュール
218 供給側供給口
219 供給側排出口
220 透過側供給口
221 透過側排出口
222 圧力容器
223 ブラインシール
224 逆L型分離膜エレメント
225 L型分離膜エレメント
226 Uターン型(I型-逆L型)分離膜エレメント
227 I型分離膜体
228 逆L型分離膜体
229 L型分離膜体
230 Uターンキャップ
1 Separation membrane module 1
2 Separation membrane module 2
3 Separation membrane module 1 Supply pump 4 Separation membrane module 1 Concentrate valve 5 Separation membrane module 2 Supply pump 6 Separation membrane module 2 Concentrate valve 7 Separation membrane module 2 Permeate or purified liquid Flow distribution valve 8 Separation membrane module 2 Permeate Check valve 9 Separation membrane module 2 Concentrate flow distribution valve 10 Undiluted solution flow distribution valve 11 Permeate flow rate adjustment valve 101 Undiluted solution 102 Purification solution 103 Component B concentrate 104 Separation film module 1 Supply solution 105 Separation film module 1 concentrate 106 Separation membrane module 1 Permeate or permeation side discharge 107 Separation membrane module 2 Supply liquid 108 Separation membrane module 2 Concentrate 109 Separation membrane module 2 Permeate or permeation side discharge 110 Separation membrane module 2 Permeate circulation 111 Purification liquid circulation 112 Separation membrane module 1 Permeation side supply stock solution 113 Separation membrane module 2 Concentrate circulation 114 Separation membrane module 1 Permeation side supply liquid 115 Separation membrane module 2 Permeation side supply liquid 201 Type I separation membrane element 202 Perforated center tube 203 Separation membrane 204 supply Side flow path material 205 Permeation side flow path material 206 Supply liquid 207 Concentrate 208 Permeation liquid 209 Partition 210 Sealing part 211 Separation film supply side surface 212 Separation film permeation side surface 213 OARO Separation film element 214 Permeation side supply Liquid 215 Permeation side discharge liquid 216 Normal separation membrane module 217 OARO Separation membrane module 218 Supply side supply port 219 Supply side discharge port 220 Permeation side supply port 221 Permeation side discharge port 222 Pressure vessel 223 Brine seal 224 Inverted L-type separation membrane element 225 L-type separation membrane element 226 U-turn type (I-type-inverted L-type) Separation membrane element 227 I-type separation membrane 228 Inverted L-type separation membrane 229 L-type separation membrane 230 U-turn cap

Claims (23)

原液を、分離膜1と、前記分離膜1の分離膜性能と同等あるいはそれよりも高い分離膜性能を有する分離膜2で分離処理する溶液処理方法であって、
前記分離膜1を使用した分離膜モジュール1および前記分離膜2を使用した分離膜モジュール2には透過側と供給側が存在し、
前記原液は、少なくとも成分A、成分Bを含むものであり、
前記分離膜1および前記分離膜2を標準評価条件で運転した場合において、供給液中の成分濃度に対して、透過した溶液中の成分濃度の減少率で定義する除去率について、
前記分離膜1の前記成分Aの除去率が90%以上であり、かつ、
前記分離膜1の前記成分Bの除去率が、前記分離膜1の前記成分Aの除去率よりも60%ポイント以上低いものであり、
前記分離膜2の前記成分Bの除去率が85%以上であり、
前記分離膜モジュール1の透過側から得られる透過液を含む透過側溶液は、前記分離膜モジュール2の供給側に供給し分離処理され、
少なくとも以下の(i)(ii)のいずれかの要件を満たすことを特徴とする溶液処理方法。
(i)前記分離膜モジュール2の透過液の少なくとも一部を前記原液と混合後前記分離膜モジュール1の供給側に供給し、前記分離膜モジュール2の透過液の残りの全量または一部を前記分離膜モジュール1の濃縮液と混合し精製液を得る。
(ii)前記分離膜モジュール2の透過液を分離膜モジュール1の濃縮液と混合し精製液を得、かつ、当該精製液の一部を前記原液と混合後、分離膜モジュール1の供給側に供給する。
A solution treatment method for separating a stock solution with a separation membrane 1 and a separation membrane 2 having a separation membrane performance equal to or higher than that of the separation membrane 1.
The separation membrane module 1 using the separation membrane 1 and the separation membrane module 2 using the separation membrane 2 have a transmission side and a supply side.
The undiluted solution contains at least component A and component B.
When the separation membrane 1 and the separation membrane 2 are operated under standard evaluation conditions, the removal rate defined by the reduction rate of the component concentration in the permeated solution with respect to the component concentration in the feed solution
The removal rate of the component A of the separation membrane 1 is 90% or more, and the removal rate is 90% or more.
The removal rate of the component B of the separation membrane 1 is 60 percentage points or more lower than the removal rate of the component A of the separation membrane 1.
The removal rate of the component B of the separation membrane 2 is 85% or more, and the removal rate is 85% or more.
The permeation side solution containing the permeate obtained from the permeation side of the separation membrane module 1 is supplied to the supply side of the separation membrane module 2 and separated.
A solution treatment method comprising satisfying at least one of the following requirements (i) and (ii).
(I) At least a part of the permeate of the separation membrane module 2 is mixed with the stock solution and then supplied to the supply side of the separation membrane module 1, and the remaining whole or part of the permeate of the separation membrane module 2 is said. A purified liquid is obtained by mixing with the concentrated liquid of the separation membrane module 1.
(Ii) The permeated liquid of the separation membrane module 2 is mixed with the concentrated liquid of the separation membrane module 1 to obtain a purified liquid, and a part of the purified liquid is mixed with the undiluted solution and then to the supply side of the separation membrane module 1. Supply.
前記分離膜モジュール1または2に使われる分離膜エレメントが、有孔中心管を備えたスパイラル型の分離膜エレメントであることを特徴とする、請求項1に記載の溶液処理方法。 The solution treatment method according to claim 1, wherein the separation membrane element used in the separation membrane module 1 or 2 is a spiral type separation membrane element provided with a perforated central canal. 前記分離膜エレメントの有孔中心管の長手方向に対し垂直方向における外周端部に、供給液供給部又は濃縮液排出部を有していることを特徴とする、請求項2に記載の溶液処理方法。 The solution treatment according to claim 2, wherein a supply liquid supply portion or a concentrated liquid discharge portion is provided at an outer peripheral end portion in a direction perpendicular to the longitudinal direction of the perforated central tube of the separation membrane element. Method. 前記分離膜モジュール1が膜の透過側と供給側の両側に供給口と排出口とを有する構造であり、前記分離膜モジュール1の透過側に、前記分離膜モジュール2の濃縮液、または原液、またはその両方が供給されることを特徴とする、請求項1に記載の溶液処理方法。 The separation membrane module 1 has a structure having supply ports and discharge ports on both the permeation side and the supply side of the membrane, and the permeation side of the separation membrane module 1 is a concentrated solution or a stock solution of the separation membrane module 2. The solution treatment method according to claim 1, wherein / or both of them are supplied. 前記分離膜モジュール2が膜の透過側と供給側の両側に供給口と排出口とを有する構造であり、前記分離膜モジュール2の透過側に前記分離膜モジュール1の濃縮液が供給されることを特徴とする、請求項1または4に記載の溶液処理方法。 The separation membrane module 2 has a structure having supply ports and discharge ports on both the permeation side and the supply side of the membrane, and the concentrate of the separation membrane module 1 is supplied to the permeation side of the separation membrane module 2. The solution treatment method according to claim 1 or 4, wherein the solution treatment method comprises the above. 膜の透過側と供給側の両側に供給口と排出口とを有する構造となっている前記分離膜モジュール1または前記分離膜モジュール2について、透過側と供給側に供給される溶液の流れがそれぞれ向流となっていることを特徴とする、請求項4または5に記載の溶液処理方法。 For the separation membrane module 1 or the separation membrane module 2 having a structure having supply ports and discharge ports on both the permeation side and the supply side of the membrane, the flow of the solution supplied to the permeation side and the supply side, respectively. The solution treatment method according to claim 4 or 5, wherein the flow is countercurrent. 前記分離膜モジュール1が透過液方向に多段となっていることを特徴とする、請求項1~6のいずれかに記載の溶液処理方法。 The solution treatment method according to any one of claims 1 to 6, wherein the separation membrane module 1 has a plurality of stages in the permeate direction. 最後段に設置される前記分離膜モジュール1の濃縮液を循環し、前記分離膜1の供給側に戻すことを特徴とする、請求項7に記載の溶液処理方法。 The solution treatment method according to claim 7, wherein the concentrated solution of the separation membrane module 1 installed at the last stage is circulated and returned to the supply side of the separation membrane 1. 前記分離膜モジュール2が透過液方向に多段となっていることを特徴とする、請求項1~8のいずれかに記載の溶液処理方法。 The solution treatment method according to any one of claims 1 to 8, wherein the separation membrane module 2 has multiple stages in the permeate direction. 前記分離膜モジュール1または2が濃縮液方向に多段となっていることを特徴とする、請求項1~9のいずれかに記載の溶液処理方法。 The solution treatment method according to any one of claims 1 to 9, wherein the separation membrane module 1 or 2 has multiple stages in the concentration direction. 前記原液の成分濃度の合計が1000mg/L以上であることを特徴とする、請求項1~10のいずれかに記載の溶液処理方法 The solution treatment method according to any one of claims 1 to 10, wherein the total concentration of the components of the stock solution is 1000 mg / L or more. 前記成分Aがイオンで前記成分Bが中性分子であることを特徴とする、請求項1~12のいずれかに記載の溶液処理方法。 The solution treatment method according to any one of claims 1 to 12, wherein the component A is an ion and the component B is a neutral molecule. 前記原液が医療用人工透析廃液であることを特徴とする、請求項1~12のいずれかに記載の溶液処理方法。 The solution treatment method according to any one of claims 1 to 12, wherein the undiluted solution is a medical artificial dialysis waste solution. 前記成分Aが多価イオンで前記成分Bが1価イオンであることを特徴とする、請求項1~11のいずれかに記載の溶液処理方法。 The solution treatment method according to any one of claims 1 to 11, wherein the component A is a polyvalent ion and the component B is a monovalent ion. 前記成分Aが高分子の中性分子で前記成分Bが低分子の中性分子であることを特徴とする、請求項1~11のいずれかに記載の溶液処理方法。 The solution treatment method according to any one of claims 1 to 11, wherein the component A is a high molecular weight neutral molecule and the component B is a low molecular weight neutral molecule. 前記分離膜1が逆浸透膜もしくはナノろ過膜であることを特徴とする、請求項1~15のいずれかに記載の溶液処理方法。 The solution treatment method according to any one of claims 1 to 15, wherein the separation membrane 1 is a reverse osmosis membrane or a nanofiltration membrane. 前記分離膜2が逆浸透膜であることを特徴とする、請求項1~16のいずれかに記載の溶液処理方法。 The solution treatment method according to any one of claims 1 to 16, wherein the separation membrane 2 is a reverse osmosis membrane. 原液を、分離膜1と、前記分離膜1の分離膜性能と同等あるいはそれよりも高い分離膜性能を有する分離膜2で分離処理する溶液処理装置であって、
前記分離膜1を使用した分離膜モジュール1および前記分離膜2を使用した分離膜モジュール2には透過側と供給側が存在し、
前記分離膜1および前記分離膜2を標準評価条件で運転した場合において、供給液中の成分濃度に対して、透過した溶液中の成分濃度の減少率で定義する除去率について、
前記分離膜1の前記成分Aの除去率が90%以上であり、かつ、
前記分離膜1の前記成分Bの除去率が、前記分離膜1の前記成分Aの除去率よりも60%ポイント以上低いものであり、
前記分離膜2の前記成分Bの除去率が85%以上であり、
前記分離膜モジュール1の透過側から得られる透過液を含む透過側溶液のラインは、前記分離膜モジュール2の供給側に接続され、
少なくとも以下の(i)(ii)のいずれかの要件を満たすことを特徴とする、溶液処理装置。
(i)前記分離膜モジュール2の透過液ラインを2つに分岐させ、一方を前記原液のラインに接続し、前記原液と前記分離膜モジュール2の透過液の混合液のラインを前記分離膜モジュール1の供給側に接続し、前記分離膜モジュール2の透過液ラインのもう一方を前記分離膜モジュール1の濃縮液ラインに接続し精製液ラインとする。
(ii)前記分離膜モジュール1の濃縮液ラインを分離膜モジュール2の透過側の溶液ラインに接続し精製液ラインとし、かつ、精製液ラインを2つに分岐させ、一方を前記原液ラインに接続し、前記原液と前記精製液の混合液のラインを分離膜モジュール1の供給側に接続する。
A solution treatment device that separates the undiluted solution between the separation membrane 1 and the separation membrane 2 having a separation membrane performance equal to or higher than that of the separation membrane 1.
The separation membrane module 1 using the separation membrane 1 and the separation membrane module 2 using the separation membrane 2 have a transmission side and a supply side.
When the separation membrane 1 and the separation membrane 2 are operated under standard evaluation conditions, the removal rate defined by the reduction rate of the component concentration in the permeated solution with respect to the component concentration in the feed solution
The removal rate of the component A of the separation membrane 1 is 90% or more, and the removal rate is 90% or more.
The removal rate of the component B of the separation membrane 1 is 60 percentage points or more lower than the removal rate of the component A of the separation membrane 1.
The removal rate of the component B of the separation membrane 2 is 85% or more, and the removal rate is 85% or more.
The line of the permeation side solution containing the permeate obtained from the permeation side of the separation membrane module 1 is connected to the supply side of the separation membrane module 2.
A solution processing apparatus comprising satisfying at least one of the following requirements (i) and (ii).
(I) The permeation liquid line of the separation membrane module 2 is branched into two, one is connected to the stock solution line, and the line of the mixed liquid of the stock solution and the permeation liquid of the separation membrane module 2 is connected to the separation membrane module. It is connected to the supply side of No. 1 and the other side of the permeate line of the separation membrane module 2 is connected to the concentrate line of the separation membrane module 1 to form a purification liquid line.
(Ii) The concentrate line of the separation membrane module 1 is connected to the solution line on the permeation side of the separation membrane module 2 to form a purification liquid line, and the purification liquid line is branched into two and one is connected to the stock solution line. Then, the line of the mixed solution of the undiluted solution and the purified solution is connected to the supply side of the separation membrane module 1.
前記分離膜モジュール1または2に使われる分離膜エレメントが、有孔中心管を備えたスパイラル型の分離膜エレメントであることを特徴とする、請求項18に記載の溶液処理装置。 The solution processing apparatus according to claim 18, wherein the separation membrane element used in the separation membrane module 1 or 2 is a spiral type separation membrane element provided with a perforated central canal. 前記分離膜エレメントの有孔中心管の長手方向に対し垂直方向における外周端部に、供給液供給部又は濃縮液排出部を有していることを特徴とする、請求項19に記載の溶液処理装置。 The solution treatment according to claim 19, wherein a supply liquid supply portion or a concentrated liquid discharge portion is provided at an outer peripheral end portion in a direction perpendicular to the longitudinal direction of the perforated central tube of the separation membrane element. Device. 前記分離膜モジュール1が膜の透過側と供給側の両側に供給口と排出口とを有する構造であり、前記分離膜モジュール1の透過側に、前記分離膜モジュール2の濃縮液、または原液、またはその両方のラインが接続されることを特徴とする、請求項18に記載の溶液処理装置。 The separation membrane module 1 has a structure having supply ports and discharge ports on both the permeation side and the supply side of the membrane, and the permeation side of the separation membrane module 1 is a concentrated solution or an undiluted solution of the separation membrane module 2. 18. The solution processing apparatus according to claim 18, wherein both or both lines are connected. 前記分離膜モジュール2が膜の透過側と供給側の両側に供給口と排出口とを有する構造であり、前記分離膜モジュール2の透過側に前記分離膜モジュール1の濃縮液ラインが接続されることを特徴とする、請求項18または21に記載の溶液処理装置。 The separation membrane module 2 has a structure having supply ports and discharge ports on both the permeation side and the supply side of the membrane, and the concentrate line of the separation membrane module 1 is connected to the permeation side of the separation membrane module 2. The solution processing apparatus according to claim 18 or 21, wherein the solution processing apparatus is characterized in that. 膜の透過側と供給側の両側に供給口と排出口とを有する構造となっている前記分離膜モジュール1または前記分離膜モジュール2について、透過側と供給側に供給される溶液の流れがそれぞれ向流となるように配管接続されていることを特徴とする、請求項21または22に記載の溶液処理装置。 For the separation membrane module 1 or the separation membrane module 2 having a structure having supply ports and discharge ports on both the permeation side and the supply side of the membrane, the flow of the solution supplied to the permeation side and the supply side, respectively. 22. The solution processing apparatus according to claim 21, wherein the solution processing apparatus is connected by a pipe so as to have a countercurrent flow.
JP2021059746A 2020-12-25 2021-03-31 Solution treatment method and solution treatment device Pending JP2022103007A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020216355 2020-12-25
JP2020216355 2020-12-25

Publications (1)

Publication Number Publication Date
JP2022103007A true JP2022103007A (en) 2022-07-07

Family

ID=82272570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021059746A Pending JP2022103007A (en) 2020-12-25 2021-03-31 Solution treatment method and solution treatment device

Country Status (1)

Country Link
JP (1) JP2022103007A (en)

Similar Documents

Publication Publication Date Title
JP7406599B2 (en) Compact spiral filter elements, modules and systems
CN109922873B (en) Permeable membranes
JP7067060B2 (en) Separation membrane element
JP7172987B2 (en) MEMBRANE SEPARATION SYSTEM AND METHOD OF OPERATING MEMBRANE SEPARATION SYSTEM
CN112245691B (en) Method and system for preparing dialysate from raw water
JP2017205740A (en) Composite membrane
JP7133429B2 (en) Water treatment system and water treatment method
JP6575249B2 (en) Artificial dialysate manufacturing method and artificial dialysate manufacturing system
WO2020218571A1 (en) Dialysis solution regeneration method
JP2022103007A (en) Solution treatment method and solution treatment device
JP2001113274A (en) Desalting method
WO2023100216A1 (en) Solution processing method and solution processing apparatus
JP2000350928A (en) Composite diaphragm, composite diaphragm module and its manufacture
EP2363196B1 (en) Diffusion and/or filtration device
JP2022101945A (en) Film separation process, organic matter density reduction method and film separation device
WO2023048052A1 (en) Separation membrane element
WO2021193785A1 (en) Separation membrane element and separation membrane module
JP2018034089A (en) Separation membrane element
Cai et al. Hollow Fibers for Reverse Osmosis and Nanofiltration
WO2023008251A1 (en) Separation membrane element and separation membrane system
JP2022014436A (en) Separation film module, and method for producing hydrogen
JP2020175385A (en) Separation membrane element
JP2022183507A (en) Dialysis waste liquid treatment method
JP2020131158A (en) Separation membrane element and method of use thereof
Jersey et al. Filtration and venting systems with gas permeable membrane