JP2022181905A - Mechanical constant estimation device and motor control device - Google Patents

Mechanical constant estimation device and motor control device Download PDF

Info

Publication number
JP2022181905A
JP2022181905A JP2021089125A JP2021089125A JP2022181905A JP 2022181905 A JP2022181905 A JP 2022181905A JP 2021089125 A JP2021089125 A JP 2021089125A JP 2021089125 A JP2021089125 A JP 2021089125A JP 2022181905 A JP2022181905 A JP 2022181905A
Authority
JP
Japan
Prior art keywords
value
estimated
weight
inertia
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021089125A
Other languages
Japanese (ja)
Inventor
崇 林
Takashi Hayashi
哲也 野村
Tetsuya Nomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2021089125A priority Critical patent/JP2022181905A/en
Publication of JP2022181905A publication Critical patent/JP2022181905A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Electric Motors In General (AREA)

Abstract

To provide a mechanical constant estimation device and a motor control device that make it possible to estimate inertia, a coefficient of viscosity and Coulomb friction in a short time with high precision even when a motor speed and acceleration are improper for estimation.SOLUTION: A mechanical constant estimation device comprises: integration means 304 which performs numerical integration of products of two out of torque, acceleration, a speed, etc., of a motor in a period in which a speed absolute value is equal to or larger than a predetermined speed; estimation value computation means 311 which estimates inertia, a coefficient of viscosity and Coulomb friction based upon the integral value; integration means 306, 308 and 310 which compute weights; inertia estimation value average means 340 which uses an inertia estimation value and a weight to update an inertial estimation average value J2; viscosity coefficient estimation value average means 360 which uses a viscosity coefficient estimation value and a weight to update a viscosity estimation average value D2; and Coulomb friction estimation value average means 380 which uses a Coulomb friction estimation value and a weight to update a Coulomb estimation average value Tf2.SELECTED DRAWING: Figure 2

Description

本発明は、モータ及びその機械負荷の機械定数を推定する機械定数推定装置、並びに、この機械定数推定装置を備えたモータ制御装置に関する。 The present invention relates to a machine constant estimating device for estimating mechanical constants of a motor and its mechanical load, and a motor control device equipped with this machine constant estimating device.

機械負荷を駆動するモータを良好に速度制御するためには、モータ及びその機械負荷の慣性や、粘性係数(粘性摩擦係数),クーロン摩擦等の負荷トルクを取得して速度制御条件に反映することが必要になる。
また、モータが同じ機械負荷を駆動し続ける場合でも負荷トルクが変化する時があり、このような場合には、運転条件によらず慣性等の機械定数を推定できると都合が良い。
In order to control the speed of a motor that drives a mechanical load, the inertia of the motor and its mechanical load, the viscosity coefficient (viscous friction coefficient), the load torque such as Coulomb friction, etc. must be obtained and reflected in the speed control conditions. is required.
Also, even if the motor continues to drive the same mechanical load, the load torque may change. In such a case, it would be convenient to be able to estimate the mechanical constants such as inertia regardless of the operating conditions.

ここで、非特許文献1には、負荷トルクが、速度に依存しない符号関数型のクーロン摩擦と速度に比例する粘性係数との和によって表されることを前提として、クーロン摩擦、粘性係数と共に慣性を推定する方法が開示されている。
この文献では、正負対称な周期信号を速度指令として与え、図8(非特許文献1の図4)に示すように、トルク指令u及び角速度ωに基づく信号τ,q,q ,qを互いに掛け合わせて得た値を同文献記載の数式(Eqs.(37)~(44))により周期間隔で積分して行列Φの要素φ11,φ13,φ22,φ23,φ33 、及びベクトルVの要素v,v,vを求め、その後に演算Φ-1Vを行うことで慣性を含む機械定数を同定している。
Here, in Non-Patent Document 1, on the premise that the load torque is represented by the sum of the speed-independent sign function type Coulomb friction and the viscosity coefficient proportional to the speed, the Coulomb friction, the viscosity coefficient, and the inertia A method for estimating is disclosed.
In this document, a positive/negative symmetric periodic signal is given as a speed command, and as shown in FIG. 8 (FIG. 4 of Non-Patent Document 1), signals τ e , q 0 , q 0 , The values obtained by multiplying q 1 with each other are integrated at periodic intervals according to the formulas (Eqs. (37) to (44)) described in the same document, and the elements φ 11 , φ 13 , φ 22 , φ 23 , φ 33 and the elements v 1 , v 2 and v 3 of the vector V are obtained, and then the calculation Φ −1 V is performed to identify the machine constants including inertia.

また、特許文献1には、トルク指令微分値、モータ加速度、モータ躍度等を同一特性のローパスフィルタを介し適応同定演算して慣性及び粘性係数を同定するモータ制御装置が記載されている。更に、特許文献2には、駆動機械の始動後の時間に応じて更新される重み信号を用いて重み付けした速度、加速度、トルクを最小二乗演算部に入力して、慣性及び粘性係数を推定する駆動機械の機械定数同定装置が記載されている。 Further, Patent Document 1 describes a motor control device that identifies inertia and viscosity coefficients by performing adaptive identification calculations on torque command differential values, motor acceleration, motor jerk, etc. through low-pass filters having the same characteristics. Furthermore, in Patent Document 2, the velocity, acceleration, and torque weighted using a weight signal that is updated according to the time after the drive machine is started are input to a least-squares calculation unit to estimate inertia and viscosity coefficients. A machine constant identification device for a drive machine is described.

特開2006-217729号公報([0036]~[0059]、図1等)Japanese Patent Application Laid-Open No. 2006-217729 ([0036] to [0059], FIG. 1, etc.) 特許第3683121号公報([0092]~[0103]、図7,図8等)Japanese Patent No. 3683121 ([0092] to [0103], FIG. 7, FIG. 8, etc.)

粟屋伊智郎他,「クーロン摩擦が作用する機械運動系のパラメータ同定法」,日本機械学会論文集(C編)59巻567号 (1993年),p. 108-114Ichiro Awaya et al., "Method for identifying parameters of a mechanical motion system in which Coulomb friction acts", Transactions of the Japan Society of Mechanical Engineers (Edition C), Vol.59, No.567 (1993), pp.108-114

非特許文献1に記載された機械定数の同定方法によると、例えば、慣性の所望の推定精度が得られにくい小さな加速度でモータを駆動した場合でも、推定精度に関係なく慣性推定値が更新される。或いは、粘性係数の所望の推定精度が得られにくい小さな最大速度でモータを駆動した場合でも、推定精度に関係なく慣性推定値が更新される。
つまり、より信頼性の高い推定結果が過去に得られていたとしても、推定値は信頼性の低い最新の推定結果に更新されてしまうことがある。更に、機械定数はできるだけ精度良く推定できることが望ましい一方で、短時間のうちに機械定数を推定したい場合もあるが、非特許文献1に記載された方法では、推定精度の向上と推定時間の短縮とを両立させるのが難しかった。
According to the method of identifying the mechanical constants described in Non-Patent Document 1, for example, even when the motor is driven with a small acceleration that makes it difficult to obtain the desired inertia estimation accuracy, the inertia estimated value is updated regardless of the estimation accuracy. . Alternatively, even when the motor is driven at a small maximum speed at which it is difficult to obtain the desired estimation accuracy of the viscosity coefficient, the estimated inertia value is updated regardless of the estimation accuracy.
That is, even if a more reliable estimation result was obtained in the past, the estimated value may be updated to the latest less reliable estimation result. Furthermore, while it is desirable to be able to estimate the machine constants as accurately as possible, there are cases where it is desired to estimate the machine constants in a short period of time. It was difficult to reconcile the

また、特許文献1に係る従来技術では、モータの回転速度が低い場合でも高速かつ高精度に慣性及び粘性係数を同定し、特許文献2に係る従来技術では、駆動機械を始動してから所定時間が経過するまでの期間は重みを小さくすることでクーロン摩擦に起因する推定誤差を小さくしている。
しかしながら、これらの特許文献1,2には、クーロン摩擦を推定する手段については特に開示されていない。
Further, in the prior art disclosed in Patent Document 1, the inertia and the viscosity coefficient are identified at high speed and with high accuracy even when the rotational speed of the motor is low. During the period until elapses, the estimation error due to Coulomb friction is reduced by reducing the weight.
However, these Patent Documents 1 and 2 do not particularly disclose means for estimating Coulomb friction.

そこで、本発明の解決課題は、機械定数の推定に当たってモータ速度や加速度が適切でない場合でも、推定値の悪化を招きにくい形で慣性、粘性係数、及びクーロン摩擦を高精度かつ短時間で推定可能とした機械定数推定装置と、この推定装置により推定した機械定数を用いてモータの速度制御等を行うモータ制御装置を提供することにある。 Therefore, the problem to be solved by the present invention is to be able to estimate the inertia, viscosity coefficient, and Coulomb friction with high accuracy and in a short time in a manner that does not cause deterioration of the estimated values even when the motor speed and acceleration are not appropriate for estimating the mechanical constants. and a motor control device for controlling the speed of a motor, etc., using the machine constants estimated by the estimating device.

上記課題を解決するため、請求項1に係る機械定数推定装置は、モータ及び当該モータにより駆動される機械負荷の慣性、粘性係数、及びクーロン摩擦からなる機械定数を推定する機械定数推定装置において、
前記モータの始動後にその速度絶対値が所定の推定開始速度を超えた時点で前記モータのトルク、加速度、速度、及び速度符号のうち何れか二つの積を被積分関数とする数値積分を開始し、かつ、前記モータが減速してその速度絶対値が前記推定開始速度以下になった時点で数値積分を終了する積分手段と、
前記積分手段による積分値に基づいて、前記モータの加減速期間における慣性推定値J、粘性係数推定値D、及びクーロン摩擦推定値Tf1を演算する推定値演算手段と、
前記慣性推定値J、前記粘性係数推定値D、及び前記クーロン摩擦推定値Tf1にそれぞれ対応する重みWJ1,WD1,WTf1を演算する手段と、
前記加減速期間における前記慣性推定値J及び前記重みWJ1を用いて当該加減速期間以前に演算した慣性推定平均値J及び積算重みWJ2を更新し、更新後の慣性推定平均値Jを慣性推定結果として出力する慣性推定値平均手段と、
前記加減速期間における前記粘性係数推定値D及び前記重みWD1を用いて当該加減速期間以前に演算した粘性係数推定平均値D及び積算重みWD2を更新し、更新後の粘性係数推定平均値Dを粘性係数推定結果として出力する粘性係数推定値平均手段と、
前記加減速期間における前記クーロン摩擦推定値Tf1及び前記重みWTf1を用いて当該加減速期間以前に演算したクーロン摩擦推定平均値Tf2及び積算重みWTf2を更新し、更新後のクーロン摩擦推定平均値Tf2をクーロン摩擦推定結果として出力するクーロン摩擦推定値平均手段と、
を備えたことを特徴とする。
In order to solve the above problems, a mechanical constant estimating device according to claim 1 is a mechanical constant estimating device that estimates mechanical constants consisting of inertia, viscosity coefficient, and Coulomb friction of a motor and a mechanical load driven by the motor,
After the motor is started, when the absolute value of the speed exceeds a predetermined estimated start speed, numerical integration is started using the product of any two of the torque, acceleration, speed, and speed sign of the motor as an integrand function. and integration means for terminating numerical integration when the motor decelerates and the absolute value of the speed becomes equal to or less than the estimated start speed;
estimated value calculation means for calculating an inertia estimated value J 1 , a viscosity coefficient estimated value D 1 , and a Coulomb friction estimated value T f1 in the acceleration/deceleration period of the motor based on the integrated values obtained by the integration means;
means for calculating weights W J1 , W D1 , and W Tf1 respectively corresponding to the estimated inertia value J 1 , the estimated viscosity coefficient value D 1 , and the estimated Coulomb friction value T f1 ;
Using the estimated inertia value J1 and the weight WJ1 in the acceleration/deceleration period, update the estimated inertia average value J2 and the integrated weight WJ2 calculated before the acceleration/deceleration period, and update the estimated inertia average value J after the update. inertia estimation value averaging means for outputting 2 as an inertia estimation result;
Using the viscosity coefficient estimated value D1 and the weight W D1 in the acceleration/deceleration period, the viscosity coefficient estimated average value D2 and the integrated weight W D2 calculated before the acceleration/deceleration period are updated, and the viscosity coefficient estimation after updating viscosity coefficient estimated value averaging means for outputting the average value D2 as a viscosity coefficient estimation result;
Using the Coulomb friction estimated value T f1 and the weight W Tf1 in the acceleration/deceleration period, the Coulomb friction estimated average value T f2 and the integrated weight W Tf2 calculated before the acceleration/deceleration period are updated, and the updated Coulomb friction estimation Coulomb friction estimated value averaging means for outputting an average value T f2 as a Coulomb friction estimation result;
characterized by comprising

請求項2に係る機械定数推定装置は、請求項1に記載した機械定数推定装置において、
前記推定値演算手段が、
前記モータの加減速期間tにおける加速度a(t)、速度v(t)、速度符号sign(v(t))、及びトルクT(t)をそれぞれx(t),x(t),x(t),y(t)とした時に、前記x(t),x(t),x(t),y(t)のうち何れか二つの積を被積分関数とするmij=∫{x(t)x(t)}dt及びq=∫{x(t)y(t)}dt(ただし、i,j=1~3)を用いて、特許請求の範囲に記載の数式1により慣性推定値J、粘性係数推定値D、及びクーロン摩擦推定値Tf1を演算することを特徴とする。
A machine constant estimating device according to claim 2 is the machine constant estimating device according to claim 1,
The estimated value calculation means is
Acceleration a(t), velocity v(t), velocity sign sign(v(t)), and torque T(t) in the acceleration/deceleration period t of the motor are represented by x 1 (t), x 2 (t), and x 2 (t), respectively. When x 3 (t) and y(t) are set, the product of any two of the above x 1 (t), x 2 (t), x 3 (t) and y(t) is the integrand function Using m ij = ∫ {x i (t) x j (t)} dt and q i = ∫ {x i (t) y (t)} dt (where i, j = 1 to 3), the patent The inertia estimated value J 1 , the viscosity coefficient estimated value D 1 , and the Coulomb friction estimated value T f1 are calculated by Equation 1 described in the claims.

請求項3に係る機械定数推定装置は、請求項1または2に記載した機械定数推定装置において、前記被積分関数を求めるためのトルク、加速度、及び速度が、同じ時定数のローパスフィルタを演算した後の値であることを特徴とする。 A machine constant estimating device according to claim 3 is the machine constant estimating device according to claim 1 or 2, wherein the torque, acceleration, and speed for obtaining the integrand are calculated by low-pass filters with the same time constant. It is characterized by being the latter value.

請求項4に係る機械定数推定装置は、請求項1または2に記載した機械定数推定装置において、前記重みWJ1が、前記モータの加速度の絶対値に対して単調増加する値を数値積分した値であり、前記重みWD1が、前記モータの速度の絶対値に対して単調増加する値を数値積分した値であり、かつ、前記重みWTf1が、前記モータの速度にも加速度にも依存しない値を数値積分した値であることを特徴とする。 A mechanical constant estimating apparatus according to claim 4 is the machine constant estimating apparatus according to claim 1 or 2, wherein the weight WJ1 is a value obtained by numerically integrating a value monotonically increasing with respect to the absolute value of the acceleration of the motor. and the weight W D1 is a value obtained by numerically integrating a monotonically increasing value with respect to the absolute value of the speed of the motor, and the weight W Tf1 does not depend on the speed or acceleration of the motor. It is characterized by being a value obtained by numerically integrating a value.

請求項5に係る機械定数推定装置は、請求項3に記載した機械定数推定装置において、前記重みWJ1が、前記ローパスフィルタによる演算後の前記モータの加速度の絶対値に対して単調増加する値を数値積分した値であり、前記重みWD1が、前記ローパスフィルタによる演算後の前記モータの速度の絶対値に対して単調増加する値を数値積分した値であり、かつ、前記重みWTf1が、前記モータの速度にも加速度にも依存しない値を数値積分した値であることを特徴とする。 A machine constant estimating apparatus according to claim 5 is the machine constant estimating apparatus according to claim 3, wherein the weight WJ1 is a value that monotonically increases with respect to the absolute value of the acceleration of the motor after calculation by the low-pass filter. is a value obtained by numerically integrating the weight W D1 , the weight W D1 is a value obtained by numerically integrating a value monotonically increasing with respect to the absolute value of the speed of the motor after calculation by the low-pass filter, and the weight W Tf1 is , is a value obtained by numerically integrating a value that does not depend on the speed or acceleration of the motor.

請求項6に係る機械定数推定装置は、請求項4または5に記載した機械定数推定装置において、前記慣性推定値平均手段は、前記慣性推定値J及び前記重みWJ1が新たに得られるたびに、前記積算重みWJ2の前回値と前記重みWJ1の今回値との加算値を所定の上限値WJmaxにより制限した値を前記積算重みWJ2の今回値としたうえで、
慣性推定平均値Jの今回値=慣性推定平均値Jの前回値+(重みWJ1の今回値/積算重みWJ2の今回値)×(慣性推定値Jの今回値-慣性推定平均値Jの前回値)
を演算することを特徴とする。
A mechanical constant estimating device according to claim 6 is the mechanical constant estimating device according to claim 4 or 5 , wherein the inertia estimated value averaging means is configured to a value obtained by limiting the sum of the previous value of the integrated weight WJ2 and the current value of the weight WJ1 by a predetermined upper limit value WJmax as the current value of the integrated weight WJ2 ;
Current value of estimated inertia average value J2 = Previous value of estimated inertia average value J2 + (current value of weight W J1 / current value of cumulative weight W J2 ) × (current value of estimated inertia value J1 - estimated inertia average value previous value of value J2 )
is characterized by computing

請求項7に係る機械定数推定装置は、請求項4~6の何れか1項に記載した機械定数推定装置において、前記粘性係数推定値平均手段は、前記粘性係数推定値D及び前記重みWD1が新たに得られるたびに、前記積算重みWD2の前回値と前記重みWD1の今回値との加算値を所定の上限値WDmaxにより制限した値を前記積算重みWD2の今回値としたうえで、
粘性係数推定平均値Dの今回値=粘性係数推定平均値Dの前回値+(重みWD1の今回値/積算重みWD2の今回値)×(粘性係数推定値Dの今回値-粘性係数推定平均値Dの前回値)
を演算することを特徴とする。
A mechanical constant estimating device according to claim 7 is the mechanical constant estimating device according to any one of claims 4 to 6, wherein said viscosity coefficient estimated value averaging means comprises said viscosity coefficient estimated value D1 and said weight W Each time D1 is newly obtained, a value obtained by limiting the sum of the previous value of the cumulative weight WD2 and the current value of the weight WD1 by a predetermined upper limit value WDmax is used as the current value of the cumulative weight WD2 . After that,
Current value of estimated average value of viscosity coefficient D2 = Previous value of estimated average value of viscosity coefficient D2 + (Current value of weight W D1 / Current value of integrated weight W D2 ) × (Current value of estimated viscosity coefficient D1 - Previous value of viscosity coefficient estimated average value D2 )
is characterized by computing

請求項8に係る機械定数推定装置は、請求項4~7の何れか1項に記載した機械定数推定装置において、前記クーロン摩擦推定値平均手段は、前記クーロン摩擦推定値Tf1及び前記重みWTf1が新たに得られるたびに、前記積算重みWTf2の前回値と前記重みWTf1の今回値との加算値を所定の上限値WTfmaxにより制限した値を前記積算重みWTf2の今回値としたうえで、
クーロン摩擦推定平均値Tf2の今回値=クーロン摩擦推定平均値Tf2の前回値+(重みWTf1の今回値/積算重みWTf2の今回値)×(クーロン摩擦推定値Tf1の今回値-クーロン摩擦推定平均値Tf2の前回値)
を演算することを特徴とする。
A mechanical constant estimating device according to claim 8 is the mechanical constant estimating device according to any one of claims 4 to 7, wherein said Coulomb friction estimated value averaging means comprises said Coulomb friction estimated value T f1 and said weight W Each time Tf1 is newly obtained, a value obtained by limiting the sum of the previous value of the cumulative weight W Tf2 and the current value of the weight W Tf1 by a predetermined upper limit value W Tfmax is used as the current value of the cumulative weight W Tf2 . After that,
Current value of Coulomb friction estimated average value T f2 = Previous value of Coulomb friction estimated average value T f2 + (Current value of weight W Tf1 / Current value of integrated weight W Tf2 ) × (Current value of Coulomb friction estimated value T f1 − Previous value of Coulomb friction estimated average value T f2 )
is characterized by computing

請求項9に係る機械定数推定装置は、請求項1~8の何れか1項に記載した機械定数推定装置において、前記慣性推定平均値J、前記粘性係数推定平均値D及び前記クーロン摩擦推定平均値Tf2、並びに、前記積算重みWJ2,WD2,WTf2を、不揮発性メモリに記憶すると共に外部から初期化可能としたことを特徴とする。 A mechanical constant estimating device according to claim 9 is the mechanical constant estimating device according to any one of claims 1 to 8, wherein the inertia estimated average value J 2 , the viscosity coefficient estimated average value D 2 and the Coulomb friction The estimated average value T f2 and the integrated weights W J2 , W D2 , and W Tf2 are stored in a non-volatile memory and can be initialized from the outside.

請求項10に係るモータ制御装置は、請求項1~9の何れか1項に記載の機械定数推定装置により推定した前記機械定数を用いて、前記モータを制御することを特徴とする。 A motor control device according to claim 10 is characterized in that the motor is controlled using the machine constant estimated by the machine constant estimation device according to any one of claims 1 to 9.

本発明によれば、例えばモータ速度や加速度が小さいため機械定数を適切に推定することが難しい場合でも、推定値の悪化を招きにくい形で機械定数を高精度かつ短時間で推定することができる。 According to the present invention, even if it is difficult to properly estimate the machine constants because the motor speed or acceleration is small, it is possible to estimate the machine constants with high accuracy and in a short period of time in such a way that the estimated values are less likely to deteriorate. .

本発明の実施形態に係る機械定数推定装置の概要を示すブロック図である。1 is a block diagram showing an overview of a machine constant estimating device according to an embodiment of the present invention; FIG. 図1における機械定数推定部の第1実施例を示す構成図である。FIG. 2 is a configuration diagram showing a first embodiment of a machine constant estimator in FIG. 1; 機械定数推定部の各実施例における積分開始・終了判定手段の構成図である。4 is a configuration diagram of integration start/end determination means in each embodiment of the machine constant estimator; FIG. 図1における機械定数推定部の第2実施例を示す構成図である。FIG. 2 is a configuration diagram showing a second embodiment of a machine constant estimator in FIG. 1; 機械定数推定部の各実施例における慣性推定値平均手段の構成図である。4 is a configuration diagram of inertia estimated value averaging means in each embodiment of the machine constant estimator; FIG. 機械定数推定部の各実施例における粘性係数推定値平均手段の構成図である。FIG. 4 is a block diagram of viscosity coefficient estimated value averaging means in each embodiment of the mechanical constant estimator; 機械定数推定部の各実施例におけるクーロン摩擦推定値平均手段の構成図である。FIG. 4 is a configuration diagram of Coulomb friction estimated value averaging means in each embodiment of the machine constant estimator; 非特許文献1に記載された従来技術の説明図である。FIG. 3 is an explanatory diagram of the conventional technology described in Non-Patent Document 1;

以下、図に沿って本発明の実施形態を説明する。
図1は、本実施形態に係る機械定数推定装置の概要を示すブロック図である。この機械定数推定装置は、機械負荷が接続されたモータ(両者をまとめてモータ・機械負荷200とする)の速度及びトルクに基づいて、モータ・機械負荷200の慣性、粘性係数及びクーロン摩擦を推定する。
An embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 is a block diagram showing an outline of a machine constant estimation device according to this embodiment. This mechanical constant estimator estimates the inertia, viscosity coefficient, and Coulomb friction of the motor/mechanical load 200 based on the speed and torque of the motor to which the mechanical load is connected (the two are collectively referred to as the motor/mechanical load 200). do.

図1において、速度制御部100は、モータ・機械負荷200から得たモータ速度が速度指令に一致するようにトルクを出力する。ここで、トルクとは、トルク指令でも良いし、モータへの通電電流を検出して得たトルク推定値でも良い。
モータ速度及びトルクは、機械定数推定部300に入力されている。機械定数推定部300では、後述する動作により慣性、粘性係数及びクーロン摩擦を推定すると共に重み付け処理を行ってこれらの平均値J,D,Tf2を演算する。
なお、速度制御部100及び機械定数推定部300は、例えばマイクロコンピュータ等の演算処理装置及びそのプログラムによって実現されるものである。
In FIG. 1, the speed control unit 100 outputs torque so that the motor speed obtained from the motor/mechanical load 200 matches the speed command. Here, the torque may be a torque command, or may be a torque estimated value obtained by detecting the current supplied to the motor.
Motor speed and torque are input to the machine constant estimator 300 . The mechanical constant estimator 300 estimates the inertia, the viscosity coefficient, and the Coulomb friction by operations described later, and performs weighting processing to calculate these average values J 2 , D 2 , and T f2 .
Note that the speed control unit 100 and the machine constant estimation unit 300 are implemented by an arithmetic processing unit such as a microcomputer and its program, for example.

図2は、機械定数推定部300の第1実施例(機械定数推定部300A)を示す構成図である。
図2において、前記モータ・機械負荷200から得たモータ速度が、機械定数推定部300A内の積分開始・終了判定手段320、微分手段301、及び符号判定手段302に与えられ、モータのトルクが乗算手段303に与えられている。また、外部からのリセット指令が、後述の慣性推定値平均手段340、粘性係数推定値平均手段360、及びクーロン摩擦推定値平均手段380に入力されている。
FIG. 2 is a configuration diagram showing a first embodiment of the machine constant estimator 300 (machine constant estimator 300A).
In FIG. 2, the motor speed obtained from the motor/mechanical load 200 is given to the integration start/end determination means 320, the differentiation means 301, and the sign determination means 302 in the machine constant estimator 300A, and the motor torque is multiplied. provided to means 303; A reset command from the outside is input to the inertia estimated value averaging means 340, the viscosity coefficient estimated value averaging means 360, and the Coulomb friction estimated value averaging means 380, which will be described later.

いま、モータ加速度をa(t)、モータ速度をv(t)、モータ速度の符号をsign(v(t))、トルクをT(t)とし、これらをそれぞれx(t),x(t),x(t),y(t)とおくと、微分手段301の出力であるモータ加速度x(t)、モータ速度x(t)、符号判定手段302の出力である速度符号x(t)、及びトルクy(t)が、乗算手段303に入力される。 Let a(t) be the motor acceleration, v(t) be the motor speed, sign(v(t)) be the sign of the motor speed, and T ( t) be the torque . (t), x 3 (t), and y(t), motor acceleration x 1 (t) which is the output of differentiation means 301, motor speed x 2 (t), and velocity which is the output of sign determination means 302 Sign x 3 (t) and torque y(t) are input to multiplier 303 .

乗算手段303では、x(t),x(t),x(t),y(t)のうち二つのパラメータを用いて、x(t)x(t)及びx(t)y(t)(i,j=1~3)を演算する。なお、乗算手段303における演算には、x(t),x(t),x(t)の演算(すなわち、i=j=1,i=j=2,i=j=3)も含む。
乗算手段303による乗算結果は、次段の積分手段304にそれぞれ入力される。
Multiplication means 303 uses two parameters out of x 1 (t), x 2 (t), x 3 (t) and y(t) to obtain x i (t) x j (t) and x i ( t) Calculate y(t) (i, j=1-3). Note that calculations in the multiplication means 303 include calculations of x 1 (t) 2 , x 2 (t) 2 , and x 3 (t) 2 (that is, i=j=1, i=j=2, i=j =3).
The results of multiplication by the multiplication means 303 are input to the integration means 304 in the next stage.

積分手段304では、一定期間にわたってmij=∫{x(t)x(t)}dt、及び、q=∫{x(t)y(t)}dtという数値積分を行い、これらの演算結果を推定値演算手段311に送る。
なお、実際の数値積分では、例えば、
ij=Σ{x(n)x(n)},q=Σ{x(n)y(n)}
という演算を行ってmij,qを定義し、n点目のデータが得られた時点で、
ij←mij+x(n)x(n),
←q+x(n)y(n)
として、mij,qをそれぞれ更新する。
Integrating means 304 performs numerical integration of m ij =∫{x i (t)x j (t)}dt and q i =∫{x i (t)y(t)}dt over a certain period of time, These calculation results are sent to the estimated value calculation means 311 .
In actual numerical integration, for example,
m ij =Σ{x i (n)x j (n)},q i =Σ{x i (n)y(n)}
Define m ij and q i by performing the operation, and when the n-th data is obtained,
m ij ←m ij +x i (n)x j (n),
q i ← q i + x i (n)y(n)
, update m ij and q i respectively.

図3は、図2における積分開始・終了判定手段320の構成図である。
図3において、絶対値演算手段321はモータ速度の絶対値を演算して比較手段322に送り、比較手段322は、予め設定された推定開始速度と速度絶対値とを比較する。
そして、速度絶対値が推定開始速度を上回った時点で、比較手段322から指示生成手段323を介して図2の積分手段304に積分開始指示を送り、速度絶対値が前記推定開始速度以下になった時点で、比較手段322から指示生成手段324を介して積分手段304に積分終了指示を送る。上記の積分開始指示から積分終了指示までの期間が積分期間となる。また、指示生成手段324からは、図2の推定値演算手段311に対する慣性推定値J、粘性係数推定値D、クーロン摩擦推定値Tf1の更新指示、及び、慣性推定値平均手段340、粘性係数推定値平均手段360、クーロン摩擦推定値平均手段380に対する重みWJ1,WD1,WTf1の更新指示も出力されている。
FIG. 3 is a block diagram of the integration start/end determination means 320 in FIG.
In FIG. 3, the absolute value computing means 321 computes the absolute value of the motor speed and sends it to the comparing means 322, and the comparing means 322 compares the preset estimated start speed and the speed absolute value.
Then, when the speed absolute value exceeds the estimated start speed, an integration start instruction is sent from the comparison means 322 to the integration means 304 in FIG. At this time, the comparison means 322 sends an integration end instruction to the integration means 304 via the instruction generation means 324 . The period from the integration start instruction to the integration end instruction is the integration period. Further, from the instruction generating means 324 , the estimated value calculation means 311 of FIG . An instruction to update the weights W J1 , W D1 , and W Tf1 for the viscosity coefficient estimated value averaging means 360 and the Coulomb friction estimated value averaging means 380 is also output.

積分開始・終了判定手段320による積分開始指示・積分終了指示、及び、更新指示の各時点を上記のようにした理由は、以下の通りである。
モータが機械負荷を駆動する場合、ゼロ速度近傍ではヒステリシスを伴った負荷トルクを生じることが少なくない。推定値演算手段311が機械定数を正しく推定するためには、積分手段304が積分を行う期間から上記のヒステリシス領域を除外する必要がある。そこで、モータの始動後に速度絶対値が所定の推定開始速度を上回ってから積分を開始し、その後にモータが減速して速度絶対値が上記推定開始速度以下になった時点で積分を停止するように積分期間を設定すると共に各パラメータの更新指示を行うことにより、当該積分期間における慣性推定値J、粘性係数推定値D、クーロン摩擦推定値Tf1、及び、重みWJ1,WD1,WTf1を確定することとした。
この場合、積分終了指示時点及び積分開始指示時点のモータ速度絶対値を等しくする(すなわち同一の推定開始速度を用いる)ことにより、負荷トルクに非線形性があった場合の各推定値の誤差を低減することができる。
The reasons why the timings of the integration start instruction/integration end instruction and update instruction by the integration start/end determination means 320 are set as described above are as follows.
When a motor drives a mechanical load, it often produces load torque with hysteresis near zero speed. In order for the estimated value calculation means 311 to correctly estimate the machine constant, it is necessary to exclude the above hysteresis region from the period during which the integration means 304 performs integration. Therefore, integration is started after the absolute speed value exceeds a predetermined estimated start speed after the motor starts, and the integration is stopped when the motor decelerates and the absolute speed value becomes equal to or less than the estimated start speed. and instructing to update each parameter, the inertia estimated value J 1 , the viscosity coefficient estimated value D 1 , the Coulomb friction estimated value T f1 , and the weights W J1 , W D1 , W J1 , W D1 , It was decided to determine WTf1 .
In this case, by equalizing the motor speed absolute values at the integration end instruction time and the integration start time point (that is, using the same estimated start speed), the error in each estimated value when there is nonlinearity in the load torque is reduced. can do.

なお、モータ速度や通電電流の検出誤差等に起因して、速度信号、その微分値の加速度信号、トルク信号をそのまま用いて演算することが問題になる場合には、図4に示す第2実施例の機械定数推定部300Bのように、モータ速度及びトルクに対してローパスフィルタ312,313をそれぞれ演算した結果を用いると良い。この場合、ローパスフィルタ312,313の時定数は等しくすることが望ましい。 If it is problematic to use the speed signal, its differential acceleration signal, and torque signal as they are due to detection errors in the motor speed and current, the second embodiment shown in FIG. As in the machine constant estimating section 300B in the example, it is preferable to use the results obtained by calculating the motor speed and torque with the low-pass filters 312 and 313, respectively. In this case, it is desirable that the time constants of the low-pass filters 312 and 313 be equal.

図2に戻って、推定値演算手段311は、積分手段304が演算したmij,q(i,j=1~3)を用いて、モータの1回の加減速期間における慣性推定値J、粘性係数推定値D、及びクーロン摩擦推定値Tf1を数式1により演算する。

Figure 2022181905000002
Returning to FIG. 2, the estimated value calculation means 311 uses the m ij and q i (i, j=1 to 3) calculated by the integration means 304 to calculate the inertia estimated value J 1 , the viscosity coefficient estimated value D 1 , and the Coulomb friction estimated value T f1 are calculated by Equation (1).
Figure 2022181905000002

この数式1は、運動方程式がT(t)=J(dv/dt)+Dv+Tsign(v)と表される系について、1回の加減速期間に関して最小二乗法によりパラメータJ,D,Tf1を求めることに相当する。 Equation 1 is a system whose equation of motion is expressed as T(t)=J(dv/dt)+Dv+T f sign(v), and parameters J 1 , D 1 , This corresponds to obtaining T f1 .

上記について、具体的に説明する。最小二乗法では、
積分値I=∫{T(t)-J(dv/dt)-Dv-Tsign(v)}dt
が最小となるJ,D,Tを求める。そのために、積分値IをJ,D,Tでそれぞれ偏微分した値をゼロとおいて整理すると、数式2が得られる。

Figure 2022181905000003
The above will be specifically explained. In the least squares method,
Integral value I=∫{T(t)-J(dv/dt)-Dv-T f sign(v)} 2 dt
Find J, D, and T f that minimize For this reason, if the values obtained by partially differentiating the integrated value I with respect to J, D, and Tf are set to zero, Equation 2 is obtained.
Figure 2022181905000003

上記の数式2を、前述のx(t),x(t),x(t),y(t)を用いて置き換えると、数式3が得られる。

Figure 2022181905000004
数式3における積分演算∫dtを積算演算Σに置き換えると、数式4が得られる。
Figure 2022181905000005
Equation 3 is obtained by replacing Equation 2 above with x 1 (t), x 2 (t), x 3 (t), and y(t).
Figure 2022181905000004
Replacing the integration operation ∫dt in Equation 3 with the integration operation Σ yields Equation 4.
Figure 2022181905000005

更に、前述したmij=Σ{x(n)x(n)},q=Σ{x(n)y(n)}のn点目のデータx(n),x(n),y(n)を時刻tにおけるデータx(t),x(t),y(t)にそれぞれ置き換えると、mij=Σ{x(t)x(t)},q=Σ{x(t)y(t)}となるから、数式4は数式5のように表すことができる。

Figure 2022181905000006
この数式5を変形すると数式6が得られ、数式6におけるJをJ、DをD、TをTf1とおけば、前述の数式1によって慣性推定値J、粘性係数推定値D、及びクーロン摩擦推定値Tf1を求めることができる。
Figure 2022181905000007
Furthermore , the n-th data x i ( n ) , x j Replacing (n) and y(n) with data x i (t), x j (t) and y(t) at time t respectively, mi ij =Σ{x i (t)x j (t)} , q i =Σ{x i (t)y(t)}, so Equation 4 can be expressed as Equation 5.
Figure 2022181905000006
Equation 6 is obtained by modifying Equation 5. If J is J 1 , D is D 1 , and T f is T f1 in Equation 6, the estimated inertia value J 1 and the estimated viscosity coefficient D are obtained from Equation 1 above. 1 and the Coulomb friction estimate T f1 can be determined.
Figure 2022181905000007

一方、図2に示すように、モータ加速度x(t)は第1の被積分値生成手段305に入力されてx(t)の絶対値に対し単調増加する被積分値fが生成され、モータ速度x(t)は第2の被積分値生成手段307に入力されてx(t)の絶対値に対し単調増加する被積分値fが生成される。また、第3の被積分値生成手段309からは、モータの加速度にも速度にも依存しない被積分値fが生成される。ここで、例えば、fをx(t)の二乗、fをx(t)の二乗とし、fは単に1としても良い。 On the other hand, as shown in FIG. 2, the motor acceleration x 1 (t) is input to the first integrand value generating means 305 to generate the integrand value f 1 that monotonously increases with respect to the absolute value of x 1 (t). The motor speed x 2 (t) is input to the second integrand generating means 307 to generate an integrand f 2 that monotonically increases with respect to the absolute value of x 2 (t). The third integrand generating means 309 generates an integrand f3 that does not depend on the acceleration or speed of the motor. Here, for example, f 1 may be the square of x 1 (t), f 2 may be the square of x 2 (t), and f 3 may simply be 1.

上記の被積分値f,f,fは積分手段306,308,310によりそれぞれ積分され、その結果が重みWJ1,WD1,WTf1として慣性推定値平均手段340、粘性係数推定値平均手段360、クーロン摩擦推定値平均手段380にそれぞれ入力されている。
慣性推定値平均手段340、粘性係数推定値平均手段360、及びクーロン摩擦推定値平均手段380は、推定値演算手段311から送られた慣性推定値J、粘性係数推定値D、及びクーロン摩擦推定値Tf1に対し、下記のように重みWJ1,WD1,WTf1を用いた重み付け演算を行って各推定平均値J,D,Tf2を算出する。
The integrands f 1 , f 2 , and f 3 are integrated by integrating means 306 , 308 , and 310 , respectively, and the results are weighted as weights W J1 , W D1 , and W Tf1 . It is input to the averaging means 360 and the Coulomb friction estimated value averaging means 380, respectively.
The inertia estimated value averaging means 340, the viscosity coefficient estimated value averaging means 360, and the Coulomb friction estimated value averaging means 380 receive the inertia estimated value J 1 , the viscosity coefficient estimated value D 1 , and the Coulomb friction Estimated average values J 2 , D 2 , and T f2 are calculated by performing weighting operations using weights W J1 , W D1 , and W Tf1 on the estimated value T f1 as follows.

以下、慣性推定値平均手段340、粘性係数推定値平均手段360、及びクーロン摩擦推定値平均手段380の構成及び動作について説明する。
例えば、慣性が小さく加速度も小さい場合、前述した推定値演算手段311による推定演算を行っても、1回の加減速運転だけでは十分な精度で慣性を推定できないことが考えられる。また、最大速度が小さい加減速運転を行った場合も、1回の加減速運転だけでは十分な精度で粘性係数を推定できないことが考えられ、更に、加減速運転期間がごく短い場合には、その1回の加減速運転だけでは十分な精度でクーロン摩擦を推定できないことが考えられる。
The configurations and operations of the inertia estimated value averaging means 340, the viscosity coefficient estimated value averaging means 360, and the Coulomb friction estimated value averaging means 380 will be described below.
For example, when the inertia is small and the acceleration is also small, even if the estimation calculation by the estimated value calculation means 311 is performed, it is conceivable that the inertia cannot be estimated with sufficient accuracy with only one acceleration/deceleration operation. Also, even when acceleration/deceleration operation with a small maximum speed is performed, it is considered that the viscosity coefficient cannot be estimated with sufficient accuracy with only one acceleration/deceleration operation. It is conceivable that the Coulomb friction cannot be estimated with sufficient accuracy only by the single acceleration/deceleration operation.

同じようなパターンの加減速運転を繰り返す場合には、加減速運転ごとに得られた各推定値に対して単純移動平均を施す等の方法により推定精度を上げることができる。しかし、繰り返し運転ではない状況で各機械定数の推定精度を向上させたい場合には、加減速運転ごとにそれぞれの推定の信頼性が異なってくる。
そこで、この実施形態では、慣性推定値平均手段340、粘性係数推定値平均手段360、及びクーロン摩擦推定値平均手段380による下記の動作により推定精度を向上させている。
When the acceleration/deceleration operation of a similar pattern is repeated, the estimation accuracy can be improved by applying a simple moving average to each estimated value obtained for each acceleration/deceleration operation. However, if it is desired to improve the accuracy of estimating each machine constant in a non-repetitive operation, the reliability of each estimation will differ for each acceleration/deceleration operation.
Therefore, in this embodiment, the following operations by the inertia estimated value averaging means 340, the viscosity coefficient estimated value averaging means 360, and the Coulomb friction estimated value averaging means 380 improve the estimation accuracy.

まず、慣性推定値平均手段340について、図5を参照しつつ説明する。
なお、リセット指令が入力されるまでは、切替手段344,348は図示する状態にあるものとする。この点は、後述する図6の切替手段364,368、図7の切替手段384,388についても同様である。
First, the inertia estimated value averaging means 340 will be described with reference to FIG.
It is assumed that the switching means 344 and 348 are in the illustrated state until the reset command is input. This point also applies to switching means 364 and 368 in FIG. 6 and switching means 384 and 388 in FIG. 7, which will be described later.

図5において、慣性推定値平均手段340は、1回の加減速期間で慣性推定値J及び重みWJ1が新たに得られるたびに、慣性推定平均値J及び重みWJ2を更新するように動作する。なお、重みWJ2は、常に重みWJ1の今回値(最新値)と前回値とを加算した値として求められるので、以下では「積算重みWJ2」ということとする。
図5に示すように、前回値保持手段343により保持された積算重みWJ2の前回値と重みWJ1の今回値(最新値)とを加減算手段341により加算し、その結果を予め設定された上限値WJmaxにより制限して積算重みWJ2の今回値を得る。そして、除算手段342により重みWJ1の今回値を積算重みWJ2の今回値にて除算し、その結果を乗算手段346に入力する。
In FIG. 5, the estimated inertia value averaging means 340 updates the average estimated inertia value J2 and the weight WJ2 each time the estimated inertia value J1 and the weight WJ1 are newly obtained in one acceleration/deceleration period. works. Note that the weight W J2 is always obtained as a value obtained by adding the current value (latest value) and the previous value of the weight W J1 , so hereinafter, it is referred to as "integrated weight W J2 ".
As shown in FIG. 5, the previous value of integrated weight WJ2 held by previous value holding means 343 and the current value (latest value) of weight WJ1 are added by addition/subtraction means 341, and the result is The current value of the integrated weight WJ2 is obtained by limiting it with the upper limit value WJmax . Then, the division means 342 divides the current value of the weight WJ1 by the current value of the integrated weight WJ2 , and the result is input to the multiplication means 346 .

また、前回値保持手段349により保持された慣性推定平均値Jの前回値と慣性推定値Jの今回値との偏差を加減算手段345により求め、その偏差を乗算手段346に入力して除算手段342の出力と乗算する。更に、乗算手段346の出力と慣性推定平均値Jの前回値とを加減算手段347により加算し、その結果を慣性推定平均値Jの今回値として出力する。 Further, the deviation between the previous value of the estimated inertia average value J2 held by the previous value holding means 349 and the current value of the estimated inertia value J1 is obtained by the addition/subtraction means 345, and the deviation is input to the multiplication means 346 for division. Multiply by the output of means 342 . Furthermore, the output of the multiplication means 346 and the previous value of the estimated inertia average value J2 are added by the addition/subtraction means 347, and the result is output as the current value of the estimated inertia average value J2 .

以上の動作を数式で表現すると、以下の通りである。
今回値
=J前回値+(WJ1今回値/WJ2今回値)×(J今回値-J前回値)
なお、積算重みWJ2及び慣性推定平均値Jは、外部からのリセット指令により切替手段344,348を「0」側に切り替えることにより、実質的に前回値保持手段343,349等を含むループを除去することで初期化を可能にしている。具体的には、例えば機械負荷を付け替えた際に切替手段344,348を「0」側に切り替えてWJ2,Jを初期化し、その後は不揮発性メモリ等の記憶手段にWJ2,Jを記憶しながら更新する。また、システムを再起動した際には、再起動後の運転に先立って上記記憶手段からWJ2,Jの値を読み込むようにする。
The above operation is expressed by a formula as follows.
J2 current value = J2 previous value + (W J1 current value / W J2 current value) x ( J1 current value - J2 previous value)
Note that the integrated weight W J2 and the inertia estimated average value J2 are substantially controlled by switching the switching means 344 and 348 to the "0" side in response to a reset command from the outside. can be initialized by removing Specifically, for example, when the mechanical load is changed, the switching means 344 and 348 are switched to the "0" side to initialize W J2 and J 2 , and after that W J2 and J 2 are stored in storage means such as a non-volatile memory. Update while remembering. Also, when the system is restarted, the values of W J2 and J 2 are read from the storage means prior to operation after restart.

慣性推定平均値Jの更新方法について、更に詳しく説明する。
まず、加減算手段341によりWJ2前回値とWJ1今回値とを加算した値が上限値WJmax以下にとどまった場合は、
今回値
=J前回値+{WJ1今回値/(WJ2前回値+WJ1今回値)}×(J今回値-J前回値)
=(J前回値×WJ2前回値+J今回値×WJ1今回値)/(WJ2前回値+WJ1今回値)
となる。
これは、過去の加減速運転全てのデータを使って重み付け平均値を求めることに相当し、慣性推定精度が得られにくいパターンの加減速運転の場合(例えば、加速度が小さい運転の場合)ほど、図2におけるx(t)が小さくなって重みWJ1が小さく抑えられるため、信頼性の高い慣性推定平均値Jを得ることができる。
A method for updating the estimated inertia average value J2 will be described in more detail.
First, when the value obtained by adding the previous value of WJ2 and the current value of WJ1 by the addition/subtraction means 341 remains below the upper limit value WJmax ,
J2 current value = J2 previous value + {W J1 current value / (W J2 previous value + W J1 current value)} x ( J1 current value - J2 previous value)
= ( J2 previous value x W J2 previous value + J1 current value x W J1 current value) / (W J2 previous value + W J1 current value)
becomes.
This is equivalent to obtaining a weighted average value using all the data of past acceleration/deceleration. Since x 1 (t) in FIG. 2 is reduced and the weight W J1 is kept small, a highly reliable estimated inertia average value J 2 can be obtained.

しかし、WJ2前回値とWJ1今回値とを加算した値に何ら制限を設けずに運転を続けていくと、WJ2はやがて無限大になって除算手段342の出力がゼロに近付いていくため、新たな加減速運転が行われても慣性推定平均値Jが更新されなくなる。
そこで、図5に示すように、WJ2前回値とWJ1今回値との加算結果を上限値WJmax以下に制限することで、加減速運転を継続していくに連れて最新の運転結果が慣性推定平均値Jに反映されるようにした。
However, if the operation is continued without any restriction on the value obtained by adding the previous value of WJ2 and the current value of WJ1 , WJ2 eventually becomes infinite and the output of the dividing means 342 approaches zero. Therefore, even if a new acceleration/deceleration operation is performed, the estimated inertia average value J2 will not be updated.
Therefore, as shown in FIG. 5, by limiting the result of addition of the previous value of WJ2 and the current value of WJ1 to an upper limit value WJmax or less, the latest operation result will increase as the acceleration/deceleration operation continues. It was made to be reflected in the inertia estimated average value J2 .

ここで、重みを定義せずに、
今回値=J前回値+定数×(J今回値-J前回値) (0<定数<1)
によりJ今回値を求める場合について検討する。
このように演算する場合でも、加減速運転を重ねていけば慣性推定精度は上がっていく。しかし、この場合、加減速運転回数が(3/定数)程度に達するまでは、J今回値は真値より小さい値になってしまう。また、慣性推定に適さないような低加速度または短時間の加減速運転が行われるような場合にも、その結果をもって他の運転パターンと同様に慣性推定値が更新されてしまう。
Now, without defining weights,
J2 current value = J2 previous value + constant x ( J1 current value - J2 previous value) (0 < constant < 1)
Consider the case where the J2 current value is obtained by
Even when calculating in this way, the accuracy of inertia estimation increases as the acceleration/deceleration operation is repeated. However, in this case, the current J2 value becomes smaller than the true value until the number of acceleration/deceleration operations reaches about (3/constant). In addition, even when low acceleration or short-time acceleration/deceleration operation that is not suitable for inertia estimation is performed, the estimated inertia value will be updated based on the result in the same manner as other driving patterns.

これに対して、本実施形態では、例えば機械負荷を付け替えた時点でリセット指令によりWJ2,Jの値を初期化することで、加減速運転回数が少なくても真値に近い慣性推定値が得られ、高精度な慣性推定平均値Jを短時間で得ることができる。
また、加速度x(t)の絶対値に対して単調増加するfを数値積分して重みWJ1を求め、この重みWJ1と積算重みWJ2とを用いて慣性推定値Jを更新しているため、慣性推定に適さない運転に対しても慣性推定平均値Jが乱れにくくなる。
On the other hand, in the present embodiment, the values of W J2 and J 2 are initialized by a reset command when the mechanical load is replaced, for example, so that even if the number of acceleration/deceleration operations is small, the estimated inertia value is close to the true value. is obtained, and a highly accurate estimated inertia average value J2 can be obtained in a short time.
Further, the weight W J1 is obtained by numerically integrating f 1 monotonously increasing with respect to the absolute value of the acceleration x 1 (t), and the inertia estimated value J 1 is updated using this weight W J1 and the integrated weight W J2 . Therefore, the estimated inertia average value J2 is less likely to be disturbed even for driving that is not suitable for inertia estimation.

次に、図6は粘性係数推定値平均手段360の構成を示している。
この粘性係数推定値平均手段360は、1回の加減速期間で粘性係数推定値D及び重みWD1が新たに得られるたびに、粘性係数推定平均値D及び積算重みWD2を更新するように動作する。
Next, FIG. 6 shows the configuration of the viscosity coefficient estimated value averaging means 360. As shown in FIG.
This viscosity coefficient estimated value averaging means 360 updates the viscosity coefficient estimated average value D2 and integrated weight W D2 each time a new viscosity coefficient estimated value D1 and weight W D1 are obtained in one acceleration/deceleration period. works like

図6に示す粘性係数推定値平均手段360において、361,365,367は加減算手段、362は除算手段、363,369は前回値保持手段、364,368は切替手段、366は乗算手段、WDmaxはWD2前回値とWD1今回値との加算結果に設定された上限値である。この粘性係数推定値平均手段360の全体的な動作は、入出力信号を除けば慣性推定値平均手段340と同様である。
粘性係数の推定に当たっては、速度x(t)の絶対値に対して単調増加するfを数値積分して得た重みWD1と積算重みWD2とを用いて粘性係数推定値Dを更新することにより粘性係数推定平均値Dを求めているため、最大速度が小さい運転のように粘性係数の推定に適さないパターンの運転に対しても粘性係数推定平均値Dが乱れにくくなる。
In the viscosity coefficient estimated value averaging means 360 shown in FIG. 6, 361, 365 and 367 are addition/subtraction means, 362 is division means, 363 and 369 are previous value holding means, 364 and 368 are switching means, 366 is multiplication means, and WDmax . is the upper limit set to the addition result of the previous value of WD2 and the current value of WD1 . The overall operation of this viscosity coefficient estimate averaging means 360 is similar to the inertia estimate averaging means 340 except for input and output signals.
In estimating the viscosity coefficient, the viscosity coefficient estimated value D1 is calculated using the weight W D1 obtained by numerically integrating f2 , which monotonically increases with respect to the absolute value of the speed x2 (t), and the integrated weight W D2 . Since the estimated viscosity coefficient average value D2 is obtained by updating, the estimated viscosity coefficient average value D2 is less likely to be disturbed even for driving patterns that are not suitable for estimating the viscosity coefficient, such as driving with a low maximum speed. .

また、図7はクーロン摩擦推定値平均手段380の構成を示している。
このクーロン摩擦推定値平均手段380は、1回の加減速期間でクーロン摩擦推定値Tf1及び重みWTf1が新たに得られるたびに、クーロン摩擦推定平均値Tf2及び積算重みWTf2を更新するように動作する。
7 shows the configuration of the Coulomb friction estimated value averaging means 380. As shown in FIG.
This Coulomb friction estimated value averaging means 380 updates the Coulomb friction estimated average value T f2 and the integrated weight W Tf2 each time the Coulomb friction estimated value T f1 and the weight W Tf1 are newly obtained in one acceleration/deceleration period. works like

図7に示すクーロン摩擦推定値平均手段380において、381,385,387は加減算手段、382は除算手段、383,389は前回値保持手段、384,388は切替手段、386は乗算手段、WTfmaxはWTf2前回値とWTf1今回値との加算結果に設定された上限値である。このクーロン摩擦推定値平均手段380の全体的な動作は、入出力信号を除けば前述の慣性推定値平均手段340や粘性係数推定値平均手段360と同様である。
クーロン摩擦の推定に当たっては、加速度x(t)にも速度x(t)にも依存しない値fを数値積分して得た重みWTf1と積算重みWTf2とを用いてクーロン摩擦推定値Tf1を更新し、これによってクーロン摩擦推定平均値Tf2を求めているため、クーロン摩擦の推定に適さないような運転が行われた場合でもクーロン摩擦推定平均値Tf2が乱れにくくなる。
In the Coulomb friction estimated value averaging means 380 shown in FIG. 7, 381, 385 and 387 are addition/subtraction means, 382 is division means, 383 and 389 are previous value holding means, 384 and 388 are switching means, 386 is multiplication means, and W Tfmax . is the upper limit set to the addition result of the previous value of W Tf2 and the current value of W Tf1 . The overall operation of this Coulomb friction estimated value averaging means 380 is similar to the inertia estimated value averaging means 340 and the viscosity coefficient estimated value averaging means 360 described above, except for the input/output signals.
In estimating the Coulomb friction, the weight W Tf1 obtained by numerically integrating the value f3 that does not depend on either the acceleration x 1 (t) or the velocity x 2 (t) and the integrated weight W Tf2 are used to estimate the Coulomb friction. Since the Coulomb friction estimated average value T f2 is obtained by updating the value T f1 , the Coulomb friction estimated average value T f2 is less likely to be disturbed even when the operation is not suitable for Coulomb friction estimation.

以上のように、本実施形態の機械定数推定装置によれば、モータ速度や加速度、加減速運転期間が機械定数の推定に不適切であるような運転パターンであったとしも、推定値の悪化を招きにくい形で機械定数を高精度かつ短時間で推定することができる。
更に、この機械定数推定装置をモータ制御装置に実装し、機械負荷に応じて加減速期間ごとに推定した機械定数をモータの速度制御やトルク制御に反映させることにより、機械駆動システムにおける追従誤差や振動を低減することが可能になる。
As described above, according to the machine constant estimating apparatus of the present embodiment, even if the motor speed, acceleration, and acceleration/deceleration operation period are inappropriate for estimating the machine constant, the estimated value deteriorates. It is possible to estimate the machine constants with high accuracy and in a short time in a form that is less likely to cause
Furthermore, by implementing this machine constant estimating device in the motor control device and reflecting the machine constant estimated for each acceleration/deceleration period according to the mechanical load in the speed control and torque control of the motor, it is possible to reduce the following error in the mechanical drive system. Vibration can be reduced.

100:速度制御部
200:モータ・機械負荷
300,300A,300B:機械定数推定部
301:微分手段
302:符号判定手段
303:乗算手段
304,306,308,310:積分手段
305,307,309:被積分値生成手段
311:推定値演算手段
312,313:ローパスフィルタ
320:積分開始・終了判定手段
321:絶対値演算手段
322:比較手段
323,324:指示生成手段
340:慣性推定値平均手段
341,345,347:加減算手段
342:除算手段
343,349:前回値保持手段
346:乗算手段
344,348:切替手段
360:粘性係数推定値平均手段
361,365,367:加減算手段
362:除算手段
363,369:前回値保持手段
366:乗算手段
364,368:切替手段
380:クーロン摩擦推定値平均手段
381,385,387:加減算手段
382:除算手段
383,389:前回値保持手段
386:乗算手段
384,388:切替手段
100: Speed control unit 200: Motor/mechanical load 300, 300A, 300B: Machine constant estimation unit 301: Differentiation means 302: Sign determination means 303: Multiplication means 304, 306, 308, 310: Integration means 305, 307, 309: Integral value generating means 311: Estimated value computing means 312, 313: Low-pass filter 320: Integration start/end determining means 321: Absolute value computing means 322: Comparing means 323, 324: Instruction generating means 340: Inertia estimated value averaging means , 345, 347: addition/subtraction means 342: division means 343, 349: previous value holding means 346: multiplication means 344, 348: switching means 360: viscosity coefficient estimated value average means 361, 365, 367: addition/subtraction means 362: division means , 369: previous value holding means 366: multiplication means 364, 368: switching means 380: Coulomb friction estimated value averaging means 381, 385, 387: addition/subtraction means 382: division means 383, 389: previous value holding means 386: multiplication means 384 , 388: switching means

Claims (10)

モータ及び当該モータにより駆動される機械負荷の慣性、粘性係数、及びクーロン摩擦からなる機械定数を推定する機械定数推定装置において、
前記モータの始動後にその速度絶対値が所定の推定開始速度を超えた時点で前記モータのトルク、加速度、速度、及び速度符号のうち何れか二つの積を被積分関数とする数値積分を開始し、かつ、前記モータが減速してその速度絶対値が前記推定開始速度以下になった時点で数値積分を終了する積分手段と、
前記積分手段による積分値に基づいて、前記モータの加減速期間における慣性推定値J、粘性係数推定値D、及びクーロン摩擦推定値Tf1を演算する推定値演算手段と、
前記慣性推定値J、前記粘性係数推定値D、及び前記クーロン摩擦推定値Tf1にそれぞれ対応する重みWJ1,WD1,WTf1を演算する手段と、
前記加減速期間における前記慣性推定値J及び前記重みWJ1を用いて当該加減速期間以前に演算した慣性推定平均値J及び積算重みWJ2を更新し、更新後の慣性推定平均値Jを慣性推定結果として出力する慣性推定値平均手段と、
前記加減速期間における前記粘性係数推定値D及び前記重みWD1を用いて当該加減速期間以前に演算した粘性係数推定平均値D及び積算重みWD2を更新し、更新後の粘性係数推定平均値Dを粘性係数推定結果として出力する粘性係数推定値平均手段と、
前記加減速期間における前記クーロン摩擦推定値Tf1及び前記重みWTf1を用いて当該加減速期間以前に演算したクーロン摩擦推定平均値Tf2及び積算重みWTf2を更新し、更新後のクーロン摩擦推定平均値Tf2をクーロン摩擦推定結果として出力するクーロン摩擦推定値平均手段と、
を備えたことを特徴とする機械定数推定装置。
In a mechanical constant estimating device for estimating mechanical constants consisting of inertia, viscosity coefficient, and Coulomb friction of a motor and a mechanical load driven by the motor,
After the motor is started, when the absolute value of the speed exceeds a predetermined estimated start speed, numerical integration is started using the product of any two of the torque, acceleration, speed, and speed sign of the motor as an integrand function. and integration means for terminating numerical integration when the motor decelerates and the absolute value of the speed becomes equal to or less than the estimated start speed;
estimated value calculation means for calculating an inertia estimated value J 1 , a viscosity coefficient estimated value D 1 , and a Coulomb friction estimated value T f1 in the acceleration/deceleration period of the motor based on the integrated values obtained by the integration means;
means for calculating weights W J1 , W D1 , and W Tf1 respectively corresponding to the estimated inertia value J 1 , the estimated viscosity coefficient value D 1 , and the estimated Coulomb friction value T f1 ;
Using the estimated inertia value J1 and the weight WJ1 in the acceleration/deceleration period, update the estimated inertia average value J2 and the integrated weight WJ2 calculated before the acceleration/deceleration period, and update the estimated inertia average value J after the update. inertia estimation value averaging means for outputting 2 as an inertia estimation result;
Using the viscosity coefficient estimated value D1 and the weight W D1 in the acceleration/deceleration period, the viscosity coefficient estimated average value D2 and the integrated weight W D2 calculated before the acceleration/deceleration period are updated, and the viscosity coefficient estimation after updating viscosity coefficient estimated value averaging means for outputting the average value D2 as a viscosity coefficient estimation result;
Using the Coulomb friction estimated value T f1 and the weight W Tf1 in the acceleration/deceleration period, the Coulomb friction estimated average value T f2 and the integrated weight W Tf2 calculated before the acceleration/deceleration period are updated, and the updated Coulomb friction estimation Coulomb friction estimated value averaging means for outputting an average value T f2 as a Coulomb friction estimation result;
A machine constant estimating device comprising:
請求項1に記載した機械定数推定装置において、
前記推定値演算手段は、
前記モータの加減速期間tにおける加速度a(t)、速度v(t)、速度符号sign(v(t))、及びトルクT(t)をそれぞれx(t),x(t),x(t),y(t)とした時に、前記x(t),x(t),x(t),y(t)のうち何れか二つの積を被積分関数とするmij=∫{x(t)x(t)}dt及びq=∫{x(t)y(t)}dt(ただし、i,j=1~3)を用いて、下記の数式1により慣性推定値J、粘性係数推定値D、及びクーロン摩擦推定値Tf1を演算することを特徴とする機械定数推定装置。
Figure 2022181905000008
In the machine constant estimation device according to claim 1,
The estimated value calculation means is
Acceleration a(t), velocity v(t), velocity sign sign(v(t)), and torque T(t) in the acceleration/deceleration period t of the motor are represented by x 1 (t), x 2 (t), and x 2 (t), respectively. When x 3 (t) and y(t) are set, the product of any two of the above x 1 (t), x 2 (t), x 3 (t) and y(t) is the integrand function Using m ij = ∫ {x i (t) x j (t)} dt and q i = ∫ {x i (t) y (t)} dt (where i, j = 1 to 3), the following A machine constant estimating device, which calculates an inertia estimated value J 1 , a viscosity coefficient estimated value D 1 , and a Coulomb friction estimated value T f1 according to Equation 1 of .
Figure 2022181905000008
請求項1または2に記載した機械定数推定装置において、
前記被積分関数を求めるためのトルク、加速度、及び速度が、同じ時定数のローパスフィルタを演算した後の値であることを特徴とする機械定数推定装置。
In the machine constant estimation device according to claim 1 or 2,
A machine constant estimating device, wherein the torque, acceleration, and speed for obtaining the integrand are values obtained after calculating a low-pass filter with the same time constant.
請求項1または2に記載した機械定数推定装置において、
前記重みWJ1が、前記モータの加速度の絶対値に対して単調増加する値を数値積分した値であり、前記重みWD1が、前記モータの速度の絶対値に対して単調増加する値を数値積分した値であり、かつ、前記重みWTf1が、前記モータの速度にも加速度にも依存しない値を数値積分した値であることを特徴とする機械定数推定装置。
In the machine constant estimation device according to claim 1 or 2,
The weight W J1 is a value obtained by numerically integrating a value that monotonously increases with respect to the absolute value of the acceleration of the motor, and the weight W D1 is a value that is numerically integrated with a value that monotonously increases with respect to the absolute value of the speed of the motor. A machine constant estimating device, wherein the weight W Tf1 is a value obtained by numerically integrating a value independent of the speed and acceleration of the motor.
請求項3に記載した機械定数推定装置において、
前記重みWJ1が、前記ローパスフィルタによる演算後の前記モータの加速度の絶対値に対して単調増加する値を数値積分した値であり、前記重みWD1が、前記ローパスフィルタによる演算後の前記モータの速度の絶対値に対して単調増加する値を数値積分した値であり、かつ、前記重みWTf1が、前記モータの速度にも加速度にも依存しない値を数値積分した値であることを特徴とする機械定数推定装置。
In the machine constant estimation device according to claim 3,
The weight W J1 is a value obtained by numerically integrating a monotonically increasing value with respect to the absolute value of the acceleration of the motor after calculation by the low-pass filter, and the weight W D1 is the motor after calculation by the low-pass filter. and the weight W Tf1 is a value obtained by numerically integrating a value that does not depend on the speed or acceleration of the motor. , the machine constant estimator.
請求項4または5に記載した機械定数推定装置において、
前記慣性推定値平均手段は、
前記慣性推定値J及び前記重みWJ1が新たに得られるたびに、前記積算重みWJ2の前回値と前記重みWJ1の今回値との加算値を所定の上限値WJmaxにより制限した値を前記積算重みWJ2の今回値としたうえで、
慣性推定平均値Jの今回値=慣性推定平均値Jの前回値+(重みWJ1の今回値/積算重みWJ2の今回値)×(慣性推定値Jの今回値-慣性推定平均値Jの前回値)
を演算することを特徴とする機械定数推定装置。
In the machine constant estimation device according to claim 4 or 5,
The inertia estimate averaging means comprises:
Each time the estimated inertia value J1 and the weight WJ1 are newly obtained, the sum of the previous value of the integrated weight WJ2 and the current value of the weight WJ1 is limited by a predetermined upper limit value WJmax . is the current value of the integrated weight WJ2 ,
Current value of estimated inertia average value J2 = Previous value of estimated inertia average value J2 + (current value of weight W J1 / current value of cumulative weight W J2 ) × (current value of estimated inertia value J1 - estimated inertia average value previous value of value J2 )
A machine constant estimating device characterized by computing
請求項4~6の何れか1項に記載した機械定数推定装置において、
前記粘性係数推定値平均手段は、
前記粘性係数推定値D及び前記重みWD1が新たに得られるたびに、前記積算重みWD2の前回値と前記重みWD1の今回値との加算値を所定の上限値WDmaxにより制限した値を前記積算重みWD2の今回値としたうえで、
粘性係数推定平均値Dの今回値=粘性係数推定平均値Dの前回値+(重みWD1の今回値/積算重みWD2の今回値)×(粘性係数推定値Dの今回値-粘性係数推定平均値Dの前回値)
を演算することを特徴とする機械定数推定装置。
In the machine constant estimation device according to any one of claims 4 to 6,
The viscosity coefficient estimated value averaging means
Each time the viscosity coefficient estimated value D1 and the weight WD1 are newly obtained, the sum of the previous value of the integrated weight WD2 and the current value of the weight WD1 is limited by a predetermined upper limit value WDmax . After setting the value as the current value of the integrated weight W D2 ,
Current value of estimated average value of viscosity coefficient D2 = Previous value of estimated average value of viscosity coefficient D2 + (Current value of weight W D1 / Current value of integrated weight W D2 ) × (Current value of estimated viscosity coefficient D1 - Previous value of viscosity coefficient estimated average value D2 )
A machine constant estimating device characterized by computing
請求項4~7の何れか1項に記載した機械定数推定装置において、
前記クーロン摩擦推定値平均手段は、
前記クーロン摩擦推定値Tf1及び前記重みWTf1が新たに得られるたびに、前記積算重みWTf2の前回値と前記重みWTf1の今回値との加算値を所定の上限値WTfmaxにより制限した値を前記積算重みWTf2の今回値としたうえで、
クーロン摩擦推定平均値Tf2の今回値=クーロン摩擦推定平均値Tf2の前回値+(重みWTf1の今回値/積算重みWTf2の今回値)×(クーロン摩擦推定値Tf1の今回値-クーロン摩擦推定平均値Tf2の前回値)
を演算することを特徴とする機械定数推定装置。
In the machine constant estimation device according to any one of claims 4 to 7,
The Coulomb friction estimate averaging means,
Each time the Coulomb friction estimated value T f1 and the weight W Tf1 are newly obtained, the sum of the previous value of the integrated weight W Tf2 and the current value of the weight W Tf1 is limited by a predetermined upper limit value W Tfmax . After setting the value to the current value of the integrated weight W Tf2 ,
Current value of Coulomb friction estimated average value T f2 = Previous value of Coulomb friction estimated average value T f2 + (Current value of weight W Tf1 / Current value of integrated weight W Tf2 ) × (Current value of Coulomb friction estimated value T f1 − Previous value of Coulomb friction estimated average value T f2 )
A machine constant estimating device characterized by computing
請求項1~8の何れか1項に記載した機械定数推定装置において、
前記慣性推定平均値J、前記粘性係数推定平均値D及び前記クーロン摩擦推定平均値Tf2、並びに、前記積算重みWJ2,WD2,WTf2を、不揮発性メモリに記憶すると共に外部から初期化可能としたことを特徴とする機械定数推定装置。
In the machine constant estimation device according to any one of claims 1 to 8,
The inertia estimated average value J 2 , the viscosity coefficient estimated average value D 2 , the Coulomb friction estimated average value T f2 , and the integrated weights W J2 , W D2 , and W Tf2 are stored in a nonvolatile memory and externally A machine constant estimating device characterized by being able to be initialized.
請求項1~9の何れか1項に記載の機械定数推定装置により推定した前記機械定数を用いて、前記モータを制御することを特徴とするモータ制御装置。 A motor control device that controls the motor using the machine constant estimated by the machine constant estimation device according to any one of claims 1 to 9.
JP2021089125A 2021-05-27 2021-05-27 Mechanical constant estimation device and motor control device Pending JP2022181905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021089125A JP2022181905A (en) 2021-05-27 2021-05-27 Mechanical constant estimation device and motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021089125A JP2022181905A (en) 2021-05-27 2021-05-27 Mechanical constant estimation device and motor control device

Publications (1)

Publication Number Publication Date
JP2022181905A true JP2022181905A (en) 2022-12-08

Family

ID=84328300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021089125A Pending JP2022181905A (en) 2021-05-27 2021-05-27 Mechanical constant estimation device and motor control device

Country Status (1)

Country Link
JP (1) JP2022181905A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023001380A (en) * 2018-08-03 2023-01-04 株式会社三洋物産 game machine
JP2023001381A (en) * 2018-08-03 2023-01-04 株式会社三洋物産 game machine
JP2023001383A (en) * 2018-08-03 2023-01-04 株式会社三洋物産 game machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023001380A (en) * 2018-08-03 2023-01-04 株式会社三洋物産 game machine
JP2023001381A (en) * 2018-08-03 2023-01-04 株式会社三洋物産 game machine
JP2023001383A (en) * 2018-08-03 2023-01-04 株式会社三洋物産 game machine

Similar Documents

Publication Publication Date Title
JP2022181905A (en) Mechanical constant estimation device and motor control device
JP4813618B2 (en) Motor control device with function to estimate inertia and friction simultaneously
US6037736A (en) Apparatus for determination of control constant
JP7272112B2 (en) Servo system parameter identification method
JP3189865B2 (en) Mechanical vibration detection device and vibration control device
US9124212B2 (en) Load characteristic estimating apparatus for driving machine
CN108803499B (en) Control device and machine learning device
KR20100084671A (en) Engine bench system control system
JP6091523B2 (en) Servo control device
JP6290619B2 (en) Motor control device
CN108508784A (en) Servo motor control unit, servomotor control method and recording medium
CN112840276A (en) Vibration suppression device, vibration suppression method, and program
KR19980083174A (en) Vibration Suppression Control Method and Control Apparatus of Resonance System
CN117033860B (en) Parameter sensitivity analysis method and device for driving shaft tracking error
JP5208610B2 (en) Characteristic identification method and motor control device for controlling inertial resonance system
JP6906711B1 (en) Friction compensation device, collision detection device, torque feedforward arithmetic unit and robot control device, and friction compensation method
JP4390539B2 (en) Load characteristic calculation device and motor control device
JPH06225565A (en) Method of measuring load constant of motor drive system
JP2022029503A (en) Inertia estimation device and motor control device
JP4078396B2 (en) Positioning control device
KR102551659B1 (en) Method for estimating parameter of mechanical model for servo motor and system for controlling motor with Kalman filter using the same
JPH06225564A (en) Method of measuring load constant of motor drive system
JPH10323070A (en) Motor controller
JP2003271246A (en) Speed control device
JP2020027366A (en) Motor controller

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20220927

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20221006

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240415