JP2022181837A - Multistage compression refrigeration device - Google Patents

Multistage compression refrigeration device Download PDF

Info

Publication number
JP2022181837A
JP2022181837A JP2021089018A JP2021089018A JP2022181837A JP 2022181837 A JP2022181837 A JP 2022181837A JP 2021089018 A JP2021089018 A JP 2021089018A JP 2021089018 A JP2021089018 A JP 2021089018A JP 2022181837 A JP2022181837 A JP 2022181837A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
stage
compression
intermediate pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021089018A
Other languages
Japanese (ja)
Inventor
寿幸 石田
Hisayuki Ishida
篤 塩谷
Atsushi Shiotani
実希 山田
Miki Yamada
直樹 黒田
Naoki Kuroda
有二 岡田
Yuji Okada
有悟 笹谷
Yugo Sasatani
航平 松本
Kohei Matsumoto
崚平 在本
Ryohei ARIMOTO
真悟 佐藤
Shingo Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Thermal Systems Ltd
Original Assignee
Mitsubishi Heavy Industries Thermal Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Thermal Systems Ltd filed Critical Mitsubishi Heavy Industries Thermal Systems Ltd
Priority to JP2021089018A priority Critical patent/JP2022181837A/en
Priority to PCT/JP2022/004824 priority patent/WO2022249566A1/en
Priority to EP22810850.2A priority patent/EP4350256A1/en
Publication of JP2022181837A publication Critical patent/JP2022181837A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/072Intercoolers therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/31Low ambient temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

To provide a refrigeration device capable of operating stably over a wide range of operation conditions while improving efficiency of a refrigeration cycle due to increase of the number of compression stages.SOLUTION: A refrigeration device comprises: a compression unit including a multi-stage compression mechanism, where a stage number N is 3 or more; a first heat exchanger that radiates the heat of a refrigerant discharged from the compression unit to outside air; a decompression unit including a plurality of decompression mechanisms provided to each of the multiple stages; a second heat exchanger that causes the refrigerant having passed through the decompression unit to absorb heat from a heat load; a plurality of gas-liquid separators provided between the decompression mechanisms; a plurality of intermediate-pressure injection flow paths that corresponds to the plurality of gas-liquid separators, and supplies a gas-phase refrigerant from the corresponding gas-liquid separators between the compression mechanisms; and a valve provided in at least one of the plurality of intermediate-pressure injection flow paths. Upon operating the valve, the effective number of stages through which the refrigerant circulates is changed.SELECTED DRAWING: Figure 1

Description

本開示は、多段に亘り冷媒を圧縮する冷凍装置に関する。 The present disclosure relates to a refrigeration system that compresses refrigerant in multiple stages.

特許文献1は、2段圧縮機構を備えた冷凍装置を開示する。かかる冷凍装置は、密閉ハウジング内に低段圧縮機構および高段圧縮機構を備えた電動圧縮機と、放熱器と、高圧膨張弁と、気液分離器と、低圧膨張弁と、蒸発器と、ガスインジェクション配管とを備えている。ガスインククション配管により、気液分離器から電動圧縮機のハウジング内に導入されたガス冷媒は、低段圧縮機構からハウジング内に吐出された冷媒と共に高段圧縮機構へと吸入される。 Patent Literature 1 discloses a refrigeration system with a two-stage compression mechanism. Such a refrigeration system includes an electric compressor having a low-stage compression mechanism and a high-stage compression mechanism in a closed housing, a radiator, a high-pressure expansion valve, a gas-liquid separator, a low-pressure expansion valve, an evaporator, It is equipped with gas injection piping. The gas refrigerant introduced from the gas-liquid separator into the housing of the electric compressor is sucked into the high-stage compression mechanism together with the refrigerant discharged into the housing from the low-stage compression mechanism.

特開2017-44420号公報JP 2017-44420 A

地球温暖化係数(GWP;Global Warming Potential)の低減、およびエネルギー消費効率(COP;Coefficient of Performance)の向上を目的として、GWPが低い冷媒が採用されるとともに、2段圧縮機構を含む冷凍装置の開発および製品化が進められている。
冷媒としてCOを含む冷媒が採用される場合には、高圧運転に伴い高い冷媒吐出温度を許容限度に抑えるため、放熱器に設定される高圧と、蒸発器に設定される低圧との間の中間圧のガス冷媒を気液分離器から低段圧縮機構と高段圧縮機構との間に導入すること(中間圧ガスインジェクション)が有効である。かかる構成によれば、低段圧縮機構から吐出される冷媒の温度と比べて低温のガス冷媒のインジェクションにより、吐出温度を抑制することができる。それに加え、気液分離器から低圧膨張弁に液冷媒が供給されることにより、蒸発器によって得られるエンタルピが単段圧縮の場合に対して拡大するため、冷凍能力を増加させ、COPを向上させることができる。
A refrigerant with a low GWP is adopted for the purpose of reducing the global warming potential (GWP) and improving the energy consumption efficiency (COP; Coefficient of Performance). Development and commercialization are underway.
When a refrigerant containing CO2 is used as the refrigerant, in order to keep the high refrigerant discharge temperature within the permissible limit due to high-pressure operation, the high pressure set for the radiator and the low pressure set for the evaporator must be maintained. It is effective to introduce intermediate-pressure gas refrigerant from the gas-liquid separator between the low-stage compression mechanism and the high-stage compression mechanism (intermediate-pressure gas injection). According to such a configuration, the discharge temperature can be suppressed by injecting gas refrigerant having a temperature lower than that of the refrigerant discharged from the low-stage compression mechanism. In addition, since the liquid refrigerant is supplied from the gas-liquid separator to the low-pressure expansion valve, the enthalpy obtained by the evaporator is expanded compared to the case of single-stage compression, so the refrigeration capacity is increased and the COP is improved. be able to.

低GWPの冷媒を採用する冷凍装置にあって、圧縮機構の段数をさらに増やしていくことにより、圧縮機からの吐出温度を抑制しつつ、COPが高められた冷凍装置を実現することが望まれる。しかしながら、本開示の発明者による試験研究によると、圧縮機構の段数を例えば「4」に増やした冷凍装置は、外気温等の運転条件によっては安定して動作しない。かかる冷凍装置は、N個の圧縮機構と、N個の膨張弁と、N-1個の気液分離器と、N-1個のガスインジェクション配管とを備える。 In a refrigerating device that employs a refrigerant with a low GWP, it is desired to realize a refrigerating device that increases the COP while suppressing the discharge temperature from the compressor by further increasing the number of stages of the compression mechanism. . However, according to test research by the inventors of the present disclosure, a refrigeration system in which the number of stages of the compression mechanism is increased to, for example, "4" does not operate stably depending on the operating conditions such as the outside air temperature. Such a refrigeration system includes N compression mechanisms, N expansion valves, N−1 gas-liquid separators, and N−1 gas injection pipes.

以上より、本開示は、圧縮段数の増加により冷凍サイクルの効率を向上させつつ、広範囲の運転条件に亘り安定して動作させることが可能な冷凍装置を提供することを目的とする。 In view of the above, an object of the present disclosure is to provide a refrigeration system that can stably operate over a wide range of operating conditions while improving the efficiency of the refrigeration cycle by increasing the number of compression stages.

本開示は、冷凍サイクルにより冷媒を循環させる冷凍装置であって、直列に接続されてそれぞれ冷媒を圧縮する複数段の圧縮機構を含み、段数が3以上である圧縮部と、圧縮部により低段から高段へと複数のステップに亘り圧縮されて圧縮部から吐出された冷媒を、外気へと放熱させる第1熱交換器と、複数段の各段に与えられる複数の減圧機構を含み、第1熱交換器を経た冷媒の圧力を複数のステップに亘り減少させる減圧部と、減圧部を経た冷媒を熱負荷から吸熱させる第2熱交換器と、減圧機構と減圧機構との間にそれぞれ与えられる複数の気液分離器と、複数の気液分離器にそれぞれ対応し、対応する気液分離器から圧縮機構と圧縮機構との間に気相の冷媒を供給する複数の中間圧インジェクション流路と、複数の中間圧インジェクション流路の少なくとも一つに設けられるバルブと、を備える。かかる冷凍装置は、バルブを動作させることで、冷媒が循環する有効段数が可変に構成されている。
本願発明において中間圧インジェクション流路に設けられるバルブは、冷凍装置を安定して運転させることを目的として、運転条件に応じて、冷凍装置の運転中に開閉させることができる。これに加えて、他の目的、例えば、冷凍装置の停止時に冷媒の移動を防ぐために、当該バルブを閉じることも妨げられない。
The present disclosure is a refrigerating device that circulates a refrigerant by a refrigerating cycle, includes a plurality of stages of compression mechanisms that are connected in series and each compresses a refrigerant, a compression section having three or more stages, and a low stage due to the compression section. A first heat exchanger for releasing heat to the outside air from the refrigerant that is compressed over a plurality of steps from to a high stage and discharged from the compression unit, and a plurality of pressure reducing mechanisms provided to each of the plurality of stages. Provided between the pressure reducing unit that reduces the pressure of the refrigerant that has passed through the first heat exchanger over a plurality of steps, the second heat exchanger that causes the refrigerant that has passed through the pressure reducing unit to absorb heat from the heat load, and the pressure reducing mechanism and the pressure reducing mechanism a plurality of gas-liquid separators each corresponding to the plurality of gas-liquid separators, and a plurality of intermediate-pressure injection passages for supplying gas-phase refrigerant from the corresponding gas-liquid separators between the compression mechanisms. and a valve provided in at least one of the plurality of intermediate pressure injection flow paths. Such a refrigeration system is configured such that the effective number of stages in which the refrigerant circulates is variable by operating valves.
In the present invention, the valve provided in the intermediate pressure injection flow path can be opened and closed during operation of the refrigeration system according to operating conditions for the purpose of stably operating the refrigeration system. In addition to this, closing the valve for other purposes, for example to prevent migration of the refrigerant when the refrigeration system is shut down, is not prevented.

本開示の冷凍装置によれば、複数の中間圧インジェクション流路の少なくとも一つに設けられるバルブを開または閉に切り替えることにより、冷媒が循環する有効段数が可変に構成されている。そのため、最大の段数による冷凍サイクルによりCOPを向上させつつ、最大の段数により運転させると運転状態が不安定となる場合には、運転中にバルブを閉じて最大の段数に対して有効段数を減らすことにより、冷凍装置を安定して運転させることができる。
本開示によれば、バルブの開閉による有効段数の変更により種々の運転条件における冷媒の状態のそれぞれに適合するサイクルを容易に実現することができるので、広範囲の運転条件に亘り安定して運転可能な多段圧縮の冷凍装置を提供することができる。
According to the refrigeration system of the present disclosure, the number of effective stages in which the refrigerant circulates is variable by switching between opening and closing the valve provided in at least one of the plurality of intermediate pressure injection passages. Therefore, while improving the COP by the refrigeration cycle with the maximum number of stages, if the operating state becomes unstable when operating with the maximum number of stages, the valve is closed during operation to reduce the effective number of stages with respect to the maximum number of stages. As a result, the refrigeration system can be stably operated.
According to the present disclosure, by changing the number of effective stages by opening and closing the valve, it is possible to easily realize a cycle that adapts to each state of the refrigerant under various operating conditions, so that stable operation is possible over a wide range of operating conditions. It is possible to provide a multi-stage compression refrigeration system.

第1実施形態に係る冷凍装置の回路構成を示す図である。It is a figure which shows the circuit structure of the refrigeration apparatus which concerns on 1st Embodiment. 図1に示す冷凍装置の通常運転モードにおけるモリエール線図である。2 is a Moliere diagram in a normal operation mode of the refrigeration system shown in FIG. 1; FIG. 図1に示す冷凍装置の高外気温モードにおけるモリエール線図である。2 is a Moliere diagram in the high outside air temperature mode of the refrigeration system shown in FIG. 1. FIG. 第1実施形態の変形例に係る冷凍装置の回路構成を示す図である。It is a figure which shows the circuit structure of the refrigeration apparatus based on the modification of 1st Embodiment. 第2実施形態に係る冷凍装置の回路構成を示す図である。It is a figure which shows the circuit structure of the refrigeration apparatus which concerns on 2nd Embodiment. 図5に示す冷凍装置の低外気温モードにおけるモリエール線図である。6 is a Moliere diagram in the low outside air temperature mode of the refrigeration system shown in FIG. 5; FIG. 変形例に係る冷凍装置の回路構成を示す図である。It is a figure which shows the circuit structure of the refrigeration apparatus which concerns on a modification.

以下、添付図面を参照しながら、本開示の一実施形態について説明する。
〔第1実施形態〕
(冷凍サイクルの基本要素)
図1に示す多段圧縮式の冷凍装置1は、冷凍サイクルにより冷媒を循環させることにより、外気を熱源として、適宜な熱負荷(例えば、装置筐体内の空気および収容物品)を冷却する。
冷凍装置1は、冷凍サイクルをなす基本要素として、冷媒を圧縮する圧縮部10と、冷媒を外気へと放熱させる放熱器E1(第1熱交換器)と、冷媒の圧力を減少させる減圧部20と、熱負荷から冷媒へと吸熱させる吸熱器E2(第2熱交換器)とを備えている。圧縮部10により圧縮された冷媒は、放熱器E1、減圧部20、および吸熱器E2をこの順序で流れ、圧縮部10へと吸入される。
An embodiment of the present disclosure will be described below with reference to the accompanying drawings.
[First embodiment]
(Basic elements of refrigeration cycle)
The multi-stage compression refrigerating apparatus 1 shown in FIG. 1 circulates a refrigerant in a refrigerating cycle to cool an appropriate heat load (for example, the air in the apparatus housing and stored items) using outside air as a heat source.
The refrigerating apparatus 1 includes, as basic elements forming a refrigerating cycle, a compression section 10 for compressing the refrigerant, a radiator E1 (first heat exchanger) for releasing heat from the refrigerant to the outside air, and a decompression section 20 for reducing the pressure of the refrigerant. and a heat absorber E2 (second heat exchanger) that absorbs heat from the heat load to the refrigerant. The refrigerant compressed by compression section 10 flows through radiator E<b>1 , decompression section 20 , and heat absorber E<b>2 in this order, and is sucked into compression section 10 .

本実施形態の冷凍装置1の冷媒回路には、二酸化炭素(CO)を少なくとも一部に含む冷媒が封入されている。かかる冷媒は、COの単一冷媒、あるいは、COに例えばR32冷媒を10~20%程度の比率で混合させた混合冷媒に相当する。二酸化炭素のGWPは「1」である。他の冷媒、例えば、HFC(Hydro Fluoro Carbon)の臨界温度に対して二酸化炭素の臨界温度は低い。そのため、冷凍装置1の通常運転モードにおいて、本実施形態の冷媒は、複数段に亘り冷媒を圧縮する圧縮部10により臨界圧力Pを超える圧力まで圧縮され、他の冷媒が用いられる場合よりも高圧側Hの設定圧力が高い状態で運転される。 The refrigerant circuit of the refrigeration apparatus 1 of the present embodiment is filled with a refrigerant containing carbon dioxide (CO 2 ) at least in part. Such a refrigerant corresponds to a single refrigerant of CO 2 or a mixed refrigerant in which CO 2 is mixed with, for example, R32 refrigerant at a ratio of about 10 to 20%. The GWP of carbon dioxide is "1". The critical temperature of carbon dioxide is lower than that of other refrigerants such as HFC (Hydro Fluoro Carbon). Therefore, in the normal operation mode of the refrigeration system 1, the refrigerant of the present embodiment is compressed to a pressure exceeding the critical pressure P C by the compression section 10 that compresses the refrigerant in multiple stages, and the pressure is higher than when other refrigerants are used. It is operated in a state where the set pressure on the high pressure side H is high.

(複数段の圧縮機構・減圧機構)
圧縮部10は、直列に接続される複数の圧縮機構11~14を含んでいる。第1段圧縮機構11、第2段圧縮機構12、第3段圧縮機構13、および第4段圧縮機構14は、低圧側Lから高圧側Hへと複数のステップに亘り冷媒を順次圧縮する。圧縮部10の段数Nは3以上であり、一例として段数Nは「4」である。第1段~第4段は、n1,n2,n3,n4の符号により示されている。
(multi-stage compression mechanism/decompression mechanism)
Compression unit 10 includes a plurality of compression mechanisms 11 to 14 connected in series. The first-stage compression mechanism 11, the second-stage compression mechanism 12, the third-stage compression mechanism 13, and the fourth-stage compression mechanism 14 sequentially compress the refrigerant from the low-pressure side L to the high-pressure side H over a plurality of steps. The number of stages N of the compression unit 10 is 3 or more, and as an example, the number of stages N is "4". The first to fourth stages are indicated by the symbols n1, n2, n3 and n4.

後述するように、段数Nは、冷凍装置1の運転モードに応じて変更される。図2は、通常運転モードにおいて想定される冷媒の圧力と比エンタルピとの関係を示すモリエール線図である。図2に示されているr1,r2…等の記号は、図1に示されている同じ記号と対応している。 As will be described later, the number of stages N is changed according to the operation mode of the refrigeration system 1 . FIG. 2 is a Moliere diagram showing the relationship between refrigerant pressure and specific enthalpy assumed in the normal operation mode. The symbols r1, r2, etc. shown in FIG. 2 correspond to the same symbols shown in FIG.

本実施形態の冷凍装置1は、2つの電動圧縮機101,102と、電動圧縮機101,102のそれぞれの電動機や膨張弁等の動作を制御可能な制御装置15と、電動圧縮機101,102の間に設けられる中間冷却熱交換器16とを備えている。
第1電動圧縮機101は、直列に接続される第1段圧縮機構11および第2段圧縮機構12と、それら圧縮機構11,12を収容するハウジング101Aと、圧縮機構11,12を回転駆動する電動機101Bとを備えている。
第2電動圧縮機102は、直列に接続される第3段圧縮機構13および第4段圧縮機構14と、それら圧縮機構13,14を収容するハウジング102Aと、圧縮機構13,14を回転駆動する電動機102Bとを備えている。
The refrigeration system 1 of this embodiment includes two electric compressors 101 and 102, a control device 15 capable of controlling the operation of the electric motors and expansion valves of the electric compressors 101 and 102, and the electric compressors 101 and 102. and an intermediate cooling heat exchanger 16 provided between.
The first electric compressor 101 rotates the first stage compression mechanism 11 and the second stage compression mechanism 12 that are connected in series, a housing 101A that houses the compression mechanisms 11 and 12, and the compression mechanisms 11 and 12. and an electric motor 101B.
The second electric compressor 102 rotates the third stage compression mechanism 13 and the fourth stage compression mechanism 14 that are connected in series, a housing 102A that houses the compression mechanisms 13 and 14, and the compression mechanisms 13 and 14. and an electric motor 102B.

それぞれ同一の電動機により駆動されるいずれも複数段の圧縮機構を備えた2つの電動圧縮機101,102を組み合わせることにより、段数Nの多段圧縮冷凍装置1が実現されている。そのため、制御装置15は、2つの電動機101B,102Bのそれぞれの回転数を制御すればよい。したがって、各段の圧縮機構11~14が個別に対応する電動機により駆動される場合と比べ、冷凍装置1の制御は容易である。また、圧縮部10が、それぞれに圧縮機構、電動機、およびハウジングを備えた4台の圧縮機からなる場合と比べ、冷凍装置1の小型化および軽量化を図ることができる。 Combining two electric compressors 101 and 102 each having a multi-stage compression mechanism driven by the same electric motor realizes a multi-stage compression refrigeration system 1 having N stages. Therefore, the control device 15 may control the respective rotation speeds of the two electric motors 101B and 102B. Therefore, the control of the refrigeration system 1 is easier than when the compression mechanisms 11 to 14 in each stage are individually driven by corresponding electric motors. In addition, the size and weight of the refrigeration apparatus 1 can be reduced compared to the case where the compression section 10 is composed of four compressors each having a compression mechanism, an electric motor, and a housing.

中間冷却熱交換器16は、第2段圧縮機構12から吐出された冷媒を外気への放熱により冷却し、第3段圧縮機構13の吸入部へと供給する(図2における作動点r4からr5へ)。 The intermediate cooling heat exchanger 16 cools the refrigerant discharged from the second-stage compression mechanism 12 by radiating heat to the outside air, and supplies the refrigerant to the suction portion of the third-stage compression mechanism 13 (operating points r4 to r5 in FIG. 2). What).

第1段圧縮機構11は、例えば、ピストンロータおびシリンダを含むロータリー式圧縮機構に相当する。第3段圧縮機構13も同様である。第2段圧縮機構12は、例えば、一対のスクロール部材を含むスクロール式圧縮機構に相当する。第4段圧縮機構14も同様である。 The first stage compression mechanism 11 corresponds to, for example, a rotary compression mechanism including a piston rotor and a cylinder. The third stage compression mechanism 13 is also the same. The second stage compression mechanism 12 corresponds to, for example, a scroll compression mechanism including a pair of scroll members. The same applies to the fourth stage compression mechanism 14 .

圧縮部10が複数段の圧縮機構11~14からなることに対応して、減圧部20は、各段(n1,n2,n3,n4)に与えられる、圧縮の段数Nと同数の減圧機構21~24を含んでいる。減圧機構21~24はそれぞれ、膨張弁、あるいはキャピラリーチューブ等であってよい。第4段減圧機構24、第3段減圧機構23、第2段減圧機構22、および第1段減圧機構21は、この順序で、放熱器E1を経た冷媒の圧力を複数のステップに亘り順次減少させる。 Corresponding to the fact that the compression unit 10 is composed of multiple stages of compression mechanisms 11 to 14, the decompression unit 20 has the same number of decompression mechanisms 21 as the number of compression stages N provided to each stage (n1, n2, n3, n4). ~24 included. Each of the decompression mechanisms 21-24 may be an expansion valve, a capillary tube, or the like. The fourth stage decompression mechanism 24, the third stage decompression mechanism 23, the second stage decompression mechanism 22, and the first stage decompression mechanism 21 sequentially reduce the pressure of the refrigerant that has passed through the radiator E1 in a plurality of steps in this order. Let

図2に示すように、複数段n1,n2,n3,n4の圧縮機構11~14により冷媒が圧縮されることで、冷媒の圧力が段階的に増大する。これに伴い冷媒の吐出温度が上昇する。
冷媒を外気へと放熱させる中間冷却熱交換器16の作用により冷媒の温度を低下させることで(図2の矢印A1参照)、圧縮部10の全体としての吐出温度の抑制に寄与することができる。
As shown in FIG. 2, the pressure of the refrigerant increases stepwise as the refrigerant is compressed by the multi-stage compression mechanisms 11-14 of n1, n2, n3, and n4. Along with this, the discharge temperature of the refrigerant rises.
By lowering the temperature of the refrigerant by the action of the intermediate cooling heat exchanger 16 that releases the heat of the refrigerant to the outside air (see arrow A1 in FIG. 2), it is possible to contribute to the suppression of the discharge temperature of the compression section 10 as a whole. .

第1段n1への吸入圧力と第2段n2からの吐出圧力との間の圧力を第1中間圧Pと称する。同様に、第2段n2への吸入圧力と第3段n3からの吐出圧力との間の圧力を第2中間圧Pと称し、第3段n3への吸入圧力と第4段n4からの吐出圧力との間の圧力を第3中間圧Pと称する。P<P<Pの関係が成り立つ。
高圧側Hにおける放熱器E1の設定圧力Pと、低圧側Lにおける吸熱器E2の設定圧力Pと、中間圧(P,P,P)とから決まる各段n1,n2,n3,n4の圧力比に基づいて、冷媒は、相変化を伴い圧力およびエンタルピを変化させながら、冷凍装置1の冷媒回路を循環する。
The pressure between the suction pressure to the first stage n1 and the discharge pressure from the second stage n2 is called the first intermediate pressure P1 . Similarly, the pressure between the suction pressure to the second stage n2 and the discharge pressure from the third stage n3 is called a second intermediate pressure P2 , and the pressure from the suction pressure to the third stage n3 and the pressure from the fourth stage n4 is The pressure between it and the discharge pressure is called a third intermediate pressure P3 . A relationship of P 1 <P 2 <P 3 holds.
Each stage n1, n2, n3 determined from the set pressure P H of the radiator E1 on the high pressure side H, the set pressure P L of the heat sink E2 on the low pressure side L, and the intermediate pressures (P 1 , P 2 , P 3 ) , n4, the refrigerant circulates in the refrigerant circuit of the refrigeration system 1 while changing the pressure and enthalpy with a phase change.

(中間圧ガスインジェクション)
冷凍装置1は、第1~4段減圧機構21~24の段と段との間における冷媒の気液分離により得られた中間圧のガス冷媒を第1~第4段圧縮機構11~14のそれぞれの間に供給するガスインジェクションを実施する。そのため、冷凍装置1は、第1~第4段減圧機構21~24のそれぞれの間に与えられるN-1個の気液分離器31~33と、気液分離器31~33にそれぞれ対応するN-1個の中間圧インジェクション流路41~43とを備えている。
(intermediate pressure gas injection)
In the refrigeration system 1, intermediate-pressure gas refrigerant obtained by gas-liquid separation of the refrigerant between the stages of the first to fourth stage pressure reducing mechanisms 21 to 24 is transferred to the first to fourth stage compression mechanisms 11 to 14. Perform gas injection to supply between each. Therefore, the refrigerating apparatus 1 corresponds to N−1 gas-liquid separators 31 to 33 provided between the first to fourth stage pressure reducing mechanisms 21 to 24, respectively, and the gas-liquid separators 31 to 33, respectively. It has N−1 intermediate pressure injection flow paths 41 to 43 .

通常運転モードにおいて、第4段圧縮機構14から吐出され、放熱器E1および第4段減圧機構24を経た冷媒の圧力(r12,r13,r14)、すなわち第3中間圧Pは、臨界圧力P以下に留まる。
第3中間圧気液分離器33(受液器)は、第4段減圧機構24から貯留タンク33Aの内部に冷媒を受け入れて気相と液相とに分離させる。これは、図2に示すように、r12から、r13およびr14への状態変化に相当する。
貯留タンク33Aの内部において冷媒は、密度差に基づいて気相と液相とに分離される。液面よりも上方の気相領域33Bには、第3中間圧インジェクション流路43が接続されている。
In the normal operation mode, the pressure (r12, r13, r14) of the refrigerant discharged from the fourth stage compression mechanism 14 and passed through the radiator E1 and the fourth stage decompression mechanism 24, that is, the third intermediate pressure P3 is the critical pressure P Stay below C.
The third intermediate-pressure gas-liquid separator 33 (liquid receiver) receives the refrigerant from the fourth stage decompression mechanism 24 into the storage tank 33A and separates it into a gas phase and a liquid phase. This corresponds to the state change from r12 to r13 and r14 as shown in FIG.
Inside the storage tank 33A, the refrigerant is separated into a gas phase and a liquid phase based on the density difference. A third intermediate pressure injection channel 43 is connected to the gas phase region 33B above the liquid surface.

第3中間圧インジェクション流路43は、気相領域33Bから第3中間圧Pのガス冷媒を第4段圧縮機構14の吸入部へと供給する(r13からr8へ)。第3中間圧インジェクション流路43により第4段圧縮機構14へ供給されるガス冷媒の温度は、第3段圧縮機構13から吐出される冷媒の温度よりも低い。そのため、第3中間圧インジェクション流路43により供給する冷媒と、第3段圧縮機構13から吐出される冷媒との全体として、第4段圧縮機構14へと吸入させる冷媒の温度が低下する(r7からr8へ)。そうすると、第4段圧縮機構14から吐出される冷媒の温度も低下するから、中間圧ガスインジェクションは、吐出温度の低減に寄与する。 The third intermediate pressure injection passage 43 supplies the gas refrigerant at the third intermediate pressure P3 from the gas phase region 33B to the suction portion of the fourth stage compression mechanism 14 (from r13 to r8). The temperature of the gas refrigerant supplied to the fourth stage compression mechanism 14 through the third intermediate pressure injection passage 43 is lower than the temperature of the refrigerant discharged from the third stage compression mechanism 13 . Therefore, the temperature of the refrigerant to be sucked into the fourth stage compression mechanism 14 is lowered (r7 to r8). As a result, the temperature of the refrigerant discharged from the fourth stage compression mechanism 14 also drops, so the intermediate pressure gas injection contributes to the reduction of the discharge temperature.

一方、貯留タンク33Aに貯留される第3中間圧Pの液冷媒は、貯留タンク33Aから流れ出て第3段減圧機構23により減圧される(r14からr15へ)。減圧機構23を含め、減圧機構21~23に液冷媒が供給されることによれば、吸熱器E2における蒸発過程に相当するエンタルピの拡大により(第3段減圧機構23について図2の矢印A2参照)、COPを向上させることができる。 On the other hand, the liquid refrigerant at the third intermediate pressure P3 stored in the storage tank 33A flows out of the storage tank 33A and is decompressed by the third stage decompression mechanism 23 (from r14 to r15). By supplying the liquid refrigerant to the decompression mechanisms 21 to 23 including the decompression mechanism 23, the enthalpy corresponding to the evaporation process in the heat absorber E2 is expanded (see arrow A2 in FIG. 2 for the third stage decompression mechanism 23). ), which can improve the COP.

以上で述べた吐出温度の低減と、エンタルピ拡大による効率向上は、第3中間圧P、第2中間圧P、および第1中間圧Pのそれぞれについて言える。本実施形態の4段に限らず、5段、6段と段数Nを増やすことで、吐出温度の低減および効率向上の効果を高めることが可能である。 The reduction in discharge temperature and the improvement in efficiency due to the expansion of enthalpy described above can be said for each of the third intermediate pressure P 3 , the second intermediate pressure P 2 , and the first intermediate pressure P 1 . By increasing the number of stages N to five or six instead of four in the present embodiment, it is possible to enhance the effect of reducing the discharge temperature and improving the efficiency.

第2中間圧Pおよび第1中間圧Pのそれぞれのガスインジェクションについても、上述の第3中間圧Pのガスインジェクションと同様である。
第3段減圧機構23を経た冷媒は、第2中間圧気液分離器32へと受け入れられ、第3中間圧気液分離器33と同様に気相と液相とに分離される。これは、r15から、r16およびr17への状態変化に相当する。
The gas injection for each of the second intermediate pressure P2 and the first intermediate pressure P1 is the same as the gas injection for the third intermediate pressure P3 described above.
The refrigerant that has passed through the third stage pressure reducing mechanism 23 is received by the second intermediate pressure gas-liquid separator 32 and separated into a gas phase and a liquid phase in the same manner as the third intermediate pressure gas-liquid separator 33 . This corresponds to a state change from r15 to r16 and r17.

第2中間圧気液分離器32の気相領域には、第2中間圧インジェクション流路42が接続されている。第2中間圧インジェクション流路42により、第2中間圧Pのガス冷媒を第3段圧縮機構13の吸入部へと供給すると(r16からr6へ)、中間冷却熱交換器16から流出して第3段圧縮機構13へと吸入される冷媒の温度が低下する(r5からr6へ)。第2段圧縮機構12と第3段圧縮機構13との間においては、中間圧Pのインジェクション作用に加え、中間冷却熱交換器16による作用(r4からr5へ)によっても第3段圧縮機構13への吸入温度が低下するため、吐出温度をより抑えることができる。
第2中間圧気液分離器32から流れ出る第2中間圧Pの液冷媒は、第2段減圧機構22により減圧される(r17からr18へ)。
A second intermediate pressure injection channel 42 is connected to the gas phase region of the second intermediate pressure gas-liquid separator 32 . When the second intermediate pressure injection flow path 42 supplies the gas refrigerant at the second intermediate pressure P2 to the intake portion of the third stage compression mechanism 13 (from r16 to r6), it flows out of the intermediate cooling heat exchanger 16 and The temperature of the refrigerant sucked into the third stage compression mechanism 13 decreases (from r5 to r6). Between the second-stage compression mechanism 12 and the third-stage compression mechanism 13, in addition to the injection action of the intermediate pressure P2 , the third-stage compression mechanism is also affected by the action of the intermediate cooling heat exchanger 16 (from r4 to r5). Since the intake temperature to 13 is lowered, the discharge temperature can be further suppressed.
The second intermediate pressure P2 liquid refrigerant flowing out of the second intermediate pressure gas-liquid separator 32 is decompressed by the second stage decompression mechanism 22 (from r17 to r18).

第2段減圧機構22を経た冷媒は、第1中間圧気液分離器31へと受け入れられて気相と液相とに分離される。これは、r18から、r19およびr20への状態変化に相当する。
第1中間圧気液分離器31の気相領域に接続される第1中間圧インジェクション流路41により、第1中間圧Pのガス冷媒を第2段圧縮機構12の吸入部へと供給すると(r18からr3へ)、第2段圧縮機構12へと吸入させる冷媒の温度が低下する(r2からr3へ)。
第1中間圧気液分離器31から流れ出る第1中間圧Pの液冷媒は、第1段減圧機構21により減圧される(r20からr21へ)。第1段減圧機構21を経た冷媒は、吸熱器E2により熱負荷から吸熱することで蒸発し、第1段圧縮機構11へと吸入される(r21からr22,r1へ)。
After passing through the second pressure reducing mechanism 22, the refrigerant is received by the first intermediate pressure gas-liquid separator 31 and separated into a gas phase and a liquid phase. This corresponds to a state change from r18 to r19 and r20.
When the first intermediate pressure injection passage 41 connected to the gas phase region of the first intermediate pressure gas-liquid separator 31 supplies the gas refrigerant at the first intermediate pressure P1 to the suction portion of the second stage compression mechanism 12 ( from r18 to r3), the temperature of the refrigerant sucked into the second stage compression mechanism 12 decreases (from r2 to r3).
The first intermediate pressure P1 liquid refrigerant flowing out of the first intermediate pressure gas-liquid separator 31 is decompressed by the first stage decompression mechanism 21 (from r20 to r21). The refrigerant that has passed through the first stage pressure reducing mechanism 21 is evaporated by absorbing heat from the heat load by the heat absorber E2, and is sucked into the first stage compression mechanism 11 (from r21 to r22, r1).

制御装置15により冷凍装置1が通常運転モードに設定されている状態で運転されるとき、冷凍装置1に備わる段数N分の圧縮、膨張、および中間圧インジェクションが行われることにより、低GWPの冷媒を使用しつつCOPを向上させ、かつ吐出温度を許容限度以下に維持しながら冷凍装置1を安定して運転させることができる。
しかしながら、例えば外気温が、通常運転モードで想定する外気温の範囲に対して過大である場合には、冷凍装置1を最大の段数Nで運転させると、運転状態が不安定となり得、冷媒を循環させることができないこともあり得る。
多段圧縮を経て圧縮部10から吐出されるCO冷媒の温度が臨界圧力Pを超えることは許容されるとしても、外気温の上昇に伴い放熱器E1による冷媒の放熱量が減少することで、第3中間圧P(r12,r13,r14)が臨界圧力Pを超えたならば、第3中間圧気液分離器33において冷媒が凝縮しないので気液分離を行うことはできず、超臨界状態の冷媒の挙動は安定しないので、安定した制御を行うことが難しい。超臨界流体の圧力、温度、流量等を予測して運転状態を安定させることは難しい。
When the refrigerating device 1 is operated in the normal operation mode set by the control device 15, compression, expansion, and intermediate pressure injection are performed for the number of stages N included in the refrigerating device 1, whereby the low GWP refrigerant The refrigerating apparatus 1 can be operated stably while improving the COP while using , and maintaining the discharge temperature below the allowable limit.
However, for example, when the outside temperature is excessively high relative to the outside temperature range assumed in the normal operation mode, operating the refrigeration system 1 with the maximum number of stages N may cause the operating state to become unstable, and the refrigerant will It may not be possible to circulate.
Even if it is permissible for the temperature of the CO2 refrigerant discharged from the compression section 10 through multi-stage compression to exceed the critical pressure PC, the amount of heat released by the radiator E1 decreases as the outside air temperature rises. , the third intermediate pressure P 3 (r12, r13, r14) exceeds the critical pressure P C , since the refrigerant does not condense in the third intermediate pressure gas-liquid separator 33, gas-liquid separation cannot be performed. Since the behavior of the refrigerant in the critical state is unstable, it is difficult to perform stable control. It is difficult to predict the pressure, temperature, flow rate, etc. of the supercritical fluid and stabilize the operating state.

そこで、外気温が過大である運転条件、あるいは他の運転条件を含め、広い範囲に亘り冷凍装置1を安定して運転させるため、冷凍装置1は、中間圧インジェクション流路41~43から任意に選択される少なくとも一つに設けられるバルブ(V3)を備えている。
本実施形態の冷凍装置1は、最も高圧側Hの第3中間圧インジェクション流路43に設けられる第3中間圧バルブV3を備えている。
第3中間圧バルブV3は、電磁弁であり、制御装置15から発せられる指令に基づいて開または閉に切り替えられる。
Therefore, in order to stably operate the refrigerating apparatus 1 over a wide range including operating conditions in which the outside air temperature is excessive or other operating conditions, the refrigerating apparatus 1 is arbitrarily selected from the intermediate pressure injection passages 41 to 43. A valve (V3) is provided in at least one selected.
The refrigerating apparatus 1 of this embodiment includes a third intermediate pressure valve V3 provided in the third intermediate pressure injection passage 43 on the highest pressure side H. As shown in FIG.
The third intermediate pressure valve V3 is an electromagnetic valve and is switched between open and closed based on a command issued from the control device 15.

冷凍装置1は、通常運転モードにおいては、第3中間圧バルブV3が開いた状態で、第1~第3中間圧インジェクション流路41~43により第1~第3中間圧P,P,Pのインジェクションを実施しつつ、図2に示すように冷媒の圧力およびエンタルピを変化させながら運転される。このとき、冷媒が循環している段数としての有効段数Nは、冷凍装置1に備わる段の総数Nに相当する「4」である。 In the normal operation mode, the refrigerating apparatus 1 applies the first to third intermediate pressures P 1 , P 2 , . . . While performing injection of P3 , operation is performed while changing the pressure and enthalpy of the refrigerant as shown in FIG. At this time, the number of effective stages NA as the number of stages in which the refrigerant is circulating is "4" corresponding to the total number N of stages provided in the refrigerating apparatus 1 .

(高外気温モード)
冷媒が臨界圧力を超える程に外気温が過大である場合には、制御装置15は、第3中間圧バルブV3を閉じて第1中間圧インジェクション流路41および第2中間圧インジェクション流路42のみにより中間圧インジェクションを実施する高外気温モードへと冷凍装置1の運転モードを切り替える。高外気温モードでは、第4段減圧機構24を経ても超臨界状態にある冷媒が、第3中間圧気液分離器33の貯留タンク33Aの内部を通過し、第3段減圧機構23により減圧された後に第2中間圧気液分離器32へと流入する(r12,r13,r14からr15へ)。このとき貯留タンク33Aには液冷媒が貯留されない(図4に示す貯留タンク33Aの内部の状態に相当)。
(high ambient temperature mode)
When the outside air temperature is so high that the refrigerant exceeds the critical pressure, the control device 15 closes the third intermediate pressure valve V3 to operate only the first intermediate pressure injection passage 41 and the second intermediate pressure injection passage 42. , the operation mode of the refrigeration system 1 is switched to the high outside air temperature mode in which intermediate pressure injection is performed. In the high outside air temperature mode, the refrigerant in the supercritical state after passing through the fourth stage pressure reducing mechanism 24 passes through the storage tank 33A of the third intermediate pressure gas-liquid separator 33 and is reduced in pressure by the third stage pressure reducing mechanism 23. After that, it flows into the second intermediate pressure gas-liquid separator 32 (from r12, r13, r14 to r15). At this time, no liquid refrigerant is stored in the storage tank 33A (corresponding to the state inside the storage tank 33A shown in FIG. 4).

第3中間圧バルブV3が閉じられると、第3中間圧インジェクション流路43を冷媒が流れないので、通常運転モードにおける第3段n3および第4段n4が圧縮・膨張工程において一段にまとまる結果、有効段数Nが「3」に減少する。図3に高外気温モードにおける冷媒の状態を示すように、冷凍装置1は、n1~n3の3段圧縮・3段膨張のサイクルにより運転される。超臨界状態の冷媒の圧力が第3段減圧機構23により減少するため(r12,r13,r14からr15へ)、第2中間圧Pが臨界圧力P以下に維持される。そのため、冷凍装置1は安定して運転される。 When the third intermediate pressure valve V3 is closed, the refrigerant does not flow through the third intermediate pressure injection passage 43, so the third stage n3 and the fourth stage n4 in the normal operation mode are combined into one stage in the compression/expansion process. The effective stage number N is reduced to "3". As shown in FIG. 3, the state of the refrigerant in the high outside air temperature mode, the refrigeration system 1 is operated in a three-stage compression/three-stage expansion cycle of n1 to n3. Since the pressure of the supercritical refrigerant is reduced by the third stage pressure reducing mechanism 23 (from r12, r13, r14 to r15), the second intermediate pressure P2 is maintained below the critical pressure PC . Therefore, the refrigeration system 1 is stably operated.

通常運転モードにおいて、制御装置15は、例えば、外気温と高圧側Hの設定圧力との対応を示すマップデータ等と、温度センサ17により検知される外気温とを用いることにより、外気温の検知結果に対応するマップデータ上の高圧側H圧力が、余裕を見込んで臨界圧力Pよりも低く設定された第1閾値圧力T(図3)に対して大きいか否かを判定する。外気温の検知結果に対応するマップデータ上の高圧側H圧力が第1閾値圧力Tに対して大きい場合には、制御装置15は、第3中間圧バルブV3を閉じて、通常運転モードから高外気温モードへと移行する。
高外気温モードにおいても外気温を継続して監視し、例えば、外気温の検知結果に対応するマップデータ上の高圧側H圧力が第1閾値圧力Tよりも低い第2閾値圧力Tに対して小さい場合には、制御装置15は、第3中間圧バルブV3を開いて、高外気温モードから通常運転モードへと復帰する。
In the normal operation mode, the controller 15 detects the outside temperature by using, for example, map data indicating the correspondence between the outside temperature and the set pressure of the high pressure side H and the outside temperature detected by the temperature sensor 17. It is determined whether or not the high-pressure side H pressure on the map data corresponding to the result is higher than the first threshold pressure T 1 (FIG. 3) set lower than the critical pressure P C with allowance for margin. When the high-pressure side H pressure on the map data corresponding to the detection result of the outside air temperature is larger than the first threshold pressure T1 , the control device 15 closes the third intermediate pressure valve V3 to exit the normal operation mode. Shift to high outside temperature mode.
The outside temperature is continuously monitored even in the high outside temperature mode, and for example, the high pressure side H pressure on the map data corresponding to the outside temperature detection result reaches the second threshold pressure T2 which is lower than the first threshold pressure T1. On the other hand, if it is smaller, the controller 15 opens the third intermediate pressure valve V3 to return from the high outside air temperature mode to the normal operation mode.

以上で説明した第1実施形態の冷凍装置1によれば、中間圧インジェクション流路41~43の少なくとも一つに設けられるバルブV3を開または閉に切り替えることにより、冷媒が循環する有効段数Nが可変に構成されている。そのため、通常運転モードにおいては最大の段数Nによる冷凍サイクルによりCOPを向上させつつ、高圧側Hの中間圧が臨界圧力Pを超える程に外気温が上昇した場合には、高圧側Hの中間圧インジェクション流路43に設けられているバルブV3を閉じて有効段数Nを減らすことにより、冷凍装置1を安定して運転させることができる。
つまり、本実施形態によれば、超臨界状態にまで圧縮される冷媒を扱いながらも、超臨界状態の冷媒挙動の予測等に基づく難しい制御が必要とならずに、バルブV3の開閉による有効段数Nの変更により種々の運転条件における冷媒の状態のそれぞれに適合するサイクルを容易に実現することができる。したがって、広範囲の運転条件に亘り安定して運転可能な多段圧縮の冷凍装置1を提供することができる。
According to the refrigeration system 1 of the first embodiment described above, by switching between opening and closing the valve V3 provided in at least one of the intermediate pressure injection passages 41 to 43, the effective number of stages N A in which the refrigerant circulates. are variably configured. Therefore, in the normal operation mode, while the COP is improved by the refrigeration cycle with the maximum number of stages N, when the outside air temperature rises to such an extent that the intermediate pressure on the high-pressure side H exceeds the critical pressure PC , the intermediate pressure on the high-pressure side H By closing the valve V3 provided in the pressure injection flow path 43 to reduce the number of effective stages NA , the refrigeration system 1 can be stably operated.
In other words, according to the present embodiment, even though the refrigerant compressed to the supercritical state is handled, difficult control based on the prediction of the behavior of the refrigerant in the supercritical state is not required. By changing the NA , it is possible to easily realize a cycle suitable for each state of the refrigerant under various operating conditions. Therefore, it is possible to provide a multi-stage compression refrigeration system 1 that can stably operate over a wide range of operating conditions.

冷凍装置1は、第3中間圧インジェクション流路43に設けられるバルブV3に加え、他の中間圧インジェクション流路42,41に設けられるバルブを備えていてもよい。例えば、図4に示すように、第2中間圧インジェクション流路42にも、制御装置15により開閉可能なバルブV2が設けられることは妨げられない。図4に示す高外気温モードにおいては、中間圧バルブV2,V3のうち、黒色で示す第3中間圧バルブV3のみが閉じられる。 The refrigeration system 1 may include valves provided in the other intermediate pressure injection flow paths 42 and 41 in addition to the valve V3 provided in the third intermediate pressure injection flow path 43 . For example, as shown in FIG. 4, the second intermediate pressure injection flow path 42 may also be provided with a valve V2 that can be opened and closed by the control device 15. As shown in FIG. In the high outside air temperature mode shown in FIG. 4, of the intermediate pressure valves V2 and V3, only the third intermediate pressure valve V3 shown in black is closed.

〔第2実施形態〕
次に、図5および図6を参照し、第2実施形態について説明する。以下、第1実施形態とは相違する事項を中心に説明する。第1実施形態と同様の構成要素には同じ符号を付している。
図5に示す冷凍装置1-2は、第1実施形態の冷凍装置1とは異なる運転条件に対応するため、第1中間圧インジェクション流路41に第1中間圧バルブV1を備えている。冷凍装置1-2は、第1実施形態の冷凍装置1と同様に、第3中間圧インジェクション流路43に設けられる第3中間圧バルブV3も備えている。第1中間圧バルブV1を備えていることを除いて、第2実施形態の冷凍装置1-2は、第1実施形態の冷凍装置1と同様に構成されている。
[Second embodiment]
Next, a second embodiment will be described with reference to FIGS. 5 and 6. FIG. The following description focuses on matters that are different from the first embodiment. The same symbols are given to the same components as in the first embodiment.
The refrigerating apparatus 1-2 shown in FIG. 5 has a first intermediate pressure valve V1 in the first intermediate pressure injection passage 41 in order to cope with operating conditions different from those of the refrigerating apparatus 1 of the first embodiment. The refrigerating device 1-2 also includes a third intermediate pressure valve V3 provided in the third intermediate pressure injection passage 43, like the refrigerating device 1 of the first embodiment. A refrigerating device 1-2 of the second embodiment is configured in the same manner as the refrigerating device 1 of the first embodiment, except that it includes a first intermediate pressure valve V1.

冷凍装置1-2は、冷凍装置1と同様に第3中間圧バルブV1を備えているため、中間圧バルブV1,V3のうち第3中間圧バルブV3のみを閉じて有効段数Nを「3」に減少させることにより、上述の高外気温モードを行うことができる。 Since the refrigerating device 1-2 has the third intermediate pressure valve V1 as in the refrigerating device 1, only the third intermediate pressure valve V3 of the intermediate pressure valves V1 and V3 is closed to set the effective stage number NA to "3. , the high ambient temperature mode described above can be performed.

高外気温モードとは逆に、外気温が低いと、高圧側Hの設定圧力Pと低圧側Lの設定圧力Pとの圧力比が小さくなる。当該圧力比が各段に按分されることになるため、通常運転モードと同様に最大段数Nで運転させると、各段n1,n2,n3,n4の圧力比が小さくなる。各段の圧力比が、気液分離器31~33からそれぞれ圧縮機構12~14へと冷媒を搬送するために必要な圧力比に対して不足する程に外気温が低い場合は、各段に冷媒を循環させることができない。
この場合には、制御装置15は、第1中間圧バルブV1および第3中間圧バルブV3の両方を閉じることで、通常運転モードから低外気温モード(低圧力比運転モード)へと冷凍装置1-2の運転モードを切り替える。低外気温モードでは、第2中間圧インジェクション流路42のみを通じて中間圧インジェクションを実施する。
Contrary to the high outside air temperature mode, when the outside air temperature is low, the pressure ratio between the set pressure PH on the high pressure side H and the set pressure PL on the low pressure side L becomes small. Since the pressure ratio is apportioned to each stage, if the maximum stage number N is used as in the normal operation mode, the pressure ratios of the stages n1, n2, n3, and n4 become smaller. When the outside air temperature is low enough that the pressure ratio of each stage is insufficient for the pressure ratio required to convey the refrigerant from the gas-liquid separators 31 to 33 to the compression mechanisms 12 to 14, respectively, Refrigerant cannot be circulated.
In this case, the control device 15 closes both the first intermediate pressure valve V1 and the third intermediate pressure valve V3 to switch the refrigeration system 1 from the normal operation mode to the low outside air temperature mode (low pressure ratio operation mode). - Switch between two operating modes. In the low outside air temperature mode, intermediate pressure injection is performed only through the second intermediate pressure injection passage 42 .

図6は、低外気温モードにおける冷媒の状態を示している。第1中間圧バルブV1および第3中間圧バルブV3が閉じられることで、有効段数Nは「2」に減少し、このとき冷凍装置1-2は、2段圧縮・2段膨張のサイクルにより運転される。段の総数Nに対して有効段数Nが減少した分、気液分離器31~33のそれぞれから圧縮機構12~14への冷媒の搬送に足りる圧力が各段に確保されるので、冷凍装置1は安定して運転される。 FIG. 6 shows the state of the refrigerant in the low outside temperature mode. By closing the first intermediate pressure valve V1 and the third intermediate pressure valve V3, the number of effective stages NA is reduced to "2". be driven. As the number of effective stages N A decreases with respect to the total number of stages N, the pressure sufficient for conveying the refrigerant from each of the gas-liquid separators 31 to 33 to the compression mechanisms 12 to 14 is ensured in each stage. 1 operates stably.

通常運転モードにおいて、制御装置15は、例えば、外気温と各段の圧力比との対応を示すマップデータ等と、温度センサ17により検知される外気温とを用いることにより、外気温の検知結果に対応するマップデータ上の各段圧力比が、中間圧インジェクションに必要な各段圧力比を考慮した各段の第1圧力比Rに対して大きいか小さいかを判定する。外気温の検知結果に対応するマップデータ上の各段圧力比が各段の第1圧力比Rに対して小さい場合には、制御装置15は、第1中間圧バルブV1および第3中間圧バルブV3を閉じて、通常運転モードから低外気温モードへと移行する。
外気温を継続して監視し、例えば、外気温の検知結果に対応するマップデータ上の各段の圧力比が、各段の第2圧力比R(R<R)に対して大きい場合には、制御装置15は、中間圧バルブV1,V3を開き、低外気温モードから通常運転モードへと復帰する。
In the normal operation mode, the control device 15 uses, for example, map data indicating the correspondence between the outside air temperature and the pressure ratio of each stage, and the outside temperature detected by the temperature sensor 17 to obtain the outside temperature detection result. is larger or smaller than the first pressure ratio R1 of each stage considering the pressure ratio of each stage required for intermediate pressure injection. When the pressure ratio of each stage on the map data corresponding to the detection result of the outside air temperature is smaller than the first pressure ratio R1 of each stage, the control device 15 controls the first intermediate pressure valve V1 and the third intermediate pressure valve V1. The valve V3 is closed to shift from the normal operation mode to the low outside air temperature mode.
The outside air temperature is continuously monitored, and for example, the pressure ratio of each stage on the map data corresponding to the detection result of the outside air temperature is larger than the second pressure ratio R 2 (R 1 <R 2 ) of each stage. In this case, the control device 15 opens the intermediate pressure valves V1 and V3 to return from the low outside air temperature mode to the normal operation mode.

以上で説明した第2実施形態の冷凍装置1-2によれば、高圧側Hおよび低圧側Lのそれぞれに一つずつ設けられている中間圧バルブV1,V3のうち少なくとも第3中間圧バルブV3を閉じることにより、段の総数である4段に対して有効段数Nを3段と2段とに変化させることができる。そうすると、第1実施形態の冷凍装置1に対してより広範囲の運転条件に亘り冷凍装置1-2を安定して運転させることができる。 According to the refrigeration system 1-2 of the second embodiment described above, at least the third intermediate pressure valve V3 among the intermediate pressure valves V1 and V3 provided one each on the high pressure side H and the low pressure side L is closed, the number of effective stages N A can be changed to 3 stages and 2 stages for the total number of stages of 4 stages. By doing so, the refrigerating device 1-2 can be stably operated over a wider range of operating conditions than the refrigerating device 1 of the first embodiment.

有効段数Nを減少させる観点だけから言えば、低外気温モードにおいて、第2実施形態の中間圧バルブV1,V3のうちいずれか一方のみを閉じることができる。例えば、第3中間圧バルブV3のみを閉じ、第1中間圧インジェクション流路41と第2中間圧インジェクション流路42とによる中間圧インジェクションの実施に足りる圧力比が各段n1,n2,n3に確保される場合である。外気温を検知しつつ、例えば、中間圧バルブV1~V3のうち、全部が開いた状態(4段)、中間圧バルブV3のみが閉じた状態(3段)、および中間圧バルブV1,V3の両方が閉じた状態(2段)のうちの最も安定する段数にて冷凍装置1-2を運転させることができる。
あるいは、第1中間圧バルブV1のみを閉じ、第3中間圧インジェクション流路43と第2中間圧インジェクション流路42とによる中間圧インジェクションの実施に足りる圧力比を各段n2,n3,n4に確保してもよい。後者の場合、第3中間圧Pが臨界圧力Pを超える程に外気温が高い環境では冷凍装置1-2が使用されないとすれば、第3中間圧インジェクション流路43への中間圧バルブV3の設置を省くことができる。
From the viewpoint of reducing the effective stage number NA , only one of the intermediate pressure valves V1 and V3 of the second embodiment can be closed in the low outside air temperature mode. For example, only the third intermediate pressure valve V3 is closed, and a pressure ratio sufficient for performing intermediate pressure injection by the first intermediate pressure injection channel 41 and the second intermediate pressure injection channel 42 is secured in each stage n1, n2, n3. is the case. While detecting the outside air temperature, for example, among the intermediate pressure valves V1 to V3, all are open (four stages), only the intermediate pressure valve V3 is closed (three stages), and the intermediate pressure valves V1 and V3 are closed (three stages). The refrigerating device 1-2 can be operated at the most stable number of stages in the state where both are closed (two stages).
Alternatively, only the first intermediate pressure valve V1 is closed, and a pressure ratio sufficient for performing intermediate pressure injection by the third intermediate pressure injection passage 43 and the second intermediate pressure injection passage 42 is secured in each stage n2, n3, n4. You may In the latter case, if the refrigeration system 1-2 is not used in an environment where the outside air temperature is so high that the third intermediate pressure P3 exceeds the critical pressure Pc , the intermediate pressure valve to the third intermediate pressure injection passage 43 is Installation of V3 can be omitted.

第2実施形態において、第2中間圧インジェクション流路42にも開閉バルブを設けることは妨げられない。但し上記第2実施形態では、低外気温モードを含めた全ての運転モードにおいて常時、第2中間圧インジェクション流路42を通じた中間圧インジェクションを行うことで2段圧縮・2段膨張サイクルを維持するから、第2中間圧インジェクション流路42には中間圧バルブを設置しないことにより装置コストを抑えることができる。 In the second embodiment, the second intermediate pressure injection flow path 42 may also be provided with an on-off valve. However, in the above-described second embodiment, the two-stage compression/two-stage expansion cycle is maintained by always performing intermediate pressure injection through the second intermediate pressure injection passage 42 in all operating modes including the low outside air temperature mode. Therefore, by not installing an intermediate pressure valve in the second intermediate pressure injection passage 42, the device cost can be suppressed.

段の総数Nが「4」よりも多い場合、例えば、「5」や「6」である場合であっても、第2実施形態と同様に、段数Nを減少させて冷凍装置を運転させることができる。
例えば、段数Nが「5」である場合には、冷凍装置は、高圧側Hの第4中間圧インジェクション流路および第3中間圧インジェクション流路の少なくとも一つに設けられる中間圧バルブと、高圧側Hの第4中間圧インジェクション流路および第3中間圧インジェクション流路の少なくとも一つに設けられる中間圧バルブとを備えている。
この場合において、冷凍装置が、第4中間圧バルブV4、第3中間圧バルブV3、第2中間圧バルブV2、および第1中間圧バルブV1を備えているとすると、低外気温モードにおいては、例えば、第1中間圧バルブV1、第3中間圧バルブV3、および第4中間圧バルブV4を閉じて2段サイクルで運転させたり、あるいは、第1中間圧バルブV1および第4中間圧バルブV4を閉じて3段サイクルで運転させたりすることが可能である。つまり、有効段数Nを「2」または「3」に変更することができる。
Even if the total number of stages N is more than "4", for example, "5" or "6", the refrigeration system can be operated by reducing the number of stages N as in the second embodiment. can be done.
For example, when the stage number N is "5", the refrigeration system includes an intermediate pressure valve provided in at least one of the fourth intermediate pressure injection channel and the third intermediate pressure injection channel on the high pressure side H; an intermediate pressure valve provided in at least one of the fourth intermediate pressure injection channel and the third intermediate pressure injection channel on side H;
In this case, assuming that the refrigeration system includes a fourth intermediate pressure valve V4, a third intermediate pressure valve V3, a second intermediate pressure valve V2, and a first intermediate pressure valve V1, in the low outside air temperature mode, For example, the first intermediate pressure valve V1, the third intermediate pressure valve V3, and the fourth intermediate pressure valve V4 are closed to operate in a two-stage cycle, or the first intermediate pressure valve V1 and the fourth intermediate pressure valve V4 are closed. It is possible to close it and operate it in a three-stage cycle. That is, the number of effective stages NA can be changed to "2" or "3".

〔変形例〕
図示を省略するが、第1~第3中間圧インジェクション流路41~43にそれぞれ、つまり中間圧インジェクション流路41~43の全数に対して中間圧バルブを設けることも可能である。その場合において、冷凍装置に備わる3つの中間圧バルブV1,V2,V3のいずれも閉じることで、有効段数Nを「1」にまで減少させることが可能となる。
また、冷凍装置に備わる3つの中間圧バルブV1,V2,V3のうちの一つまたは二つのバルブを常時開放とし、残りの中間圧バルブのみを開閉させることにより、要求される種々の運転条件に冷凍装置を対応させることができる。このとき常時開放されるバルブでも、冷凍装置に使用される冷媒や、冷凍装置の使用地域に適した外気温範囲等の運転条件によっては、運転モードに応じて閉じることができる。つまり、同じ冷媒回路を冷媒や使用環境温度、あるいは用途等が異なる複数の製品に展開することかできる。
[Modification]
Although not shown, intermediate pressure valves may be provided for each of the first to third intermediate pressure injection channels 41 to 43, that is, for all intermediate pressure injection channels 41 to 43. FIG. In this case, closing all of the three intermediate pressure valves V1, V2, V3 provided in the refrigeration system can reduce the effective number of stages NA to "1".
In addition, by keeping one or two of the three intermediate pressure valves V1, V2, and V3 provided in the refrigeration system open at all times, and opening and closing only the remaining intermediate pressure valves, it is possible to meet various required operating conditions. Refrigeration equipment can be adapted. At this time, even the valves that are normally open can be closed according to the operation mode depending on the operating conditions such as the refrigerant used in the refrigeration system and the outside air temperature range suitable for the region where the refrigeration system is used. In other words, the same refrigerant circuit can be applied to multiple products with different refrigerants, operating environment temperatures, or uses.

図7に示す冷凍装置1-3は、複数段の電動圧縮機(図1の101,102)を備えていない。冷凍装置1-3に備わる圧縮機構11~13はそれぞれ、電動機10Mおよびハウジング10Hと共に、単段の圧縮機として構成されている。
冷凍装置1-3は、第1、第2中間圧インジェクション流路41,42のうち高圧側Hの第2中間圧インジェクション流路42に第2中間圧バルブV2を備えているとともに、低圧側Lの第1中間圧インジェクション流路41に第1中間圧バルブV1を備えている。
The refrigerating apparatus 1-3 shown in FIG. 7 does not have a multi-stage electric compressor (101, 102 in FIG. 1). Each of the compression mechanisms 11-13 provided in the refrigerating device 1-3 is configured as a single-stage compressor together with an electric motor 10M and a housing 10H.
The refrigerating device 1-3 includes a second intermediate pressure valve V2 in a second intermediate pressure injection channel 42 on the high pressure side H of the first and second intermediate pressure injection channels 41 and 42, and a second intermediate pressure valve V2 on the low pressure side L A first intermediate pressure valve V1 is provided in the first intermediate pressure injection flow path 41 of .

外気温が高いため、第1、第2中間圧インジェクション流路41,42のいずれも使用して中間圧インジェクションを実施した場合に第2中間圧Pが臨界圧力Pを超えるとするならば、最も高圧側Hの第2中間圧バルブV2を閉じることにより、冷凍装置1-3を2段圧縮・2段膨張サイクルで運転させるとよい。
また、外気温が低いため、第1、第2中間圧インジェクション流路41,42の両方を使用して中間圧インジェクションを実施した場合に各段の圧力比が不足するとするならば、あるいは他の理由から、中間圧バルブV1,V2のいずれか一方または両方を閉じることにより、2段圧縮・2段膨張サイクルまたは1段圧縮・膨張サイクルで冷凍装置1-3を運転させるとよい。
If the second intermediate pressure P2 exceeds the critical pressure PC when intermediate pressure injection is performed using both the first and second intermediate pressure injection passages 41 and 42 because the outside air temperature is high, By closing the second intermediate pressure valve V2 on the highest pressure side H, the refrigeration system 1-3 may be operated in a two-stage compression/two-stage expansion cycle.
Also, if the outside air temperature is low and both the first and second intermediate pressure injection passages 41 and 42 are used to carry out intermediate pressure injection, the pressure ratio of each stage will be insufficient. For this reason, it is preferable to operate the refrigeration system 1-3 in a two-stage compression/two-stage expansion cycle or a one-stage compression/expansion cycle by closing one or both of the intermediate pressure valves V1 and V2.

冷凍装置1-3は、中間冷却熱交換器16(図1)を備えていないが、吐出温度を低減させるために、圧縮機構11,12の間、および圧縮機構12,13の間の少なくともいずれかに中間冷却熱交換器16を設けることができる。
上述の冷凍装置1,1-2においても、中間冷却熱交換器16は、必要に応じて設けられていれば足りる。
Refrigeration system 1-3 does not include intermediate cooling heat exchanger 16 (FIG. 1), but in order to reduce the discharge temperature, at least one between compression mechanisms 11 and 12 and/or between compression mechanisms 12 and 13 is provided. An intercooling heat exchanger 16 may be provided.
In the refrigerating apparatuses 1 and 1-2 described above, it is sufficient if the intermediate cooling heat exchanger 16 is provided as necessary.

上記以外にも、上記実施形態で挙げた構成を取捨選択したり、他の構成に適宜変更したりすることが可能である。
例えば、上記各実施形態において、圧縮機構11~14を保護するため、気液分離器31~33に液位センサを設けることが可能である。液位センサにより、貯留タンクに過大な量の液冷媒が貯留されていることが検知されたならば、制御装置15により、対応する中間圧インジェクション流路の中間圧バルブを閉じるとよい。そうすることで、液冷媒の流入による圧縮機構の損傷を未然に防ぐことができる。
In addition to the above, it is possible to select the configurations mentioned in the above embodiments, or to change them to other configurations as appropriate.
For example, in each of the embodiments described above, liquid level sensors can be provided in the gas-liquid separators 31-33 in order to protect the compression mechanisms 11-14. If the liquid level sensor detects that an excessive amount of liquid refrigerant is stored in the storage tank, the controller 15 may close the intermediate pressure valve of the corresponding intermediate pressure injection passage. By doing so, it is possible to prevent damage to the compression mechanism due to the inflow of the liquid refrigerant.

〔付記〕
以上で説明した冷凍装置は、以下のように把握される。
〔1〕冷凍サイクルにより冷媒を循環させる冷凍装置1,1-2,1-3は、直列に接続されてそれぞれ冷媒を圧縮する複数段の圧縮機構11~14を含み、段数Nが3以上である圧縮部10と、圧縮部10により低段から高段へと複数のステップに亘り圧縮されて圧縮部10から吐出された冷媒を、外気へと放熱させる第1熱交換器(E1)と、複数段の各段に与えられる複数の減圧機構21~24を含み、第1熱交換器(E1)を経た冷媒の圧力を複数のステップに亘り減少させる減圧部20と、減圧部20を経た冷媒を熱負荷から吸熱させる第2熱交換器(E2)と、減圧機構21~24のうちの減圧機構間にそれぞれ与えられる複数の気液分離器31~33と、複数の気液分離器31~33にそれぞれ対応し、対応する気液分離器31~33から圧縮機構11~14のうちの圧縮機構間に気相の冷媒を供給する複数の中間圧インジェクション流路41~43と、複数の中間圧インジェクション流路41~43の少なくとも一つに設けられるバルブV1,V2,V3と、を備える。バルブV1,V2,V3を動作させることで、冷媒が循環する有効段数Nが可変に構成されている。
〔2〕バルブV3は、複数の中間圧インジェクション流路41~43のうち最も高圧の中間圧インジェクション流路41~43に設けられる。
〔3〕冷媒は、二酸化炭素を少なくとも一部に含む。
〔4〕段数Nは、4以上であり、バルブV1,V2,V3は、複数の中間圧インジェクション流路41~43のうち、高圧側の中間圧インジェクション流路41~43の少なくとも一つと、低圧側の中間圧インジェクション流路41~43の少なくとも一つとに設けられている。
〔5〕冷凍装置1,1-2,1-3は、いずれかの圧縮機構11~14としての低圧側圧縮機構から吐出された冷媒を外気と熱交換させて、低圧側圧縮機構と直列に接続されている圧縮機構としての高圧側圧縮機構に流入させる中間冷却熱交換器16を備える。
〔6〕圧縮部10は、直列に接続される複数の圧縮機構11,12(または13,14)と、複数の圧縮機構11,12(または13,14)を収容するハウジング(101A等)と、複数の圧縮機構11,12(または13,14)を駆動する電動機(101B等)と、を備えた複数段電動圧縮機101,102を含む。
〔7〕冷凍装置1,1-2,1-3は、バルブV1,V2,V3を動作させる指令を発生させる制御装置15を備え、制御装置15は、外気の温度に応じて指令を発生させることにより、有効段数Nを変化させる。
[Appendix]
The refrigeration system described above is understood as follows.
[1] The refrigerating devices 1, 1-2, 1-3 that circulate the refrigerant by the refrigerating cycle include multiple stages of compression mechanisms 11 to 14 that are connected in series and each compresses the refrigerant, and the number of stages N is 3 or more. a compression unit 10, a first heat exchanger (E1) that releases the refrigerant discharged from the compression unit 10 after being compressed in a plurality of steps from a low stage to a high stage by the compression unit 10, to the outside air; A decompression unit 20 that includes a plurality of decompression mechanisms 21 to 24 provided to each of the multiple stages and reduces the pressure of the refrigerant that has passed through the first heat exchanger (E1) over a plurality of steps, and the refrigerant that has passed through the decompression unit 20. A second heat exchanger (E2) that absorbs heat from the heat load, a plurality of gas-liquid separators 31 to 33 respectively provided between the pressure reducing mechanisms of the pressure reducing mechanisms 21 to 24, and a plurality of gas-liquid separators 31 to 33, and a plurality of intermediate pressure injection passages 41 to 43 that supply gas-phase refrigerant between the compression mechanisms of the compression mechanisms 11 to 14 from the corresponding gas-liquid separators 31 to 33, and a plurality of intermediate pressure injection passages 41 to 43. and valves V1, V2, and V3 provided in at least one of the pressure injection flow paths 41-43. By operating the valves V1, V2 and V3, the number of effective stages NA through which the refrigerant circulates is made variable.
[2] The valve V3 is provided in the intermediate pressure injection passages 41-43 having the highest pressure among the plurality of intermediate pressure injection passages 41-43.
[3] The refrigerant contains at least a portion of carbon dioxide.
[4] The number of stages N is 4 or more, and the valves V1, V2, and V3 are connected to at least one of the intermediate pressure injection passages 41 to 43 on the high pressure side and the low pressure injection passages 41 to 43. It is provided in at least one of the intermediate pressure injection flow paths 41 to 43 on the side.
[5] The refrigerating devices 1, 1-2, and 1-3 exchange heat with the outside air in the refrigerant discharged from the low-pressure side compression mechanism as one of the compression mechanisms 11 to 14, and is connected in series with the low-pressure side compression mechanism. It has an intercooling heat exchanger 16 that flows into a high-pressure side compression mechanism as a connected compression mechanism.
[6] The compression unit 10 includes a plurality of compression mechanisms 11, 12 (or 13, 14) connected in series and a housing (101A, etc.) that accommodates the plurality of compression mechanisms 11, 12 (or 13, 14). , and an electric motor (101B, etc.) that drives a plurality of compression mechanisms 11, 12 (or 13, 14).
[7] The refrigerating devices 1, 1-2, 1-3 are provided with a control device 15 that generates a command to operate the valves V1, V2, V3, and the control device 15 generates a command according to the temperature of the outside air. Thus, the number of effective stages NA is changed.

1,1-2,1-3 冷凍装置
10 圧縮部
10H ハウジング
10M 電動機
11 第1段圧縮機構
12 第2段圧縮機構
13 第3段圧縮機構
14 第4段圧縮機構
15 制御装置
16 中間冷却熱交換器(中間熱交換器)
17 温度センサ
20 減圧部
21 第1段減圧機構
22 第2段減圧機構
23 第3段減圧機構
24 第4段減圧機構
31 第1中間圧気液分離器
32 第2中間圧気液分離器
33 第3中間圧気液分離器
33A 貯留タンク
33B 気相領域
41 第1中間圧インジェクション流路
42 第2中間圧インジェクション流路
43 第3中間圧インジェクション流路
101 第1電動圧縮機(複数段電動圧縮機)
101A ハウジング
101B 電動機
102 第2電動圧縮機(複数段電動圧縮機)
102A ハウジング
102B 電動機
E1 放熱器(第1熱交換器)
E2 吸熱器(第2熱交換器)
H 高圧側
L 低圧側
N 段数
有効段数
第1中間圧
第2中間圧
第3中間圧
臨界圧力
,P 設定圧力
,R 圧力比
第1閾値圧力
第2閾値圧力
V1 第1中間圧バルブ
V2 第2中間圧バルブ
V3 第3中間圧バルブ
n1~n4 段
r1~r22 作動点
1, 1-2, 1-3 Refrigerating device 10 Compression unit 10H Housing 10M Electric motor 11 First stage compression mechanism 12 Second stage compression mechanism 13 Third stage compression mechanism 14 Fourth stage compression mechanism 15 Control device 16 Intermediate cooling heat exchange vessel (intermediate heat exchanger)
17 temperature sensor 20 decompression section 21 first stage decompression mechanism 22 second stage decompression mechanism 23 third stage decompression mechanism 24 fourth stage decompression mechanism 31 first intermediate pressure gas-liquid separator 32 second intermediate pressure gas-liquid separator 33 third intermediate Pressure gas-liquid separator 33A Storage tank 33B Gas phase region 41 First intermediate pressure injection channel 42 Second intermediate pressure injection channel 43 Third intermediate pressure injection channel 101 First electric compressor (multi-stage electric compressor)
101A housing 101B electric motor 102 second electric compressor (multi-stage electric compressor)
102A housing 102B electric motor E1 radiator (first heat exchanger)
E2 heat absorber (second heat exchanger)
H High pressure side L Low pressure side N Number of stages NA Effective number of stages P 1 First intermediate pressure P 2 Second intermediate pressure P 3 Third intermediate pressure PC Critical pressure PH , PL Set pressure R 1 , R 2 Pressure ratio T 1 1st threshold pressure T 2 2nd threshold pressure V1 1st intermediate pressure valve V2 2nd intermediate pressure valve V3 3rd intermediate pressure valve n1~n4 stage r1~r22 operating point

Claims (7)

冷凍サイクルにより冷媒を循環させる冷凍装置であって、
直列に接続されてそれぞれ前記冷媒を圧縮する複数段の圧縮機構を含み、段数が3以上である圧縮部と、
前記圧縮部により低段から高段へと複数のステップに亘り圧縮されて前記圧縮部から吐出された前記冷媒を、外気へと放熱させる第1熱交換器と、
前記複数段の各段に与えられる複数の減圧機構を含み、前記第1熱交換器を経た前記冷媒の圧力を複数のステップに亘り減少させる減圧部と、
前記減圧部を経た前記冷媒を熱負荷から吸熱させる第2熱交換器と、
前記減圧機構と前記減圧機構との間にそれぞれ与えられる複数の気液分離器と、
前記複数の気液分離器にそれぞれ対応し、対応する前記気液分離器から前記圧縮機構と前記圧縮機構との間に気相の前記冷媒を供給する複数の中間圧インジェクション流路と、
前記複数の中間圧インジェクション流路の少なくとも一つに設けられるバルブと、を備え、
前記バルブを動作させることで、前記冷媒が循環する有効段数が可変に構成されている、
冷凍装置。
A refrigeration device that circulates a refrigerant by a refrigeration cycle,
a compression unit including a plurality of stages of compression mechanisms that are connected in series and each compresses the refrigerant, and has three or more stages;
a first heat exchanger for releasing heat to the outside air from the refrigerant that has been compressed in a plurality of steps from a low stage to a high stage by the compression section and discharged from the compression section;
a decompression unit that includes a plurality of decompression mechanisms provided to each of the plurality of stages and reduces the pressure of the refrigerant that has passed through the first heat exchanger in a plurality of steps;
a second heat exchanger that causes the refrigerant that has passed through the decompression unit to absorb heat from a heat load;
a plurality of gas-liquid separators respectively provided between the decompression mechanism and the decompression mechanism;
a plurality of intermediate-pressure injection passages corresponding to the plurality of gas-liquid separators, and supplying the gas-phase refrigerant between the compression mechanism and the compression mechanism from the corresponding gas-liquid separator;
a valve provided in at least one of the plurality of intermediate pressure injection flow paths,
By operating the valve, the number of effective stages in which the refrigerant circulates is variable.
refrigeration equipment.
前記バルブは、前記複数の中間圧インジェクション流路のうち最も高圧の前記中間圧インジェクション流路に設けられる、
請求項1に記載の冷凍装置。
The valve is provided in the intermediate-pressure injection channel having the highest pressure among the plurality of intermediate-pressure injection channels,
Refrigeration equipment according to claim 1 .
前記冷媒は、二酸化炭素を少なくとも一部に含む、
請求項1または2に記載の冷凍装置。
The refrigerant contains at least a portion of carbon dioxide,
3. The refrigeration system according to claim 1 or 2.
前記段数は、4以上であり、
前記バルブは、前記複数の中間圧インジェクション流路のうち、高圧側の前記中間圧インジェクション流路の少なくとも一つと、低圧側の前記中間圧インジェクション流路の少なくとも一つとに設けられている、
請求項1から3のいずれか一項に記載の冷凍装置。
The number of steps is 4 or more,
The valve is provided in at least one of the intermediate-pressure injection channels on the high-pressure side and at least one of the intermediate-pressure injection channels on the low-pressure side among the plurality of intermediate-pressure injection channels.
4. A refrigeration system according to any one of claims 1 to 3.
いずれかの前記圧縮機構としての低段側圧縮機構から吐出された前記冷媒を前記外気と熱交換させて、前記低段側圧縮機構と直列に接続されている前記圧縮機構としての高圧側圧縮機構に流入させる中間熱交換器を備える、
請求項1から4のいずれか一項に記載の冷凍装置。
A high-pressure side compression mechanism as the compression mechanism connected in series with the low-stage side compression mechanism by heat-exchanging the refrigerant discharged from the low-stage side compression mechanism as the compression mechanism with the outside air. comprising an intermediate heat exchanger feeding into
A refrigeration system according to any one of claims 1 to 4.
前記圧縮部は、
直列に接続される複数の前記圧縮機構と、前記複数の圧縮機構を収容するハウジングと、前記複数の圧縮機構を駆動する電動機と、を備えた複数段電動圧縮機を含む、
請求項1から5のいずれか一項に記載の冷凍装置。
The compressing section is
A multi-stage electric compressor comprising a plurality of the compression mechanisms connected in series, a housing accommodating the plurality of compression mechanisms, and an electric motor driving the plurality of compression mechanisms,
A refrigeration system according to any one of claims 1 to 5.
前記バルブを動作させる指令を発生させる制御装置を備え、
前記制御装置は、前記外気の温度に応じて前記指令を発生させることにより、前記有効段数を変化させる、
請求項1から6のいずれか一項に記載の冷凍装置。
A control device that generates a command to operate the valve,
The control device changes the number of effective stages by generating the command according to the temperature of the outside air.
A refrigeration apparatus according to any one of claims 1 to 6.
JP2021089018A 2021-05-27 2021-05-27 Multistage compression refrigeration device Pending JP2022181837A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021089018A JP2022181837A (en) 2021-05-27 2021-05-27 Multistage compression refrigeration device
PCT/JP2022/004824 WO2022249566A1 (en) 2021-05-27 2022-02-08 Multi-stage compression refrigeration device
EP22810850.2A EP4350256A1 (en) 2021-05-27 2022-02-08 Multi-stage compression refrigeration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021089018A JP2022181837A (en) 2021-05-27 2021-05-27 Multistage compression refrigeration device

Publications (1)

Publication Number Publication Date
JP2022181837A true JP2022181837A (en) 2022-12-08

Family

ID=84229756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021089018A Pending JP2022181837A (en) 2021-05-27 2021-05-27 Multistage compression refrigeration device

Country Status (3)

Country Link
EP (1) EP4350256A1 (en)
JP (1) JP2022181837A (en)
WO (1) WO2022249566A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240110736A1 (en) * 2022-09-30 2024-04-04 Hill Phoenix, Inc. Co2 refrigeration system with multiple receivers

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002188865A (en) * 2000-10-13 2002-07-05 Mitsubishi Heavy Ind Ltd Multiple stage compression type refrigerating machine
JP2006183950A (en) * 2004-12-28 2006-07-13 Sanyo Electric Co Ltd Refrigeration apparatus and refrigerator
US7631510B2 (en) * 2005-02-28 2009-12-15 Thermal Analysis Partners, LLC. Multi-stage refrigeration system including sub-cycle control characteristics
JP2006153455A (en) * 2006-03-14 2006-06-15 Sanyo Electric Co Ltd Supercritical refrigerating device
KR101155494B1 (en) * 2009-11-18 2012-06-15 엘지전자 주식회사 Heat pump
CN104864620B (en) * 2014-02-26 2019-01-01 荏原冷热系统株式会社 Centrifugal refrierator
JP6594707B2 (en) 2015-08-27 2019-10-23 三菱重工サーマルシステムズ株式会社 Two-stage compression refrigeration system
JP2018009565A (en) * 2016-06-30 2018-01-18 株式会社デンソー Multi-stage compressor
JP2020204454A (en) * 2019-06-17 2020-12-24 パナソニック株式会社 Refrigeration cycle device

Also Published As

Publication number Publication date
WO2022249566A1 (en) 2022-12-01
EP4350256A1 (en) 2024-04-10

Similar Documents

Publication Publication Date Title
US7293428B2 (en) Refrigerating machine
US7331196B2 (en) Refrigerating apparatus and refrigerator
US20050204773A1 (en) Refrigerating machine
KR101201062B1 (en) Refrigeration device
EP2309204B1 (en) Refrigeration device
EP1707901A2 (en) Refrigerated device and refrigerator
US20060168996A1 (en) Refrigerating device, refrigerator, compressor, and gas-liguid separator
KR20080106311A (en) Freezing apparatus
WO2014068967A1 (en) Refrigeration device
JP2006275495A (en) Refrigerating device and refrigerator
JP2006343017A (en) Freezer
US20110005269A1 (en) Refrigeration apparatus
JP2011133209A (en) Refrigerating apparatus
US20050198978A1 (en) Refrigerating machine
WO2022249566A1 (en) Multi-stage compression refrigeration device
JP2006207980A (en) Refrigerating apparatus and refrigerator
JP2011133207A (en) Refrigerating apparatus
JP2013155972A (en) Refrigeration device
JP2011133210A (en) Refrigerating apparatus
CN110494702B (en) Refrigeration cycle device
JP2013064573A (en) Refrigerating apparatus for container
JP2009186054A (en) Refrigerating cycle device
JP2003336918A (en) Cooling device
JP2011133208A (en) Refrigerating apparatus
WO2022249565A1 (en) Multi-stage compression refrigeration apparatus

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20240419