JP2022181631A - Device for controlling fluid flow, method for manufacturing cross-sectional shape-variable flow path, device for processing substrate, and method for controlling fluid flow - Google Patents

Device for controlling fluid flow, method for manufacturing cross-sectional shape-variable flow path, device for processing substrate, and method for controlling fluid flow Download PDF

Info

Publication number
JP2022181631A
JP2022181631A JP2021088668A JP2021088668A JP2022181631A JP 2022181631 A JP2022181631 A JP 2022181631A JP 2021088668 A JP2021088668 A JP 2021088668A JP 2021088668 A JP2021088668 A JP 2021088668A JP 2022181631 A JP2022181631 A JP 2022181631A
Authority
JP
Japan
Prior art keywords
sectional shape
flow path
cross
fluid
variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021088668A
Other languages
Japanese (ja)
Inventor
勤 廣木
Tsutomu Hiroki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2021088668A priority Critical patent/JP2022181631A/en
Priority to PCT/JP2022/020254 priority patent/WO2022249901A1/en
Publication of JP2022181631A publication Critical patent/JP2022181631A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/2003Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
    • H01L21/2015Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate the substrate being of crystalline semiconductor material, e.g. lattice adaptation, heteroepitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Automation & Control Theory (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)
  • Flow Control (AREA)
  • Pipe Accessories (AREA)

Abstract

To provide a technique to control fluid flow by elastically deforming a longitudinal profile of a cylindrical metal flow path.SOLUTION: A device for controlling flow of fluid includes a cross-sectional shape-variable metal flow path which is configured as a cylindrical flow path through which the fluid flows, and configured to change its longitudinal cross-sectional shape by elastic deformation. A flow path operating unit applies an external force to the cross-sectional shape-variable flow path to change a distance between opposing surfaces, thereby changing area of longitudinal cross-sectional surface.SELECTED DRAWING: Figure 4

Description

本開示は、流体の流れを制御する装置、断面形状可変流路の製造方法、基板を処理する装置及び流体の流れを制御する方法に関する。 TECHNICAL FIELD The present disclosure relates to an apparatus for controlling fluid flow, a method for manufacturing a variable cross-sectional shape channel, an apparatus for processing a substrate, and a method for controlling fluid flow.

例えば、半導体装置の製造工程において、基板である半導体ウエハ(以下、「ウエハ」ともいう)に対しては、成膜処理、エッチング処理、塗布・現像処理、洗浄処理などの種々の処理が行われる。これらの処理では、膜の原料ガス、エッチングガス、レジスト液や現像液、洗浄液などの種々の処理流体が用いられる。また、ウエハの処理に直接、利用される処理流体の他、ウエハの処理を行う処理装置に設けられた機器にて流体が用いられる場合もある。この種の流体としては、ウエハが載置される載置台の温度調節を行うための温調流体を例示できる。 For example, in the manufacturing process of a semiconductor device, a semiconductor wafer (hereinafter also referred to as a "wafer"), which is a substrate, is subjected to various processes such as film formation, etching, coating/development, and cleaning. . In these processes, various processing fluids such as film source gases, etching gases, resist solutions, developing solutions, and cleaning solutions are used. In addition to the processing fluid that is used directly for wafer processing, there are cases where the fluid is used in equipment provided in a processing apparatus that processes wafers. An example of this type of fluid is a temperature control fluid for controlling the temperature of the mounting table on which the wafer is mounted.

これら、ウエハの処理に伴って使用される流体の流れの制御(給断や流量調節)は、弁体を備えた開閉バルブや流量調節バルブ、ダイヤフラムバルブなどを用いて実施されている。
一方で、これらの機器と比較して、構造が簡素で流路抵抗や流れのよどみが小さく、比較的温度の高いガスの処理にも利用可能な流体の流れを制御する装置が求められている。
The flow control (supply/shutdown and flow rate adjustment) of these fluids used in wafer processing is performed using an on-off valve, a flow rate control valve, a diaphragm valve, or the like having a valve element.
On the other hand, there is a demand for a device that controls the flow of fluid that is simpler in structure, has less flow resistance and flow stagnation than these devices, and can be used for processing relatively high-temperature gases. .

例えば特許文献1には、ゴムなどの弾性体からなる管体を備えたピンチバルブに係る技術が記載されている。また、特許文献2には、変形させると元に戻らない金属パイプを押し潰して絞り部を形成する技術が記載されている。 For example, Patent Literature 1 describes a technique related to a pinch valve having a tubular body made of an elastic material such as rubber. Further, Patent Document 2 describes a technique for forming a constricted portion by crushing a metal pipe that does not return to its original shape when deformed.

特開2002-174352号公報JP-A-2002-174352 特開2004-84944号公報JP-A-2004-84944

本開示は、金属製の筒状の流路の縦断面形状を弾性変形させて流体の流れを制御する技術を提供する。 The present disclosure provides a technology for controlling the flow of fluid by elastically deforming the vertical cross-sectional shape of a metal cylindrical channel.

本開示は、流体の流れを制御する装置であって、
前記流体が流れる筒状の流路として構成され、その縦断面形状が、互いに対向して配置された2つの対向面と、前記対向面が対向する方向と交差する方向に互いに対向して配置された頂点を有する少なくとも1組の角部とを有し、弾性変形により前記縦断面形状を変化させることが可能に構成された金属製の断面形状可変流路と、
前記断面形状可変流路に対し外力を加え、前記対向面間の距離を変化させることにより、その縦断面の面積を変化させるための流路操作部と、を備えた装置である。
The present disclosure is an apparatus for controlling fluid flow, comprising:
It is configured as a cylindrical flow path through which the fluid flows, and the vertical cross-sectional shape thereof is two opposed surfaces arranged to face each other, and the opposed surfaces are arranged to face each other in a direction intersecting the direction in which the opposite faces face each other. a metal cross-sectional shape variable flow channel having at least one pair of corners having a vertex and configured to be able to change the vertical cross-sectional shape by elastic deformation;
and a channel operating unit for changing the area of the vertical cross section by applying an external force to the variable cross-sectional shape channel to change the distance between the facing surfaces.

本開示によれば、金属製の筒状の流路の縦断面形状を弾性変形させて流体の流れを制御することができる。 According to the present disclosure, the flow of fluid can be controlled by elastically deforming the vertical cross-sectional shape of a metal cylindrical flow path.

実施形態に係る流体制御装置を備えるウエハ処理装置の構成図である。1 is a configuration diagram of a wafer processing apparatus provided with a fluid control device according to an embodiment; FIG. 断面形状可変流路の外観斜視図である。It is an external appearance perspective view of a cross-sectional shape variable flow path. 前記断面形状可変流路の第1の作用図である。It is the 1st action figure of the cross-sectional shape variable flow path. 前記断面形状可変流路の第2の作用図である。FIG. 4 is a second operation diagram of the variable cross-sectional shape flow path; 前記断面形状可変流路の第3の作用図である。It is the 3rd action figure of the above-mentioned cross-sectional shape variable channel. 流体制御装置の内部構造を示す斜視図である。It is a perspective view showing the internal structure of the fluid control device. 前記流体制御装置の縦断側面図である。It is a longitudinal side view of the said fluid control apparatus. 前記断面形状可変流路を構成する流路形成部材の縦断正面図である。FIG. 4 is a vertical cross-sectional front view of a flow path forming member that constitutes the variable cross-sectional shape flow path; 前記断面形状可変流路の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the said cross-sectional shape variable flow path. 前記断面形状可変流路の閉止機構の斜視図である。FIG. 4 is a perspective view of a closing mechanism of the variable cross-sectional shape flow path; 前記閉止機構の第1の作用図である。It is the 1st action figure of the closing mechanism. 前記閉止機構の第2の作用図である。FIG. 4B is a second operation diagram of the closing mechanism; 樹脂層が形成された断面形状可変流路の拡大縦断面図である。FIG. 4 is an enlarged vertical cross-sectional view of a variable cross-sectional shape flow path in which a resin layer is formed; 第2の実施形態に係る断面形状可変流路の外観斜視図である。FIG. 7 is an external perspective view of a variable cross-sectional shape flow path according to a second embodiment; 第2の実施形態に係る流体制御装置の内部構造を示す斜視図である。FIG. 7 is a perspective view showing the internal structure of a fluid control device according to a second embodiment; 第2の実施形態に係る流体制御装置の作用図である。FIG. 10 is an action diagram of the fluid control device according to the second embodiment; 断面形状可変流路の第1の変形例に係る縦断正面図である。It is a longitudinal front view concerning the 1st modification of a cross-sectional shape variable flow path. 断面形状可変流路の第2の変形例に係る縦断正面図である。It is a longitudinal front view concerning the 2nd modification of a cross-sectional shape variable flow path. 断面形状可変流路の第3の変形例に係る縦断正面図である。FIG. 11 is a vertical cross-sectional front view according to a third modified example of the variable cross-sectional shape flow path;

図1は、本開示の流体を制御する装置(流体制御装置1)を備えたウエハ処理装置9の構成例を示している。図1にはエッチング処理や、CVD(Chemical Vapor Deposition)、ALD(Atomic Layer Deposition)による成膜処理を実施するにあたり、ウエハWを1枚ずつ処理する枚葉式のウエハ処理装置9の例を示してある。
本例のウエハ処理装置9は、排気路95を介した真空排気が行われている処理容器90内にWの載置台91を配置すると共に、この載置台91の上方側に、処理ガスの導入を行うシャワーヘッド92を設けた構成となっている。本例のウエハ処理装置9において、ウエハWは載置台91に載置された状態で、処理容器90内にて処理が行われる。
FIG. 1 shows a configuration example of a wafer processing apparatus 9 equipped with a fluid control apparatus (fluid control apparatus 1) of the present disclosure. FIG. 1 shows an example of a single-wafer processing apparatus 9 for processing wafers W one by one when performing etching processing, film formation processing by CVD (Chemical Vapor Deposition), or ALD (Atomic Layer Deposition). There is.
In the wafer processing apparatus 9 of this embodiment, a W mounting table 91 is arranged in a processing container 90 which is being evacuated through an exhaust path 95, and a processing gas is introduced above the mounting table 91. It has a configuration in which a shower head 92 for performing In the wafer processing apparatus 9 of this embodiment, the wafer W is processed in the processing container 90 while being mounted on the mounting table 91 .

例えば載置台91は、金属製の本体部93と、本体部93の上面に設置された静電チャック94とを備えている。載置台91の周りには、処理容器90内に流れ込んだ処理ガスが、載置台91の周囲に向けて均一に流れるようにするための整流板96が配置されている。
また、ウエハ処理装置9には、処理ガスをプラズマ化するプラズマ形成機構を設けてもよい。
For example, the mounting table 91 includes a main body portion 93 made of metal and an electrostatic chuck 94 installed on the upper surface of the main body portion 93 . A straightening plate 96 is arranged around the mounting table 91 so that the processing gas that has flowed into the processing container 90 flows uniformly toward the surroundings of the mounting table 91 .
Further, the wafer processing apparatus 9 may be provided with a plasma forming mechanism for converting the processing gas into plasma.

さらに図1に示すように、このウエハ処理装置9には制御部900が設けられている。制御部900は不図示のCPU(Central Processing Unit)と記憶部とを備えたコンピュータからなり、この記憶部にはウエハ処理装置9に設けられた各種機器や装置の動作を実行させる制御信号を出力するためのステップ(命令)群が組まれたプログラムが記録されている。このプログラムは、例えばハードディスク、コンパクトディスク、マグネットオプティカルディスク、メモリカードなどの記憶媒体に格納され、そこから記憶部にインストールされる。 Further, as shown in FIG. 1, the wafer processing apparatus 9 is provided with a control section 900 . The control unit 900 is composed of a computer having a CPU (Central Processing Unit) (not shown) and a storage unit. The storage unit outputs control signals for executing the operations of various devices and devices provided in the wafer processing apparatus 9. A program is recorded in which a group of steps (instructions) for doing is organized. This program is stored in a storage medium such as a hard disk, a compact disc, a magnet optical disc, a memory card, etc., and installed in the storage unit from there.

上述の構成を備えるウエハ処理装置9において、シャワーヘッド92に対しては、エッチングガスや成膜用の原料ガス、当該原料ガスと反応する反応ガスなどの処理ガスの供給を行う処理ガス供給源901が接続されている。本例のウエハ処理装置9において、この処理ガス供給源901とシャワーヘッド92との間には、本開示の流体制御装置1が設けられている。この流体制御装置1は、シャワーヘッド92に対する処理ガスの給断や流量調節を実施する機能を備える。処理ガス供給源901は、本例の流体供給源に相当する。 In the wafer processing apparatus 9 having the above configuration, a processing gas supply source 901 for supplying processing gases such as an etching gas, a source gas for film formation, and a reaction gas that reacts with the source gas to the shower head 92 . is connected. In the wafer processing apparatus 9 of this example, the fluid control device 1 of the present disclosure is provided between the processing gas supply source 901 and the shower head 92 . The fluid control device 1 has a function of controlling the flow rate and supply/disconnection of the processing gas to the shower head 92 . The processing gas supply source 901 corresponds to the fluid supply source of this example.

さらに本体部93の内部には温調流路93aが形成されている。当該温調流路93aには、温調流体貯留部902に貯留されたウエハWの温調流体(例えば冷却液)がポンプ903を用いて供給される。温調流路93aから排出された温調流体は、再び温調流体貯留部902に戻され、不図示の冷却機構を用いて冷却される。温調流体貯留部902についても、本例の流体供給源に相当する。
この温調流体の循環系においても、ポンプ903と温調流路93aの入口部との間には、本開示の流体制御装置1が設けられている。この流体制御装置1は、温調流路93aに対する温調流体の給断や流量調節を実施する機能を備える。
Furthermore, a temperature control flow path 93a is formed inside the body portion 93 . A temperature control fluid (for example, cooling liquid) for the wafer W stored in the temperature control fluid storage part 902 is supplied to the temperature control flow path 93 a by using a pump 903 . The temperature control fluid discharged from the temperature control flow path 93a is returned to the temperature control fluid reservoir 902 and cooled using a cooling mechanism (not shown). The temperature control fluid reservoir 902 also corresponds to the fluid supply source of this example.
Also in this temperature control fluid circulation system, the fluid control device 1 of the present disclosure is provided between the pump 903 and the inlet of the temperature control flow path 93a. The fluid control device 1 has a function of controlling the flow rate and supply/disconnection of the temperature control fluid to the temperature control flow path 93a.

このように、液体(図1のウエハ処理装置9の例においては冷却液)や気体(同ウエハ処理装置9の例では処理ガス)の流れの制御を行うにあたり、本開示の流体制御装置1は、従来のバルブとは異なる新規の構成を備えている。
以下、図面を参照しながら流体制御装置1の構成例について説明する。
流体制御装置1の詳細な構成例を説明する前に、図2~図5を参照しながら、本流体制御装置1の特徴部分となる断面形状可変流路21の構成、及びその作用を説明しておく。
In this way, in controlling the flow of liquid (cooling liquid in the example of the wafer processing apparatus 9 in FIG. 1) and gas (processing gas in the example of the wafer processing apparatus 9), the fluid control apparatus 1 of the present disclosure is , has a novel configuration that differs from conventional valves.
A configuration example of the fluid control device 1 will be described below with reference to the drawings.
Before describing a detailed configuration example of the fluid control device 1, the configuration of the variable cross-sectional shape flow path 21, which is a characteristic part of the fluid control device 1, and its operation will be described with reference to FIGS. Keep

図2及び図3(a)は、外力を加えていない状態の断面形状可変流路21の外観を示している。
断面形状可変流路21は、流体制御装置1にて流れの制御が行われる流体が流れる筒状の流路として構成されている。また断面形状可変流路21は金属材料により構成されている。断面形状可変流路21を構成する金属の種類について、特段の限定はないが、その内部を流れる流体の圧力や温度、腐食性などに応じた強度や耐食性を備えたものが採用される。また、後述するように、断面形状可変流路21は、外力を加えることによりその縦断面形状を変化させて使用されることから、弾性変形可能な金属材料が用いられる。
2 and 3(a) show the external appearance of the cross-sectional shape variable flow path 21 in a state where no external force is applied.
The cross-sectional shape variable flow path 21 is configured as a tubular flow path through which the fluid whose flow is controlled by the fluid control device 1 flows. Moreover, the cross-sectional shape variable flow path 21 is comprised by the metal material. Although there is no particular limitation on the type of metal forming the cross-sectional shape variable flow path 21, a metal having strength and corrosion resistance corresponding to the pressure, temperature, corrosiveness, etc. of the fluid flowing therein is adopted. In addition, as will be described later, the cross-sectional shape variable flow path 21 is used by changing its vertical cross-sectional shape by applying an external force, so an elastically deformable metal material is used.

図3(b)は、図3(a)中に破線で示す位置における断面形状可変流路21の縦断面を流体Fの流れ方向の上流側から見た縦断面図である(図4(a)、(b)、図5(a)、(b)において同じ)。
図3(a)、(b)に示すように、断面形状可変流路21の縦断面形状は、扁平な六角形となっている。詳細には、当該縦断面形状は、平行に対向するように配置された2つの対向面211と、対向面211の対向方向と交差する方向に互いに対向して配置された2つの頂点213を有する1組の角部212とを備えている。各角部212は、上述の対向面211の両脇に配置された残り4つの面であって、頂点213を挟んで夾角を成す夾角形成面214の端部を含んでいる。
FIG. 3(b) is a vertical cross-sectional view of the cross-sectional shape variable flow path 21 at the position indicated by the dashed line in FIG. ), (b), same in FIGS. 5(a) and 5(b)).
As shown in FIGS. 3A and 3B, the longitudinal cross-sectional shape of the variable cross-sectional shape flow path 21 is a flat hexagon. Specifically, the vertical cross-sectional shape has two opposing surfaces 211 arranged to face each other in parallel, and two vertices 213 arranged to face each other in a direction intersecting the facing direction of the opposing surfaces 211. and a pair of corners 212 . Each of the corners 212 includes the ends of the remaining four surfaces 214 arranged on both sides of the opposing surface 211 and forming an included angle with the vertex 213 therebetween.

断面形状可変流路21の縦断面形状を扁平にすることにより、流路面積を小さくして流体の流量を絞ったり、流路を閉止して流体の流れを停止したりする操作が行いやすくなる。外力を加えていない状態における対向面211間の距離Hと頂点213間の距離Lとの比はL:H=1:0.4~1:0.5の範囲内の値とする場合を例示できる。また、頂点213間の距離Lと対向面211の幅寸法WDとの比は、L:WD=1:0.7~1:0.8の範囲内の値とする場合を例示できる。 By flattening the vertical cross-sectional shape of the cross-sectional shape variable channel 21, it becomes easier to perform operations such as reducing the channel area to throttle the flow rate of the fluid or closing the channel to stop the flow of the fluid. . A case where the ratio of the distance H between the facing surfaces 211 and the distance L between the vertices 213 in the state where no external force is applied is set to a value within the range of L:H=1:0.4 to 1:0.5 is illustrated. can. Also, the ratio between the distance L between the vertices 213 and the width dimension WD of the facing surface 211 can be exemplified by a value within the range of L:WD=1:0.7 to 1:0.8.

上述の構成の断面形状可変流路21は、対向面211に対して外力を加え、これら対向面211間の距離を変化させて流体の流れの調節を行う。
図3(a)、(b)に示す外力を加えていない状態にて流れる流体Fの流量と比較して、図4(a)、(b)に示す例では対向面211に対して外力fが加わっている。この結果、断面形状可変流路21の縦断面の面積が小さくなり、流体が流れる際の圧力損失が増大して、流体の流量が低下する。このように、断面形状可変流路21は、縦断面の面積を増減させることにより、流体の流量を調節する構成となっている。
なお、図3(a)、図4(a)にて流体Fの流れは、実線の白抜き矢印で示しあり、矢印が太い程、流量が大きいことを示している。
The cross-sectional shape variable flow path 21 having the configuration described above applies an external force to the opposed surfaces 211 to change the distance between the opposed surfaces 211 to adjust the flow of the fluid.
3(a) and 3(b), the external force f is added. As a result, the vertical cross-sectional area of the cross-sectional shape variable flow path 21 becomes smaller, the pressure loss increases when the fluid flows, and the flow rate of the fluid decreases. Thus, the cross-sectional shape variable flow path 21 is configured to adjust the flow rate of the fluid by increasing or decreasing the area of the vertical cross section.
In FIGS. 3(a) and 4(a), the flow of the fluid F is indicated by a solid-line white arrow, and the thicker the arrow, the higher the flow rate.

さらに対向面211に加える外力を大きくしていくと、図5(a)、(b)に示すように、2つの断面形状可変流路21が接触し、且つ、2つの角部212の夾角形成面214同士も接触した状態となる。この結果、断面形状可変流路21は閉止された状態となり、流体の流れを停止することができる。なお、図4(b)、図5(b)にて外力fは、破線の白抜き矢印で示しあり、矢印が太い程、外力が大きいことを示している。 As the external force applied to the facing surface 211 is further increased, as shown in FIGS. The surfaces 214 are also in contact with each other. As a result, the cross-sectional shape variable flow path 21 is closed, and the flow of fluid can be stopped. In FIGS. 4(b) and 5(b), the external force f is indicated by a dashed white arrow, and the thicker the arrow, the greater the external force.

ここで、断面形状可変流路21の縦断面の面積を変化させるために、外力を加える方向や、外力を加えていない状態における断面形状可変流路21の縦断面形状は、図3~図5を用いて説明した例に限られない。
例えば、図3(b)に示す断面形状可変流路21について、2つの角部212の頂点213を外方へ引っ張る外力を加えてもよい。この場合にも対向面211間の距離が近づき、断面形状可変流路21の縦断面の面積を小さくすることができる。
Here, in order to change the area of the vertical cross section of the cross-sectional shape variable flow channel 21, the direction in which the external force is applied and the vertical cross-sectional shape of the cross-sectional shape variable flow channel 21 in the state where no external force is applied are shown in FIGS. is not limited to the example described using .
For example, an external force that pulls the apexes 213 of the two corners 212 outward may be applied to the cross-sectional shape variable flow path 21 shown in FIG. 3(b). In this case as well, the distance between the facing surfaces 211 is reduced, and the area of the vertical cross section of the variable cross-sectional shape flow path 21 can be reduced.

また、外力を加えていない状態で図5(b)に示す縦断面形状を有する断面形状可変流路21を構成してもよい。この場合には、2つの対向面211を上下方向に引っ張る外力、あるいは2つの頂点が近づくように押す外力を加えることにより、その縦断面形状を変化させる。上述の外力を加えることにより、対向面211間の距離が遠ざかり、外力を加えていない状態と比較して、断面形状可変流路21の縦断面の面積が大きくなるように縦断面形状を変化させることができる。
この操作により、断面形状可変流路21の縦断面の面積が大きくなり、流体が流れる際の圧力損失が減少して、流体の流量を増大させることができる。
Alternatively, the variable cross-sectional shape flow path 21 having the vertical cross-sectional shape shown in FIG. In this case, the vertical cross-sectional shape is changed by applying an external force that pulls the two opposing surfaces 211 in the vertical direction or an external force that pushes the two vertexes closer to each other. By applying the above-described external force, the distance between the facing surfaces 211 is increased, and the vertical cross-sectional shape is changed so that the vertical cross-sectional area of the cross-sectional shape variable flow channel 21 is increased compared to the state where no external force is applied. be able to.
This operation increases the vertical cross-sectional area of the cross-sectional shape variable flow path 21, reduces the pressure loss when the fluid flows, and increases the flow rate of the fluid.

図2に示すように、断面形状可変流路21の上流側及び下流側の端部には、縦断面の面積を変化させる操作が行われない通常の配管流路22が接続される。図2に示す例では、外力を加えていない状態の断面形状可変流路21の縦断面の面積は、各配管流路22の縦断面の面積よりも大きくなるように構成されている。これらの配管流路22は、図1を用いて説明したウエハ処理装置9の処理ガスや温調流体の流路の一部を構成している。 As shown in FIG. 2 , normal piping flow paths 22 are connected to the upstream and downstream ends of the cross-sectional shape variable flow path 21 , in which an operation for changing the vertical cross-sectional area is not performed. In the example shown in FIG. 2 , the vertical cross-sectional area of the variable cross-sectional shape flow path 21 to which no external force is applied is configured to be larger than the vertical cross-sectional area of each piping flow path 22 . These piping channels 22 constitute part of the channels of the processing gas and the temperature control fluid of the wafer processing apparatus 9 described with reference to FIG.

次いで、図2に示す断面形状可変流路21を備えた流体制御装置1aについて、図6、図7を参照しながら説明する。
この流体制御装置1aは、配管流路22を保持するサポート部材33と、断面形状可変流路21に外力を加える操作端である2本の昇降棒32と、昇降棒32を昇降移動させる昇降機構(駆動部31、ボールねじ35)とを備える。本例の流体制御装置1aは、昇降棒32の離間距離を変化させて対向面211の押圧量(外力を加えていない位置を基準とした昇降棒32の移動量)を変化させることにより、断面形状可変流路21の縦断面の面積を増減させ、流体の流量を調節する構成となっている。
Next, the fluid control device 1a including the cross-sectional variable flow path 21 shown in FIG. 2 will be described with reference to FIGS. 6 and 7. FIG.
This fluid control device 1a includes a support member 33 that holds the piping channel 22, two lifting rods 32 that are operating ends that apply external force to the variable cross-sectional shape channel 21, and a lifting mechanism that moves the lifting rods 32 up and down. (driving unit 31, ball screw 35). In the fluid control device 1a of this example, by changing the separation distance of the lifting rods 32 to change the pressing amount of the facing surface 211 (the amount of movement of the lifting rods 32 based on the position where no external force is applied), the cross section The flow rate of the fluid is adjusted by increasing or decreasing the vertical cross-sectional area of the shape-variable flow path 21 .

サポート部材33は、例えば断面形状可変流路21が水平に配置され、流体が横方向に流れるように配管流路22を保持する。
各昇降棒32は、断面形状可変流路21における流体の流れ方向と交差する方向へ向けて延在する棒状の部材により構成されている。また2本の昇降棒32は、断面形状可変流路21を挟んで、各々、1つの対向面211に外面側から接触するように並べて配置されている。昇降棒32が対向面211(断面形状可変流路21の外面)と接触する位置には、断面形状可変流路21を押圧して外力を加える部材である半球状の押圧部321が設けられている。
The support member 33 holds the pipe flow path 22 such that the variable cross-sectional shape flow path 21 is horizontally arranged and the fluid flows in the horizontal direction.
Each elevating rod 32 is composed of a rod-shaped member extending in a direction intersecting the flow direction of the fluid in the cross-sectional shape variable channel 21 . The two lifting rods 32 are arranged side by side with the cross-sectional shape variable flow path 21 interposed therebetween so as to be in contact with one opposing surface 211 from the outer surface side. At a position where the lifting rod 32 contacts the facing surface 211 (the outer surface of the variable cross-sectional shape flow path 21), a hemispherical pressing portion 321, which is a member that presses the variable cross-sectional shape flow path 21 and applies an external force, is provided. there is

各昇降棒32の基端部には、昇降棒32の移動機構を構成するボールねじ35及びガイド棒36が貫通している。ボールねじ35には、各昇降棒32を移動させる領域に巻方向が反対のネジが切ってある。また、ボールねじ35の上端には、回転方向を変化させることが可能な回転モーターにより構成された駆動部31が設けられている。
駆動部31、ボールねじ35、昇降棒32などは、本流体制御装置1aの流路操作部を構成している。
A ball screw 35 and a guide rod 36 that constitute a movement mechanism of the lifting rod 32 pass through the base end of each lifting rod 32 . The ball screw 35 is threaded in a region for moving each lifting rod 32 in a direction opposite to the winding direction. At the upper end of the ball screw 35, there is provided a drive section 31 configured by a rotary motor capable of changing the direction of rotation.
The drive unit 31, the ball screw 35, the lifting rod 32, and the like constitute a channel operation unit of the fluid control device 1a.

昇降棒32の移動に伴って発生するパーティクルの流出を抑えるため、ボールねじ35、ガイド棒36が昇降棒32を貫通する領域は、ケーシング34内に格納されている。また、断面形状可変流路21、サポート部材33、昇降棒32やボールねじ35を収容したケーシング34も図6、図7中に破線で示す筐体37内に格納されている。 A region where the ball screw 35 and the guide rod 36 pass through the lifting rod 32 is housed inside the casing 34 in order to suppress the outflow of particles generated along with the movement of the lifting rod 32 . A casing 34 containing the variable cross-sectional shape flow path 21, the support member 33, the lifting rod 32, and the ball screw 35 is also housed in a housing 37 indicated by broken lines in FIGS.

上記の構成を備える流体制御装置1は、駆動部31によりボールねじ35を予め設定された方向へ回転させると、2つの昇降棒32が近接する方向へと移動する。この動作により、断面形状可変流路21の対向面211の押圧量を増大させ、断面形状可変流路21の縦断の面積を減少させることにより、流体の流量を低下させることができる。 In the fluid control device 1 having the above configuration, when the ball screw 35 is rotated in a preset direction by the drive unit 31, the two lifting rods 32 move in a direction approaching each other. By this operation, the pressure amount of the facing surface 211 of the variable cross-sectional shape flow path 21 is increased, and the longitudinal area of the variable cross-sectional shape flow path 21 is decreased, thereby reducing the flow rate of the fluid.

また、ボールねじ35を反対方向へ回転させると、2つの昇降棒32が離間する方向へと移動する。この動作により、断面形状可変流路21の対向面211の押圧量を減少させ、断面形状可変流路21の縦断面の面積を増大させることにより、流体の流量を増加させることができる。 Further, when the ball screw 35 is rotated in the opposite direction, the two lifting rods 32 move in the direction to separate them. By this operation, the pressing amount of the facing surface 211 of the variable cross-sectional shape flow path 21 is decreased, and the area of the vertical cross section of the variable cross-sectional shape flow path 21 is increased, thereby increasing the flow rate of the fluid.

昇降棒32による対向面211の押圧量は、不図示の現場型のコントローラーなどより制御される。コントローラーは、例えば断面形状可変流路21の下流側に設けられた不図示の流量計における流体の流量の検出値を取得する。そして、この流量の検出値と、予め設定された設定値とを比較し、検出値が設定値に近づくように昇降棒32の移動方向及び移動量を決定する。流量の設定値は、例えばウエハ処理装置9の制御部900により設定される。 The pressing amount of the facing surface 211 by the lifting rod 32 is controlled by an on-site controller (not shown) or the like. The controller acquires a detected value of the flow rate of the fluid, for example, by a flow meter (not shown) provided on the downstream side of the variable cross-sectional shape flow path 21 . Then, the detected value of the flow rate is compared with a preset set value, and the moving direction and amount of movement of the lifting rod 32 are determined so that the detected value approaches the set value. The set value of the flow rate is set by the controller 900 of the wafer processing apparatus 9, for example.

また、流体の給断に本例の流体制御装置1を用いる場合には、コントローラーは、ウエハ処理装置9の制御部900からの流体の供給開始命令や停止命令を取得する。そしてこれらの命令に基づき、予め設定された位置に昇降棒32を移動させて断面形状可変流路21を開放、または閉止する。 Further, when the fluid control apparatus 1 of this embodiment is used for supplying and stopping the fluid, the controller acquires a fluid supply start command and a fluid supply stop command from the control unit 900 of the wafer processing apparatus 9 . Based on these commands, the lifting rod 32 is moved to a preset position to open or close the variable cross-sectional shape flow path 21 .

ここで、例えば対向面211の押圧量を減少させた際の断面形状可変流路21の断面形状の戻りを補助するため、押圧方向とは反対の方向にこれらの対向面211を引っ張る弾性部材を設けてもよい。具体的には、各対向面211に弾性部材である引きばねの一端を接続する場合を例示できる。引きばねの他端は、断面形状可変流路21の上方側、下方側に各々固定配置された固定部材などに接続される。これらの引きばねは、断面形状可変流路21を挟んで互いに対向するように配置され、昇降棒32(押圧部321)の当接位置の上流側と、下流側とに1組ずつ設ける場合を例示できる。 Here, for example, in order to assist the return of the cross-sectional shape of the cross-sectional shape variable flow path 21 when the pressing amount of the opposing surfaces 211 is reduced, an elastic member that pulls these opposing surfaces 211 in the direction opposite to the pressing direction is provided. may be provided. Specifically, a case where one end of a tension spring, which is an elastic member, is connected to each opposing surface 211 can be exemplified. The other end of the extension spring is connected to fixed members or the like fixedly arranged on the upper side and the lower side of the cross-sectional shape variable flow path 21 respectively. These extension springs are arranged so as to face each other with the cross-sectional shape variable flow path 21 interposed therebetween. I can give an example.

また、移動可能な操作端である昇降棒32を2つ設けることは必須の要件ではない。例えば高さ位置が固定された支持台上に断面形状可変流路21を載置し、この断面形状可変流路21の上面側から対向面211に対して昇降棒32(押圧部321)を当接させてもよい。この例では、1つの昇降棒32を上下方向に移動させることにより、対向面211の押圧量を変化させる。
なお、図6、図7を用いて説明した例のように、2つの昇降棒32を対称的に移動させる構成を採用した場合、形状が変化する断面形状可変流路21の縦断面の中心位置を移動させないようにすることができる。これにより、正確な流量調節が可能となる。
Moreover, it is not an essential requirement to provide two lifting rods 32, which are movable operating ends. For example, the cross-sectional shape variable flow path 21 is placed on a support base whose height position is fixed, and the lifting rod 32 (pressing portion 321) is applied to the opposing surface 211 from the upper surface side of the cross-sectional shape variable flow path 21. You may contact. In this example, the pressing amount of the opposing surface 211 is changed by vertically moving one lifting rod 32 .
6 and 7, when the configuration in which the two lifting rods 32 are moved symmetrically is adopted, the center position of the longitudinal section of the cross-sectional shape variable flow path 21 whose shape changes can be prevented from moving. This allows for precise flow rate adjustment.

さらにここで、断面形状可変流路21を製造する手法の一例について説明しておく。
図9に示す例は、上面側が解放された2本の樋状の流路形成部材24a、24bを溶接することにより、断面形状可変流路21を構成する例を示している。例えば図8に示すように、流路形成部材24a、24bは、図3(b)に示す縦断面形状の断面形状可変流路21を上下に分割した構成を備える。即ち、一の流路形成部材24aは、対向面211の一方側と、既述の2つの角部212を構成する夾角形成面214の一方側とを備える。また、他の流路形成部材24bは、対向面211の他方側と、2つの角部212を構成する夾角形成面214の他方側とを備える。ここで夾角形成面214の外方側には、溶接用の端部201が形成されている。
Furthermore, here, an example of a technique for manufacturing the cross-sectional shape variable flow path 21 will be described.
The example shown in FIG. 9 shows an example in which the cross-sectional shape variable flow path 21 is configured by welding two gutter-shaped flow path forming members 24a and 24b with open upper surfaces. For example, as shown in FIG. 8, flow path forming members 24a and 24b have a configuration in which the cross-sectional shape variable flow path 21 having the vertical cross-sectional shape shown in FIG. 3B is divided into upper and lower parts. That is, one flow path forming member 24a has one side of the facing surface 211 and one side of the included angle forming surface 214 that forms the two corners 212 described above. Further, the other flow path forming member 24b has the other side of the facing surface 211 and the other side of the included angle forming surface 214 forming the two corners 212 . Here, an end portion 201 for welding is formed on the outer side of the included angle forming surface 214 .

そして、図9に示すように、互いの開放面が対向するように2つの流路形成部材24a、24bを重ね合わせ、夾角形成面214の端部201同士を溶接することにより断面形状可変流路21を製造する。ビード溶接された接合部20を拡大して示すように、溶接された夾角形成面214の端部201は、角部212の頂点213を構成する。 Then, as shown in FIG. 9, the two flow path forming members 24a and 24b are overlapped so that the open surfaces face each other, and the end portions 201 of the included angle forming surfaces 214 are welded to each other to form a variable cross-sectional shape flow path. 21 is manufactured. End 201 of welded included angulation surface 214 forms apex 213 of corner 212 , as shown in enlarged view of bead welded joint 20 .

なお、他の製造方法として、例えば円管形状の流路形成部材をプレス加工することにより、図3(a)、(b)に示す形状の断面形状可変流路21に成型、加工する手法を採用してもよい。さらには、3Dプリンタ(付加製造技術)により、断面形状可変流路21を製造してもよい。
これら各種の手法により製造された断面形状可変流路21に対し、例えば溶接により配管流路22を接続して流体の流路を構成する。
As another manufacturing method, for example, a method of forming and processing the cross-sectional variable flow path 21 having the shape shown in FIGS. may be adopted. Furthermore, the variable cross-sectional shape flow path 21 may be manufactured by a 3D printer (additional manufacturing technology).
The fluid flow path is configured by connecting the piping flow path 22 by welding, for example, to the cross-sectional shape variable flow path 21 manufactured by these various methods.

図3~図5を用いて説明した原理に基づき、流体の流れを制御する流体制御装置1において、流体の停止を行う場合には、図5(b)に示すように断面形状可変流路21を確実に閉じる必要がある。
図10は、断面形状可変流路21を閉止する機構の一例を示している。本例では、流体の流れ方向と交差する方向へ向けて延在するように設けられ、断面形状可変流路21を挟んで、対向面211に外面側から接触する操作端である2つの押圧棒41a、41bが、互いに間隔を空けて2組設けられている。これらの押圧棒41a、41bは、不図示の昇降機構により昇降自在に構成されている。
Based on the principle described with reference to FIGS. 3 to 5, in the fluid control device 1 for controlling the flow of fluid, when stopping the fluid, as shown in FIG. must be securely closed.
FIG. 10 shows an example of a mechanism for closing the cross-sectional shape variable flow path 21. As shown in FIG. In this example, two push rods, which are operating ends that are provided so as to extend in a direction intersecting the flow direction of the fluid, and contact the opposing surface 211 from the outer surface side with the cross-sectional shape variable flow path 21 interposed therebetween. Two sets of 41a and 41b are provided with a space therebetween. These pressing rods 41a and 41b are configured to be vertically movable by a lifting mechanism (not shown).

また、2組の押圧棒41a、41bの間の位置には、断面形状可変流路21の下面側から対向面211を押し上げるための折り曲げ棒42が配置されている。この折り曲げ棒42についても不図示の昇降機構により昇降自在に構成されている。 Further, a bending rod 42 for pushing up the facing surface 211 from the lower surface side of the variable cross-sectional shape flow path 21 is arranged between the two pairs of pressing rods 41a and 41b. The bending bar 42 is also configured to be vertically movable by a lifting mechanism (not shown).

上述の機構の作用について、図11、図12を参照しながら説明する。流路面積を増減して流体の流量を調節する段階においては、図6、図7を用いて説明した流体制御装置1aにおける昇降棒32の動作と同様に、押圧棒41a、41bを昇降させて対向面211の押圧量を増減して流体の流量を調節する(図11)。 The operation of the above mechanism will be described with reference to FIGS. 11 and 12. FIG. In the stage of adjusting the flow rate of the fluid by increasing or decreasing the channel area, the pressing rods 41a and 41b are moved up and down in the same manner as the movement of the lifting rod 32 in the fluid control device 1a described with reference to FIGS. The flow rate of the fluid is adjusted by increasing or decreasing the pressing amount of the facing surface 211 (FIG. 11).

このとき、折り曲げ棒42は、図11に示すように、断面形状可変流路21の下面側に配置された押圧棒41a、41bと同じ高さ位置に移動して、対向面211を押圧してもよい。また、折り曲げ棒42を用いた押圧は行わずに、断面形状可変流路21よりも下方側に折り曲げ棒42を退避させておいてもよい。 At this time, as shown in FIG. 11, the bending rod 42 moves to the same height position as the pressing rods 41a and 41b arranged on the lower surface side of the cross-sectional shape variable flow path 21, and presses the opposing surface 211. good too. Further, the bending rod 42 may be retracted to the lower side than the cross-sectional shape variable flow path 21 without performing the pressing using the bending rod 42 .

そして、断面形状可変流路21を閉止する際には、押圧棒41a、41bをさらに移動させて対向面211同士、及び夾角形成面214同士を接触させる。さらに、図12に示すように、下面側の対向面211に接する押圧棒41a、41bの配置高さよりも高い位置まで折り曲げ棒42を上昇させる。 When closing the cross-sectional shape variable flow path 21, the pressing rods 41a and 41b are further moved to bring the opposing surfaces 211 and the included angle forming surfaces 214 into contact with each other. Further, as shown in FIG. 12, the bending bar 42 is raised to a position higher than the arrangement height of the pressing bars 41a and 41b in contact with the opposing surface 211 on the lower side.

これら押圧棒41a、41b及び折り曲げ棒42の配置により、図12に示すように流体の流れ方向に沿った複数の位置(同図の例では3箇所)にて、縦断面を押し潰すように断面形状可変流路21が屈曲した状態となる。この結果、断面形状可変流路21が確実に閉止され、流体の流れを止めることができる。 By arranging the pressing rods 41a and 41b and the bending rod 42, as shown in FIG. 12, at a plurality of positions along the flow direction of the fluid (three positions in the example of FIG. 12), the longitudinal section is crushed. The shape-variable flow path 21 is bent. As a result, the cross-sectional shape variable flow path 21 is reliably closed, and the flow of fluid can be stopped.

また上述の例において、対向面211同士を確実に密着させるため、断面形状可変流路21内の一方側の対向面211に、樹脂などからなるテープ形状のシール部材を設けてもよい。例えばシール部材は、対向面211の外側から折り曲げ棒42が接触する領域を見たとき、当該領域に対する流体の流れ方向上流側、下流側の端部位置に、前記流れ方向と交差するように設けられる。 In the above example, a tape-shaped seal member made of resin or the like may be provided on one side of the opposing surface 211 in the cross-sectional shape variable flow path 21 in order to ensure that the opposing surfaces 211 are in close contact with each other. For example, the sealing members are provided at the upstream and downstream end positions of the fluid flow direction with respect to the area where the bending rod 42 contacts when viewed from the outside of the facing surface 211 so as to intersect the flow direction. be done.

次いで、断面形状可変流路21を確実に閉止する手法における断面形状可変流路21側の構成例について例示する。図13に示す断面形状可変流路21aは、断面形状可変流路21aを構成する対向面211の少なくとも一方側、2つの角部212の夾角形成面214の少なくとも一方側に、弾性を有する樹脂層23を設けた構成となっている。 Next, a configuration example of the variable cross-sectional shape flow path 21 side in the method of reliably closing the cross-sectional shape variable flow path 21 will be illustrated. The cross-sectional shape variable flow channel 21a shown in FIG. 13 has an elastic resin layer on at least one side of the facing surface 211 constituting the cross-sectional shape variable flow channel 21a and on at least one side of the included angle forming surfaces 214 of the two corners 212. 23 is provided.

耐熱性や腐食が問題とならない条件で使用される流体については、断面形状可変流路21a内に樹脂層23を設けることにより、樹脂層23を設けて樹脂層23と対向面211、夾角形成面214の内面を密着させることができる。この結果、断面形状可変流路21aを確実に閉止する効果が得られる。なお樹脂層23は、対向して配置された2つの対向面211、及び2つの夾角形成面214の双方に設けてもよい。 For a fluid that is used under conditions in which heat resistance and corrosion are not a problem, by providing the resin layer 23 in the cross-sectional shape variable flow path 21a, the resin layer 23 is provided to form a surface 211 facing the resin layer 23 and an included angle forming surface. The inner surface of 214 can be brought into intimate contact. As a result, the effect of reliably closing the cross-sectional shape variable flow path 21a can be obtained. The resin layer 23 may be provided on both the two facing surfaces 211 and the two included angle forming surfaces 214 that are arranged to face each other.

次いで図14は、図2に示した例とは異なるタイプの流路の構成例を示している。この例では、外力を加えていない状態における断面形状可変流路21の縦断面(砂状のハッチを付してある)と、配管流路22aの縦断面(同じく砂状のハッチを付してある)とがほぼ同じ面積となっている。 Next, FIG. 14 shows a configuration example of a type of channel different from the example shown in FIG. In this example, the vertical cross section of the cross-sectional shape variable flow path 21 (hatched with sand) and the vertical cross section of the piping flow path 22a (hatched with sand) in a state where no external force is applied. ) have almost the same area.

図15は、図14に示す構成の断面形状可変流路21を用いて流体の流れを制御する流体制御装置1bの例を示している。
本例の流体制御装置1bは、配管流路22を保持するサポート部材54と、断面形状可変流路21に外力を加える操作端である2枚の板カム53と、板カム53を回転させる回転機構(ギア52、駆動部51)とを備える。本例の流体制御装置1bは、板カム53を回転させて対向面211の押圧量を変化させることにより、断面形状可変流路21の縦断面の面積を増減させ、流体の流量を調節する構成となっている。
FIG. 15 shows an example of a fluid control device 1b that controls the flow of fluid using the cross-sectional variable flow path 21 configured as shown in FIG.
The fluid control device 1b of this example includes a support member 54 that holds the piping flow path 22, two plate cams 53 that are operating ends that apply an external force to the cross-sectional shape variable flow path 21, and a rotating plate that rotates the plate cams 53. mechanism (gear 52, drive unit 51). The fluid control device 1b of the present embodiment rotates the plate cam 53 to change the pressing amount of the facing surface 211, thereby increasing or decreasing the area of the longitudinal section of the variable cross-sectional shape flow path 21, thereby adjusting the flow rate of the fluid. It has become.

サポート部材54は、例えば断面形状可変流路21が水平に配置され、流体が横方向に流れるように配管流路22aを保持する。
図16に示すように、各板カム53は、回転中心から対向面211と接触する端面までの径方向の長さが、周方向に沿って変化する、側面視、卵形状の部材として構成されている。また2本の板カム53は、断面形状可変流路21を挟んで、各々、1つの対向面211に外面側から接触するように上下に並べて配置されている。
The support member 54 holds the piping flow path 22a such that the variable cross-sectional shape flow path 21 is arranged horizontally and the fluid flows in the horizontal direction.
As shown in FIG. 16, each plate cam 53 is configured as an egg-shaped member in a side view, in which the radial length from the center of rotation to the end surface that contacts the opposing surface 211 varies along the circumferential direction. ing. Also, the two plate cams 53 are arranged vertically so as to sandwich the cross-sectional shape variable flow path 21 and contact one opposing surface 211 from the outer surface side.

各板カム53には、その回転中心となる位置に回転軸531が貫通している。各回転軸531は、互いにかみ合うように配置されたギア52の回転中心に接続されている。また、一方のギア52の回転中心には、回転方向を変化させることが可能な回転モーターにより構成された駆動部51の回転軸が接続されている。
駆動部51、ギア52、回転軸531などは、本流体制御装置1aの流路操作部を構成している。
A rotary shaft 531 passes through each plate cam 53 at a position serving as the center of rotation. Each rotating shaft 531 is connected to the rotation center of the gears 52 arranged so as to mesh with each other. Further, the rotation center of one gear 52 is connected to the rotation shaft of the drive section 51 configured by a rotary motor capable of changing the rotation direction.
The drive unit 51, the gear 52, the rotating shaft 531, and the like constitute a flow path operation unit of the fluid control device 1a.

図6、図7を用いて説明した流体制御装置1aと同様に、ギア52の回転に伴って発生したパーティクルの流出を抑えるため、ギア52をケーシング内に収容してもよい。また、断面形状可変流路21、サポート部材54、板カム53、ギア52などの機器全体を共通の筐体内に格納してもよい。 As with the fluid control device 1a described with reference to FIGS. 6 and 7, the gear 52 may be housed in a casing in order to suppress the outflow of particles generated as the gear 52 rotates. Also, the entire device including the variable cross-sectional shape flow path 21, the support member 54, the plate cam 53, the gear 52, etc. may be housed in a common housing.

上記の構成を備える流体制御装置1は、駆動部51によりギア52を予め設定された方向へ回転させると、図16に示すように、断面形状可変流路21の対向面211の押圧量が増大する方向へと2つの板カム53が回転する。この動作により、断面形状可変流路21の縦断の面積が減少し、流体の流量を低下させることができる。 In the fluid control device 1 having the configuration described above, when the drive unit 51 rotates the gear 52 in a preset direction, as shown in FIG. The two plate cams 53 rotate in the direction of rotation. Due to this operation, the longitudinal area of the variable cross-sectional shape flow path 21 is reduced, and the flow rate of the fluid can be reduced.

また、ギア52を反対方向へ回転させると、断面形状可変流路21の対向面211の押圧量が減少する方向へと2つの板カム53が回転する。この動作により、断面形状可変流路21の縦断面の面積が増大し、流体の流量を増加させることができる。
板カム53による対向面の押圧量の制御は、図6、図7を用いて説明した流体制御装置1aと同様に作用する、不図示のコントローラーを用いる場合を例示できる。
Further, when the gear 52 is rotated in the opposite direction, the two plate cams 53 rotate in the direction in which the pressing amount of the facing surface 211 of the variable cross-sectional shape flow path 21 decreases. This operation increases the vertical cross-sectional area of the variable cross-sectional shape flow path 21, thereby increasing the flow rate of the fluid.
Control of the pressing amount of the facing surface by the plate cam 53 can be exemplified by using a controller (not shown) that operates in the same manner as the fluid control device 1a described with reference to FIGS. 6 and 7 .

以上に説明した各実施形態における流体制御装置1、1a、1bによれば、金属製の筒状の断面形状可変流路21の縦断面形状を弾性変形させて流体の流れを制御することができる。
ここで、図6、図7に示す構成の流体制御装置1aに対し、図14を用いて説明した構成の流路(断面形状可変流路21、配管流路22a)を設置してもよい。また、図15に示す構成の流体制御装置1bに対し、図2を用いて説明した構成の流路(断面形状可変流路21、配管流路22)を設置してもよい。さらに、各流体制御装置1a、1bと、図11~図13を用いて説明した閉止機構とを併設してもよい。
According to the fluid control devices 1, 1a, and 1b in each of the embodiments described above, the flow of fluid can be controlled by elastically deforming the vertical cross-sectional shape of the cylindrical cross-sectional shape variable flow path 21 made of metal. .
Here, the flow path (cross-sectional shape variable flow path 21, piping flow path 22a) having the configuration described with reference to FIG. 14 may be installed in the fluid control device 1a having the configuration shown in FIGS. Further, the fluid control device 1b having the configuration shown in FIG. 15 may be provided with the flow path (variable cross-sectional shape flow path 21, piping flow path 22) having the configuration described with reference to FIG. Further, each of the fluid control devices 1a and 1b and the closing mechanism described with reference to FIGS. 11 to 13 may be installed together.

なお、断面形状可変流路21の縦断面形状は、図3(b)に示す扁平な六角形に構成する場合に限定されない。例えば図17、図18に示す断面形状可変流路21b、21cのように、対向面211と夾角形成面214との間に、これらの面211、214とは傾きが異なる接続面215を配置してもよい。
また、図19に示す断面形状可変流路21dのように、湾曲した対向面211と夾角形成面214とが連続的に連なる構成としてもよい。断面形状可変流路21dは、弾性変形可能な金属材料により構成されているので、十分な外力を加えることにより、当該断面形状可変流路21dを閉止することは可能である。
In addition, the vertical cross-sectional shape of the cross-sectional shape variable flow path 21 is not limited to the flat hexagonal shape shown in FIG. 3(b). For example, like the cross-sectional shape variable flow paths 21b and 21c shown in FIGS. may
Also, as in a variable cross-sectional shape flow path 21d shown in FIG. 19, a configuration in which the curved opposing surface 211 and the included angle forming surface 214 are continuously connected may be employed. Since the cross-sectional shape variable flow path 21d is made of an elastically deformable metal material, it is possible to close the cross-sectional shape variable flow path 21d by applying a sufficient external force.

さらには、断面形状可変流路に設けられる角部212の数は1組に限定されない。例えば対向して配置された2つの頂点を有する角部212を複数組設けてもよい。この場合には、断面形状可変流路の縦断正面形状は、複数の角部212が連結されたいわゆるベローズを対向面211の左右に設けた構成となる。
このように複雑な形状の断面形状可変流路の本体や、その上下側の端部に設けられ、断面形状可変流路と円管状の配管流路22、22aとを接続するフランジは、3Dプリンタにより製造する場合が考えられる。
Furthermore, the number of corner portions 212 provided in the cross-sectional shape variable flow path is not limited to one set. For example, a plurality of sets of corner portions 212 having two vertices arranged facing each other may be provided. In this case, the longitudinal front shape of the cross-sectional shape variable flow path is configured such that so-called bellows with a plurality of corners 212 connected are provided on the left and right sides of the facing surface 211 .
The main body of the variable cross-sectional shape channel having such a complicated shape and the flanges provided at the upper and lower ends of the variable cross-sectional shape channel and connecting the variable cross-sectional shape channel and the circular pipe channel 22, 22a are used by the 3D printer. It is conceivable that it may be manufactured by

また、本例の流体制御装置1、1a、1bを利用することが可能な基板処理装置は、図1に例示した枚葉式のウエハ処理装置9に限定されない。例えば多数枚のウエハを保持するウエハボートにウエハを保持して成膜を行うバッチ式であってもよい。また、回転する載置台上に複数枚のウエハを並べて、成膜を行うセミバッチ式の構成であってもよい。 Further, the substrate processing apparatus that can utilize the fluid control apparatuses 1, 1a, and 1b of this embodiment is not limited to the single wafer processing apparatus 9 illustrated in FIG. For example, it may be a batch type in which the wafers are held in a wafer boat holding a large number of wafers for film formation. Alternatively, a semi-batch type configuration may be used in which a plurality of wafers are arranged on a rotating mounting table and film formation is performed.

さらにまた、各基板処理装置にて実施される処理の内容についても、エッチング処理や成膜処理に限定されるものではなく、塗布・現像処理、洗浄処理などの他の処理であってもよい。これらの処理に伴って利用される流体の流れの制御に対しても、本例の流体制御装置1、1a、1bを適用することができる。
この他、上述の各種基板処理装置にて処理される基板の種類についても既述の半導体ウエハの例に限定されない。例えば、FPD(Flat Panel Display)の製造に用いられるガラス基板であってもよい。
Furthermore, the content of the processing performed in each substrate processing apparatus is not limited to etching processing and film forming processing, and may be other processing such as coating/developing processing and cleaning processing. The fluid control devices 1, 1a, and 1b of the present embodiment can also be applied to control the flow of fluid used in these processes.
In addition, the types of substrates processed by the various substrate processing apparatuses described above are not limited to the semiconductor wafers described above. For example, it may be a glass substrate used for manufacturing an FPD (Flat Panel Display).

今回開示された実施形態は全ての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその主旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。 It should be considered that the embodiments disclosed this time are illustrative in all respects and not restrictive. The embodiments described above may be omitted, substituted, or modified in various ways without departing from the scope and spirit of the appended claims.

W ウエハ
1、1a、1b
流体制御装置
211 対向面
212 角部
213 頂点
32 昇降棒
W Wafers 1, 1a, 1b
Fluid control device 211 facing surface 212 corner 213 vertex 32 lifting rod

Claims (13)

流体の流れを制御する装置であって、
前記流体が流れる筒状の流路として構成され、その縦断面形状が、互いに対向して配置された2つの対向面と、前記対向面が対向する方向と交差する方向に互いに対向して配置された頂点を有する少なくとも1組の角部とを有し、弾性変形により前記縦断面形状を変化させることが可能に構成された金属製の断面形状可変流路と、
前記断面形状可変流路に対し外力を加え、前記対向面間の距離を変化させることにより、その縦断面の面積を変化させるための流路操作部と、を備えた装置。
A device for controlling fluid flow, comprising:
It is configured as a cylindrical flow path through which the fluid flows, and the vertical cross-sectional shape thereof is two opposed surfaces arranged to face each other, and the opposed surfaces are arranged to face each other in a direction intersecting the direction in which the opposite faces face each other. a metal cross-sectional shape variable flow channel having at least one pair of corners having a vertex and configured to be able to change the vertical cross-sectional shape by elastic deformation;
and a flow path manipulating part for applying an external force to the variable cross-sectional shape flow path to change the distance between the facing surfaces, thereby changing the area of the vertical cross section.
前記断面形状可変流路の前記縦断面形状は、平行な2つの対向面を有し、1組の前記角部を有する六角形であり、前記1組の角部に含まれる2つの頂点は、これらの対向面の両脇に配置された残りの4つの面により構成される、請求項1に記載の装置。 The longitudinal cross-sectional shape of the variable cross-sectional shape channel is a hexagon having two parallel opposing faces and a pair of corners, and the two vertices included in the pair of corners are 2. A device according to claim 1, constituted by the remaining four surfaces located on either side of these opposing surfaces. 前記流路操作部は、前記縦断面の面積を増減させることにより、前記断面形状可変流路を流れる前記流体の流量を調節する、請求項1または2に記載の装置。 3. The apparatus according to claim 1, wherein the flow path operating unit adjusts the flow rate of the fluid flowing through the variable cross-sectional shape flow path by increasing or decreasing the area of the vertical cross section. 前記流路操作部は、前記2つの対向面を押圧する操作端を備え、前記操作端による押圧量を変化させることにより、前記縦断面の面積を増減させる、請求項3に記載の装置。 4. The device according to claim 3, wherein said flow path operating section includes an operating end for pressing said two opposing surfaces, and the area of said longitudinal section is increased or decreased by changing the amount of pressure applied by said operating end. 前記流路操作部は、
前記流体の流れ方向と交差する方向へ向けて延在するように設けられ、前記断面形状可変流路を挟んで、各々、1つの前記対向面に外面側から接触するように並べて配置された2つの棒状の前記操作端と、
これらの操作端の離間距離を変化させて前記対向面の押圧量を変化させるため、前記2つの操作端を移動させる移動機構と、を備えた、請求項4に記載の装置。
The flow path operation unit is
2 provided so as to extend in a direction intersecting with the flow direction of the fluid, and arranged side by side so as to be in contact with one of the opposing surfaces from the outer surface side, with the cross-sectional shape variable flow path interposed therebetween. two bar-shaped operating ends;
5. The device according to claim 4, further comprising a moving mechanism for moving the two operating ends in order to change the distance between the operating ends to change the pressing amount of the facing surfaces.
前記流路操作部は、
前記断面形状可変流路を挟んで、各々、1つの前記対向面に外面側から接触するように上下に並べて配置された2つの板カムにより構成される前記操作端と、
前記板カムによる前記対向面の押圧量を変化させるため、これらの板カムを回転させる回転機構と、を備えた、請求項4に記載の装置。
The flow path operation unit is
the operating end configured by two plate cams arranged vertically so as to be in contact with one of the opposing surfaces from the outer surface side, with the cross-sectional shape variable flow path interposed therebetween;
5. The device according to claim 4, further comprising a rotating mechanism for rotating the plate cams in order to change the pressing amount of the facing surface by the plate cams.
前記流路操作部は、前記2つの対向面同士を接触させ、且つ、前記角部の前記頂点を挟んで夾角を成す夾角形成面同士を接触させることにより、前記断面形状可変流路を閉止する、請求項1ないし6のいずれか一つに記載の装置。 The flow path operation unit closes the variable cross-sectional shape flow path by bringing the two opposing surfaces into contact with each other and by bringing the included angle forming surfaces that form an included angle across the vertex of the corner into contact with each other. , an apparatus according to any one of claims 1 to 6. 前記流路操作部は、流体の流れ方向に沿った複数の位置にて、前記縦断面を押し潰すように前記断面形状可変流路を屈曲させることにより、前記閉止を行う、請求項7に記載の装置。 8. The channel operating unit according to claim 7, wherein said closing is performed by bending said cross-sectional shape variable channel so as to crush said longitudinal section at a plurality of positions along the flow direction of the fluid. equipment. 前記閉止の際に接触した面同士を密着させるため、前記対向面の少なくとも一方側、及び前記2つの角部の前記夾角形成面の少なくとも一方側に、弾性を有する樹脂層が形成された、請求項7または8に記載の装置。 An elastic resin layer is formed on at least one side of the opposing surfaces and at least one side of the included angle forming surfaces of the two corners in order to bring the surfaces in contact with each other into close contact when the closing is performed. Item 9. Apparatus according to item 7 or 8. 前記断面形状可変流路の上流側及び下流側の端部には、縦断面の面積を変化させる操作が行われない配管流路が接続された、請求項1ないし8のいずれか一つに記載の装置。 9. The pipe flow channel according to any one of claims 1 to 8, wherein an operation for changing the area of the vertical cross section is connected to the upstream and downstream ends of the variable cross-sectional shape flow channel. equipment. 請求項1ないし9に記載の断面形状可変流路の製造方法であって、
前記対向面の一方側と、前記2つの角部を構成する面の一方側とを備えた一の流路形成部材と、前記対向面の他方側と、前記2つの角部を構成する面の他方側とを備えた他の流路形成部材と、を用い、前記角部を構成する面の端部同士を溶接して前記頂点を形成する工程を含む、製造方法。
A method for manufacturing a variable cross-sectional shape flow path according to any one of claims 1 to 9,
one side of the opposing surface and one side of the surfaces forming the two corners; and the other side of the opposing surface and the surface forming the two corners. and welding the ends of the surfaces forming the corners to form the vertices.
基板を処理する装置であって、
前記基板の処理が行われる処理容器と、
前記基板の処理に伴って使用される流体が貯留された流体供給源と、
前記処理容器と前記流体供給源との間に設けられ、前記流体供給源から供給された流体の流れを制御する請求項1ないし9のいずれか一つに記載の流体の流れを制御する装置と、を備えた装置。
An apparatus for processing a substrate, comprising:
a processing container in which the substrate is processed;
a fluid supply source storing a fluid used in processing the substrate;
and a device for controlling the flow of fluid according to any one of claims 1 to 9, which is provided between the processing container and the fluid supply source and controls the flow of the fluid supplied from the fluid supply source. , the device.
流体の流れを制御する方法であって、
前記流体が流れる筒状の流路として構成され、その縦断面形状が、互いに対向して配置された2つの対向面と、前記対向面が対向する方向と交差する方向に互いに対向して配置された頂点を有する少なくとも1組の角部とを有し、弾性変形により前記縦断面形状を変化させることが可能に構成された金属製の断面形状可変流路に対し、前記流体を流す工程と、
前記流体が流れる前記断面形状可変流路に対し外力を加え、前記対向面間の距離を変化させることにより、その縦断面の面積を変化させて前記流体の流れを制御する工程と、を含む方法。
A method of controlling fluid flow, comprising:
It is configured as a cylindrical flow path through which the fluid flows, and the vertical cross-sectional shape thereof is two opposed surfaces arranged to face each other, and the opposed surfaces are arranged to face each other in a direction intersecting the direction in which the opposite faces face each other. a step of flowing the fluid through a metal cross-sectional shape variable flow channel configured to be able to change the vertical cross-sectional shape by elastic deformation;
applying an external force to the variable cross-sectional shape channel through which the fluid flows to change the distance between the facing surfaces, thereby changing the area of the longitudinal cross section and controlling the flow of the fluid. .
JP2021088668A 2021-05-26 2021-05-26 Device for controlling fluid flow, method for manufacturing cross-sectional shape-variable flow path, device for processing substrate, and method for controlling fluid flow Pending JP2022181631A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021088668A JP2022181631A (en) 2021-05-26 2021-05-26 Device for controlling fluid flow, method for manufacturing cross-sectional shape-variable flow path, device for processing substrate, and method for controlling fluid flow
PCT/JP2022/020254 WO2022249901A1 (en) 2021-05-26 2022-05-13 Device for controlling flow of fluid, method for manufacturing flow passage having variable cross-sectional shape, device for processing substrate, and method for controlling flow of fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021088668A JP2022181631A (en) 2021-05-26 2021-05-26 Device for controlling fluid flow, method for manufacturing cross-sectional shape-variable flow path, device for processing substrate, and method for controlling fluid flow

Publications (1)

Publication Number Publication Date
JP2022181631A true JP2022181631A (en) 2022-12-08

Family

ID=84229968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021088668A Pending JP2022181631A (en) 2021-05-26 2021-05-26 Device for controlling fluid flow, method for manufacturing cross-sectional shape-variable flow path, device for processing substrate, and method for controlling fluid flow

Country Status (2)

Country Link
JP (1) JP2022181631A (en)
WO (1) WO2022249901A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4265425A (en) * 1978-11-06 1981-05-05 Cutter Laboratories, Inc. Flow control device
JPH10141538A (en) * 1996-11-11 1998-05-29 Fujitsu Ltd Conductance valve
JP5723241B2 (en) * 2011-08-08 2015-05-27 東京計装株式会社 Flow control device and flow control method
JP5571261B1 (en) * 2014-01-15 2014-08-13 東京計装株式会社 Pinch valve
JP6570778B1 (en) * 2019-02-28 2019-09-04 株式会社イワキ Tube diaphragm pump
CN110966421B (en) * 2019-12-02 2021-11-16 东南大学 Columnar folding type flow control device

Also Published As

Publication number Publication date
WO2022249901A1 (en) 2022-12-01

Similar Documents

Publication Publication Date Title
RU2327074C2 (en) Control valve, device to measure and control flow
CN107504249B (en) Vacuum control valve
JP3924386B2 (en) Flow control system
US5702228A (en) Robotic arm supporting an object by interactive mechanism
TWI644048B (en) Flow control valve and flow control system using same
US8500089B2 (en) Method of operating on-off valve
JP6125851B2 (en) Valve system
WO2022249901A1 (en) Device for controlling flow of fluid, method for manufacturing flow passage having variable cross-sectional shape, device for processing substrate, and method for controlling flow of fluid
TW201530031A (en) Flow control valve and flow control system using same
US20150145413A1 (en) Process chamber apparatus, systems, and methods for controlling a gas flow pattern
US10157805B2 (en) Moveable and adjustable gas injectors for an etching chamber
US6698718B2 (en) Rotary valve
JP4749690B2 (en) Vacuum processing equipment
CN101251204B (en) Gas flow regulating valve
JP2006070948A (en) Gate valve for vacuum
JP4435201B2 (en) Adjustment method of temperature control system
JP4814384B2 (en) Disc
JP4588393B2 (en) Vacuum processing equipment
EP1490612A1 (en) Pinch valve with pressure containing member
JPWO2019188240A1 (en) Flow control device
TWI804053B (en) Substrate processing apparatus and substrate processing method
EP3948424B1 (en) Sealing device, component and lithography apparatus
JP4861902B2 (en) Rotary valve unit and pulse tube refrigerator
JP5336452B2 (en) Vacuum processing equipment
JPH06193761A (en) Flow rate controller