JP2022178060A - Inspection method of pressure regulator for fuel gas, and inspection system of pressure regulator for fuel gas - Google Patents

Inspection method of pressure regulator for fuel gas, and inspection system of pressure regulator for fuel gas Download PDF

Info

Publication number
JP2022178060A
JP2022178060A JP2021084572A JP2021084572A JP2022178060A JP 2022178060 A JP2022178060 A JP 2022178060A JP 2021084572 A JP2021084572 A JP 2021084572A JP 2021084572 A JP2021084572 A JP 2021084572A JP 2022178060 A JP2022178060 A JP 2022178060A
Authority
JP
Japan
Prior art keywords
flow path
pressure
switching valve
flow rate
fuel gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021084572A
Other languages
Japanese (ja)
Inventor
江美 迫
Emi Sako
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Energy System Corp
Original Assignee
Yazaki Energy System Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Energy System Corp filed Critical Yazaki Energy System Corp
Priority to JP2021084572A priority Critical patent/JP2022178060A/en
Publication of JP2022178060A publication Critical patent/JP2022178060A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Examining Or Testing Airtightness (AREA)

Abstract

To make it possible to simply and suitably inspect occlusiveness of a switching valve.SOLUTION: An inspection method of a pressure regulator 1 for a fuel gas is provided. The pressure regulator comprises: a switching valve 5 opened and closed according to a pressure difference between the upstream side and the downstream side of a main flow path 2; a bypass flow path 3 for bypassing the upstream side and the downstream side of the switching valve 5; and an on-off valve 4 for opening and closing the bypass flow path 3. The inspection method comprises: a first measurement step of measuring a pressure of the downstream side or the bypass flow path 3 by making the fuel gas flow from the upstream side to the downstream side at a prescribed flow rate that can keep the closing state of the switching valve 5 in the state of the on-off valve 4 opened; a second measurement step of measuring the pressure of the downstream side or the bypass flow path 3 by making the fuel gas flow from the upstream side to the downstream side at the prescribed flow rate in the state of the on-off valve 4 closed; and a determination step of performing pass/fail determination of the switching valve 5 based on a difference between the pressure measured in the first measurement step and the pressure measured in the second measurement step.SELECTED DRAWING: Figure 3

Description

本発明は、燃料ガスの圧力調整器の検査方法、及び燃料ガスの圧力調整器の検査システムに関する。 The present invention relates to a fuel gas pressure regulator inspection method and a fuel gas pressure regulator inspection system.

燃料ガスの圧力調整器として、主流路の上流側と下流側との圧力差に応じて開閉する切替弁と、主流路における切替弁の上流側と下流側とをバイパスするバイパス流路と、このバイパス流路を流れる微小の燃料ガスを検知する漏洩検知センサとを備えるものが知られている(例えば、特許文献1参照)。特許文献1に記載の圧力調整器は、主流路の流量が設定流量未満であるときに切替弁が閉じた状態になって微小流量の燃料ガスがバイパス流路を流れる設定になっている。このバイパス流路における微小流量の燃料ガスを漏洩検知センサが検出することにより、燃料ガスの微小漏洩を検知している。 As a fuel gas pressure regulator, a switching valve that opens and closes according to the pressure difference between the upstream side and the downstream side of the main flow path, a bypass flow path that bypasses the upstream side and the downstream side of the switching valve in the main flow path, and There is known one that includes a leak detection sensor that detects minute amounts of fuel gas flowing through the bypass flow path (see, for example, Patent Document 1). The pressure regulator described in Patent Literature 1 is set such that when the flow rate of the main flow path is less than the set flow rate, the switching valve is closed and a very small flow rate of fuel gas flows through the bypass flow path. A leak detection sensor detects a minute flow rate of the fuel gas in the bypass flow path, thereby detecting a minute leak of the fuel gas.

特開2018-200238号公報Japanese Patent Application Laid-Open No. 2018-200238

特許文献1に記載の圧力調整器では、主流路の流量が設定流量未満であるときに切替弁が確実に閉じることを検査することが前提となるので、切替弁の閉塞性を検査する必要がある。その切替弁の閉塞性の検査方法として、圧力調整器に設けられたダイヤフラムを利用して主流路における切替弁の上流側の圧力を上昇させ、主流路における切替弁の上流側と下流側との圧力差を測定することで、切替弁の閉塞性を検査する検査方法が考えられる。 In the pressure regulator described in Patent Document 1, it is premised to inspect that the switching valve is reliably closed when the flow rate of the main flow path is less than the set flow rate, so it is necessary to inspect the blockage of the switching valve. be. As a method for inspecting the blockage of the switching valve, the pressure on the upstream side of the switching valve in the main flow path is increased using the diaphragm provided in the pressure regulator, and the pressure between the upstream side and the downstream side of the switching valve in the main flow path is increased. An inspection method for inspecting the occlusiveness of the switching valve by measuring the pressure difference is conceivable.

しかしながら、この検査方法では、切替弁を付勢するバネの微小な付勢力に合わせて、主流路における切替弁の上流側の圧力を調整する必要があるが、この調整作業は困難である。また、主流路における切替弁の上流側と下流側とで容積が異なることから、圧力の測定に温度の影響が及ぶ。さらに、主流路における切替弁の上流側と下流側とに検圧用の孔を空ける必要がある。 However, in this inspection method, it is necessary to adjust the pressure on the upstream side of the switching valve in the main flow path in accordance with the minute biasing force of the spring that biases the switching valve, but this adjustment work is difficult. In addition, since the volume differs between the upstream side and the downstream side of the switching valve in the main flow path, the pressure measurement is affected by the temperature. Furthermore, it is necessary to make holes for pressure detection on the upstream side and the downstream side of the switching valve in the main flow path.

本発明はかかる事情に鑑みてなされたものであり、簡易且つ好適に切替弁の閉塞性を検査することが可能な燃料ガスの圧力調整器の検査方法、及び燃料ガスの圧力調整器の検査システムを提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and provides a fuel gas pressure regulator inspection method and a fuel gas pressure regulator inspection system capable of easily and suitably inspecting the blockage of a switching valve. intended to provide

本発明に係る燃料ガスの圧力調整器の検査方法は、主流路の上流側と下流側との圧力差に応じて開閉する切替弁と、前記主流路における前記切替弁の上流側と下流側とをバイパスするバイパス流路と、前記バイパス流路を開閉する開閉弁とを備える燃料ガスの圧力調整器の検査方法であって、前記開閉弁を開いた状態で、前記切替弁が閉じた状態に維持される所定流量の燃料ガスを前記主流路における前記切替弁の上流側から下流側に流して当該下流側又は前記バイパス流路の圧力を測定する第1測定ステップと、前記開閉弁を閉じた状態で、前記所定流量の燃料ガスを前記主流路における前記切替弁の上流側から下流側に流して当該下流側又は前記バイパス流路の圧力を測定する第2測定ステップと、前記第1測定ステップで測定した圧力と前記第2測定ステップで測定した圧力との差に基づいて、前記切替弁の良否判定をする判定ステップとを備える。 A fuel gas pressure regulator inspection method according to the present invention includes a switching valve that opens and closes according to a pressure difference between the upstream side and the downstream side of a main flow path, and the upstream side and the downstream side of the switching valve in the main flow path. and an on-off valve that opens and closes the bypass flow path, wherein the on-off valve is opened and the switching valve is closed. a first measuring step of flowing a maintained predetermined flow rate of fuel gas from the upstream side of the switching valve in the main flow path to the downstream side thereof to measure the pressure of the downstream side or the bypass flow path; a second measuring step of flowing the fuel gas at a predetermined flow rate from the upstream side of the switching valve in the main flow path to the downstream side thereof and measuring the pressure of the downstream side or the bypass flow path; and a determining step of determining whether the switching valve is good or bad based on the difference between the pressure measured in the above step and the pressure measured in the second measuring step.

また、本発明に係る燃料ガスの圧力調整器の検査方法は、主流路の上流側と下流側との圧力差に応じて開閉する切替弁と、前記主流路における前記切替弁の上流側と下流側とをバイパスするバイパス流路と、前記バイパス流路を開閉する開閉弁とを備える燃料ガスの圧力調整器の検査方法であって、前記開閉弁を開いた状態で、前記切替弁が閉じた状態に維持される所定流量の燃料ガスを前記主流路における前記切替弁の上流側から下流側に流して当該下流側の流量と前記バイパス流路の流量とを測定する測定ステップと、前記測定ステップで測定した前記主流路の流量と前記バイパス流路の流量との差に基づいて、前記切替弁の良否判定をする判定ステップとを備える。 Further, a fuel gas pressure regulator inspection method according to the present invention includes a switching valve that opens and closes according to a pressure difference between the upstream side and the downstream side of a main flow path, and the upstream side and the downstream side of the switching valve in the main flow path. and an on-off valve for opening and closing the bypass flow path, wherein the switching valve is closed while the on-off valve is open. a measurement step of flowing a predetermined flow rate of fuel gas maintained in a state from the upstream side of the switching valve in the main flow path to the downstream side thereof, and measuring the flow rate of the downstream side and the flow rate of the bypass flow path; and a determination step of determining whether the switching valve is good or bad based on the difference between the flow rate of the main flow path and the flow rate of the bypass flow path measured in .

また、本発明に係る燃料ガスの圧力調整器の検査システムは、請求項1又は2に記載の圧力調整器の検査方法の実施に用いる圧力調整器の検査システムであって、前記第1測定ステップで測定された圧力と前記第2測定ステップで測定された圧力とが入力される入力部と、前記第1測定ステップで測定されて前記入力部に入力された圧力と前記第2測定ステップで測定されて前記入力部に入力された圧力との差を算出し、前記判定ステップを実行する判定部とを備える。 Further, a fuel gas pressure regulator inspection system according to the present invention is a pressure regulator inspection system used for carrying out the pressure regulator inspection method according to claim 1 or 2, wherein the first measurement step and an input unit into which the pressure measured in and the pressure measured in the second measurement step are input, and the pressure measured in the first measurement step and input to the input unit and the pressure measured in the second measurement step and a determination unit for calculating a difference from the pressure input to the input unit and executing the determination step.

さらに、本発明に係る燃料ガスの圧力調整器の検査システムは、請求項3又は4に記載の圧力調整器の検査方法の実施に用いる圧力調整器の検査システムであって、前記測定ステップで測定された前記主流路の流量と前記バイパス流路の流量とが入力される入力部と、前記測定ステップで測定されて前記入力部に入力された前記主流路の流量と前記バイパス流路の流量との差を算出し、前記判定ステップを実行する判定部とを備える。 Further, a fuel gas pressure regulator inspection system according to the present invention is a pressure regulator inspection system used for carrying out the pressure regulator inspection method according to claim 3 or 4, wherein the measuring step measures an input unit for inputting the flow rate of the main flow path and the flow rate of the bypass flow path, and the flow rate of the main flow path and the flow rate of the bypass flow path measured in the measuring step and input to the input unit. and a determination unit that calculates the difference between and executes the determination step.

本発明によれば、簡易且つ好適に切替弁の閉塞性を検査することが可能になる。 ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to test|inspect the blockage of a switching valve simply and suitably.

図1は、本発明の一実施形態に係る圧力調整器の検査方法を用いて検査する圧力調整器を示す正面図である。FIG. 1 is a front view showing a pressure regulator to be inspected using a pressure regulator inspection method according to an embodiment of the present invention. 図2は、図1に示す圧力調整器を示す側面断面図である。2 is a side cross-sectional view of the pressure regulator shown in FIG. 1; FIG. 図3は、図1及び図2に示す圧力調整器を示す正面断面図であり、圧力調整器の検査方法の第1測定ステップにおける圧力調整器を示す正面断面図である。FIG. 3 is a front sectional view showing the pressure regulator shown in FIGS. 1 and 2, and is a front sectional view showing the pressure regulator in the first measurement step of the pressure regulator inspection method. 図4は、図1及び図2に示す圧力調整器を示す正面断面図であり、圧力調整器の検査方法の第2測定ステップにおける圧力調整器を示す正面断面図である。FIG. 4 is a front sectional view showing the pressure regulator shown in FIGS. 1 and 2, and is a front sectional view showing the pressure regulator in a second measurement step of the pressure regulator inspection method. 図5は、本発明の他の実施形態に係る圧力調整器の検査方法の測定ステップにおける圧力調整器を示す正面断面図である。FIG. 5 is a front cross-sectional view showing a pressure regulator in a measurement step of a pressure regulator inspection method according to another embodiment of the present invention. 図6は、本発明の一実施形態及び他の実施形態に係る圧力調整器の検査方法を実証するための実験を説明するための図である。FIG. 6 is a diagram for explaining an experiment for demonstrating an inspection method for pressure regulators according to one embodiment and another embodiment of the present invention. 図7は、実験結果を示す表である。FIG. 7 is a table showing experimental results. 図8は、本発明の一実施形態に係る圧力調整器の検査システムの概略を示す図である。FIG. 8 is a schematic diagram of a pressure regulator inspection system according to an embodiment of the present invention. 図9は、本発明の他の実施形態に係る圧力調整器の検査システムの概略を示す図である。FIG. 9 is a schematic diagram of a pressure regulator inspection system according to another embodiment of the present invention.

以下、本発明を好適な実施形態に沿って説明する。なお、本発明は以下に示す実施形態に限られるものではなく、実施形態は本発明の趣旨を逸脱しない範囲において適宜変更可能である。また、以下に示す実施形態においては、一部構成の図示や説明を省略している箇所があるが、省略された技術の詳細については、以下に説明する内容と矛盾が発生しない範囲内において、適宜公知又は周知の技術が適用される。 BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below along with preferred embodiments. The present invention is not limited to the embodiments shown below, and the embodiments can be modified as appropriate without departing from the scope of the present invention. In addition, in the embodiments shown below, there are places where illustrations and explanations of some configurations are omitted, but the details of the omitted technologies are as long as there is no contradiction with the contents explained below. Appropriately known or well-known techniques are applied.

図1は、本発明の一実施形態に係る圧力調整器1の検査方法を用いて検査する圧力調整器1を示す正面図である。この図に示すように、圧力調整器1は、一次調整器10と、二次調整器20と、漏洩検知器30と、配管40とを備える。また、圧力調整器1は、主流路2と、バイパス流路3と、開閉弁4と、切替弁5(図2~6参照)とを備える。 FIG. 1 is a front view showing a pressure regulator 1 to be inspected using a pressure regulator 1 inspection method according to an embodiment of the present invention. As shown in this figure, the pressure regulator 1 comprises a primary regulator 10 , a secondary regulator 20 , a leak detector 30 and piping 40 . The pressure regulator 1 also includes a main flow path 2, a bypass flow path 3, an on-off valve 4, and a switching valve 5 (see FIGS. 2 to 6).

主流路2の上流側部分は、二次調整器20の一部を構成し、主流路2の下流側部分は、配管40により構成されている。主流路2の上流側部分と下流側部分との境界には、切替弁5が設けられている。この切替弁5は、主流路2の上流側と下流側との圧力差に応じて開閉する。 The upstream portion of the main flow path 2 constitutes part of the secondary regulator 20 , and the downstream portion of the main flow path 2 is constructed by a pipe 40 . A switching valve 5 is provided at the boundary between the upstream portion and the downstream portion of the main flow passage 2 . The switching valve 5 opens and closes according to the pressure difference between the upstream side and the downstream side of the main flow passage 2 .

バイパス流路3は、主流路2における切替弁5の上流側と下流側とをバイパスする流路である。このバイパス流路3には、開閉弁4とレバー6とが設けられている。レバー6が操作されることにより、開閉弁4が開状態と閉状態とに切り替えられ、バイパス流路3が開閉される。 The bypass flow path 3 is a flow path that bypasses the upstream side and downstream side of the switching valve 5 in the main flow path 2 . The bypass flow path 3 is provided with an on-off valve 4 and a lever 6 . By operating the lever 6, the on-off valve 4 is switched between an open state and a closed state, and the bypass flow path 3 is opened and closed.

一次調整器10は、いわゆる切替機能付きの元調整器であって、左右にLPガスボンベ(図示省略)が接続される。この一次調整器10は、切替レバー11を備える。この切替レバー11が操作されることにより、左右のLPガスボンベ(図示せず)の何れかから燃料ガスを導入するかが選択される。 The primary regulator 10 is a so-called primary regulator with a switching function, and is connected to left and right LP gas cylinders (not shown). This primary adjuster 10 has a switching lever 11 . By operating this switching lever 11, it is selected whether the fuel gas is to be introduced from either the left or right LP gas cylinder (not shown).

図2は、図1に示す圧力調整器1を示す側面断面図である。この図に示すように、一次調整器10は、内部にダイヤフラム12等を備えている。一次調整器10は、ダイヤフラム12の動作に応じて内部の弁体を開閉動作させることによって高圧の燃料ガスを中圧とする一次減圧を行う。一次調整器10により一次減圧された燃料ガスは、二次調整器20に供給される。 FIG. 2 is a side sectional view showing the pressure regulator 1 shown in FIG. As shown in this figure, the primary regulator 10 has a diaphragm 12 and the like inside. The primary regulator 10 opens and closes an internal valve body in accordance with the operation of the diaphragm 12 to perform primary pressure reduction to reduce the high-pressure fuel gas to an intermediate pressure. The fuel gas that has been primarily pressure-reduced by the primary regulator 10 is supplied to the secondary regulator 20 .

二次調整器20は、一次調整器10から供給された中圧の燃料ガスを低圧とする二次減圧を行う。二次調整器20は、主流路2の上流側部分を構成する配管部21と、この配管部21に連通したガス室Gに面して配されたダイヤフラム22と、減圧弁25等を備える。二次調整器20は、ダイヤフラム22の動作に応じて減圧弁25を開閉することによって二次減圧を行う。二次調整器20により二次減圧された燃料ガスは、下流側の配管40に供給される。 The secondary regulator 20 performs secondary pressure reduction to lower the pressure of the medium-pressure fuel gas supplied from the primary regulator 10 . The secondary regulator 20 includes a piping portion 21 forming an upstream portion of the main flow passage 2, a diaphragm 22 facing the gas chamber G communicating with the piping portion 21, a pressure reducing valve 25, and the like. Secondary regulator 20 performs secondary pressure reduction by opening and closing pressure reducing valve 25 in response to operation of diaphragm 22 . The fuel gas that has been secondary pressure-reduced by the secondary regulator 20 is supplied to the downstream piping 40 .

二次調整器20では、燃料ガスの流量が設定流量未満である場合に、切替弁5が閉状態になることにより、燃料ガスがバイパス流路3に流れる。他方で、二次調整器20では、燃料ガスの流量が設定流量以上である場合に、切替弁5が開状態になることにより、燃料ガスが主流路2とバイパス流路3との双方に流れる。 In the secondary regulator 20 , when the flow rate of the fuel gas is less than the set flow rate, the fuel gas flows into the bypass flow path 3 by closing the switching valve 5 . On the other hand, in the secondary regulator 20, when the flow rate of the fuel gas is equal to or higher than the set flow rate, the fuel gas flows through both the main flow path 2 and the bypass flow path 3 by opening the switching valve 5. .

二次調整器20は、配管部21と、ダイヤフラム22と、コイルスプリング23と、リンク機構24と、減圧弁25と、筐体26とを備える。筐体26は、コイルスプリング23を収容する円筒形状のコイル収容部26Aと、空気室A及びガス室Gを構成する円盤状の空気/ガス室部26Bとを備える。コイル収容部26Aは、空気/ガス室部26Bの中央部から突出しており、コイル収容部26Aの中心軸は、空気/ガス室部26Bの中心軸に対して同軸に配されている。 The secondary regulator 20 includes a piping section 21 , a diaphragm 22 , a coil spring 23 , a link mechanism 24 , a pressure reducing valve 25 and a housing 26 . The housing 26 includes a cylindrical coil housing portion 26A that houses the coil spring 23, and a disk-shaped air/gas chamber portion 26B that constitutes the air chamber A and the gas chamber G. As shown in FIG. The coil housing portion 26A protrudes from the central portion of the air/gas chamber portion 26B, and the central axis of the coil housing portion 26A is arranged coaxially with the central axis of the air/gas chamber portion 26B.

コイルスプリング23は、圧縮コイルバネであり、コイル収容部26Aの軸方向に伸縮可能な状態でコイル収容部26Aに収容されている。このコイルスプリング23の一端は、コイル収容部26Aの先端側に固定されている。ダイヤフラム22は、空気/ガス室部26B内をコイル収容部26A側の空気室Aと配管部21側のガス室Gとに隔てる弾性変形可能な円盤である。このダイヤフラム22の中央部にコイルスプリング23の他端が取り付けられている。また、ダイヤフラム22の周縁部は、空気/ガス室部26Bの内周壁部に取り付けられている。 The coil spring 23 is a compression coil spring, and is housed in the coil housing portion 26A in a state that it can expand and contract in the axial direction of the coil housing portion 26A. One end of the coil spring 23 is fixed to the tip side of the coil accommodating portion 26A. The diaphragm 22 is an elastically deformable disc that separates the inside of the air/gas chamber 26B into an air chamber A on the side of the coil accommodating portion 26A and a gas chamber G on the side of the pipe portion 21 . The other end of the coil spring 23 is attached to the central portion of the diaphragm 22 . A peripheral portion of the diaphragm 22 is attached to the inner peripheral wall portion of the air/gas chamber portion 26B.

ガス室Gの圧力の上昇により、ダイヤフラム22は、コイルスプリング23の弾性力に抗して空気室A側に膨出するように変形する。他方で、ガス室Gの圧力の低下により、ダイヤフラム22は、コイルスプリング23の弾性力によりガス室G側に付勢されると共に弾性復帰する。 Due to the increase in pressure in the gas chamber G, the diaphragm 22 is deformed to expand toward the air chamber A side against the elastic force of the coil spring 23 . On the other hand, due to the decrease in pressure in the gas chamber G, the diaphragm 22 is urged toward the gas chamber G by the elastic force of the coil spring 23 and elastically returns.

リンク機構24は、第1の軸部24Aと、第2の軸部24Bと、L字状のリンク24Cとを備える。第1の軸部24Aは、ダイヤフラム22の中心に取り付けられている。この第1の軸部24Aは、コイルスプリング23やコイル収容部26Aの中心に対して同軸に配されており、ダイヤフラム22の中心からガス室Gに突出している。他方で、第2の軸部24Bの一端は、減圧弁25の弁体25Aの中心に取り付けられている。この第2の軸部24Bは、配管部21の中心軸に対して同軸に配されており、減圧弁25の弁体25Aの中心からガス室Gに突出している。 The link mechanism 24 includes a first shaft portion 24A, a second shaft portion 24B, and an L-shaped link 24C. The first shaft portion 24A is attached to the center of the diaphragm 22 . The first shaft portion 24A is arranged coaxially with respect to the centers of the coil spring 23 and the coil accommodating portion 26A, and protrudes from the center of the diaphragm 22 into the gas chamber G. As shown in FIG. On the other hand, one end of the second shaft portion 24B is attached to the center of the valve body 25A of the pressure reducing valve 25 . The second shaft portion 24B is arranged coaxially with the central axis of the pipe portion 21 and protrudes from the center of the valve body 25A of the pressure reducing valve 25 into the gas chamber G. As shown in FIG.

リンク24Cは、第1リンク部24C1と、この第1リンク部24C1より長尺の第2リンク部24C2とを備える。第1リンク部24C1は、配管部21に形成された孔21Hを通して、配管部21内と筐体26内とに跨がるように配されている。第1リンク部24C1の一端は、第2の軸部24Bの他端に連結され、第1リンク部24C1の他端は、第2リンク部24C2の一端と一体的に形成されている。この第1リンク部24C1の中央部は、配管部21における孔21Hの周縁部に回動可能に支持されている。 The link 24C includes a first link portion 24C1 and a second link portion 24C2 longer than the first link portion 24C1. The first link portion 24</b>C<b>1 is arranged across the inside of the pipe portion 21 and the inside of the housing 26 through a hole 21</b>H formed in the pipe portion 21 . One end of the first link portion 24C1 is connected to the other end of the second shaft portion 24B, and the other end of the first link portion 24C1 is integrally formed with one end of the second link portion 24C2. The central portion of the first link portion 24C1 is rotatably supported by the peripheral portion of the hole 21H in the pipe portion 21. As shown in FIG.

第2リンク部24C2の他端は、第1の軸部24Aの先端に連結されている。ガス室Gの圧力の上昇により、ダイヤフラム22が空気室A側に膨出するように変形すると、第2リンク部24C2の他端が空気室A側に変位し、第1リンク部24C1の一端が減圧弁25の弁座25Bから離れる方向に変位する。この際、ダイヤフラム22が所定状態になると、弁体25Aが弁座25Bに圧接した閉状態となり、燃料ガスのガス室Gへの導入が遮断される。他方で、ガス室Gの圧力の低下により、ダイヤフラム22が上記所定状態からガス室G側に弾性復帰すると、第2リンク部24C2の他端が配管部21側に変位し、第1リンク部24C1の一端が減圧弁25の弁座25B側に変位する。この際、弁体25Aが弁座25Bから離間した開状態となり、燃料ガスがガス室Gに導入される。二次調整器20は、燃料ガスをガス室Gに導入する動作と、燃料ガスのガス室Gへの導入を遮断する動作とを繰り返すことにより、燃料ガスを減圧する。 The other end of the second link portion 24C2 is connected to the tip of the first shaft portion 24A. When the diaphragm 22 is deformed so as to expand toward the air chamber A due to an increase in pressure in the gas chamber G, the other end of the second link portion 24C2 is displaced toward the air chamber A, and one end of the first link portion 24C1 is displaced toward the air chamber A. It is displaced away from the valve seat 25B of the pressure reducing valve 25 . At this time, when the diaphragm 22 is brought into a predetermined state, the valve body 25A is brought into a closed state in which it is pressed against the valve seat 25B, and the introduction of the fuel gas into the gas chamber G is cut off. On the other hand, when the diaphragm 22 elastically returns from the predetermined state to the gas chamber G side due to a decrease in the pressure of the gas chamber G, the other end of the second link portion 24C2 is displaced toward the pipe portion 21 side, and the first link portion 24C1 is displaced toward the valve seat 25B side of the pressure reducing valve 25 . At this time, the valve body 25A is in an open state away from the valve seat 25B, and the fuel gas is introduced into the gas chamber G. The secondary regulator 20 reduces the pressure of the fuel gas by repeating the operation of introducing the fuel gas into the gas chamber G and the operation of blocking the introduction of the fuel gas into the gas chamber G.

配管40は、配管部21と同軸に配されている。この配管40の上流端と配管部21の下流端とが接続されている。配管40と配管部21との接続部に切替弁5が設けられている。切替弁5は、弁体51と、弁座52と、軸部53と、ガイド54と、コイルスプリング55とを備える。 The pipe 40 is arranged coaxially with the pipe portion 21 . The upstream end of the pipe 40 and the downstream end of the pipe portion 21 are connected. A switching valve 5 is provided at the connecting portion between the pipe 40 and the pipe portion 21 . The switching valve 5 includes a valve body 51 , a valve seat 52 , a shaft portion 53 , a guide 54 and a coil spring 55 .

弁座52は、配管40と配管部21との接続部に設けられ、弁体51は、弁座52より下流側に配されている。軸部53は、弁体51の中心に取り付けられ、弁座52の挿通孔を通して弁体51から配管部21側に突出している。軸部53の先端にはフランジ部53Aが設けられている。ガイド54は、配管40と配管部21との接続部に設けられ、軸部53を配管部21の軸方向に沿って案内している。 The valve seat 52 is provided at the connecting portion between the pipe 40 and the pipe portion 21 , and the valve body 51 is arranged downstream from the valve seat 52 . The shaft portion 53 is attached to the center of the valve body 51 and protrudes from the valve body 51 toward the piping portion 21 side through the insertion hole of the valve seat 52 . A flange portion 53A is provided at the tip of the shaft portion 53 . The guide 54 is provided at the connecting portion between the pipe 40 and the pipe portion 21 and guides the shaft portion 53 along the axial direction of the pipe portion 21 .

コイルスプリング55は、圧縮コイルバネであり、フランジ部53Aとガイド54との間に挟まれた状態で設けられている。配管部21と配管40との圧力差が所定の設定値未満の場合に、切替弁5は、弁体51が弁座52に圧接した閉状態となり、配管部21から配管40への燃料ガスの流れが遮断される。他方で、配管部21と配管40との圧力差が上記の所定の設定値以上の場合に、切替弁5は、弁体51がコイルスプリング55の弾性力に抗して弁座52から離間した開状態となり、配管部21から配管40へ燃料ガスが流れる。 The coil spring 55 is a compression coil spring, and is sandwiched between the flange portion 53A and the guide 54. As shown in FIG. When the pressure difference between the pipe portion 21 and the pipe 40 is less than a predetermined set value, the switching valve 5 is closed with the valve body 51 pressed against the valve seat 52, and the fuel gas flows from the pipe portion 21 to the pipe 40. flow is interrupted. On the other hand, when the pressure difference between the pipe portion 21 and the pipe 40 is equal to or greater than the predetermined set value, the valve body 51 of the switching valve 5 moves away from the valve seat 52 against the elastic force of the coil spring 55. The open state is established, and the fuel gas flows from the piping section 21 to the piping 40 .

図3及び図4は、図1に示す圧力調整器1を示す正面断面図である。これらの図に示すように、漏洩検知器30は、バイパス流路3と、開閉弁4と、レバー6(図1参照)と、漏洩検知センサ31と、圧力センサ32とを備え、バイパス流路3を流れる微小流量の燃料ガスを漏洩検知センサ31により検知することによって、二次調整器20(図2参照)よりも下流側で生じた燃料ガスの微小な漏洩を検知する。 3 and 4 are front sectional views showing the pressure regulator 1 shown in FIG. 1. FIG. As shown in these figures, the leak detector 30 includes a bypass flow path 3, an on-off valve 4, a lever 6 (see FIG. 1), a leak detection sensor 31, and a pressure sensor 32. By detecting a small amount of fuel gas flowing through the secondary regulator 20 (see FIG. 2), a small leak of fuel gas occurring downstream of the secondary regulator 20 (see FIG. 2) is detected.

漏洩検知器30は、バイパス流路3を構成する下流側バイパス配管33及び上流側バイパス配管34を備える。上流側バイパス配管34の上流端は、配管部21における減圧弁25と切替弁5との間に接続され、上流側バイパス配管34の下流端は、下流側バイパス配管33の上流端に接続されている。また、下流側バイパス配管33の下流端は、配管40における切替弁5よりも下流側に接続されている。この上流側バイパス配管34には、開閉弁4とレバー6とが設けられている。 The leak detector 30 includes a downstream bypass pipe 33 and an upstream bypass pipe 34 that constitute the bypass flow path 3 . The upstream end of the upstream bypass pipe 34 is connected between the pressure reducing valve 25 and the switching valve 5 in the pipe section 21, and the downstream end of the upstream bypass pipe 34 is connected to the upstream end of the downstream bypass pipe 33. there is A downstream end of the downstream bypass pipe 33 is connected to a pipe 40 downstream of the switching valve 5 . An on-off valve 4 and a lever 6 are provided in the upstream bypass pipe 34 .

開閉弁4が開状態で配管部21と配管40との圧力差が所定の設定値以上の場合に、切替弁5が開状態となり、燃料ガスは、配管部21から配管40へ直接流れると共に、配管部21からバイパス流路3を経由して配管40に流れる。他方で、開閉弁4が開状態で配管部21と配管40との圧力差が所定の設定値未満の場合に、切替弁5が閉状態となり、燃料ガスは、配管部21からバイパス流路3を経由して配管40に流れるのみである。 When the on-off valve 4 is open and the pressure difference between the pipe portion 21 and the pipe 40 is equal to or greater than a predetermined set value, the switching valve 5 is opened and the fuel gas directly flows from the pipe portion 21 to the pipe 40. It flows from the piping portion 21 to the piping 40 via the bypass flow path 3 . On the other hand, when the on-off valve 4 is open and the pressure difference between the pipe portion 21 and the pipe 40 is less than the predetermined set value, the switching valve 5 is closed and the fuel gas flows from the pipe portion 21 to the bypass flow path 3. only flows into the pipe 40 via the .

下流側バイパス配管33としては、多層ユニットを例示できる。この多層ユニットは、内部に複数の分流板を有する角筒形状の配管である。また、漏洩検知センサ31としては、超音波式流量センサを例示できる。この超音波式流量センサは、2組の超音波送受信器と、2組の超音波送受信器により送受信された超音波信号の伝搬時間から流量を算出する演算装置とを備える。また、圧力センサ32は、下流側バイパス配管33の圧力を測定する。 A multi-layer unit can be exemplified as the downstream bypass pipe 33 . This multi-layer unit is a rectangular tubular pipe having a plurality of flow dividing plates inside. Moreover, as the leakage detection sensor 31, an ultrasonic flow sensor can be exemplified. This ultrasonic flow sensor includes two sets of ultrasonic transmitters/receivers, and an arithmetic device for calculating the flow rate from the propagation time of the ultrasonic signals transmitted/received by the two sets of ultrasonic transmitters/receivers. Also, the pressure sensor 32 measures the pressure of the downstream bypass pipe 33 .

需要者側での燃料ガスの使用により、配管部21と配管40との圧力差が所定の設定値以上になった場合には、切替弁5が開状態となり、燃料ガスが、配管部21から直接又はバイパス流路3を経由して需要者側に供給される。それに対して、配管40よりも下流側において燃料ガスの微小な漏洩が生じ、配管部21と配管40との圧力差が所定の設定値未満の場合には、微小な流量の燃料ガスが、配管部21からバイパス流路3を経由して配管40に流れる。この際、バイパス流路3を流れる微小な流量の燃料ガスが漏洩検知センサ31により検知されることにより、燃料ガスの微小な漏洩が検知される。 When the pressure difference between the piping section 21 and the piping 40 becomes equal to or greater than a predetermined set value due to the use of the fuel gas on the consumer side, the switching valve 5 is opened, and the fuel gas is discharged from the piping section 21. It is supplied to the consumer side either directly or via the bypass channel 3 . On the other hand, when a minute fuel gas leak occurs downstream of the pipe 40 and the pressure difference between the pipe 21 and the pipe 40 is less than a predetermined set value, a minute flow rate of the fuel gas leaks into the pipe. It flows from the part 21 to the pipe 40 via the bypass channel 3 . At this time, a small amount of fuel gas flowing through the bypass flow path 3 is detected by the leak detection sensor 31, so that a small leak of the fuel gas is detected.

ここで、漏洩検知器30による燃料ガスの微小な漏洩の検知を行うためには、配管部21と配管40との圧力差が所定の設定値未満である場合に、切替弁5が閉状態を維持することが前提となる。そのため、切替弁5が正常に閉状態を維持できるか否かを確認するための検査を行う必要がある。以下、圧力調整器1、特に切替弁5の良否を判定するための検査方法について説明する。 Here, in order for the leak detector 30 to detect a minute fuel gas leak, the switching valve 5 is closed when the pressure difference between the pipe section 21 and the pipe 40 is less than a predetermined set value. maintained is a prerequisite. Therefore, it is necessary to perform an inspection to confirm whether or not the switching valve 5 can normally maintain its closed state. An inspection method for determining the quality of the pressure regulator 1, particularly the switching valve 5, will be described below.

図3は、本実施形態の圧力調整器1の検査方法の第1測定ステップにおける圧力調整器1の状態を示し、図4は、本実施形態の圧力調整器1の検査方法の第2測定ステップにおける圧力調整器1の状態を示している。これらの図に示すように、本実施形態の圧力調整器1の検査方法では、圧力計8を配管40の下流側に接続して圧力調整器1の出口圧力P1,P2を測定し、需要者側のガスコンロ9で燃料ガスを燃焼させることにより圧力調整器1から需要者側へ燃料ガスを流す。なお、圧力調整器1の出口圧力P1,P2を主流路2の圧力P1,P2という場合がある。 3 shows the state of the pressure regulator 1 in the first measurement step of the inspection method of the pressure regulator 1 of the present embodiment, and FIG. 4 shows the second measurement step of the inspection method of the pressure regulator 1 of the present embodiment. shows the state of the pressure regulator 1 at . As shown in these figures, in the inspection method of the pressure regulator 1 of the present embodiment, the pressure gauge 8 is connected to the downstream side of the pipe 40 to measure the outlet pressures P1 and P2 of the pressure regulator 1, and By burning the fuel gas on the gas stove 9 on the side, the fuel gas flows from the pressure regulator 1 to the consumer side. Note that the outlet pressures P1 and P2 of the pressure regulator 1 may be referred to as the pressures P1 and P2 of the main flow path 2 .

図3に示すように、第1測定ステップでは、開閉弁4を開状態として、ガスコンロ9で燃料ガスを燃焼させることにより、燃料ガスを圧力調整器1から需要者側へ流す。ここで、燃料ガスの流量を、開閉弁4が開状態のときに切替弁5が閉状態に維持される流量(例えば50~100L/h)に設定する。この際、圧力計8により圧力調整器1の出口圧力P1を測定する。 As shown in FIG. 3, in the first measurement step, the on-off valve 4 is opened, and the gas stove 9 burns the fuel gas, thereby causing the fuel gas to flow from the pressure regulator 1 to the consumer side. Here, the flow rate of the fuel gas is set to a flow rate (for example, 50 to 100 L/h) at which the switching valve 5 is kept closed when the on-off valve 4 is open. At this time, the pressure gauge 8 measures the outlet pressure P1 of the pressure regulator 1 .

図4に示すように、第2測定ステップでは、第1測定ステップでの燃料ガスの流量を維持した状態で、開閉弁4を閉状態に切り替える。この際、圧力計8により圧力調整器1の出口圧力P2を測定する。 As shown in FIG. 4, in the second measurement step, the on-off valve 4 is closed while maintaining the flow rate of the fuel gas in the first measurement step. At this time, the pressure gauge 8 measures the outlet pressure P2 of the pressure regulator 1 .

次に、判定ステップでは、第1測定ステップで測定した出口圧力P1と第2測定ステップで測定した出口圧力P2との差に基づいて、切替弁5の良否を判定する。具体的には、出口圧力P1と出口圧力P2との差(P1-P2)が、所定値(例えば、0.1kPa)以上である場合に、切替弁5を正常(即ち閉塞性に問題なし)と判定し、出口圧力P1と出口圧力P2との差(P1-P2)が、上記所定値未満である場合に、切替弁5を異常(即ち閉塞性に問題あり)と判定する。 Next, in the determination step, the quality of the switching valve 5 is determined based on the difference between the outlet pressure P1 measured in the first measurement step and the outlet pressure P2 measured in the second measurement step. Specifically, when the difference (P1-P2) between the outlet pressure P1 and the outlet pressure P2 is equal to or greater than a predetermined value (for example, 0.1 kPa), the switching valve 5 is normal (that is, there is no obstruction problem). If the difference (P1-P2) between the outlet pressure P1 and the outlet pressure P2 is less than the predetermined value, it is determined that the switching valve 5 is abnormal (that is, there is a problem with obstruction).

ここで、切替弁5の閉塞性に問題が無い場合には、第2測定ステップにおいて、切替弁5が開状態に変化しない限り、燃料ガスが配管部21から配管40へ流れない。そのため、第2測定ステップで測定した出口圧力P2は、第1測定ステップで測定した出口圧力P1に比して低くなる。それに対して、切替弁5の閉塞性に問題が有る場合には、第2測定ステップにおいて、切替弁5の状態に変化がなくても、燃料ガスが配管部21から配管40へ流れる。そのため、第2測定ステップで測定した出口圧力P2は、第1測定ステップで測定した出口圧力P1から変化しないか、或いは微量(例えば、0.1kPa未満)しか変化しない。 Here, when there is no problem with the closing property of the switching valve 5, the fuel gas does not flow from the piping section 21 to the piping 40 unless the switching valve 5 is changed to the open state in the second measurement step. Therefore, the outlet pressure P2 measured in the second measurement step is lower than the outlet pressure P1 measured in the first measurement step. On the other hand, if there is a problem with the closing property of the switching valve 5, the fuel gas flows from the piping section 21 to the piping 40 even if the state of the switching valve 5 does not change in the second measurement step. Therefore, the outlet pressure P2 measured in the second measurement step does not change from the outlet pressure P1 measured in the first measurement step, or changes only slightly (for example, less than 0.1 kPa).

そこで、本実施形態の圧力調整器1の検査方法では、第1測定ステップで測定した出口圧力P1と第2測定ステップで測定した出口圧力P2との差(P1-P2)が0であるか或いは微量(例えば、0.1kPa未満)である場合に、切替弁5の閉塞性が悪いと判定し、検査した圧力調整器1を不合格とする。 Therefore, in the inspection method of the pressure regulator 1 of the present embodiment, the difference (P1-P2) between the outlet pressure P1 measured in the first measurement step and the outlet pressure P2 measured in the second measurement step is 0 or If the amount is very small (for example, less than 0.1 kPa), it is determined that the occlusion property of the switching valve 5 is poor, and the inspected pressure regulator 1 is rejected.

なお、第1測定ステップと第2測定ステップとで漏洩検知器30の圧力センサ32によりバイパス流路3の圧力P1’,P2’を測定し、これらの差(P1’-P2’)が0であるか或いは微量(例えば、0.1kPa未満)である場合に、切替弁5の閉塞性が悪いと判定し、検査した圧力調整器1を不合格とするようにしてもよい。 In the first measurement step and the second measurement step, the pressure sensor 32 of the leak detector 30 measures the pressures P1' and P2' of the bypass flow path 3, and the difference between them (P1'-P2') is 0. If there is or is a very small amount (for example, less than 0.1 kPa), it may be determined that the occlusion property of the switching valve 5 is poor, and the inspected pressure regulator 1 may be rejected.

次に、本発明の他の実施形態に係る圧力調整器1の検査方法について説明する。図5は、本発明の他の実施形態に係る圧力調整器1の検査方法の測定ステップにおける圧力調整器1を示す正面断面図である。この図に示すように、本実施形態では、配管40から需要者側に流れる燃料ガスの流量を測定する流量センサ101を、配管40の下流側に設置する。 Next, a method for inspecting the pressure regulator 1 according to another embodiment of the invention will be described. FIG. 5 is a front cross-sectional view showing the pressure regulator 1 in a measurement step of an inspection method for the pressure regulator 1 according to another embodiment of the present invention. As shown in this figure, in this embodiment, a flow rate sensor 101 for measuring the flow rate of fuel gas flowing from the pipe 40 to the consumer side is installed downstream of the pipe 40 .

本実施形態の圧力調整器1の検査方法では、測定ステップにおいて、開閉弁4を開状態にしてガスコンロ9で燃料ガスを燃焼させることにより、燃料ガスを圧力調整器1から需要者側へ流す。上述の実施形態と同様に、燃料ガスの流量を、開閉弁4が開状態のときに切替弁5が閉状態に維持される流量(例えば50~100L/h)に設定する。この際、配管40から需要者側に流れる燃料ガスの流量F1を流量センサ101により測定し、バイパス流路3を流れる燃料ガスの流量F2を漏洩検知センサ31により測定する。 In the method for inspecting the pressure regulator 1 of the present embodiment, in the measurement step, the on-off valve 4 is opened and the fuel gas is burned on the gas stove 9 so that the fuel gas flows from the pressure regulator 1 to the consumer side. As in the above embodiment, the flow rate of the fuel gas is set to a flow rate (for example, 50 to 100 L/h) at which the switching valve 5 is kept closed while the on-off valve 4 is open. At this time, the flow rate sensor 101 measures the flow rate F1 of the fuel gas flowing from the pipe 40 to the consumer side, and the leakage detection sensor 31 measures the flow rate F2 of the fuel gas flowing through the bypass flow path 3 .

次に、判定ステップでは、測定ステップで測定した主流路2の流量F1とバイパス流路3の流量F2との差に基づいて、切替弁5の良否を判定する。具体的には、事前に、切替弁5と開閉弁4とを開状態にして同流量の燃料ガスを圧力調整器1から需要者側に流した場合における主流路2の流量F1’とバイパス流路3の流量F2’との差(第2の値(F1’-F2’))を予め求めておき、測定ステップで測定した主流路2の流量F1とバイパス流路3の流量F2との差(第1の値(F1-F2))と、第2の値(F1’-F2’)とを比較する。比較の結果、第1の値(F1-F2)が、第2の値(F1’-F2’)よりも有意に小さい場合(例えば、1/2~1/10以下)場合には、切替弁5の閉塞性に問題は無いと判定し、第1の値(F1-F2)と第2の値(F1’-F2’)との間に有意な差(例えば、第1の値(F1-F2)が第2の値(F1’-F2’)の1/2~1/10倍より大きい)が無い場合には、切替弁5の閉塞性に問題が有ると判定する。 Next, in the determination step, the quality of the switching valve 5 is determined based on the difference between the flow rate F1 of the main flow path 2 and the flow rate F2 of the bypass flow path 3 measured in the measurement step. Specifically, in advance, when the switching valve 5 and the on-off valve 4 are opened and the same flow rate of fuel gas is flowed from the pressure regulator 1 to the consumer side, the flow rate F1' of the main flow path 2 and the bypass flow The difference (second value (F1'-F2')) from the flow rate F2' of the passage 3 is obtained in advance, and the difference between the flow rate F1 of the main flow passage 2 and the flow rate F2 of the bypass passage 3 measured in the measurement step. Compare (first value (F1-F2)) with second value (F1'-F2'). As a result of the comparison, if the first value (F1-F2) is significantly smaller than the second value (F1'-F2') (for example, 1/2 to 1/10 or less), the switching valve 5 is determined to be no problem, and there is a significant difference between the first value (F1-F2) and the second value (F1'-F2') (for example, the first value (F1- If F2) does not exceed the second value (1/2 to 1/10 times F1'-F2'), it is determined that there is a problem with the closing property of the switching valve 5. FIG.

ここで、切替弁5の閉塞性に問題が無い場合には、測定ステップにおいて、切替弁5が開状態に変化しない限り、燃料ガスがバイパス流路3を経由せずに配管部21から配管40へ流れることはない。そのため、測定ステップで測定したバイパス流路3の流量F2は、切替弁5が開状態である場合におけるバイパス流路3の流量F2’に比して大きくなる。それに対して、切替弁5の閉塞性に問題が有る場合には、測定ステップにおいて、切替弁5の状態に変化がなくても、燃料ガスが配管部21から配管40へ直接流れる。そのため、測定ステップで測定したバイパス流路3の流量F2は、切替弁5が開状態である場合におけるバイパス流路3の流量F2’に対して有意な差がなくなる。 Here, if there is no problem with the blockage of the switching valve 5, unless the switching valve 5 is changed to the open state in the measurement step, the fuel gas will flow from the piping section 21 to the piping 40 without passing through the bypass flow path 3. does not flow to Therefore, the flow rate F2 of the bypass flow path 3 measured in the measurement step is larger than the flow rate F2' of the bypass flow path 3 when the switching valve 5 is open. On the other hand, if there is a problem with the closing property of the switching valve 5, the fuel gas flows directly from the piping section 21 to the piping 40 in the measurement step even if the state of the switching valve 5 does not change. Therefore, the flow rate F2 of the bypass flow path 3 measured in the measurement step has no significant difference from the flow rate F2' of the bypass flow path 3 when the switching valve 5 is open.

そこで、本実施形態の圧力調整器1の検査方法では、測定ステップで測定した主流路2の流量F1とバイパス流路3の流量F2との差である第1の値(F1-F2)と、切替弁5が開状態の場合における主流路2の流量F1’とバイパス流路3の流量F2’との差である第2の値(F1’-F2’)との間に有意な差が無い場合に、切替弁5の閉塞性が悪いと判定し、検査した圧力調整器1を不合格とする。 Therefore, in the inspection method of the pressure regulator 1 of the present embodiment, the first value (F1-F2), which is the difference between the flow rate F1 of the main flow path 2 and the flow rate F2 of the bypass flow path 3 measured in the measurement step, There is no significant difference between the second value (F1'-F2'), which is the difference between the flow rate F1' of the main flow path 2 and the flow rate F2' of the bypass flow path 3 when the switching valve 5 is open. In this case, it is determined that the occlusion property of the switching valve 5 is bad, and the inspected pressure regulator 1 is rejected.

以下、本発明の一実施形態及び他の実施形態に係る圧力調整器1の検査方法を実証するために行った実験について説明する。図6は、当該実験を説明するための図である。 Experiments conducted to demonstrate the inspection method of the pressure regulator 1 according to one embodiment and another embodiment of the present invention will be described below. FIG. 6 is a diagram for explaining the experiment.

図6に示すように、本実験では、配管40の下流側に主流路メータ102と、流量調整バルブ103とを設置した。主流路メータ102は、配管40から下流側へ流れる燃料ガスの流量と圧力とを測定する。また、流量調整バルブ103は、配管40から下流側へ流れる燃料ガスの流量を調整する。本実験では、圧力調整器1の入口圧力を0.1MPaに設定し、切替レバー11により、右側のLPガスボンベを選択した。 As shown in FIG. 6, in this experiment, a main flow meter 102 and a flow control valve 103 were installed downstream of the pipe 40 . The main flow meter 102 measures the flow rate and pressure of the fuel gas flowing downstream from the pipe 40 . Also, the flow control valve 103 adjusts the flow rate of the fuel gas flowing downstream from the pipe 40 . In this experiment, the inlet pressure of the pressure regulator 1 was set to 0.1 MPa, and the right LP gas cylinder was selected by the switching lever 11 .

図7は、実験結果を示す表である。この表に示すように、本実験では、第1~第8条件で、主流路メータ102、漏洩検知センサ31による燃料ガスの流量の測定と、主流路メータ102、圧力センサ32による圧力の測定とを実施した。 FIG. 7 is a table showing experimental results. As shown in this table, in this experiment, under the first to eighth conditions, the fuel gas flow rate was measured by the main flow path meter 102 and the leakage detection sensor 31, and the pressure was measured by the main flow path meter 102 and the pressure sensor 32. carried out.

第1~第4条件では、切替弁5を閉状態にし、第5~第8条件では、切替弁5を開状態にした。また、配管40から下流側へ流れる燃料ガスの流量を、流量調整バルブ103により、第1、第5条件の0[L/h]、第2、第6条件の3[L/h]、第3、第7条件の50[L/h]、第4、第8条件の100[L/h]と変化させた。なお、切替弁5の閉状態では、弁体51と弁座52との隙間が0mmであり、切替弁5の開状態では、弁体51と弁座52との隙間が約0.08mmである。 Under the first to fourth conditions, the switching valve 5 is closed, and under the fifth to eighth conditions, the switching valve 5 is opened. In addition, the flow rate of the fuel gas flowing downstream from the pipe 40 is controlled by the flow rate control valve 103 to be 0 [L/h] for the first and fifth conditions, 3 [L/h] for the second and sixth conditions, and 3 [L/h] for the second and sixth conditions. 3 and 50 [L/h] for the 7th condition, and 100 [L/h] for the 4th and 8th conditions. The gap between the valve body 51 and the valve seat 52 is 0 mm when the switching valve 5 is closed, and the gap between the valve body 51 and the valve seat 52 is about 0.08 mm when the switching valve 5 is open. .

そして、各条件で、開閉弁4を開状態にして、主流路メータ102、漏洩検知センサ31による燃料ガスの流量の測定と、主流路メータ102、圧力センサ32による圧力の測定とを実施した。また、各条件で、開閉弁4を閉状態にして、主流路メータ102による燃料ガスの流量の測定と、主流路メータ102、圧力センサ32による圧力の測定とを実施した。 Under each condition, the on-off valve 4 was opened, and the flow rate of the fuel gas was measured by the main flow meter 102 and the leak detection sensor 31, and the pressure was measured by the main flow meter 102 and the pressure sensor 32. Under each condition, the on-off valve 4 was closed, and the flow rate of the fuel gas was measured by the main flow meter 102 and the pressure was measured by the main flow meter 102 and the pressure sensor 32 .

そして、第1~第8条件について、開閉弁4が開状態のときに主流路メータ102により測定された主流路2の流量と漏洩検知センサ31により測定されたバイパス流路3の流量との差を算出した。また、第2~第4、第6~第8条件については、開閉弁4が開状態のときに主流路メータ102により測定された主流路2の圧力と、開閉弁4が閉状態のときに主流路メータ102により測定された主流路2の圧力との差を算出した。さらに、第2~第4、第6~第8の条件については、開閉弁4が開状態のときに圧力センサ32により測定されたバイパス流路3の圧力と、開閉弁4が閉状態のときに圧力センサ32により測定されたバイパス流路3の圧力との差を算出した。 Then, for the first to eighth conditions, the difference between the flow rate of the main flow path 2 measured by the main flow path meter 102 and the flow rate of the bypass flow path 3 measured by the leakage detection sensor 31 when the on-off valve 4 is open. was calculated. Further, for the second to fourth and sixth to eighth conditions, the pressure in the main flow path 2 measured by the main flow meter 102 when the on-off valve 4 is open, and the pressure when the on-off valve 4 is closed A difference from the pressure in the main flow path 2 measured by the main flow meter 102 was calculated. Furthermore, for the second to fourth and sixth to eighth conditions, the pressure in the bypass flow path 3 measured by the pressure sensor 32 when the on-off valve 4 is open and the pressure when the on-off valve 4 is closed The difference from the pressure in the bypass flow path 3 measured by the pressure sensor 32 was calculated.

まず、開閉弁4を開状態にしたときの主流路2の流量とバイパス流路3の流量との差(以下、流量差という)について検討する。流量調整バルブ103の設定流量が0[L/h]の第1条件と第5条件との間では、流量差に有意な差は確認できないものの、流量調整バルブ103の設定流量が3[L/h]の第2条件と第6条件との間、流量調整バルブ103の設定流量が50[L/h]の第3条件と第7条件との間、及び流量調整バルブ103の設定流量が100[L/h]の第4条件と第8条件との間では、流量差に有意な差を確認できた。具体的には、第2条件での流量差は、第6条件での流量差の約1/5と有意に小さく、第3条件での流量差は、第7条件での流量差の約1/10と有意に小さく、第4条件での流量差は、第8条件での流量差の約1/10と有意に小さいことを確認できた。 First, the difference between the flow rate of the main flow path 2 and the flow rate of the bypass flow path 3 when the on-off valve 4 is opened (hereinafter referred to as flow rate difference) will be examined. Between the first condition and the fifth condition where the set flow rate of the flow rate adjusting valve 103 is 0 [L/h], although no significant difference in the flow rate difference can be confirmed, the set flow rate of the flow rate adjusting valve 103 is 3 [L/h]. h] between the second condition and the sixth condition, between the third condition and the seventh condition where the set flow rate of the flow rate adjusting valve 103 is 50 [L/h], and the set flow rate of the flow rate adjusting valve 103 is 100 A significant difference in the flow rate difference was confirmed between the 4th condition and the 8th condition of [L/h]. Specifically, the flow rate difference under the second condition is significantly smaller, approximately 1/5 of the flow rate difference under the sixth condition, and the flow rate difference under the third condition is approximately 1 of the flow rate difference under the seventh condition. /10, and the difference in flow rate under the fourth condition was confirmed to be significantly smaller, approximately 1/10 of the difference in flow rate under the eighth condition.

以上により、開閉弁4を開状態にして主流路2とバイパス流路3とに燃料ガスを流し、主流路2の流量F1とバイパス流路3の流量F2とを測定し、主流路2の流量F1とバイパス流路3の流量F2との差(F1-F2)と、切替弁5が開状態の場合における主流路2の流量F1’とバイパス流路3の流量F2’との差(F1’-F2’)とを比較し、これらの間に有意な差が有る場合に切替弁5の閉塞性に問題は無いと判定し、これらの間に有意な差が無い場合に切替弁5の閉塞性に問題が有ると判定するという検査方法の有効性が実証された。 As described above, the on-off valve 4 is opened to allow the fuel gas to flow through the main flow path 2 and the bypass flow path 3, the flow rate F1 of the main flow path 2 and the flow rate F2 of the bypass flow path 3 are measured, and the flow rate of the main flow path 2 is measured. The difference (F1-F2) between F1 and the flow rate F2 of the bypass flow path 3, and the difference (F1' -F2′), and if there is a significant difference between them, it is determined that there is no problem with the closing of the switching valve 5, and if there is no significant difference between them, the closing of the switching valve 5 The effectiveness of the test method for judging that there is a sexual problem has been demonstrated.

次に、開閉弁4を開状態にしたときの主流路2の圧力と開閉弁4を閉状態にしたときの主流路2の圧力との差(以下、主流路2の圧力差という)について検討する。流量調整バルブ103の設定流量が3[L/h]の第2条件と第6条件との間、流量調整バルブ103の設定流量が50[L/h]の第3条件と第7条件との間、流量調整バルブ103の設定流量が100[L/h]の第4条件と第8条件との間では、主流路2の圧力差に有意な差があることを確認できた。具体的には、第5~第8条件での主流路2の圧力差は0.1[kPa]未満と0に等しいのに加えて、第2条件での主流路2の圧力差は、第6条件での主流路2の圧力差よりも約0.1[kPa]以上大きいように有意に大きく、第3条件での主流路2の圧力差は、第7条件での主流路2の圧力差よりも約0.3[kPa]以上大きいように有意に大きく、第4条件での主流路2の圧力差は、第8条件での主流路2の圧力差よりも約0.3[kPa]以上大きいように有意に大きいことを確認できた。 Next, the difference between the pressure in the main flow path 2 when the on-off valve 4 is opened and the pressure in the main flow path 2 when the on-off valve 4 is closed (hereinafter referred to as the pressure difference in the main flow path 2) is examined. do. Between the second condition and the sixth condition where the set flow rate of the flow rate adjusting valve 103 is 3 [L/h], and between the third condition and the seventh condition where the set flow rate of the flow rate adjusting valve 103 is 50 [L/h] Meanwhile, it was confirmed that there is a significant difference in the pressure difference in the main flow path 2 between the fourth condition and the eighth condition where the set flow rate of the flow rate control valve 103 is 100 [L/h]. Specifically, the pressure difference in the main flow path 2 under the fifth to eighth conditions is less than 0.1 [kPa] and equal to 0, and in addition, the pressure difference in the main flow path 2 under the second condition is 0.1 [kPa] or more than the pressure difference in the main flow path 2 under the 6 conditions, and the pressure difference in the main flow path 2 under the 3rd condition is greater than the pressure difference in the main flow path 2 under the 7th condition. significantly greater than the difference by at least about 0.3 [kPa], and the pressure difference in the main flow path 2 under the fourth condition is about 0.3 [kPa] greater than the pressure difference in the main flow path 2 under the eighth condition. ], it was confirmed that it is significantly larger.

以上により、開閉弁4を開状態にして主流路2とバイパス流路3とに燃料ガスを流して主流路2の圧力P1を測定し、開閉弁4を閉状態にして主流路2に燃料ガスを流して主流路2の圧力P2を測定し、圧力P1と圧力P2との差(P1-P2)が有意な大きさである場合に切替弁5の閉塞性に問題は無いと判定し、圧力P1と圧力P2との差(P1-P2)が0に等しいか或いは微量(例えば、0.1[kPa]未満)である場合に切替弁5の閉塞性に問題が有ると判定するという検査方法の有効性が実証された。 As described above, the on-off valve 4 is opened to allow the fuel gas to flow through the main flow path 2 and the bypass flow path 3, the pressure P1 in the main flow path 2 is measured, and the on-off valve 4 is closed to flow the fuel gas into the main flow path 2. is flowed to measure the pressure P2 in the main flow path 2, and if the difference (P1-P2) between the pressure P1 and the pressure P2 is significant, it is determined that there is no problem with the obstruction of the switching valve 5, and the pressure An inspection method in which it is determined that there is a problem with the occlusion of the switching valve 5 when the difference (P1-P2) between P1 and pressure P2 is equal to 0 or is very small (for example, less than 0.1 [kPa]). was demonstrated to be effective.

次に、開閉弁4を開状態にしたときのバイパス流路3の圧力と開閉弁4を閉状態にしたときのバイパス流路3の圧力との差(以下、バイパス流路3の圧力差という)について検討する。流量調整バルブ103の設定流量が3[L/h]の第2条件と第6条件との間、流量調整バルブ103の設定流量が50[L/h]の第3条件と第7条件との間、流量調整バルブ103の設定流量が100[L/h]の第4条件と第8条件との間では、バイパス流路3の圧力差に有意な差が有ることを確認できた。具体的には、第5~第8条件でのバイパス流路3の圧力差は0.1[kPa]未満と0に等しいのに加えて、第2条件でのバイパス流路3の圧力差は、第6条件でのバイパス流路3の圧力差よりも0.1[kPa]以上大きいように有意に大きく、第3条件でのバイパス流路3の圧力差は、第7条件でのバイパス流路3の圧力差よりも0.3[kPa]以上大きいように有意に大きく、第4条件でのバイパス流路3の圧力差は、第8条件でのバイパス流路3の圧力差よりも0.3[kPa]以上大きいように有意に大きいことを確認できた。 Next, the difference between the pressure in the bypass flow path 3 when the on-off valve 4 is opened and the pressure in the bypass flow path 3 when the on-off valve 4 is closed (hereinafter referred to as the pressure difference in the bypass flow path 3) ). Between the second condition and the sixth condition where the set flow rate of the flow rate adjusting valve 103 is 3 [L/h], and between the third condition and the seventh condition where the set flow rate of the flow rate adjusting valve 103 is 50 [L/h] Meanwhile, it was confirmed that there is a significant difference in the pressure difference in the bypass flow path 3 between the fourth condition and the eighth condition where the set flow rate of the flow rate control valve 103 is 100 [L/h]. Specifically, the pressure difference in the bypass flow path 3 under the fifth to eighth conditions is less than 0.1 [kPa] and equal to 0, and the pressure difference in the bypass flow path 3 under the second condition is , is significantly larger than the pressure difference in the bypass flow path 3 under the sixth condition by 0.1 [kPa] or more, and the pressure difference in the bypass flow path 3 under the third condition is greater than that of the bypass flow under the seventh condition. 0.3 [kPa] or more than the pressure difference in the passage 3, and the pressure difference in the bypass passage 3 under the fourth condition is 0 more than the pressure difference in the bypass passage 3 under the eighth condition. 0.3 [kPa] or more was confirmed to be significantly large.

以上により、開閉弁4を開状態にして主流路2とバイパス流路3とに燃料ガスを流してバイパス流路3の圧力P1’を測定し、開閉弁4を閉状態にして主流路2に燃料ガスを流してバイパス流路3の圧力P2’を測定し、圧力P1’と圧力P2’との差(P1’-P2’)が有意な大きさである場合に切替弁5の閉塞性に問題が無いと判定し、圧力P1’と圧力P2’との差(P1’-P2’)が0であるか或いは微量(例えば、0.1[kPa]未満)である場合に切替弁5の閉塞性に問題が有ると判定するという検査方法の有効性が実証された。 As described above, the on-off valve 4 is opened to allow the fuel gas to flow through the main flow path 2 and the bypass flow path 3 to measure the pressure P1′ in the bypass flow path 3, and the on-off valve 4 is closed to flow the fuel gas into the main flow path 2. Fuel gas is flowed to measure the pressure P2' in the bypass flow path 3, and if the difference (P1'-P2') between the pressure P1' and the pressure P2' is significant, the blockage of the switching valve 5 is determined. If it is determined that there is no problem, and the difference (P1'-P2') between the pressure P1' and the pressure P2' is 0 or a small amount (for example, less than 0.1 [kPa]), the switching valve 5 The effectiveness of the test method for judging that there is a problem with obstructiveness has been demonstrated.

図8は、本発明の一実施形態に係る圧力調整器1の検査システム100の概略を示す図である。この図に示すように、検査システム100は、圧力センサ32により測定された圧力P1’,P2’が入力され、入力された圧力P1’,P2’に基づいて、圧力調整器1の良否を判定する端末110を備える。 FIG. 8 is a schematic diagram of an inspection system 100 for the pressure regulator 1 according to one embodiment of the present invention. As shown in this figure, the inspection system 100 receives pressures P1' and P2' measured by the pressure sensor 32, and determines whether the pressure regulator 1 is good or bad based on the input pressures P1' and P2'. A terminal 110 is provided.

端末110は、パーソナルコンピュータや携帯端末等であり、圧力センサ32から圧力P1’,P2’が入力される入力部111と、入力部111に入力された圧力P1’,P2’に基づいて、圧力調整器1の良否を判定する処理部112と、操作部113と、表示部114とを備える。なお、端末110は、操作部113と表示部114との機能を一体化したタッチパネルを備えてもよい。 The terminal 110 is a personal computer, a mobile terminal, or the like. It includes a processing unit 112 that determines whether the adjuster 1 is good or bad, an operation unit 113 , and a display unit 114 . Note that the terminal 110 may include a touch panel that integrates the functions of the operation unit 113 and the display unit 114 .

この端末110と圧力センサ32とは、有線又は無線で接続可能であり、圧力センサ32で測定された圧力P1’,P2’が入力部111に入力される。なお、作業者の入力操作により、圧力P1’,P2’が入力部111に入力されるようにしてもよい。 The terminal 110 and the pressure sensor 32 can be connected by wire or wirelessly, and the pressures P<b>1 ′ and P<b>2 ′ measured by the pressure sensor 32 are input to the input section 111 . The pressures P1' and P2' may be input to the input unit 111 by the operator's input operation.

処理部112は、開閉弁4を開状態にして圧力P1’を測定する第1測定ステップの実施を指示する表示を表示部114に表示させる。作業者は、表示部114に表示された指示に従って第1測定ステップを実施することになる。この第1測定ステップが実施されると圧力センサ32によりバイパス流路3の圧力P1’が測定されてこの圧力P1’が入力部111に入力される。処理部112は、入力部111に入力された圧力P1’を記憶部(図示省略)に記憶させる。 The processing unit 112 causes the display unit 114 to display an instruction to perform the first measurement step of opening the on-off valve 4 and measuring the pressure P1'. The operator follows the instructions displayed on display unit 114 to perform the first measurement step. When this first measurement step is performed, the pressure sensor 32 measures the pressure P<b>1 ′ of the bypass flow path 3 and this pressure P<b>1 ′ is input to the input section 111 . The processing unit 112 causes the storage unit (not shown) to store the pressure P1′ input to the input unit 111 .

処理部112は、開閉弁4を閉状態にして圧力P2’を測定する第2測定ステップの実施を指示する表示を表示部114に表示させる。作業者は、表示部114に表示された指示に従って第2測定ステップを実施することになる。この第2測定ステップが実施されると圧力センサ32によりバイパス流路3の圧力P2’が測定されてこの圧力P2’が入力部111に入力される。処理部112は、入力部111に入力された圧力P2’を記憶部に記憶させる。 The processing unit 112 causes the display unit 114 to display an instruction to perform the second measurement step of closing the on-off valve 4 and measuring the pressure P2'. The operator follows the instructions displayed on display unit 114 to perform the second measurement step. When this second measurement step is performed, the pressure sensor 32 measures the pressure P<b>2 ′ of the bypass flow path 3 and this pressure P<b>2 ′ is input to the input section 111 . The processing unit 112 causes the storage unit to store the pressure P<b>2 ′ input to the input unit 111 .

処理部112は、記憶部に記憶された圧力P1’と圧力P2’との差(P1’-P2’)が所定の閾値(例えば、0.1[kPa])以上であるか否かを判定し、所定の閾値以上である場合には、圧力調整器1を合格と判定し、所定の閾値未満である場合には、圧力調整器1を不合格と判定する。処理部112は、圧力調整器1の判定結果を表示部114に表示させる。 The processing unit 112 determines whether the difference (P1′−P2′) between the pressure P1′ and the pressure P2′ stored in the storage unit is equal to or greater than a predetermined threshold value (eg, 0.1 [kPa]). If it is equal to or greater than the predetermined threshold value, the pressure regulator 1 is determined to be acceptable, and if it is less than the predetermined threshold value, the pressure regulator 1 is determined to be unacceptable. The processing unit 112 causes the display unit 114 to display the determination result of the pressure regulator 1 .

なお、圧力センサ32に代えて圧力計8を使用し、圧力計8によって測定される主流路2の圧力P1,P2を入力部111に入力し、処理部112が、主流路2の圧力P1,P2に基づいて、圧力調整器1の良否を判定するようにしてもよい。 The pressure gauge 8 is used instead of the pressure sensor 32, the pressures P1 and P2 of the main flow path 2 measured by the pressure gauge 8 are input to the input unit 111, and the processing unit 112 detects the pressures P1, P2 of the main flow channel 2, The quality of the pressure regulator 1 may be determined based on P2.

図9は、本発明の他の実施形態に係る圧力調整器1の検査システム200の概略を示す図である。この図に示すように、検査システム200は、流量センサ101で測定された主流路2の流量F1と、漏洩検知センサ31により測定されたバイパス流路3の流量F2とが入力され、入力された流量F1,F2に基づいて、圧力調整器1の良否を判定する端末210を備える。 FIG. 9 is a schematic diagram of an inspection system 200 for a pressure regulator 1 according to another embodiment of the invention. As shown in this figure, the inspection system 200 receives the flow rate F1 of the main flow path 2 measured by the flow sensor 101 and the flow rate F2 of the bypass flow path 3 measured by the leak detection sensor 31. A terminal 210 is provided for determining whether the pressure regulator 1 is good or bad based on the flow rates F1 and F2.

端末210は、パーソナルコンピュータや携帯端末等であり、流量センサ101から流量F1が入力され,漏洩検知センサ31から流量F2が入力される入力部211と、入力部211に入力された流量F1,F2に基づいて、圧力調整器1の良否を判定する処理部212と、操作部213と、表示部214とを備える。なお、端末210は、操作部213と表示部214との機能を一体化したタッチパネルを備えてもよい。 The terminal 210 is a personal computer, a mobile terminal, or the like, and includes an input unit 211 to which the flow rate F1 is input from the flow rate sensor 101 and the flow rate F2 is input from the leak detection sensor 31, and the flow rates F1 and F2 input to the input section 211. A processing unit 212 that determines whether the pressure regulator 1 is good or bad based on the above, an operation unit 213, and a display unit 214. Note that the terminal 210 may include a touch panel that integrates the functions of the operation unit 213 and the display unit 214 .

この端末210と流量センサ101、及び漏洩検知センサ31とは、有線又は無線で接続可能であり、流量センサ101で測定された主流路2の流量F1と漏洩検知センサ31により測定されたバイパス流路3の流量F2とが入力部211に入力される。なお、作業者の入力操作により、流量F1,F2が入力部211に入力されるようにしてもよい。 The terminal 210, the flow rate sensor 101, and the leak detection sensor 31 can be connected by wire or wirelessly. 3 and the flow rate F2 are input to the input unit 211 . Note that the flow rates F1 and F2 may be input to the input unit 211 by the operator's input operation.

処理部212は、開閉弁4を開状態にして流量F1,F2を測定する測定ステップの実施を指示する表示を表示部214に表示させる。作業者は、表示部214に表示された指示に従って測定ステップを実施することになる。この測定ステップが実施されると流量センサ101により主流路2の流量F1が測定されてこの流量F1が入力部211に入力される。また、漏洩検知センサ31によりバイパス流路3の流量F2が測定されてこの流量F2が入力部211に入力される。 The processing unit 212 causes the display unit 214 to display an instruction to perform a measurement step of opening the on-off valve 4 and measuring the flow rates F1 and F2. The operator will perform the measurement step according to the instructions displayed on the display unit 214 . When this measurement step is performed, the flow sensor 101 measures the flow rate F1 of the main flow path 2 and inputs this flow rate F1 to the input section 211 . Also, the flow rate F2 of the bypass flow path 3 is measured by the leak detection sensor 31 and this flow rate F2 is input to the input section 211 .

処理部212は、入力部211に入力された流量F1と流量F2との差(F1-F2)が所定の閾値(例えば、流量F1の10%未満等)未満であるか否かを判定し、所定の閾値未満である場合には、圧力調整器1を合格と判定し、所定の閾値以上である場合には、圧力調整器1を不合格と判定する。処理部212は、圧力調整器1の判定結果を表示部214に表示させる。 The processing unit 212 determines whether the difference (F1-F2) between the flow rate F1 and the flow rate F2 input to the input unit 211 is less than a predetermined threshold (for example, less than 10% of the flow rate F1), If it is less than the predetermined threshold, the pressure regulator 1 is determined to be acceptable, and if it is equal to or greater than the predetermined threshold, the pressure regulator 1 is determined to be unacceptable. The processing unit 212 causes the display unit 214 to display the determination result of the pressure regulator 1 .

以上、上記実施形態に基づき本発明を説明したが、本発明は上記実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で、変更を加えてもよいし、適宜公知や周知の技術を組み合わせてもよい。 As described above, the present invention has been described based on the above embodiments, but the present invention is not limited to the above embodiments, and may be modified without departing from the scope of the present invention. You can combine techniques.

1 圧力調整器
2 主流路
3 バイパス流路
4 開閉弁
5 切替弁
100 検査システム
111 入力部
112 処理部(判定部)
200 検査システム
211 入力部
212 処理部(判定部)
F1 流量
F2 流量
F1’ 流量
F2’ 流量
P1 圧力
P2 圧力
P1’ 圧力
P2’ 圧力
1 pressure regulator 2 main flow path 3 bypass flow path 4 on-off valve 5 switching valve 100 inspection system 111 input unit 112 processing unit (determining unit)
200 inspection system 211 input unit 212 processing unit (determining unit)
F1 flow rate F2 flow rate F1' flow rate F2' flow rate P1 pressure P2 pressure P1' pressure P2' pressure

Claims (6)

主流路の上流側と下流側との圧力差に応じて開閉する切替弁と、前記主流路における前記切替弁の上流側と下流側とをバイパスするバイパス流路と、前記バイパス流路を開閉する開閉弁とを備える燃料ガスの圧力調整器の検査方法であって、
前記開閉弁を開いた状態で、前記切替弁が閉じた状態に維持される所定流量の燃料ガスを前記主流路における前記切替弁の上流側から下流側に流して当該下流側又は前記バイパス流路の圧力を測定する第1測定ステップと、
前記開閉弁を閉じた状態で、前記所定流量の燃料ガスを前記主流路における前記切替弁の上流側から下流側に流して当該下流側又は前記バイパス流路の圧力を測定する第2測定ステップと、
前記第1測定ステップで測定した圧力と前記第2測定ステップで測定した圧力との差に基づいて、前記切替弁の良否判定をする判定ステップと
を備える燃料ガスの圧力調整器の検査方法。
a switching valve that opens and closes according to a pressure difference between the upstream side and the downstream side of a main flow path; a bypass flow path that bypasses the upstream side and the downstream side of the switching valve in the main flow path; and opening and closing the bypass flow path. A method for inspecting a fuel gas pressure regulator comprising an on-off valve,
With the on-off valve opened, a predetermined flow rate of fuel gas, which is maintained in the closed state of the switching valve, flows from the upstream side of the switching valve in the main flow path to the downstream side of the switching valve to flow the downstream side or the bypass flow path. a first measuring step of measuring the pressure of
a second measuring step of flowing the predetermined flow rate of the fuel gas from the upstream side of the switching valve to the downstream side of the switching valve in the main flow path while the on-off valve is closed, and measuring the pressure of the downstream side or the bypass flow path; ,
and a determining step of determining whether the switching valve is good or bad based on the difference between the pressure measured in the first measuring step and the pressure measured in the second measuring step.
前記判定ステップでは、前記第1測定ステップで測定した圧力と前記第2測定ステップで測定した圧力との差が0.1kPa未満である場合に、前記切替弁を異常と判定する請求項1に記載の燃料ガスの圧力調整器の検査方法。 2. The determining step according to claim 1, wherein the switching valve is determined to be abnormal when a difference between the pressure measured in the first measuring step and the pressure measured in the second measuring step is less than 0.1 kPa. fuel gas pressure regulator inspection method. 主流路の上流側と下流側との圧力差に応じて開閉する切替弁と、前記主流路における前記切替弁の上流側と下流側とをバイパスするバイパス流路と、前記バイパス流路を開閉する開閉弁とを備える燃料ガスの圧力調整器の検査方法であって、
前記開閉弁を開いた状態で、前記切替弁が閉じた状態に維持される所定流量の燃料ガスを前記主流路における前記切替弁の上流側から下流側に流して当該下流側の流量と前記バイパス流路の流量とを測定する測定ステップと、
前記測定ステップで測定した前記主流路の流量と前記バイパス流路の流量との差に基づいて、前記切替弁の良否判定をする判定ステップと
を備える燃料ガスの圧力調整器の検査方法。
a switching valve that opens and closes according to a pressure difference between the upstream side and the downstream side of a main flow path; a bypass flow path that bypasses the upstream side and the downstream side of the switching valve in the main flow path; and opening and closing the bypass flow path. A method for inspecting a fuel gas pressure regulator comprising an on-off valve,
With the on-off valve opened, a predetermined flow rate of the fuel gas maintained in the closed state of the switching valve flows from the upstream side of the switching valve in the main flow path to the downstream side, and the flow rate on the downstream side and the bypass a measuring step of measuring the flow rate of the channel;
and a determination step of determining whether the switching valve is good or bad based on the difference between the flow rate of the main flow path and the flow rate of the bypass flow path measured in the measurement step.
前記判定ステップでは、前記測定ステップで測定した前記主流路の流量と前記バイパス流路の流量との差である第1の値と、前記開閉弁と前記切替弁とが開いた状態で前記所定流量の燃料ガスが前記主流路における前記切替弁の上流側から下流側に流れた場合における前記主流路の流量と前記バイパス流路の流量との差である第2の値とを比較し、前記第1の値と前記第2の値との間に所定の差が無い場合に、前記切替弁を異常と判定する請求項3に記載の燃料ガスの圧力調整器の検査方法。 In the determination step, a first value that is the difference between the flow rate of the main flow path and the flow rate of the bypass flow path measured in the measurement step, and the predetermined flow rate with the on-off valve and the switching valve open. is compared with a second value that is the difference between the flow rate of the main flow path and the flow rate of the bypass flow path when the fuel gas flows from the upstream side of the switching valve in the main flow path to the downstream side of the switching valve; 4. The fuel gas pressure regulator inspection method according to claim 3, wherein the switching valve is determined to be abnormal when there is no predetermined difference between the value of 1 and the second value. 請求項1又は2に記載の圧力調整器の検査方法の実施に用いる圧力調整器の検査システムであって、
前記第1測定ステップで測定された圧力と前記第2測定ステップで測定された圧力とが入力される入力部と、
前記第1測定ステップで測定されて前記入力部に入力された圧力と前記第2測定ステップで測定されて前記入力部に入力された圧力との差を算出し、前記判定ステップを実行する判定部と
を備える圧力調整器の検査システム。
A pressure regulator inspection system used for implementing the pressure regulator inspection method according to claim 1 or 2,
an input unit into which the pressure measured in the first measurement step and the pressure measured in the second measurement step are input;
A determination unit that calculates a difference between the pressure measured in the first measurement step and input to the input unit and the pressure measured in the second measurement step and input to the input unit, and executes the determination step. A pressure regulator inspection system comprising and .
請求項3又は4に記載の圧力調整器の検査方法の実施に用いる圧力調整器の検査システムであって、
前記測定ステップで測定された前記主流路の流量と前記バイパス流路の流量とが入力される入力部と、
前記測定ステップで測定されて前記入力部に入力された前記主流路の流量と前記バイパス流路の流量との差を算出し、前記判定ステップを実行する判定部と
を備える圧力調整器の検査システム。
A pressure regulator inspection system used for implementing the pressure regulator inspection method according to claim 3 or 4,
an input unit for inputting the flow rate of the main flow path and the flow rate of the bypass flow path measured in the measuring step;
a determination unit that calculates the difference between the flow rate of the main flow path and the flow rate of the bypass flow path measured in the measurement step and input to the input unit, and executes the determination step; .
JP2021084572A 2021-05-19 2021-05-19 Inspection method of pressure regulator for fuel gas, and inspection system of pressure regulator for fuel gas Pending JP2022178060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021084572A JP2022178060A (en) 2021-05-19 2021-05-19 Inspection method of pressure regulator for fuel gas, and inspection system of pressure regulator for fuel gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021084572A JP2022178060A (en) 2021-05-19 2021-05-19 Inspection method of pressure regulator for fuel gas, and inspection system of pressure regulator for fuel gas

Publications (1)

Publication Number Publication Date
JP2022178060A true JP2022178060A (en) 2022-12-02

Family

ID=84239424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021084572A Pending JP2022178060A (en) 2021-05-19 2021-05-19 Inspection method of pressure regulator for fuel gas, and inspection system of pressure regulator for fuel gas

Country Status (1)

Country Link
JP (1) JP2022178060A (en)

Similar Documents

Publication Publication Date Title
KR101550255B1 (en) Pressure-based flow control device with flow monitor, fluid-supply-system anomaly detection method using same, and method for handling monitor flow anomalies
KR101008241B1 (en) Method of detecting abnormality in fluid supply system, using flow rate control device having pressure sensor
JP6934099B1 (en) Gas leak detector, gas leak detection setting method, gas leak detection method, program
KR102523119B1 (en) Method of inspecting gas supply system
JP2004280688A (en) Massflow controller
TW201504611A (en) Air pressure circuit for tire testing device
JP2022178060A (en) Inspection method of pressure regulator for fuel gas, and inspection system of pressure regulator for fuel gas
JP2021110594A (en) Inspection method for gas leakage detector, gas leakage inspection method, and gas leakage detector
JP7340347B2 (en) Purge detection device
JP7164341B2 (en) Leak detection device and leak detection system
JP2007127509A (en) Regulator, and hybrid gas meter system
JP7316162B2 (en) Inspection method for valve mechanism of channel switching device
JP7089410B2 (en) Pressure regulator and leak detection system
JP7294888B2 (en) Pressure regulator and leak detection system
TW202012887A (en) Gas flow rate testing unit
JP6120369B2 (en) Ultrasonic flow meter
JP2003194654A (en) Airtightness test method and gas supply device
JP2020076416A (en) Shut off valve
JP7510934B2 (en) Measurement system and method for measuring mass flow, density, temperature or flow velocity - Patents.com
JPH02141637A (en) Valve-leak detector
WO2023199934A1 (en) Pressure regulator
US11473999B2 (en) Leak inspection device and leak inspection method
JPH0727658A (en) Gas leakage detection method
JP4184290B2 (en) Method of checking over gas when pressure regulator is closed
JP5292177B2 (en) Pressure sensor and flow rate detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240315